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Abstract

Voice conversion (VC) transforms an utterance to sound like another
person without changing the linguistic content. A recently proposed
generative adversarial network-based VC method, StarGANv2-VC
is very successful in generating natural-sounding conversions.
However, the method fails to preserve the emotion of the source
speaker in the converted samples. Emotion preservation is necessary
for natural human-computer interaction. In this paper, we show
that StarGANv2-VC fails to disentangle the speaker and emotion
representations, pertinent to preserve emotion. Specifically, there
is an emotion leakage from the reference audio used to capture the
speaker embeddings while training. To counter the problem, we
propose novel emotion-aware losses and an unsupervised method
which exploits emotion supervision through latent emotion represen-
tations. The objective and subjective evaluations prove the efficacy
of the proposed strategy over diverse datasets, emotions, gender, etc.
Index Terms: voice conversion, emotion preservation, StarGAN

1. Introduction
Voice conversion (VC) is a technique that transforms the speech
of one speaker to make it sound like another speaker’s voice, while
keeping the linguistic content intact and ensuring that the quality,
naturalness and comprehensibility of the converted speech remain
high [1]. VC systems have numerous practical use cases in various
domains [2]. For example, in speech therapy, a VC system could be
used to record sessions for later analysis while ensuring that patient
confidentiality is maintained, a mandatory request resulting from
the requirement to adhere to the guidelines of the General Data
Protection Regulation (GDPR) [3]. VC systems could also be useful
in the entertainment industry to perform tasks like voice dubbing.
Furthermore, preserving the emotional state of the speaker parallel
to providing anonymized speech is necessary in all VC applications
where the emotional information is necessary for further processing,
such as when analyzing the speech for mental health issues or
interaction with an affect-aware avatar. Therefore, VC methods
should ensure that the original speaker’s emotional state is not lost
during the conversion process.

Many deep learning-based approaches have been proposed
for voice conversion [4]. Early deep neural network (DNN)-based
methods [5] largely concentrated on the concept of frame-wise
spectral feature conversion. Soon after, long short-term memory
(LSTM) based sequence-to-sequence models [6] were employed
for the task and produced high-quality converted samples. Although
the converted samples generated by sequence-to-sequence models
are more natural, they suffer from mispronunciation and training
instability [7]. Moreover, these methods need numerous parallel
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utterances to learn [8], which is a very expensive, time-consuming,
and burdensome task in itself.

To alleviate the issue of obtaining expensive parallel training
data, several non-parallel-based DNN methods were proposed,
which are based on variational autoencoder (VAE) [9, 10, 11]
and cycle-consistent generative adversarial network (Cycle-
GAN) [12, 13, 14]. The VC methods utilizing VAE typically
attempt to extract disentangled speaker and content embeddings
from utterances through a reconstruction loss. The VAE-based
approaches produce over-smoothed conversions, which leads to a
poor-quality, buzzy-sounding speech [7, 8]. The CycleGAN-based
frameworks use cycle consistency loss, which learns both
forward and reverse conversion of samples between two speakers
using non-parallel training utterances. A major problem with
CycleGAN-based frameworks is that they require training of one
generator for each pair of speakers, which makes it impractical for
many-to-many VC use cases. The CycleGAN-based frameworks
are also criticized for producing low-quality converted samples [7].

A few recent text-to-speech (TTS) based voice conversion
methods [15] extract the content through two modules, automatic
speech recognition (ASR) and TTS. The linguistic content is first
extracted from the source speech through an ASR. Further, a TTS
is fed with the ASR generated transcription and a target speaker’s
embedding to generate the converted utterance. The naturalness
and intelligibility of the converted speech using such ASR and
TTS-based systems are typically high [16]. However, they fail to
preserve the prosody or affective state of the source speaker, as they
use only the linguistic content of the source utterance to generate
the converted speech. Further, the performance of such VC systems
is dependent on the quality of transcriptions produced by the ASR.

Recently, several StarGAN-based [17] non-parallel many-to-
many VC frameworks [18, 19, 20] have been proposed. Among
those, the StarGANv2-VC [20] framework is especially interesting
as it generates fundamental frequency (F0) consistent, natural
sounding and highly intelligible converted samples [21]. Moreover,
the architecture design makes the framework very scalable, making
it suitable for utterances of any length and, its fast conversion
capability makes it suitable for real-time applications. However, the
model fails to preserve the affective state of the source speaker when
the source utterance has a large variation in the acoustic parameters.

