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ABSTRACT

Machine learning models provide alternatives for efficiently recognizing complex
patterns from data, but two main concerns in applying them to modeling physical
systems stem from their physics-agnostic design and lack of interpretability. This
paper mitigates these concerns by encoding the Helmholtz-Hodge decomposition
into a Gaussian process model, leading to a versatile framework that simultane-
ously learns the curl-free and divergence-free components of a dynamical system.
Learning a predictive model in this form facilitates the exploitation of symmetry
priors. In addition to improving predictive power, these priors link the identified
features to comprehensible scientific properties of the system, thus complex re-
sponses can be modeled while retaining interpretability. We show that compared
to baseline models, our model achieves better predictive performance on several
benchmark dynamical systems while allowing accurate estimation of the energy
evolution of the systems from noisy and sparse data.

1 INTRODUCTION

A dynamical system describes how the state of a system evolves over time (Strogatz, 2018). Data-
driven modeling of a dynamical system has become a fundamental task in many modern science
and engineering applications, including physical emulation (Garnett et al., 2015) and robotics con-
trol (Deisenroth et al., 2015). Mathematically, a dynamical system is often a set of first-order or-
dinary differential equations (ODEs) or, equivalently, a smooth vector field on a manifold (Hirsch
et al., 2012). Given the functional form of ODEs, classical data-driven methods typically involve
optimizing their parameters (Ramsay et al., 2007). However, for many complex systems it is practi-
cally difficult to determine the form of the equations governing the underlying dynamics.

Recent advances in machine learning (ML) focus on the use of neural networks (Chen et al., 2018)
and nonparametric Bayesian models (Solak et al., 2002; Heinonen et al., 2018; Hegde et al., 2022)
for the black-box approximation of vector fields. Although these models have rich expressive power,
there are two fundamental challenges in applying them to the modeling of dynamical systems. The
first concern is related to their lack of interpretability. Being able to explain what a model has
learned is extremely useful because it allows us to gain insight into the behavior of a dynamical
system. However, it is often unclear how to transfer the features identified by the ML models to
comprehensible scientific properties. Second, predictions from ML models in their native forms are
prone to violating physical laws. To address these issues, a popular approach is to develop models
that incorporate strong physical priors as inductive biases. Such prior knowledge commonly stems
from basic physical principles related to certain differential invariants of vector fields. For example,
in scenarios of learning Hamiltonian systems (Greydanus et al., 2019; Toth et al., 2019; Rath et al.,
2021) and incompressible fluid dynamics (Wandel et al., 2021; Kiessling et al., 2021), ML models
are constructed to learn divergence-free (div-free) vector fields, as a consequence of conservation
laws of energy or mass. These powerful physical principles effectively improve the extrapolation
performance of the ML models, but they limit the application scope of the models. For example, a
div-free vector field fails to describe a dynamical system with dissipation, but real-world dynamical
systems always suffer from non-negligible dissipation.

To develop a predictive model covering more dynamical systems, we explore supplementing the
div-free vector field with a curl-free vector field. This is inspired by the Helmholtz-Hodge decom-
position (HHD) (Arfken & Weber, 1999; Majda & Bertozzi, 2001; Bhatia et al., 2012), which states
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Figure 1: The vector field of a damped mass-spring system (a) can be decomposed into a div-free
component (b) and a curl-free component (c), the former representing its Hamiltonian dynamics and
the latter describing the friction-induced dissipation. Color indicates the magnitude of the vectors.

that any sufficiently smooth vector field can be expressed as the sum of a curl-free vector field and
a div-free vector field. HHD is widely used in the study of Navier-Stokes equations (Maria Denaro,
2003; Garba & Haldenwang, 2013; Caltagirone, 2021), but in this work we explore its connections
with more general dynamical systems. For example, as shown in Fig. 1, HHD can be used to charac-
terize the dynamics of a dissipative Hamiltonian system (see Appendix A.1 for more details). Some
existing works (Greydanus & Sosanya, 2022; Desai et al., 2021; Bhattoo et al., 2023) learn dissipa-
tive dynamics by compensating Lagrangian or Hamiltonian NNs with dissipative terms. However,
these model structures involving physical governing equations may limit their scope of application.
For example, they cannot be applied to the Chua circuit system, a chaotic system that is difficult to
describe using Hamiltonian or Lagrangian equations. In contrast, we build a model from the per-
spective of satisfying certain differential invariants (either free of divergence or of curl), which thus
allows for more application scenarios.

In this work, we construct Gaussian process (GP) priors for div-free and curl-free dynamics sepa-
rately, resulting in an additive GP model in the form of HHD for learning vector fields of dynamical
systems. Our resulting HHD-GP allows one to leverage more prior knowledge than modeling the
system as a whole. In particular, we investigate its potential in exploiting priors of symmetries, mo-
tivated by the observation that the div-free and curl-free components of a dynamical system usually
exhibit more symmetry properties than the system itself. For example, the damped mass-spring sys-
tem in Fig. 1a exhibits odd symmetry, but its div-free (Fig. 1b) and curl-free (Fig. 1c) components
additionally present rotation and translation symmetry, respectively. Therefore, we further build
symmetry-preserving div-free GPs and curl-free GPs by exploiting closure of GPs under linear trans-
formation. The symmetry prior not only improves the predictive performance of HHD-GP, but also
makes it identifiable, thus identified div-free and curl-free features can be physically-meaningful. In
particular, by exploiting the connection between HHD and the generalized Hamiltonian formalism,
the learned div-free features are closely related to the energy of the dynamical systems.

The main contributions of this work are summarized as follows:

• We introduce a GP prior (called HHD-GP) for learning the Helmholtz-Hodge decomposi-
tion of an n-dimensional dynamical system.

• We construct a symmetry-preserving extension of the HHD-GP that can learn physically-
meaningful representations of dynamical systems.

• Experiments on several dissipative systems show that our model can both accurately predict
their dynamics and energy evolution from sparse, noisy observations.

2 BACKGROUND

2.1 HHD AND PROBLEM SETUP

We consider an autonomous system governed by the following ODEs:

ẋ (t) :=
dx (t)

dt
= f (x (t)) = fcurl (x (t)) + fdiv (x (t)) , (1)

which defines a vector field by assigning a vector f (x) ∈ Rn to every state x ∈ Rn. We assume
that the vector field f ∈ L2 (Rn,Rn) is smooth, and any such vector field can be decomposed into
the sum of a curl-free vector field fcurl : Rn → Rn (∇ ∧ 1fcurl = 0,∀x ∈ Rn) and a divergence-
free vector field fdiv : Rn → Rn (∇ · fdiv = 0,∀x ∈ Rn), according to the Helmholtz–Hodge

1∧ is the geometric outer product.
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decomposition (HHD) (Majda & Bertozzi, 2001; Bhatia et al., 2012). In this work, we are interested
in learning f , fcurl and fdiv simultaneously from a collection of noisy observations denoted by
D = {(xi,yi)}mi=1, with a noisy observation yi at a state xi given by

yi = f (xi) + ϵ, ϵ
i.i.d∼ N (0,Ω) , (2)

where an additive noise ϵ ∈ Rn follows a zero-mean Gaussian distribution defined by a covariance
matrix Ω = diag

(
σ2
1 , . . . , σ

2
n

)
∈ Rn×n modeling noise variance in each output dimension.

2.2 VECTOR-VALUED GP MODEL

We are interested in using Gaussian processes (GPs) to infer unknown vector fields. A GP is a
stochastic process commonly used as a distribution for functions, assuming that any finite number
of function values has a joint Gaussian distribution (Rasmussen & Williams, 2005). To learn an un-
known vector field f : Rn → Rn, we assume a vector-valued GP prior as f (x) ∼ GP (0, κ (x,x′)),
where the mean of the function values is set to zero, and the covariance is captured by a matrix-
valued kernel κ : Rn × Rn → Rn×n, whose (i, j)-th entry expresses the correlation between the
i-th dimension of f (x) and the j-th dimension of f (x′). In the GP framework, the kernel controls
the properties of possible functions under a GP, leading to various efforts of problem-specific design
of kernels (Wilson & Adams, 2013; Durrande et al., 2012; Duvenaud, 2014). And to be a valid
covariance function, the kernel should be symmetric and positive semidefinite (Álvarez et al., 2012).

A GP provides a Bayesian non-parametric approach for solving regression tasks. According to the
GP prior, function values at inputs X = [x1, . . . ,xm]

T are jointly distributed as N (f (X) ;0,K),
where K = [κ (xi,xj) ∈ Rn×n]

m

i,j=1 is a block-partitioned covariance matrix. Then the marginal

likelihood of the noisy observations Y = [y1, . . . ,ym]
T given by Eq. 2 can be calculated by

p (Y | X) =

∫
p (Y | X, f (X)) p (f (X) | X) df = N (Y | 0,K+Σ) , (3)

where Σ = Ω ⊗ Im is a diagonal matrix whose elements are the variance of the observation noise.
Training a GP model often refers to maximizing the log of Eq. 3 to optimize the kernel parameters
and the noise variance. Then by conditioning on these observations using Bayes’ rule, the predictive
posterior for a new state x∗ is still Gaussian with its mean µ and variance v given by

µ (x∗) = kT (K+Σ)
−1

Y, v (x∗) = κ (x∗,x∗)− kT (K+Σ)
−1

k, (4)

where k = [κ (x1,x∗) , . . . , κ (xm,x∗)]
T ∈ Rmn×n. The derived mean function is used for regres-

sion results, and the associated variance quantifies prediction uncertainty. Due to their nonparamet-
ric nature, GPs can self-adapt to the complexity of the target function based on the data provided,
without being restricted to specific parametric forms.

3 HHD-GP MODEL

We consider the problem of learning a continuous-time dynamical model in the form of HHD (Eq. 1)
with GPs. HHD points out the prevalence of an additive structure in dynamical systems, so the key
idea here is to exploit two GPs to model fcurl and fdiv respectively,

fcurl ∼ GP (0, κcurl (x,x
′)) , fdiv ∼ GP (0, κdiv (x,x

′)) . (5)

Then the sum of these two GPs results in a new GP modeling the dynamical system f , with a new
kernel function defined as the sum of the curl-free and divergence-free ones. And the additive kernel
κhdd = κcurl + κdiv inherits the symmetric and positive-semidefinite properties of κcurl and κdiv ,
so the GP predictor (Eq. 4) is valid for the additive GP model. And the additivity of the kernels
implies the additivity of GP means, so the mean function µ (x∗) in Eq. 4 can be split into a curl-free
part µcurl (x∗) and a divergence-free part µdiv (x∗), and we have

µ (x∗) = kT
curlK

−1
∗ Y + kT

divK
−1
∗ Y = µcurl (x∗) + µdiv (x∗) , (6)

where K∗ = Kcurl + Kdiv + Σ. It can be seen that the effects of fcurl and fdiv can be treated as
observation noises for each other, so their prediction variances at x∗ are obtained by
vcurl (x∗) = κcurl (x∗,x∗)− kT

curlK
−1
∗ kcurl, vdiv (x∗) = κdiv (x∗,x∗)− kT

divK
−1
∗ kdiv. (7)

Consequently, observations of f (x) given by Eq. 2 can be used to make predictions for its hidden
components fcurl and fdiv . So now our goal is to construct GPs with realizations in the space of
curl-free and div-free vector fields.
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In the following parts, we construct the kernels κcurl and κdiv from the representations of fcurl and
fdiv respectively, exploiting closure of GPs under linear transformation. Let R = R [∂x1

, . . . , ∂xn
]

be the polynomial ring in the partial derivatives, and L ∈ Ra×b be a matrix of differential operators
acting on functions g : Rn → Rb distributed as GP (µ (x) , κ (x,x′)). Then, the transformation of
g under L is again distributed as a GP with

Lg ∼ GP
(
Lµ (x) ,Lxκ (x,x

′)LT
x′ : Rn × Rn → Ra×a

)
, (8)

where Lx and Lx′ denote the operation of L on the first and second argument of κ (x,x′), respec-
tively (Jidling et al., 2017; Agrell, 2019; Lange-Hegermann, 2021; Besginow & Lange-Hegermann,
2022). To make Lxκ (x,x

′)LT
x′ a valid covariance function, its underlying kernel κ (x,x′) needs to

be twice differentiable in Rn. See Appendix A.2 for further details on linear operations on GPs.

3.1 CURL-FREE KERNEL

The gradient operator (∇ := [∂x1
, . . . , ∂xn

]
T ∈ Rn×1) defines a surjective mapping from the space

of smooth scalar fields to the space of curl-free vector fields (Do Carmo, 1998), so fcurl can be
represented by fcurl = ∇V , where V ∈ C∞ (Rn,R) is called the scalar potential of fcurl. Since the
gradient operation defines a linear transformation, if a GP with a scalar kernel κV is assumed on V ,
the distribution of fcurl is again a GP. According to Eq. 8, the curl-free GP over fcurl is given by

fcurl ∼ GP
(
0, κcurl = ∇xκV (x,x′)∇T

x′

)
, (9)

where κcurl : Rn × Rn → Rn×n is a matrix-valued kernel constructed by the Hessian of the scalar
kernel κV , consisting of all second-order partial derivatives in x and x′, with the entry in the i-th
row and j-th column given by

[κcurl (x,x
′)]i,j = Cov

[
∂V (x) /∂xi, ∂V (x′) /∂x′j

]
= ∂2κV (x,x′) /∂xi∂x

′
j . (10)

By this construction, if κV induces a GP with realizations dense in C∞ (Rn,R), the set of realiza-
tions of GP (0, κcurl) is dense in the space of curl-free vector fields, because a surjective mapping
maps dense sets to dense sets.

3.2 DIVERGENCE-FREE KERNEL

A div-free vector field can be constructed from a skew-symmetric matrix field (Barbarosie, 2011;
Kelliher, 2021; Richter-Powell et al., 2022). Specifically, let A : Rn → Rn×n be a skew-symmetric
matrix-valued function, then a div-free vector field fdiv can be represented by taking row-wise di-
vergence of A, i.e.,

fdiv = [∇ ·A1, . . . ,∇ ·An]
T
, (11)

where Ai : Rn → Rn is the i-th row of A. The skew-symmetric matrix field A of size n × n can
be compactly represented by m = n (n− 1) /22 scalar functions uij ∈ C∞ (Rn,R):

A =


0 u12 . . . u1n

−u12 0 . . . u2n
...

...
. . .

...
−u1n −u2n . . . 0

 =

n−1∑
i=1

n∑
j=i+1

Φijuij , (12)

where Φij ∈ Rn×n is a matrix with its (i, j)-th entry equal to 1, (j, i)-th entry equal to -1, and all
other entries equal to 0. Then, the div-free vector field given by Eq. 11 can be reformulated as a
linear transformation:

fdiv (x) =

n−1∑
i=1

n∑
j=i+1

ψijuij (x) = Ψu (x) , (13)

where ψij = Φij∇ ∈ Rn×1 is a column vector obtained by linearly transforming the gradient
operator. The m column vectors ψij can be aggregated in a matrix Ψ ∈ Rn×m, and the m corre-
sponding scalar functions uij are collected in a vector-valued function u : Rn → Rm. Ψ [·] is a
matrix of linear differential operators, so to use a GP to model fdiv , we can proceed by assuming a
GP prior over u ∼ GP (0, κu : Rn × Rn → Rm×m), then based on the closure of GPs under linear
transformation (Eq. 8), the GP prior over fdiv (Eq. 13) can be constructed by

fdiv ∼ GP
(
0,Ψxκu (x,x′)ΨT

x′

)
, (14)

2m is the number of entries above the diagonal. Each off-diagonal element of the matrix corresponds to a
scalar function, with elements below the main diagonal as the negatives of those above.
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where κu is a scalar-valued kernel for two dimensional systems (n = 2, m = 1), and is a matrix-
valued kernel for n > 2. The GP model given by Eq. 14 can be used to approximate arbitrary div-free
vector fields, because the representation (Eq. 11) has been shown to be maximally expressive (i.e.
universal) by Richter-Powell et al. (2022).

3.3 IDENTIFIABILITY AND CONSTRAINTS

With the curl-free and div-free kernels, our objective is to learn physically interpretable representa-
tions of a dynamical system based on the HHD-GP model. However, the HHD is always not unique
due to the existence of harmonic components fharm (vector fields satisfying both ∇ ∧ fharm = 0
and ∇ · fharm = 0, e.g., constant vector fields). For the HHD of a dynamical system with the true
functional decomposition f∗curl and f∗div ,

f = (f∗curl + fharm) + (f∗div − fharm) (15)
is a valid HHD for arbitrary fharm, which thus makes the HHD-GP model non-identifiable, meaning
that from the same training data, we may learn different decompositions giving the same predictions.
This is not desirable because we expect the learned dynamical model to be interpretable: the curl-
free and div-free components fcurl, fdiv are physically meaningful.

To mitigate the identifiability problem in additive regression models, an effective method is to im-
pose constraints on their component models (Durrande et al., 2012; 2013; Martens, 2019; Lu et al.,
2022). The imposed constraints can affect the decomposition results of the additive models. There-
fore, to ensure that HHD-GP can produce a scientific decomposition, we desire constraints that re-
spect the inherent characteristics of dynamical systems. And, as another primary goal, incorporating
prior knowledge of a system into a GP model can also improve its prediction accuracy and learning
efficiency. Therefore, in the next section, we present how to impose symmetry-based constraints on
the curl-free and div-free GP models.

4 SYMMETRY CONSTRAINTS

4.1 EQUIVARIANCE AND INVARIANCE

Symmetry is a fundamental geometric property prevalent in dynamical systems in natural (Livio,
2012), and is usually described by the concept of equivariance and invariance:
Definition 4.1 (Equivariance and Invariance). Let G be a group acting on Rn through a smooth map
L : G × Rn → Rn. The dynamical system f : Rn → Rn is said to be G-equivariant if

(f ◦ Lg) (x) = JLg
(x) f (x) ,∀x ∈ Rn, g ∈ G, (16)

where Lg (x) := L (g,x), and JLg denotes the Jacobian matrix of Lg . Then, G is termed the
symmetry group of the dynamical system. In particular, if JLg is the identity matrix (i.e., f ◦ Lg =
f ,∀g ∈ G), the dynamical system f is said to be G-invariant.

From the equivariance condition (Eq. 16) of the vector field, it follows the system’s trajectory com-
mutes with the action map. For vector fields on Rn, the symmetry group G is commonly a subgroup
of the Euclidean group E (n), which comprises all intuitive geometric transformations in Rn (see
Appendix A.3 for a brief introduction). The symmetry constraints refer to that we expect the learned
curl-free and div-free vector fields to be G-equivariant. With the representation of their GP models,
we demonstrate that the symmetries can be enforced via the design of suitable kernel functions.