In this paper, we investigate the reason for StarGANv2-VC’s
failure in preserving the source speaker’s emotion in converted
speech. We also propose a novel method to circumvent the said
problem, by using an unsupervised emotion supervision technique
through latent emotion representations. Further, we propose losses
which prevent emotion leakage from the reference audio used
to generate the speaker embeddings, which also leads to a better
disentanglement of speaker and emotion representations. We
evaluate the proposed method extensively with three datasets for
various emotions, different gender, and accent groups. The objective
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Figure 1: StarGANv2-VC architecture for VC. The dashed parts
belong to the proposed emotion supervision method.

and subjective evaluation results depict that the proposed method
significantly improves the emotion preservation capability over
vanilla StarGANv2-VC for all cases.

2. StarGANv2-VC and Emotion Leakage
2.1. Architecture

The architecture diagram of StarGANv2-VC [20] is presented in
Figure 1, along with the proposed emotion supervision components.
The generator G produces the converted utterance Xtrg, which com-
prises an encoder (EN) and a decoder. The generator is fed with an
utterance Xsrc belonging to the source speaker ysrc and a speaker
style-embedding hsty belonging to the target speaker ytrg, where
ysrc,ytrg ∈ Y . As described by the authors, the generator also
consumes the source F0 embeddings hf0 produced by a pre-trained
network, which enables the model to produce F0 consistent conver-
sions [20]. The speaker-style-encoder (SE) generates the speaker-
style-embedding hsty from a randomly selected reference utterance
Xref of the target speaker ytrg, given the target speaker-code. The
embeddinghsty represents speaker-style information, such as accent.
Hence, the converted sample Xtrg=G(Xsrc,hf0,hsty), contains
the speaker characteristics of the target speaker, but the intonation
and linguistic content of the source utterance. To encourage G in
producing unique samples, a separate mapping network (M) is also
trained along with SE, as done in [20]. During training, speaker-
style embeddings are generated using both SE or M alternatively
in each optimization step. The module M produces target speaker-
embedding from a random latent vector sampled from a normal
Gaussian distribution and target speaker-code. The discriminator
module consists of two adversarial classifiers: a quality classifier (C)
and a speaker classifier (Csp). The C classifier classifies the real and
fake samples conditioned on the speaker-code. The classifier (Csp)
classifies the source speaker of the converted sample during the dis-
criminator training phase and classifies the target speaker during the
generator training phase, as proposed in [20]. This further encour-
ages G to suppress the source speaker’s traits in converted samples.

2.2. Emotion Leakage by Speaker Embedding

The speaker-style-encoder (SE) extracts the target speaker’s
style-embedding from the reference utterance, shown as Xref in
Figure 1. For the emotion-leakage introspection, we train a vanilla
StarGANv2-VC with English utterances from Emotional Speech
Database (ESD) corpus [22], which has emotional utterances. After
the training, we extract the speaker embeddings. For illustration, we

choose two different speakers, 0012 (male) and 0016 (female) from
ESD. The model is trained using utterances from these speakers.
The speaker embeddings are projected onto a 2D space using tSNE
transformation, and the results are presented in Figure 2. The
speaker embeddings for utterances from a single speaker should
conform to a compact region in space, regardless of the emotion of
the utterances. On the contrary, Figure 2 reveals that the embeddings
form unnecessary grouping based on emotion. This shows that the
SE fails to disentangle emotional cues from the reference utterances
when it generates target speaker embedding from those utterances.
Consequently, this unintended emotional information leaks to the
decoder along with the target speaker’s style representation. This
confuses the decoder while generating the utterance using the target
speaker’s voice. This leakage occurs due to two reasons: (i) the
absence of a training objective that encourages the SE to perform
the disentanglement between speaker-dependent and speaker-
independent features. (b) the speaker-style reconstruction loss
Lstyle [20] used in the vanilla StarGANv2-VC, shown in Eqn. 1.

Lstyle=
[
|SE(Xref ,ytrg)−SE(Xtrg,ytrg)|

]
(1)

The speaker-style reconstruction loss ensures that the style embed-
dings can be regenerated from the generated samples. This loss in-
tends to bring the speaking style of the converted sample closer to the
reference sample, as both of them belong to the same (target) speaker.
This further exacerbates the domain leakage problem, as the target
speaker-embedding is not disentangled from the emotional cues of
the reference utterance. Therefore, by minimizing this loss, the con-
verted speech tends to be closer to the reference also in terms of emo-
tion, which subdues the emotion of the source speech. This cripples
the emotion preservation capability of the vanilla StarGANv2-VC.

20 15 10 5 0 5 10 15 20
Component-1

15

10

5

0

5

10

15

Co
m

po
ne

nt
-2

Speaker:0012
Angry
Happy
Sad
Surprise
Neutral

20 10 0 10 20
Component-1

20

15

10

5

0

5

10

15

20

Co
m

po
ne

nt
-2

Speaker:0016
Angry
Happy
Sad
Surprise
Neutral

Figure 2: 2D tSNE plot for speaker embedding generated by the
style encoder of the vanilla StarGANv2-VC.

3. Methods
The availability of a large amount of good quality emotion labels is
difficult. Further, in non-parallel voice conversion, the emotion label
of the converted samples is not available. Therefore, to circumvent
the emotion leakage problem, we propose an unsupervised emotion
supervision technique using emotion representations. The emotion
representations are deep emotion-embeddings, which contain the
information about the affective state of the utterance. The proposed
method encourages the generator to preserve the affective state of
the source in the converted samples.

3.1. Deep Emotion Embedding and Emotion Supervision

One way of providing emotion supervision is to extract latent
emotion representations from the source and the converted
samples, and then minimize the distance between them. To
this end, an emotion-embedding extraction network is needed
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Figure 3: StarGANv2-VC used in emotion conversion. For example,
a happy utterance from speaker 1 is converted to a sad utterance.
The emotion-style encoder generates sad emotion embedding from
a sad reference utterance of speaker 2.

to produce the latent emotion representations directly from the
utterances. A two-stage training approach is proposed to create this
emotion-embedding extraction network.

At Stage-I, an emotion conversion framework is trained, where
the emotion is converted instead of speaker-traits. We used the
vanilla StarGANv2-VC framework for the emotion conversion
task, as shown in Figure 3. In this case, the style encoder captures
the representations of emotion instead of speaker. The working
principle of the style encoder in the emotion conversion task is
depicted in Figure 4. The shallow shared convolution layers extract
a 512 dimensional shared latent representation from the reference
mel-spectrogram. Consequently, the fully connected (FC) layers
project this shared embedding to emotion-specific 64 dimensional
emotion-style embeddings, hemo1, ..., hemoN , where N is the
number of emotion classes. Finally, an emotion style-embedding
hemo corresponding to the utterance needs to be selected based
on the emotion-code etrg. The emotion-code denotes the emotion
class of the utterance. Therefore, when the emotion ground truth
is not available, the selection of the emotion-code is not possible.
This makes the current technique unusable for emotion extraction
for VC, as the converted samples do not have emotion ground truth.
Therefore, we need a mechanism which does not depend on the
availability of emotion ground truth, which is achieved at Stage-II.
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Figure 4: Architecture and the working mechanism of the style
encoder for emotion conversion.

At Stage-II, the linear projecting FC layers are removed from the
pre-trained SE and a classification head consisting of three FC
layers is placed on top of the shared convolution layers, as shown
in Figure 5. The classifier is then trained for a supervised emotion
classification task. During training, the weights for the shallow
pre-trained convolution layers remain fixed and only the weights for
the classification head are optimized. After Stage-II training, the 64
dimensional output features of the second FC layer of the classifica-
tion head can be used as the latent emotion representation. Now, this
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Figure 5: Block diagram of the emotion classifier. X is any
input mel-spectrogram. The trainable emotion classification head
is added on top of pre-trained shared convolution layers. The
classification head predicts the emotion class ê.

network serves as a differentiable black-box emotion-embedding
extractor module Cemo for the VC task, as shown in Figure 1. The
module can be used to extract deep emotion representations from
any utterance, irrespective of the presence of emotion ground truth.
A loss is computed by equating the emotion representations from
the source and converted, as shown in Eqn. 2.