4.2 SYMMETRY-PRESERVING CURL-FREE GP

The curl-free GP (Eq. 9) is constructed by transforming another GP over a potential function, imply-
ing that we can impose constraints of symmetry on the curl-free GP by designing a suitable potential
GP. Therefore, we start by exploring how to construct potential functions to obtain curl-free vector
fields with the desired equivariance. As expected, the following theorem holds:
Theorem 4.1. Let G be a Euclidean group or its subgroup, and let V : Rn → R be a G-invariant
scalar function. Then, the curl-free vector field fcurl : Rn → Rn defined by fcurl (x) = ∇V (x) is
G-equivariant.

See Appendix A.4.1 for the proof. Theorem 4.1 shows that a G-invariant scalar potential V can yield
a G-equivariant gradient field, indicating that if any realization V of GP (0, κV ) is constrained to
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be G-invariant, then its pushforward GP over ∇V ∼ GP
(
0,∇xκV ∇T

x′

)
can induce the space of

G-equivariant curl-free vector fields.

It is obvious that a G-invariant scalar potential V can be constructed by integrating some non-
invariant function h : Rn → R over the symmetry group: V =

∫
G (h ◦ Lg) dg, where the measure

dg is called Haar measure, which exists for locally compact topological groups and finite groups.
Therefore, by assuming that h is distributed as h ∼ GP (0, κh), we can construct the GP prior over
the G-invariant scalar potential as V ∼ GP (0, κV ), with its kernel κV given by

κV = Cov

[∫
G
h (Lg (x)) dg,

∫
G
h (Lg (x

′)) dg

]
=

∫
G

∫
G
κh (Lg (x) , Lg′ (x′)) dgdg′. (17)

This kernel is called the Haar-integration kernel (Haasdonk et al., 2005). While it provides a gen-
eral method for constructing kernels for G-invariant functions, the double integral can be compu-
tationally expensive. If the kernel κh is invariant to any g ∈ G in the sense that κ (x,x′) =
κ (Lg (x) , Lg (x

′))3, a complexity reduction of Eq. 17 by one square-root can be performed by∫
G

∫
G
κh (Lg (x) , Lg′ (x′)) dgdg′ =

∫
G

∫
G
κh
(
x, Lg−1g′ (x′)

)
dgdg′ = |G|

∫
G
κh (x, Lg (x

′)) dg,

(18)where |G| =
∫
G dg, and it denotes the cardinality of G when the group is finite.

4.3 SYMMETRY-PRESERVING DIVERGENCE-FREE GP

To incorporate the equivariance condition (Eq. 16) into realizations of the div-free GP (Eq. 14), we
construct the skew-symmetric matrix field A from a vector-valued function. Specifically, given a
smooth vector field v ∈ C∞ (Rn,Rn), A is constructed by A = Jv − JT

v , where Jv denotes the
Jacobian of v with its (i, j)-th entry given by ∂vi/∂xj . Then the component function uij in Eq. 12
is given by uij = ∂vi/∂xj − ∂vj/∂xi. By this construction, the symmetry of the div-free vector
field fdiv is governed by the symmetry of its vector potential v. In particular, a G-equivariant v can
produce a G-equivariant fdiv , and it is formalized in the following theorem:
Theorem 4.2. Let G be a Euclidean group or its subgroup, and let v : Rn → Rn be a G-equivariant
vector field. Then the divergence-free vector field fdiv = [∇ ·A1, . . . ,∇ ·An]

T is G-equivariant,
where Ai denotes the i-th row of the skew-symmetric matrix-valued function A = Jv − JT

v .

The proof can be found in Appendix A.4.2. By this theorem, we then proceed by assuming a GP
prior over the vector potential v ∼ GP (0, κv), and to constrain v to be G-equivariant, we build
its kernel κv ∈ Rn×n in the form of the Group Integration Matrix kernel (GIM-kernel) (Reisert &
Burkhardt, 2007; Reisert, 2008), which is constructed by:

κv (x,x
′) =

∫
G
κ (x, Lg (x

′))JLg
dg, (19)

where κ is some arbitrary scalar-valued kernel satisfying κ (x,x′) = κ (Lg (x) , Lg (x
′)) for all

g ∈ G. The GIM-kernel spans a Reproducing Kernel Hilbert Space (RKHS) of functions with the
desired equivariance (Reisert, 2008). So we can then use κv (Eq. 19) to construct the GP prior over
u in Eq. 13, where the covariance between components uij and ukq is given by

[κu]ij,kq = Cov

[
uij =

∂vi
∂xj

− ∂vj
∂xi

, ukq =
∂vk
∂xq

− ∂vq
∂xk

]
=

∂2

∂xj∂x′q
[κv]i,k +

∂2

∂xi∂x′k
[κv]j,q −

∂2

∂xj∂x′k
[κv]i,q −

∂2

∂xi∂x′q
[κv]j,k .

(20)

Finally, this matrix-valued kernel κu is transformed by Eq. 14 to construct the div-free GP, of which
the realizations are guaranteed to be G-equivariant div-free vector fields, according to Theorem 4.2.

5 RELATED WORK

Learning with div/curl-free constraints Div-free vector fields are a focal point of mathematical
physics and have been well exploited by machine learning models for learning conservative dy-
namics, with the most well-known examples being neural networks (NNs) (Greydanus et al., 2019;

3For G ⊆ E (n), it holds that ∥Lg (x)− Lg (x
′)∥ = ∥x− x′∥, for all x, x′ ∈ Rn, and g ∈ G. Therefore,

κ (x,x′) = κ (Lg (x) , Lg (x
′)) is satisfied if κ is an isotropic kernel, i.e., κ (x,x′) = κ (∥x− x′∥), common

examples of which are the squared exponential kernel and the Matérn class of kernels (cf. chap.4 in Rasmussen
& Williams (2005)).
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Toth et al., 2019) and GPs (Rath et al., 2021; Ross & Heinonen, 2023) for learning Hamiltonian
dynamics. All Hamiltonian vector fields are div-free, but not vice versa. To learn more general
div-free vector fields as solutions of the continuity equation, Richter-Powell et al. (2022) introduced
an NN architecture to parameterize a universal representation of div-free vector fields. Based on the
same representation, we constructed div-free kernels for GPs from matrix-valued kernels, which is
an extension of the method of constructing div-free kernels by the curl operator in R3 (Narcowich
& Ward, 1994; Lowitzsch, 2002; Wendland, 2009). According to Maxwell’s equations, div-free
kernels were combined with curl-free kernels by Wahlström et al. (2013); Wahlström (2015) to
model magnetic fields. They assumed direct access to noisy observations of the div-free and curl-
free components separately, whereas in this work, our goal is to recover the individual components
from noisy observations of their sum. Similar prediction problem was studied by Berlinghieri et al.
(2023), they combined 2D div-free and curl-free GP priors in the form of HHD to reconstruct planar
ocean current fields, and recovered their divergence. Their model has the same formulation as ours
when the dimension of HHD-GP is two, but we further developed a symmetry-preserving extension
of HHD-GP to solve its non-identifiability problem. Another similar work is Dissipative Hamilto-
nian neural network (D-HNN) (Greydanus & Sosanya, 2022), which compensated HNN (Greydanus
et al., 2019) with a curl-free part to model both conservative and dissipative dynamics simultane-
ously, but D-HNN is not applicable to odd-dimensional system due to its construction.

Learning with symmetry Symmetries are another important aspect of priors that can be incorpo-
rated into machine learning models. Motivated by the success of the translation-invariant NNs (Le-
Cun et al., 1989), network architectures with symmetries to more general transformations have been
proposed, such as steerable CNNs (Weiler & Cesa, 2019; Cesa et al., 2021) and graph NNs (Maron
et al., 2019; Satorras et al., 2021) equivariant to Euclidean symmetries. They achieved great success
in improving generalization of the models. With the same motivation, kernel methods incorpo-
rating symmetries have also been developed. To make predictions invariant to transformations of
inputs, Haasdonk et al. (2005) constructed kernels using Haar integration. And based on similar
integration technique, Reisert & Burkhardt (2007) developed the Group Integration Matrix Kernel
(GIM-kernel) to learn equivariant functions, which was later used by Ridderbusch et al. (2021) to
learn dynamical systems with symmetries. In this work, we constructed GP models to impose Eu-
clidean symmetries to div/curl-free vector fields, which to the best of our knowledge has not been
explored by the machine learning community.

6 EXPERIMENTS AND RESULTS

Data and tasks We evaluated our method on three classical physical systems: a damped mass-
spring system, a damped pendulum, and a Chua circuit. The governing equations of these systems
and their symmetries are detailed in Appendix A.5. We generated the training data {(x, ẋ)} by uni-
formly sampling states x in their phase space, and each of their derivative observations ẋ is corrupted
by an additive Gaussian noise with a standard deviation of 0.01. And for each system, we sampled
20 pairs of data for training. We first evaluated the models’ performance in terms of learning ODEs.
Specifically, the first evaluation metric focuses on the accuracy of the models in predicting state
derivatives, as measured by the root mean squared error (RMSE), ( 1

m

∑m
i=1 ∥ˆ̇xi − ẋi∥2)

1
2 , where

ˆ̇xi and ẋi are the predicted and true state derivatives, respectively, and m is the number of test data.
The lower this metric, the better. And the test set {(xi, ẋi)}mi=1 was generated by sampling a grid
with a resolution of 10 points along each dimension of the dynamical systems. Another evaluation
metric for learning ODEs focuses on the accuracy in predicting state trajectories over time, as mea-
sured by the valid prediction time (VPT), 1

T argmint {NRMSE (x̂t,xt) > ϵ,∀ 0 ≤ t ≤ T}. VPT
calculates the first time step t at which the normalized root mean square error (NRMSE) between
the predicted state x̂t and the ground truth xt exceeds a given threshold, and NRMSE (x̂t,xt) =

((x̂t − xt)
T
Σ (x̂t − xt) /n)

1
2 , Σ = diag (1/σ1, . . . , 1/σn), with σi denoting the variance of the

i-th dimension of the true trajectory. The VPT measures how long the predicted trajectory remains
close to the true trajectory, so the higher this indicator, the better. In our experiments, the value of ϵ
is set to be 0.01. To alleviate the dependency on the initial condition, we reported the VPT averaged
over trajectories simulated from 50 randomly sampled initial conditions. And a trajectory from an
initial condition was solved by the Dormand–Prince method (dopri5) (Dormand & Prince, 1986) im-
plemented in torchdiffeq4, integrating forward in time at a frequency of 25 Hz for 15 seconds, with

4https://github.com/rtqichen/torchdiffeq
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the relative and absolute tolerances of 10−6. One benefit of our model is that it can decompose the
dynamics into its div-free and curl-free components, thus providing new insights to the dynamical
systems. To show this, we evaluated our model by another task: we predicted the energy evolution
along the trajectories of the systems.

Baselines and implementation details We compared our models, HHD-GP and its symmetry-
preserving extension SPHHD-GP, with Dissipative Hamiltonian neural network (D-HNN) (Grey-
danus & Sosanya, 2022), GPs that only involve div-free kernels for learning conservative dynamics
(Div-GP) (Rath et al., 2021; Ross & Heinonen, 2023), and GPs with Group Integration Matrix Ker-
nels (GIM-GP) (Reisert & Burkhardt, 2007) that can incorporate symmetries. Another baseline is
GPs with independent kernels (Ind-GP), which model each dimension of a dynamical system with an
independent scalar GP. Due to its easy implementation, Ind-GP is widely used in modeling robotic
systems (Deisenroth et al., 2015; Kamthe & Deisenroth, 2018) and magnetic fields (Vallivaara et al.,
2010; 2011). See Appendix A.7 for the implementation details of these models.

6.1 COMPARISON OF LEARNING ODE MODELS

We first compare the models in predicting state derivatives and trajectories, measured by the RM-
SEs and VPTs in Table 1, respectively. The performance of Div-GP is limited because it can only
model conservative dynamics. HHD-GP improves its performance by compensating with a curl-free
kernel, which offsets the strong inductive bias imposed by the div-free kernel. And the performance
of HHD-GP is better than that of another HHD-based model, D-HNN, because the low data effi-
ciency of NNs makes it hard for D-HNN to capture dynamics using noisy and sparse training data,
so actually the performance of D-HNN is worse than either of the GP methods. Moreover, D-HNN
is not applicable to the Chua circuit because its phase space is odd-dimensional. As another model
without inductive bias, Ind-GP performs similarly to HHD-GP in the damped mass-spring system.
However, in the two remaining systems with more complex behavior, HHD-GP performs better than
Ind-GP, because the kernel of Ind-GP fails to model correlations between different dimensions of
a dynamical system. Then, by incorporating symmetry priors into GPs, GIM-GP performs better
than the above models but not as well as SPHHD-GP, because learning in the form of HHD allows
SPHHD-GP to exploit more implicit symmetries in the dynamical systems. SPHHD-GP performs
the best in all systems. Appendix A.8.2 contains plots of the trajectory predictions for each sys-
tem. And in Appendix A.8.3 we further investigated the effect of noise and amount of training data
on the models performance, and the results show that our model (SPHHD-GP) is more robust to
noise level and data amount relative to the baselines.

Table 1: Comparison of our models to baselines. The RMSE and the VPT are recorded in the scale
of ×10−2 and in the form of mean ± standard deviation. Bold font indicates best results. All of the
experimental results are based on 10 independent experiments performed by resampling the training
sets and model initial parameters.

Model Damped Mass Spring Damped Pendulum Chua Circuit

RMSE ↓ VPT ↑ RMSE ↓ VPT ↑ RMSE ↓ VPT ↑

D-HNN 34.42 ± 8.37 1.36 ± 0.51 186.90 ± 27.19 0.40 ± 0.07 N/A N/A
Div-GP 20.70 ± 38.36 1.07 ± 0.28 57.59 ± 22.65 1.21 ± 0.23 141.44 ± 63.04 0.37 ± 0.09
Ind-GP 0.93 ± 0.35 30.70 ± 28.77 76.45 ± 27.85 3.14 ± 1.18 35.16 ± 14.72 1.70 ± 0.43

GIM-GP 0.44 ± 0.21 39.95 ± 25.05 17.34 ± 8.05 11.22 ± 5.20 8.55 ± 4.36 2.30 ± 0.57
HHD-GP (ours) 0.87 ± 0.36 33.81 ± 27.52 24.87 ± 16.75 4.66 ± 1.16 19.97 ± 6.98 1.29 ± 0.17

SPHHD-GP (ours) 0.31 ± 0.19 44.93 ± 24.09 8.21 ± 6.24 22.67 ± 16.09 2.25 ± 0.69 5.44 ± 1.05

6.2 COMPARISON OF PREDICTING ENERGY EVOLUTION

According to the connection between HHD and the generalized Hamiltonian formalism, the div-free
component in HHD is closely related to the energy of a dynamical system, so the HHD-based models
including HHD-GP, SPHHD-GP and D-HNN can be used to predict energy evolution of the systems
in the experiments (see Appendix A.7.7 for implementation details). The results are shown in Fig. 2,
where we can find that D-HNN and HHD-GP fail to provide physically plausible results and their
predictions have large deviations from the ground truth, along with significant variances. In contrast,
predictions of SPHHD-GP are highly accurate and closely aligned with the true values. One reason
is that the symmetry priors used by SPHHD-GP improves the generalization performance of the
model, but more importantly, the priors solve the problem of non-identifiability suffered by HHD-
GP and D-HNN. A numerial comparision of energy prediction is given in Appendix A.8.1.

8



Under review as a conference paper at ICLR 2024

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy

Ground Truth
D-HNN
HHD-GP
SPHHD-GP

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time

0

2

4

6

En
er

gy

Ground Truth
D-HNN
HHD-GP
SPHHD-GP

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time

0.4

0.2

0.0

0.2

0.4

En
er

gy

Ground Truth
HHD-GP
SPHHD-GP

(c)

Figure 2: Energy prediction Ĥ (xt) along the trajectory initialized at (a) (1.0, 0.0) of the damped
mass-spring system; (b) (1.5, 0.0) of the damped pendulum; (c) (0.05,−0.4,−0.05) of the Chua
circuit, where Ĥ (·) is the estimated Hamiltonian function and {xt} is a true trajectory of the system.
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Figure 3: Results with increasing number of data.

To further illustrate the non-identifiability prob-
lem, we present the results of the mass-spring
system when the number of training data is in-
creasing in Fig. 3. As expected, the RMSE
of derivative predictions decreases as the num-
ber of training data increases. However, the
corresponding RMSE of energy prediction of
HHD-GP and D-HNN cannot converge. Fig. 4
presents a learned decomposition when the
number of training data is 180. Although HHD-
GP and SPHHD-GP capture highly similar system dynamics (the first column in Fig. 4a), they learn
completely different decompositions (the second and third columns in Fig. 4a). Compared with the
ground truth in Fig. 1, SPHHD-GP learns the physically correct decomposition, so it can accurately
predict the system energy. From Fig. 4b we can observe that the predictions of HHD-GP have large
variance, meaning that the model is less certain in isolating individual effects from other terms.
In Appendix A.6, we provide a theoretical verification that for the three dynamical systems in our
experiments the non-uniqueness of HHD is solved through forced symmetries.
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Figure 4: Example predicted HHD of the damped-mass spring system by HHD-GP (the first row)
and SPHHD-GP (the second row). (a): predicted vector field (the first column) with its div-free (the
second column) and curl-free (the third column) components; (b): the associated variance of the
div-free (the first column) and curl-free (the second column) predictions.

7 CONCLUSION AND FUTURE WORK

Our work develops an additive GP model whose component is either free of divergence or of curl, the
two most ubiquitous differential invariants of vector fields in natural, and we constrain the div/curl-
free kernels to preserve symmetries of the underlying system. These symmetry-preserving kernels
not only improve the accuracy of predictions but also make the model identifiable, thus the energy
evolution of a dynamical system can be predicted. A limitation of our model is that its computational
complexity grows cubically with the amount of training data and the dimension of the dynamical
system, so a future research direction is to combine the proposed model with methods such as sparse
variational inference and low-rank approximation to reduce the computational complexity. Another
future direction is to extend our model to exploit the connection of HHD with more dynamical sys-
tems. For example, there are recent advances in using HHD to construct Lyapunov functions (Suda,
2019) and to reformulate the Navier-Stokes equations (Caltagirone, 2021). So our model have po-
tential to achieve good performance in learning stable dynamics and fluid dynamics.
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A APPENDIX

A.1 HHD AND GENERALIZED HAMILTONIAN FORMALISM

This section provides a brief introduction to the connections between the Helmholtz-Hodge decom-
position (HHD) and the generalized Hamiltonian formalism necessary to understand this work.