Ldemo=EXsrc,Xtrg

[
|Cemo(Xsrc)−Cemo(Xtrg)|

]
(2)

We minimize this additional Ldemo loss while training the
StarGANv2-VC for the VC task, which encourages emotion
preservation and suppress any emotion leakage from the reference
utterance.

3.2. Style Reconstruction Loss

To encourage the disentanglement of the target speaker’s style-
embedding from any unintended emotion-indicating information
of the reference utterance, we augment the style reconstruction
loss Lstyle as shown in Eqn. 3. Here, Xref2 is another randomly
selected reference utterance for the same target speaker. The loss
facilitates the model to bring the target speaker style embeddings
extracted from Xref and Xref2 closer.

Lstyle=
[
|SE(Xref ,ytrg)−SE(Xtrg,ytrg)|

]
+
[
|SE(Xref2,ytrg)−SE(Xtrg,ytrg)|

]
+
[
|SE(Xref ,ytrg)−SE(Xref2,ytrg)|

]
(3)

3.3. Conversion Invariant Feature Preservation Loss

In vanilla StarGANv2-VC, all the losses are applied directly to
the generator output, and gradients are back-propagated all the
way through the decoder and encoder. Consequently, the shallow
convolution layers of the encoder get very little supervision about the
conversion invariant features. These conversion invariant features,
such as content and emotion-related features, need to be preserved
as much as possible in the latent output of the encoder. To this end,
we propose a new loss Linv as shown in Eqn. 4, applied directly to
the encoder EN. The loss minimizes the distance between the latent
code generated from the source and the converted sample, forcing
the encoder to preserve more content and emotion-related features
in its latent output. This loss further helps in disentanglement of
content features from speaker-specific features.

Linv=EXsrc,Xtrg

[
|EN(Xsrc)−EN(Xtrg)|

]
(4)

3.4. Overall Training Objective

The overall training objective for the generator is presented in
Eqn. 5, where Ldemo and Linv are the proposed losses, and the rest
are taken from [20]. Ladv is the typical adversarial loss. Lspk is
adversarial speaker classifier loss. Ldiv encourages the generator to



produce diversified samples when given different style-embeddings.
Lasr is linguistic content preservation loss. Lnorm is the norm
consistency loss which ensures the preservation of voiced/unvoiced
intervals. λcycle is cycle consistency loss to encourage the generator
to learn a bijective mapping between source and target speakers
and, LF0 is F0 consistency loss helps in generating F0-consistent
samples.

min
G,SE,M

Ladv+λspkLspk+λstyleLstyle−λdivLdiv

+λasrLasr+λnormLnorm+λcycleLcycle

+λF0LF0+λdemoLdemo+λinvLinv (5)

The training objective for the adversarial classifiers is presented in
Eqn. 6. The adversarial quality classifier maximizes the adversarial
loss Ladv. The speaker classifier minimizes Laspk through the
classification of the source speaker. Each loss is weighted with a
corresponding λ hyperparameter.

min
C,Csp

−Ladv+λaspkLaspk (6)

4. Datasets, Experiments and Results
4.1. Training Details

We term our approach as StarGAN-VC++ and the vanilla
StarGANv2-VC framework as Baseline. We train our models
with a random split of 0.8/0.1/0.1 for train/validation/test. All the
utterances are re-sampled to 24kHz. Each model is trained for 60
epochs on log mel-spectrograms with a batch size of 16 using a
Tesla V100 (32 GB) GPU, with a training time of around 26 hours.
To train our model we set, λspk = 0.5, λaspk = 0.1, λstyle = 1,
λdiv =1, λasr =10, λnorm=1, λcycle=5, λF0=5, λdemo=2,
and λinv=5. AdamW [23] is used with the learning rate of 10−4.
A HiFiGAN [24] vocoder is trained with datasets mentioned in
Table 1. The vocoder generates a 1 minute long waveform from
the converted mel-spectrogram in 0.1 seconds. For the assessment
of emotion preservation, we train a support vector machine (SVM)
based emotion classifier as done in [25].

4.2. Datasets

Four datasets have been used in this work, which have been used
for different purposes, as shown in Table 1. We consider 5 emotion
classes e ∈{happy, sad, anger, neutral, surprise} for the emotion
preservation evaluation.

Table 1: Depicts usage of datasets for different purposes. The column
Emotion denotes whether the dataset is used to train the emotion
conversion network and, the emotion classifier for evaluation.

Dataset VC Training VC Evaluation Vocoder Training Emotion

ESD Yes Yes Yes Yes
VCTK Yes Yes Yes No
RAVDESS No No Yes Yes
CREMA-D No No Yes No

Emotional Speech Database (ESD) [22]: The corpus contains
English and Chinese emotional utterances belonging to the 5
emotion classes in e. We consider only English utterances in our
work, where 350 utterances per emotion class are spoken by 5 male
and 5 female native English speakers.

Voice Cloning Toolkit (VCTK) [26]: The dataset contains
English utterances from 109 speakers having various accents. For

training of VC models, we consider utterances having English
accent from 5 randomly selected males and females. The evaluation
is performed on utterances having English, American and Canadian
accents.

Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [27]: This corpus comprises 2880 utterances
spoken by 24 professional actors from North America. The dataset
has ground truth for 7 emotion classes, but we consider the ones
mentioned in e.

Crowd-sourced Emotional Multimodal Actors Dataset
(CREMA-D) [28]: This is another corpus having emotional
utterances having the mentioned 5 emotion classes in e. The dataset
contains 7442 clips from 91 actors belonging to diverse age groups
and ethnicity.

4.3. Evaluation Setup

To evaluate the efficacy of the proposed methods, we perform both
objective and subjective evaluations. For all assessments, we choose
an equal number of male and female source and target speakers
from each dataset.

Objective Evaluation: We choose test utterances from 10
source speakers and 6 target speakers from the ESD dataset, leading
to 2100 ESD→ESD conversions. For VCTK→VCTK, we form
2000 conversions by selecting test utterances from 10 source
speakers and 6 target speakers.

To evaluate emotion preservation, we compare the models
using 3 metrics: i) ACCgt: accuracy between the source emotion
ground truth and the SVM predicted emotion label of the converted
utterances. ii) ACCsvm: accuracy between the predicted labels of the
source and the converted samples, where both are predicted by the
SVM. The metric is especially useful when no emotion ground truth
is available, as in VCTK dataset. 3) MAEembed: mean absolute error
(MAE) between the emotion-embedding of the source and converted
utterances, where the emotion embedding is extracted using the
automatic embedding extractor. We report the pitch correlation
coefficient (PCC) [29] as a measure of intonation preservation,
predicted mean opinion score (pMOS) [30] as a measure of the
quality of converted samples, and character error rate (CER) as a
content preservation evaluation measure. As a measure of speaker
anonymization, we report speaker similarity score (SSS) between
the source and the converted speech. The score is generated using
a speaker verification toolkit [31] from Hugging-Face repository1.

Subjective Evaluation: We randomly choose 100 conversions
for the subjective evaluation, as it is expensive and time-consuming
to assess all of them. A user study was conducted on Crowdee2

platform, where 200 native English speakers participated. Each
subject performs two types of assessments: 1) verify emotion
leakage from reference: a triplet of converted, source and reference
utterances were provided. The subjects were asked to select
between source and reference utterances, the one which has a
similar emotion as the converted utterance (ignoring content or
voice similarity). ii) voice quality: assess the naturalness on a
5-point scale (1: bad to 5: excellent). The users were not apprised
about whether the converted utterance is produced by Baseline or
by the proposed model. Each of the tasks was rated by at least
5 subjects. The subjects were provided with an anchor question
and also hidden trapping questions for quality check. The subjects
failing the trapping questions were not considered for the analysis.



Table 2: Objective evaluation results. Mean and standard deviation (in brackets) are reported. ‘All Conv.’ includes all conversions. Type column
denotes different conversion sub-groups, such as source-emotion, source → target accents, source → target genders (M→M, M→F, F→F,
F→M) or, ‘All’ indicates all sub-groups. StarGAN-VC++ is denoted by SG++.