We begin with a brief review of Hamiltonian mechanics (Arnol’d, 2013). For a dynamical system
with N degrees of freedom, the Hamiltonian formalism describes the system by defining a scalar
function H (x) known as the Hamiltonian, where the system state x = (q,p) ∈ R2N is described
by generalized coordinates q ∈ RN and p ∈ RN in the phase space, corresponding to generalized
position and momentum, respectively. The time evolution of (q,p) is governed by the symplectic
gradient of its Hamiltonian, i.e., q̇ = ∂H

∂p , ṗ = −∂H
∂q . If the Hamiltonian is not explicitly time-

dependent, [q̇, ṗ]T defines a divergence-free vector field ( ∂
∂q

∂H
∂p − ∂

∂p
∂H
∂q = 0) whose flows conserve

the Hamiltonian. By interpreting the Hamiltonian as energy, the Hamiltonian vector field can model
systems with energy conservation. However, real-life systems often suffer from energy dissipation.
In physical systems governed by an autonomous ODE, any energy variation occurs along a volume
change in phase space and vice versa. Therefore, to account for energy dissipation, a term responsi-
ble for the volume contraction of the phase space can be introduced into the Hamiltonian dynamics.
This term represents the energy lost by the system due to various dissipative forces and is typically
modeled by gradient fields of some scalar functions D (·), so the motion equations of the dissipative
Hamiltonian system can be given by

f (q,p) =

[
∂H

∂p
,−∂H

∂q

]T
︸ ︷︷ ︸
divergence−free

+ ∇D (q,p)︸ ︷︷ ︸
curl−free

. (21)

In a dissipative Hamiltonian system, the Hamiltonian still represents the system’s total energy, but
the additional damping term causes the system to lose energy over time. One common example of
the damping term is induced by the Rayleigh function, D (p) = − 1

2p
TQp, where Q ∈ RN×N is

a symmetric positive-definite matrix called the Rayleigh dissipation matrix. The Rayleigh function
provides an elegant way to include dissipative forces—such as friction, air resistance, and viscos-
ity—in the context of Hamiltonian mechanics.

The dissipative Hamiltonian system (Eq. 21) is in an explicit form of HHD, because the Hamiltonian
vector field is divergence-free and the dissipative field ∇D is curl-free. However, as its divergence-
free part is governed by the Hamiltonian equations, Eq. 21 can only be used to describe a subset
of even-dimensional systems. To extend its scope, Sarasola et al. (2004) proposed to approach
Hamilton energy for dimensionless dynamical systems by using HHD as follows,{

ẋ = f (x) = fdiv (x) + fcurl (x) , x ∈ Rn;

∇HTfdiv (x) = 0; Ḣ = ∇HTfcurl (x) ,
(22)

where fdiv and fcurl are divergence-free and curl-free components of a dynamical system, respec-
tively. According to this criterion (Eq. 22), Hamiltonian functions of chaotic systems were ap-
proached to calculate the energy for synchronizing two chaotic systems (Sarasola et al., 2004), to
analyze the stability of chaotic systems (Zhou et al., 2021), and to design energy modulation-based
controllers (Ma et al., 2017).

A.2 GPS AND LINEAR OPERATORS

Gaussian processes (GPs) are closed under linear transformations (cf. Lemma 2.2 in (Lange-
Hegermann, 2021), Lemma 2.1 in (Härkönen et al., 2022)). Let L be a linear operator acting on
realizations of g ∼ GP (µg (x) , κg (x,x

′)), then under the assumption that L commutes with ex-
pectation, the mean of Lg is given by

E [Lg (x)] = LE [g (x)] = Lµg (x) , (23)
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and the covariance is such that

cov [Lxg (x) ,Lx′g (x′)] = E
[
(Lxg (x)− Lxµ (x)) (Lx′g (x′)− Lx′µ (x′))

T
]

(24)

= LxE
[
(g (x)− µ (x)) (g (x′)− µ (x′))

T
]
LT
x′ (25)

= Lxκg (x,x
′)LT

x′ . (26)

A common application of this technique is to construct GPs with realizations in the solution set of
linear differential equations, assuming that L is a linear differential operator (Jidling et al., 2017;
Lange-Hegermann, 2018; 2021; Besginow & Lange-Hegermann, 2022; Härkönen et al., 2022). And
similarly, we make use of the closure of GPs under linear differential operators to construct the
curl-free and div-free kernels.

Although the transformed kernel (Eq. 26) has been widely used, its validity as a covariance function
is rarely discussed in existing works. In a GP framework, a kernel κ (x,x′) : Rn ×Rn → Rm×m is
a valid covariance function if it is:

(i) Symmetric, i.e., κ (x,x′) = κ (x′,x)
T, ∀x,x′ ∈ Rn, and

(ii) Positive semidefinite, i.e.,
∑

ijc
T
i κ (xi,xj) cj ≥ 0, for any finite set {xi} ⊂ Rn and {ci} ⊂

Rm.

These two conditions for a kernel can be verified if and only if there exists a feature map ϕ (x) such
that κ (x,x′) = ϕ (x)ϕ (x′)

T (Rasmussen & Williams, 2005). So, if κg (x,x′) is a valid kernel, it
holds that

Lxκg (x,x
′)LT

x′ = Lxϕ (x)ϕ (x
′)
T LT

x′ = (Lxϕ (x)) (Lx′ϕ (x′))
T
. (27)

Therefore, the transformed kernel Lxκg (x,x
′)LT

x′ is guaranteed to be a valid covariance function
provided that its underlying kernel κg (x,x′) is. However, when L is a differential operator, κg
should be twice differentiable, which is satisfied by most of the standard kernels, such as the squared
exponential kernel.

A.3 BASICS FOR EUCLIDEAN GROUP

This section gives the basic definitions about the Euclidean group. In the context of this work, the
most important example of a symmetry group is the Euclidean group E (n) or its subgroups. The
set of all elements in E (n) can be denoted as

E (n) = {(A,b) | A ∈ O (n) ,b ∈ Rn} , (28)

where O (n) =
{
A ∈ Rn×n | AAT = I

}
is the orthogonal group. Any element g = (A,b) ∈

E (n) represents a translation followed by an orthogonal transformation, the action of g on a point
x ∈ Rn is given by a linear mapping:

Lg : Rn → Rn, x 7→ A (x+ b) . (29)

Therefore, E (n) comprises all isometries of a Euclidean space, i.e. for all x,x′ ∈ Rn and g ∈
E (n), we have

∥Lg (x)− Lg (x
′)∥ = ∥x− x′∥ , (30)

where ∥·∥ is the Euclidean norm. All intuitive geometric transformations in Rn can be described by
subgroups of E (n), such as

1. Translation: The group of all translations in Rn is denoted by (Rn,+). For any v ∈ Rn,
A translation is a transformation that moves a point x ∈ Rn by Lv (x) = x+ v.

2. Rotation: The group of all rotations in Rn is represented by the set of special orthogonal
matrices SO (n) = {R ∈ O (n) | det R = 1}, where a rotation matrix R transforms a
point by LR (x) = Rx.

3. Reflection: Reflections in Rn forms subgroups of the orthogonal group O (n). Reflections
correspond to mirror symmetries. They mirror points across a hyperplane. For a hyperplane
with a unit normal vector n, the action of a reflection is defined as Ln (x) = x−2(x ·n)n.
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A.4 PROOFS

This section restates and proves the theorems in Section 4, which give the theoretical foundations
that we use to enforce symmetry constraints to our HHD-GP model.

A.4.1 PROOF OF THEOREM 4.1

Theorem 4.1. Let G be a Euclidean group or its subgroup, and let V : Rn → R be a G-invariant
scalar function. Then, the curl-free vector field fcurl : Rn → Rn defined by fcurl (x) = ∇V (x) is
G-equivariant.

Proof. To prove that ∇V (x) is G-equivariant, by Definition 4.1 we need to show that for any x ∈ Rn

and g ∈ G, we have
∇V ◦ Lg = JLg

∇V, (31)

where Lg (x) : Rn → Rn is the action of g on x, and JLg is the Jacobian matrix of Lg . To show
this, we first recall the chain rule of the gradient operator,

∇ (V ◦ Lg) = JT
Lg

(∇V ◦ Lg) , (32)

where JT
Lg

denotes the transpose of JLg . Since V (x) is G-invariant, for all g ∈ G we have

V = V ◦ Lg. (33)

Now taking the gradient of both sides, and combining with the chain rule, we obtain

∇V = ∇ (V ◦ Lg) = JT
Lg

(∇V ◦ Lg) . (34)

Then by multiplying JLg on both sides, we have

JLg
∇V = JLg

JT
Lg

(∇V ◦ Lg) . (35)

Considering G is a subgroup of the Euclidean group, the action of any group element g ∈ G on Rn

can be represented by
Lg (x) = A (x+ v) , (36)

where A ∈ O (n) is an orthogonal matrix. Therefore, JLg
JT
Lg

= AAT = I , where I is an identity
matrix, so we have JLg∇V = ∇V ◦ Lg , which means that the curl-free vector field fcurl = ∇V is
G-equivariant, as desired.

A.4.2 PROOF OF THEOREM 4.2

Theorem 4.2. Let G be a Euclidean group or its subgroup, and let v : Rn → Rn be a G-equivariant
vector field. Then the divergence-free vector field fdiv = [∇ ·A1, . . . ,∇ ·An]

T is G-equivariant,
where Ai denotes the i-th row of the skew-symmetric matrix-valued function A = Jv − JT

v .

Proof. To prove this theorem, we need to show that the divergence-free vector field fdiv satisfies the
G-equivariance condition, i.e., for all g ∈ G and x ∈ Rn,

fdiv ◦ Lg = JLg
fdiv, (37)

where Lg (x) : Rn → Rn is the action of g on x, and JLg is the Jacobian matrix of Lg .