Source -
Target Type ACCgt [%] ↑ ACCsvm [%] ↑ MAEembed [×102]↓ PCC [×102] ↑ pMOS ↑ CER [%] ↓ SSS [×102] ↓

Baseline SG++ Baseline SG++ Baseline SG++ Baseline SG++ Baseline SG++ Baseline SG++ Baseline SG++

All Conv. All 18.5 30.4 25.9 52.7 58.2 (19.2) 45.7 (13.1) 77.3 (15.3) 78.3 (16.7) 3.5 (0.5) 3.5 (0.6) 3.5 (8.5) 3.2 (8.0) 24.4 (15.9) 23.9 (16.6)

ESD →
ESD

All 20.2 48.9 20.9 65.0 64.4 (22.6) 40.8 (12.5) 80.2 (13.4) 84.2 (10.6) 3.8 (0.4) 3.8 (0.4) 3.8 (8.4) 3.0 (7.4) 26.0 (18.8) 28.0 (19.4)

Happy 17.2 47.0 19.1 54.7 62.0 (18.8) 40.6 (11.5) 78.8 (15.8) 84.1 (11.6) 3.6 (0.5) 3.7 (0.4) 5.9 (9.7) 3.5 (8.5) - -
Angry 12.5 76.5 12.5 77.5 62.1 (18.8) 35.3 (8.6) 78.0 (15.3) 84.2 (10.7) 3.8 (0.4) 3.7 (0.3) 2.9 (6.3) 2.2 (6.0) - -
Sad 12.6 45.4 12.6 45.1 62.9 (16.8) 46.1 (13.4) 85.0 (11.5) 86.0 (11.2) 3.8 (0.4) 4.0 (0.4) 2.7 (7.2) 1.9 (5.2) - -
Surprise 0.0 0.0 1.5 62.9 83.5 (25.0) 44.7 (14.7) 80.7 (9.9) 84.6 (7.9) 3.7 (0.4) 3.7 (0.4) 6.0 (10.5) 5.4 (9.3) - -
Neutral 79.7 90.7 79.7 90.7 45.9 (12.7) 36.4 (8.4) 78.4 (12.5) 81.4 (11.1) 4.1 (0.4) 4.2 (0.4) 1.4 (5.5) 1.2 (5.6) - -

M→M 19.0 47.2 19.6 54.4 62.9 (19.1) 40.3 (11.4) 76.8 (13.7) 82.4 (11.2) 3.6 (0.4) 3.7 (0.4) 3.4 (7.2) 2.5 (6.8) - -
M→F 16.8 41.3 17.6 66.7 61.5 (21.4) 37.6 (10.4) 83.4 (10.5) 86.1 (9.3) 3.8 (0.4) 3.9 (0.4) 2.7 (5.8) 2.6 (6.2) - -
F→F 21.6 52.3 23.3 75.1 64.6 (25.1) 40.7 (12.9) 85.0 (9.8) 86.4 (9.1) 3.9 (0.4) 4.0 (0.4) 3.6 (8.9) 2.6 (6.3) - -
F→M 23.0 54.1 22.6 62.6 68.6 (23.3) 44.9 (14.0) 74.6 (16.4) 81.6 (11.9) 3.6 (0.5) 3.7 (0.5) 5.4 (10.4) 4.3 (9.7) - -

VCTK →
VCTK

All - - 31.1 39.9 51.7 (11.6) 50.7 (11.7) 74.2 (16.5) 72.2 (19.4) 3.2 (0.5) 3.2 (0.5) 3.1 (8.7) 3.4 (8.6) 22.7 (12.1) 19.6 (11.4)

M→M - - 14.5 23.8 49.7 (11.6) 49.1 (12.3) 64.1 (16.3) 60.4 (18.3) 3.1 (0.5) 3.1 (0.5) 3.3 (9.1) 3.8 (9.4) - -
M→F - - 43.8 62.5 49.0 (11.4) 47.3 (11.5) 82.6 (12.5) 82.9 (12.4) 3.6 (0.4) 3.5 (0.4) 3.5 (8.2) 4.1 (9.0) - -
F→F - - 45.2 52.0 51.2 (9.8) 52.5 (10.7) 86.9 (8.5) 87.1 (8.5) 3.4 (0.4) 3.3 (0.4) 3.1 (9.1) 2.9 (7.6) - -
F→M - - 30.7 34.2 56.3 (11.7) 53.4 (11.1) 70.0 (14.1) 66.7 (19.2) 3.0 (0.5) 2.9 (0.5) 2.6 (8.2) 2.9 (8.0) - -

English→English - - 28.5 38.0 49.3 (11.5) 47.9 (11.5) 71.8 (16.9) 70.2 (19.6) 3.2 (0.5) 3.1 (0.5) 3.6 (9.7) 3.6 (9.2) - -
American→English - - 34.3 44.2 52.8 (11.0) 52.3 (11.5) 76.9 (15.4) 74.3 (18.9) 3.2 (0.5) 3.2 (0.5) 2.5 (7.7) 3.3 (8.2) - -
Canadian→English - - 29.9 35.3 54.3 (12.0) 53.2 (11.5) 73.8 (16.9) 72.0 (19.5) 3.1 (0.5) 3.2 (0.5) 3.5 (8.3) 3.1 (8.0) - -

4.4. Results and Discussion

The results of the objective evaluations are summarized in Table 2.
For all conversions involving ESD and VCTK corpora, the
proposed StarGAN-VC++ outperforms Baseline with respect to
all emotion-preservation metrics. In terms of ACCsvm, Baseline
only manages to achieve 25.9% emotion preservation accuracy,
whereas StarGAN-VC++ achieves 52.7%. As per MAEembed,
StarGAN-VC++ achieves a significantly lower mean score of 45.7
compared to Baseline’s score of 58.2. Also for pitch correlation,
StarGAN-VC++ achieves a higher value of PCC (78.3) compared
to Baseline (77.3). These results are statistically significant, as
paired t-test achieves p<0.0001 on PCC and MAEembed metrics.

For naturalness, both methods show similar pMOS values,
which indicate that the proposed emotion-preservation techniques
do not degrade the naturalness of the conversions. As far as
content-preservation is concerned, StarGAN-VC++ shows a
statistically significantly (p < 0.05) lower CER value (3.2%)
than Baseline (3.5%). This improvement might be attributed to
the proposed Linv loss. The results also reveal that the speaker
anonymization capability is not hampered by the introduction of
emotion-preserving losses, as the mean SSS values for Baseline
and StarGAN-VC++ are 24.4 and 23.9 respectively. This result is
also statistically significant as p<0.001 in paired t-test.

We also evaluate the models emotion-wise. For all 5 emotions
in e, StarGAN-VC++ outperforms Baseline with respect to emo-
tion preservation. Interestingly, StarGAN-VC++ shows significantly
higher mean PCC values for all of these emotions compared to Base-
line. This reveals that for emotional utterances, the variations of pitch
are also better preserved by StarGAN-VC++, where pitch variations
are indicative of emotional cues in speech [32]. The results also show
that Baseline deals with neutral utterances better than other emotions,
as it attains a very high score of 79.7% for ACCsvm, whereas for other
emotions ACCsvm lies in the range of 1.5% - 19.1%. Furthermore, it
appears that surprise is the most difficult emotion to preserve, as both
Baseline and StarGAN-VC++ models attain a 0% score for ACCgt.
However, in terms of ACCsvm, our StarGAN-VC++ model gets
62.9% accuracy against 1.5% by Baseline. As per [33], surprise is
also the most difficult emotion for emotion recognition tasks as well.

1https://huggingface.co/speechbrain
2https://www.crowdee.com/

With respect to gender-wise evaluation for ESD→ESD,
StarGAN-VC++ shows a similar trend of better emotion-
preservation as per the metrics. StarGAN-VC++ shows significant
improvement in PCC values over Baseline and, also achieves a
lower CER. StarGAN-VC++ model achieves the highest ACCsvm

value of 75.1% for F→F conversions against 23.3% by Baseline.
However, in terms of ACCgt, StarGAN-VC++ achieves the highest
score of 54.1% for F→M conversions, against a score of 23.0%
by Baseline. For VCTK→VCTK conversions, the improvement
in PCC and MAEembed are not that significant. This is because the
utterances in VCTK do not have emotional utterances with high
pitch and intonation variations and, the change in F0 contour is
relatively less compared to ESD utterances.