Define the divergence-free vector field fdiv = [∇ · A1, ...,∇ · An]
T, where Ai is the ith row

of the skew-symmetric matrix field A = Jv − JT
v , and Jv is the Jacobian of some vector field

v : Rn → Rn. Given that v is G-equivariant, for all g ∈ G and x ∈ Rn we have

v ◦ Lg = JLg
v. (38)

Now computing the Jacobian of both sides, by the chain rule of the Jacobian, we obtain

Jv◦Lg
= (Jv ◦ Lg)JLg

= JLg
Jv. (39)

Then applying JT
Lg

on both sides, we have JT
Lg

(Jv ◦ Lg)JLg = JT
Lg

JLgJv. Since G is a subgroup
of the Euclidean group, the Jacobian of the action of any group element g ∈ G on Rn is an orthogonal
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matrix, i.e., JLg
∈ O (n). Therefore, JT

Lg
JLg

= I , where I is an identity matrix, so it holds that
Jv = JT

Lg
(Jv ◦ Lg)JLg . Then by substituting it into A = Jv − JT

v , we obtain

A = Jv − JT
v = JT

Lg

(
Jv ◦ Lg − JT

v ◦ Lg

)
JLg

= JT
Lg

(A ◦ Lg)JLg
, (40)

where the equation at the (i, j)-th entries of both sides is given by

Aij =

n∑
k=1

[
∂ (Lg)k
∂xi

n∑
l=1

∂ (Lg)l
∂xj

(Akl ◦ Lg)

]
. (41)

Then by substituting Aij into the construction of fdiv , for any g ∈ G and x ∈ Rn, we have

fdiv = [∇ ·A1, ..., ∇ ·An]
T (42)

=
[∑n

j=1
∂A1j

∂xj
, ...,

∑n
j=1

∂Anj

∂xj

]T
(43)

=


∑n

j=1

∑n
k=1

∂(Lg)k
∂x1

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj

...∑n
j=1

∑n
k=1

∂(Lg)k
∂xn

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj

 (44)

=


∑n

k=1
∂(Lg)k
∂x1

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj

...∑n
k=1

∂(Lg)k
∂xn

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj

 (45)

=


∑n

k=1
∂(Lg)k
∂x1

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∑n
p=1

∂(Lg)p
∂xj

(
∂Akl

∂xp
◦ Lg

)
...∑n

k=1
∂(Lg)k
∂xn

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∑n
p=1

∂(Lg)p
∂xj

(
∂Akl

∂xp
◦ Lg

)
 (46)

=


∑n

k=1
∂(Lg)k
∂x1

∑n
l=1

∑n
p=1

(
∂Akl

∂xp
◦ Lg

)∑n
j=1

∂(Lg)l
∂xj

∂(Lg)p
∂xj

...∑n
k=1

∂(Lg)k
∂xn

∑n
l=1

∑n
p=1

(
∂Akl

∂xp
◦ Lg

)∑n
j=1

∂(Lg)l
∂xj

∂(Lg)p
∂xj

 (47)

=
[∑n

k=1
∂(Lg)k
∂x1

∑n
l=1

(
∂Akl

∂xl
◦ Lg

)
, . . . ,

∑n
k=1

∂(Lg)k
∂xn

∑n
l=1

(
∂Akl

∂xl
◦ Lg

)]T
(48)

=
[∑n

k=1
∂(Lg)k
∂x1

(∇ ·Ak) ◦ Lg, ...,
∑n

k=1
∂(Lg)k
∂xn

(∇ ·Ak) ◦ Lg

]T
(49)

= JT
Lg

[(∇ ·A1) ◦ Lg, ..., (∇ ·An) ◦ Lg]
T (50)

= JT
Lg

(fdiv ◦ Lg) . (51)

Then, applying JLg
on both sides, we obtain JLg

fdiv = fdiv ◦ Lg , which completes the proof.

A.5 PHYSICAL SYSTEMS

We tested our method on three physical systems: a damped mass spring, a damped pendulum, and a
Chua circuit. This section reviews these physical systems, listing their governing equations, HHDs
and symmetry properties.

Damped Mass Spring A damped mass-spring system is a mass attached to a spring that oscillates
periodically around an equilibrium position. Its Hamiltonian in natural units is given by

H (q, p) =
1

2

(
q2 + p2

)
, (52)

where q ∈ R is its position, and p is the momentum conjugate to q. The Hamiltonian represents the
total energy of the oscillator. Without energy dissipation, the motion of the oscillator is described
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by the Hamiltonian vector field (div-free vector field fdiv) derived from the Hamiltonian:

fdiv :=

[
q̇
ṗ

]
=

[
∂H
∂p

−∂H
∂q

]
=

[
p
−q

]
. (53)

Then we show that the Hamiltonian vector field has SO(2)-equivariance. Apply a rotation by an
angle θ that transforms any state vector [q, p]

T to [q′, p′]
T, where q′ = q cos θ − p sin θ, p′ =

q sin θ + p cos θ, then for all θ ∈ R, the equivariance condition (Eq. 16) can be easily verified by

fdiv (q
′, p′) =

[
p′

−q′
]
=

[
cos θ − sin θ
sin θ cos θ

] [
p
−q

]
=

[
cos θ − sin θ
sin θ cos θ

]
fdiv (q, p) . (54)

Therefore, the Hamiltonian vector field is equivariant with respect to the 2D rotations. However,
this rotation symmetry is broken when the system suffers from energy dissipation, i.e., a dissipative
field is added to the motion equations. The dissipative vector field (curl-free vector field fcurl) is
induced by the Rayleigh function D (p) = ρp2/2:

fcurl = −∇(q,p)D = [0,−ρp]T , (55)

where ρ is the friction coefficient and we set it at 0.1. This dissipative field has the symmetries of
the q-axis translation (fcurl (q + g, p) = fcurl (q, p), ∀g ∈ R) and the rotation by an angle of π
radians (the so-called odd symmetry, i.e., fcurl (−q,−p) = −fcurl (q, p)). Then by summing the
curl-free vector field (Eq. 55) and the Hamiltonian vector field (Eq. 53), the dynamics of the damped
harmonic oscillator is characterized by

f = fdiv + fcurl = [p,−q − ρp]
T
, (56)

which only demonstrates the odd symmetry.

Damped Pendulum A damped pendulum is a physical system consisting of a weight suspended
from a pivot, subjected to a resistive force that gradually reduces its oscillation over time. By
defining its state in the phase space through [q, p]

T ∈ R2, the dynamics of a damped pendulum and
its HHD can be given by

f :=

[
q̇
ṗ

]
=

[
∂H
∂p

−∂H
∂q

]
−

[
∂D
∂q
∂D
∂p

]
=

[
l2

mp
−2mgl sin q

]
︸ ︷︷ ︸
divergence−free

+

[
0

−ρp

]
︸ ︷︷ ︸
curl−free

=

[
l2

mp
−2mgl sin q − ρp

]
, (57)

where the Hamiltonian H and the Rayleigh function D are given by

H (q, p) = 2mgl (1− cos q) +
l2p2

2m
, D (p) =

1

2
ρp2. (58)

In our experiments, the gravitational constant g, the mass m, and the pendulum length l were set
as g = 3 and m = l = 1, and the friction coefficient ρ was set as ρ = 0.1. The dynamics of the
damped pendulum, as well as its div-free and curl-free components, exhibit the odd symmetry, but
the curl-free part additionally exhibits the translation invariance along the q-axis.

Chua Circuit The Chua circuit (Matsumoto, 1984) is a simple electronic circuit that exhibits
chaotic behavior, and it has applications in various fields, such as secure communication systems
and random number generators. The ODE of a Chua circuit with its HHD is given by[

ẋ
ẏ
ż

]
=

α (y − x3 − cx
)

x− y + z
−βy

 =

[
αy
x+ z
−βy

]
︸ ︷︷ ︸

divergence−free

+

α (−x3 − cx
)

−y
0


︸ ︷︷ ︸

curl−free

, (59)

where x, y, z are the phase space variables, and α, c, β are the system parameters, which were set
to 10, −0.143, and 16 respectively in the experiments. The Chua circuit is equivariant under a π
rotation about the origin: Lπ : (x, y, z) 7→ (−x,−y,−z). If the Chua circuit is decomposed by the
HHD in Eq. 59, more symmetries are exhibited. Specifically, its div-free component inherits the odd
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symmetry, but additionally presents the translation invariance along x = z. The curl-free vector field
is invariant along the z-axis and equivariant under mirror reflections across the coordinate planes,

Li,j : (x, y, z) 7→
(
(−1)

i
x, (−1)

j
y, z
)
,∀i, j ∈ {0, 1} . (60)

This HHD not only uncovers more knowledge of the Chua circuit’s symmetry but can also be used
to analysis the energy of the system. According to the generalized Hamiltonian formalism (Eq. 22),
the energy function H associated with the Chua circuit satisfies the following PDE:

αy
∂H

∂x
+ (x+ z)

∂H

∂y
− βy

∂H

∂z
= 0, (61)

which is satisfied by the quadratic form:

H =
1

2

(
− 1

α
x2 + y2 +

1

β
z2
)
. (62)

As presented by Zhou et al. (2021), this energy function indicates that the Chua circuit keeps oscil-
latory when the energy release along the x-axis is enough to balance the energy pumping along the
y-axis and z-axis.

A.6 UNIQUENESS AND SYMMETRIES

The two constituent kernels of our model define the space of divergence-free vector fields (fdiv ∈
Fdiv) and the space of curl-free vector fields (fcurl ∈ Fcurl), respectively. These two spaces overlap
partially due to the presence of harmonic vector fields (fharm ∈ Fdiv ∩ Fcurl). To eliminate this
overlap and make HHD unique, we propose to impose symmetry constraints on the two spaces sep-
arately, with the corresponding symmetry groups defined as Gdiv and Gcurl. Therefore, the unique-
ness property of HHD depends on the space of harmonic vector fields that respects the union of two
symmetry groups, i.e.

Fharm =
{
fharm | fharm ◦ Lg = JLg

fharm,∀x ∈ Rn, g ∈ Gdiv ∪ Gcurl

}
. (63)

If Fharm = ∅, the HHD is unique, i.e. our model is identifiable. A harmonic vector field can
always be represented by the gradient field of a harmonic function h, which is a scalar function
satisfying ∇·∇h = 0 (Laplace’s equation). For the three dynamical systems used in our experiments
(detailed in Appendix A.5), it can be easily verified that the presence of harmonic components can be
eliminated through forced symmetries. The symmetry group union of a damped mass-spring system
consists of a rotation group Gdiv = SO (2) and a translation group Gcurl = {(g, 0) | g ∈ R}. A
harmonic vector field fharm = ∇h that satisfies this translation symmetry implies that its harmonic
function h (q, p) is independent of the variable q, so the harmonic vector field is given by fharm =
(0, ∂ph) and ∂ph should be a constant to satisfy the Laplace’s equation, but the harmonic vector field
in the form of constant clearly contradicts rotation symmetry Gdiv . Therefore, there is no harmonic
vector field that respects both the symmetry groups Gdiv and Gcurl. Similar conclusions can be drawn
for the damped pendulum and the Chua circuit. The Laplace’s equation and translation symmetry
imply that harmonic vector fields can only exist in the form of constant vector fields. However,
constant vector fields obviously contradict odd symmetry or mirror symmetry.

A.7 IMPLEMENTATION DETAILS

The experiments were performed on a single Nvidia GeForce GTX 3050 Ti GPU, and all of the mod-
els were implemented with PyTorch (Paszke et al., 2019). The GP-based models (Ind-GP, GIM-GP,
Div-GP, HHD-GP and SPHHD-GP) were trained by maximizing the log of their marginal likelihood
(Eq. 3):

log p (Y | X) = logN (Y | 0,K+Σ) = −1

2
YT (K+Σ)

−1
Y − 1

2
log |K+Σ| −m log 2π,

(64)
where |·| computes the determinant of the covariance matrix K + Σ. Training a GP model refers
to optimizing the kernel parameters in K and the noise variances in Σ, and these hyperparameters
were initialized randomly in our experiments. The GP-based models were trained by the ADAM
optimizer (Kingma & Ba, 2014), with a learning rate 0.01 for 3000 gradient steps. The kernels of
the GP-based models are constructed as follows.
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A.7.1 IND-GP

The Ind-GP models each dimension of a n-dimensional dynamical system independently, so its
matrix-valued kernel is constructed by

κind = diag (κ1, . . . , κn) , (65)

where κi, i = 1, . . . , n are independent scalar kernels. And a standard choice for κi is the squared
exponential (SE) kernel,

κse (x,x
′) = σ2exp

(
−1

2
l−2 ∥x− x′∥2

)
, (66)

which has two parameters: σ determines the variation of function values from their mean, and l
controls the length scale on which the function varies. Realizations of GPs with SE kernels are dense
in the set of smooth functions C∞ (Rn,R) (cf. Prop.1 in Lange-Hegermann & Robertz (2022)). For
a fair comparison, we also used the SE kernel (Eq. 66) to construct kernels for the other GP-based
models.

A.7.2 GIM-GP

The GIM-GP produces predictions with the desired symmetry. Each of the systems in our ex-
periments exhibits the odd symmetry as a whole. So their symmetry groups can be given by
Godd = {In,−In}, where In is the n-dimensional identity matrix, and the group elements are
linear representations of the group actions, i.e., Lg (x) = gx, ∀g ∈ G. Therefore, according to
Eq. 19, the GIM-kernel for Godd was constructed by

κgim = (κse (x,x
′)− κse (x,−x′)) In, (67)

where the SE kernel (Eq. 66) was used as the basis kernel κ in Eq. 19.

A.7.3 DIV-GP

GPs with a div-free kernel can be used to approximate conservative dynamics. According to Eq. 14,
a two-dimensional div-free kernel was constructed by

κdiv =

 ∂2κH(x,x′)
∂x2∂x′

2
−∂2κH(x,x′)

∂x2∂x′
1

−∂2κH(x,x′)
∂x1∂x′

2

∂2κH(x,x′)
∂x1∂x′

1

 , (68)

where κu in Eq. 14 is denoted by κH instead, indicating that it is the kernel for the Hamiltonian
functions of the damped mass spring and the damped pendulum, and the SE kernel (Eq. 66) was used
for κH . The partial derivatives in Eq. 68 were calculated by automatic differentiation in PyTorch, so
we did not need to derive its analytic expression.

Then we constructed the div-free kernel for the Chua circuit system. According to Eq. 13, a three-
dimensional div-free vector field is given by fdiv (x) = Ψu (x), where Ψ = [ψ12, ψ13, ψ23] ∈ R3×3

with its components given by

ψ12 =

[
0 1 0
−1 0 0
0 0 0

][
∂x1

∂x2

∂x3

]
=

[
∂x2

−∂x1

0

]
, (69)

ψ13 =

[
0 0 1
0 0 0
−1 0 0

][
∂x1

∂x2

∂x3

]
=

[
∂x3

0
−∂x1

]
, (70)

ψ23 =

[
0 0 0
0 0 1
0 −1 0

][
∂x1

∂x2

∂x3

]
=

[
0
∂x3

−∂x2

]
. (71)
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Then by assuming u = [u12, u13, u23]
T ∼ GP (0, κu = κind), we constructed the div-free kernel

for the Chua circuit according to Eq. 14:

κdiv =

[
∂x2

∂x3
0

−∂x1
0 ∂x3

0 −∂x1
−∂x2

][
κ1 0 0
0 κ2 0
0 0 κ3

][
∂x2

−∂x1
0

∂x3
0 −∂x1

0 ∂x3
−∂x2

]
(72)

=


∂2κ1(x,x′)
∂x2∂x′

2
+

∂2κ2(x,x′)
∂x3∂x′

3
−∂2κ1(x,x′)

∂x2∂x′
1

−∂2κ2(x,x′)
∂x3∂x′

1

−∂2κ1(x,x′)
∂x1∂x′

2

∂2κ1(x,x′)
∂x1∂x′

1
+

∂2κ3(x,x′)
∂x3∂x′

3
−∂2κ3(x,x′)

∂x3∂x′
2

−∂2κ2(x,x′)
∂x1∂x′

3
−∂2κ3(x,x′)

∂x2∂x′
3

∂2κ2(x,x′)
∂x1∂x′

1
+

∂2κ3(x,x′)
∂x2∂x′

2

 , (73)

where κ1, κ2 and κ3 are all independent SE kernels (Eq. 66).

A.7.4 HHD-GP

The HHD-GP consists of two independent GPs added together, modeling curl-free and div-free
dynamics respectively. GPs with div-free kernels have been constructed earlier, so here we build
curl-free kernels according to Eq. 9. For the damped mass spring and the damped pendulum, their
two-dimensional curl-free kernel was constructed by

κcurl =

∂2κV (x,x′)
∂x1∂x′

1

∂2κV (x,x′)
∂x1∂x′

2

∂2κV (x,x′)
∂x2∂x′

1

∂2κV (x,x′)
∂x2∂x′

2

 . (74)

Similarly, the three-dimensional curl-free kernel for the Chua circuit was constructed by

κcurl =


∂2κV (x,x′)

∂x1∂x′
1

∂2κV (x,x′)
∂x1∂x′

2

∂2κV (x,x′)
∂x1∂x′

3

∂2κV (x,x′)
∂x2∂x′

1

∂2κV (x,x′)
∂x2∂x′

2

∂2κV (x,x′)
∂x2∂x′

3

∂2κV (x,x′)
∂x3∂x′

1

∂2κV (x,x′)
∂x3∂x′

2

∂2κV (x,x′)
∂x3∂x′

3

 , (75)

where κV is a SE kernel.

A.7.5 SPHHD-GP

Symmetry-preserving curl-free kernels According to Theorem 4.1, a G-equivariant curl-free
vector field is constructed by constraining its scalar potential V to be G-invariant. Therefore, a G-
equivariant curl-free kernel is obtained by constructing its potential kernel κV according to Eq. 18.

The curl-free vector field (Eq. 55) of the damped mass spring and the damped pendulum has two
types of symmetry:

(i) translation along the q-axis, i.e., Lg (x) = x+ (g, 0), for all g ∈ R;

(ii) rotation by an angle of π radians, i.e., Lg (x) = gx, for all g ∈ {I2,−I2}.

These symmetry groups were enforced to a SE kernel sequentially according to Eq. 18, where |G|
can be ignored. Specifically, the translation invariance was enforced using the Gaussian integral
formula:

κV =

∫ +∞

−∞
κse

(
x,x′ + [g, 0]

T
)
dg (76)

= κse (p, p
′)

∫ +∞

−∞
exp(− (q − q′ − g)

2

2l2
)dg (77)

=
√
2πlκse (p, p

′) , (78)

then based on which the π rotation invariance was enforced by

κV =
√
2πl (κse (x2, x

′
2) + κse (x2,−x′2)) . (79)

The curl-free vector field of the Chua circuit (Eq. 59) has similar two types of symmetry:
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(i) translation along the z-axis, i.e., Lg (x) = x+ (0, 0, g), for all g ∈ R;

(ii) mirror reflections across the coordinate planes, i.e., Li,j : (x, y, z) 7→
(
(−1)

i
x, (−1)

j
y, z
)

,
for all i, j ∈ {0, 1}.