With respect to accent-wise evaluation, we assess for
English→English, American→English, and Canadian→English
sub-groups. The models were not trained with utterances from
American and Canadian speakers from the VCTK dataset, which
forms the unseen→seen speaker evaluation scenario as well.
StarGAN-VC++ model outperforms Baseline in all three accent
scenarios with respect to emotion preservation, scoring significantly
higher ACCsvm values and lower MAEembed values. Both Baseline
and StarGAN-VC++ models achieve the highest ACCsvm values for
American→English conversions, 34.3 % and 44.2% respectively.
StarGAN-VC++ does not manage to achieve higher PCC values
for these accent-based conversion sub-groups.

We also performe an ablation study on the proposed losses
and the results are presented in Table 3. The ablation study reveals
that both of the proposed losses, deep embeddings-based and the
augmented style reconstruction losses have a significant impact on
emotion preservation. In the absence of Ldemo loss, ACCsvm value
comes down to 36.4% from 52.7% for StarGAN-VC++. Similarly,
when vanilla Lstyle is used instead on the proposed augmented
version, the ACCsvm value comes down to 34.3%. The drop is
higher than that of Ldemo loss, which implies that the augmented
style reconstruction loss results in a better disentanglement of target
speakers embeddings, and that facilitates emotion preservation. The
use of augmented style reconstruction loss also improves the pitch
correlation, as it achieves the mean PCC value of 79.8. In terms
of quality, the pMOS value remains unchanged in all cases.

The results for the subjective evaluation are presented in
Table 4. In terms of MOS, our proposed method does not degrade



Table 3: Ablation experiments results. Mean and standard deviation
(in brackets) are reported.

Method ACCsvm [%] ↑ PCC [×102] ↑ pMOS ↑ CER [%] ↓

Baseline 25.9 77.3 (15.3) 3.5 (0.5) 3.5 (8.5)
StarGAN-VC++ 52.7 78.3 (16.7) 3.5 (0.6) 3.2 (8.0)

λdemo=0 36.4 79.8 (14.0) 3.5 (0.5) 4.3 (9.5)
Vanilla Lstyle 34.3 77.5 (15.3) 3.4 (0.6) 4.8 (9.9)

the naturalness of the conversion, rather it is marginally better (4.1)
than Baseline (3.9). The second column in Table 4 represents the
number of times the converted sample’s emotion is marked same
as the source, i.e. no emotion leakage happened. StarGAN-VC++
achieves higher votes (331) than Baseline (258). The last column
depicts whether the user marked the converted utterance’s emotion
similar to the reference rather than the source, another additional
check for emotion leakage. For Baseline it is 209 votes, whereas
for StarGAN-VC++ it is 114 votes, which further confirms that
our proposed approach reduces the leakage. The audio samples are
provided in the supplementary. The code can be found online 3.

Table 4: Subjective evaluation results. Mean and standard deviation
(in brackets) values are reported for MOS. StarGAN-VC++ is
denoted by SG++. The source utterances received mean MOS score
4.0 (0.9).

MOS ↑ Conv. == Source Emo. ↑ Conv. == Ref. Emo. ↓

Baseline SG++ Baseline SG++ Baseline SG++

3.9 (1.0) 4.1 (0.8) 258 331 209 114

5. Conclusion
In this paper, we investigate the cause of failure of the state-of-the-art
VC method StarGANv2-VC with respect to emotion preservation.
Our study reveals that the failure is attributed to the framework’s
disability in the disentanglement of the target speaker’s style and
emotion embeddings while training. Consequently, the emotional
content from the reference utterance leaks to the decoder, hampering
the emotion preservation of the source utterance. We propose a novel
deep emotion-embedding generation technique and emotion-aware
losses for the VC, which encourages the generator to preserve source
emotion. The objective and subjective evaluation results show that
the proposed model improves the emotion preservation capability for
diverse emotions, gender and accent groups, without compromising
the quality of the converted samples. Further, the results show that
for emotional data with high pitch variations, our proposed method
improves the pitch correlation considerably, implying F0-consistent
conversions. As a future task, we plan to use the proposed emotion-
aware losses with other TTS-based methods. Also, we intend to
generate emotion embeddings by using other representations of emo-
tions, such as the two dimensional model of valence and arousal [34].
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