Therefore, κV for the Chua circuit (Eq. 59) was constructed by

κV =
√
2πl

∑
g∈G

κse (x, gx
′) , G =

{
diag

(
(−1)

i
, (−1)

j
, 0
)
| i, j ∈ {0, 1}

}
. (80)

Symmetry-preserving div-free kernels Theorem 4.2 shows that a G-equivariant div-free vector
field is constructed from a vector potential v with the same equivariance. For the div-free vector
field of the damped mass-spring system with SO(2)-equivariance, its κv was constructed by the
GIM-kernel (Eq. 19):

κv (x,x
′) =

∫ 2π

0

κse (x, gθx
′) gθdθ, where gθ =

[
cos θ − sin θ
sin θ cos θ

]
. (81)

Then this κv (Eq. 81) is substituted into Eq. 20 to construct κH for its div-free kernel κdiv (Eq. 68):

κH =
∂2

∂x2∂x′2
[κv]1,1 +

∂2

∂x1∂x′1
[κv]2,2 −

∂2

∂x2∂x′1
[κv]1,2 −

∂2

∂x1∂x′2
[κv]2,1 (82)

=

∫ 2π

0

κse (x, gθx
′)
2l2 − ∥x− gθx

′∥2

l4
dθ. (83)

which admits no closed-form solution, so we used a numerical approximation of the integral (Eq. 83)
by sampling discrete rotations of

{
θ = π

4n | n = 0, . . . , 7
}

, whose rotation matrices form a finite
group. And by setting θ ∈ {0, π}, Eq. 83 was used to construct κH for the div-free vector field of
the damped pendulum, which has the equivariance under a π rotation (odd symmetry).

The div-free vector field of the Chui circuit (Eq. 59) has the odd symmetry and the translation
symmetry along x = z. κv respecting the translation symmetry was constructed by κv = κ · I3,
where κ is given by

κ =

∫ +∞

−∞
κse

(
[x, y, z]

T
, [x′, y′, z′]

T
+ [g, 0,−g]T

)
dg (84)

= κse (y, y
′)

∫ +∞

−∞
exp(− (x− x′ − g)

2
+ (z − z′ + g)

2

2l2
)dg (85)

= κse (y, y
′)

∫ +∞

−∞
exp

−
2
(
g − x1−x′

1−x3+x′
3

2

)2
+

(x1−x′
1+x3−x′

3)
2

2

2l2

 dg (86)

=
√
πlκse (x2, x

′
2)

∫ +∞

−∞
exp

(
− (x1 − x′1 + x3 − x′3)

2

4l2

)
dg (87)

=
√
πlκse (p,p

′) . (88)

where p =
[

1√
2
(x+ z) , y

]T
. And we further enforced the odd symmetry by

κ =
√
πl (κse (p,p

′)− κse (p,−p′)) . (89)

Then, κv = κ · I3 was substituted into Eq. 20 to construct κu by

κu =


∂2κ(x,x′)
∂x2∂x′

2
+

∂2κ(x,x′)
∂x1∂x′

1

∂2κ(x,x′)
∂x2∂x′

3
−∂2κ(x,x′)

∂x1∂x′
3

∂2κ(x,x′)
∂x3∂x′

2

∂2κ(x,x′)
∂x3∂x′

3
+

∂2κ(x,x′)
∂x1∂x′

1

∂2κ(x,x′)
∂x1∂x′

2

−∂2κ(x,x′)
∂x3∂x′

1

∂2κ(x,x′)
∂x2∂x′

1

∂2κ(x,x′)
∂x3∂x′

3
+

∂2κ(x,x′)
∂x2∂x′

2

 . (90)

Finally, this κu (Eq. 90) was substituted into Eq. 14 to construct the symmetry-preserving div-free
kernel for the Chua circuit.
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A.7.6 D-HNN

We used the released code5 of D-HNN and ran their training routine for our systems.

A.7.7 IMPLEMENTATION DETAILS OF PREDICTING ENERGY

The damped mass-spring system and the damped pendulum When HHD-GP and SPHHD-GP
are used to learn the damped mass-spring system and the damped pendulum, the potential kernel
κH for constructing their div-free kernels (Eq. 68) can be interpreted as placing a GP prior on the
Hamiltonian function. Therefore, a joint GP describing both the Hamiltonian function H (x) and
the dynamical system f (x) is given by[

H (x)
f (x)

]
∼ GP

([
0
0

]
,

[
κH (x,x′) κH,f (x,x

′)
κf ,H (x,x′) κhhd (x,x

′)

])
, (91)

where κH,f (x,x
′) = κf ,H (x′,x)

T with

κH,f (x,x
′) = cov [H (x) , f (x′)] = [∂p′ ,−∂q′ ]κH (x,x′) ; (92)

κf ,H (x,x′) = cov [f (x) , H (x′)] = [∂p,−∂q]T κH (x,x′) . (93)

After training the model f (x) ∼ GP (0, κhhd (x,x
′)) on noisy observations Y = [y1, . . . ,ym]

T6 at
states X = [x1, . . . ,xm]

T, we are interested in predicting the value of Hamiltonian function H (x∗)
at a new test state x∗. Since these data determine H (·) only up to an additive constant, we assume
that we have an anchor point H (x0) which can be chosen arbitrarily. Then, according to the GP
prior (Eq. 91), H (x∗) and YH = [H (x0) ,Y]

T are jointly distributed as[
H (x∗)
YH

]
∼ N

([
0
0

]
,

[
κH (x∗,x∗) k

kT K

])
, (94)

where k = [κH (x∗,x0) , κH,f (x∗,X)], and

K =

[
κH (x0,x0) κH,f (x0,X)
κf ,H (X,x0) κhhd (X,X) + σI

]
. (95)

Then, we obtain the posterior distribution

p (H (x∗) | YH) = N
(
kK−1YH , κH (x∗,x∗)− kK−1kT

)
, (96)

where the mean function is used for energy prediction.

The Chua circuit For the Chua circuit, our model has no direct access to its Hamiltonian function,
but we can estimate it using the generalized Hamiltonian formalism (Eq. 22), which states that the
divergence-free vector field is always orthogonal to the gradient of the Hamiltonian function, i.e.,
∇HTfdiv (x) = 0, for all x ∈ Rn. We parameterize the Hamiltonian of the Chua circuit in a
quadratic form: Ĥ (x) = 1

2

(
a1x

2 + a2y
2 + a3z

2
)
, where a = [a1, a2, a3] are parameters. Then by

learning a divergence-free vector field f̂div (·) through our model, we can estimate the parameters

a by minimizing
∑m

i=1

(
∇ĤTf̂ (xi)

)2
at a finite number of sample points {xi}mi=1 (m = 500 in

our experiments). And to eliminate the solution at a = [0, 0, 0], we add an equality constraint at
a random point of the ground truth {x0, H (x0)} (Eq. 62). Therefore, the parameters a of Ĥ are
solved in a convex quadratic program (QP):

min aTQa

s.t. Ĥ (x0) = H (x0)
(97)

where Q = qTq with q =
[
f̂div (x1) , . . . , f̂div (xm)

]T
∈ Rm×3. And in the experiments, we

solved the QP using the solver provided by CVXOPT (Andersen et al., 2020).
5https://github.com/DrewSosa/dissipative_hnns
6yi = f (xi) + ϵ, ϵ

i.i.d∼ N (0, σI)
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A.8 EXPERIMENT RESULTS

A.8.1 RESULTS OF ENERGY PREDICTION

To compare the accuracy of predicting the energy evolution along a state trajectory {x1, . . . ,xp},
we compute its RMSE by

RMSEen

(
Ĥ,H

)
=

(
1

p

p∑
i=0

(
Ĥ (xi)−H (xi)

)2) 1
2

, (98)

where Ĥ (·) and H (·) are the predicted and true Hamiltonian function, respectively. And we aver-
aged this RMSE over trajectories integrated from 50 random initial conditions, and the implementa-
tion details for generating these trajectories are the same as those for calculating the VPT (detailed
in Section 6). The results of RMSE of energy prediction are shown in Table 2.

Table 2: Performance comparison of different methods on the energy prediction tasks for each
dynamical system. The RMSE is recorded in the scale of ×10−2 and in the form of mean ± standard
deviation. Bold font indicates best results.

Physical System D-HNN HHD-GP SPHHD-GP

Damped Mass Spring 16.76 ± 10.73 33.34 ± 15.78 0.15 ± 0.12
Damped pendulum 94.59 ± 24.22 43.18 ± 24.68 0.79 ± 0.29

Chua Circuit N/A 9.52 ± 5.03 0.13 ± 0.14
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A.8.2 RESULTS OF TRAJECTORY PREDICTION

Fig. 5, Fig. 6, and Fig. 7 show the trajectory predictions for the damped mass-spring system, the
damped pendulum, and the Chua circuit, respectively.

0 10 20 30 40 50
time

1.0

0.5

0.0

0.5

1.0

q

Ground Truth
HHD-GP
SPHHD-GP
Div-GP
D-HNN
Ind-GP
GIM-GP

40 42 44 46 48 50
time

0.15

0.10

0.05

0.00

0.05

0.10

0.15

q

Ground Truth
HHD-GP
SPHHD-GP
Div-GP
D-HNN
Ind-GP
GIM-GP

0 10 20 30 40 50
time

1.0

0.5

0.0

0.5

1.0

p
Ground Truth
HHD-GP
SPHHD-GP
Div-GP
D-HNN
Ind-GP
GIM-GP

40 42 44 46 48 50
time

0.15

0.10

0.05

0.00

0.05

0.10

0.15

p
Ground Truth
HHD-GP
SPHHD-GP
Div-GP
D-HNN
Ind-GP
GIM-GP

Figure 5: Comparison of predicted trajectories of the mass-spring system.
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Figure 6: Comparison of predicted trajectories of the pendulum.
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Figure 7: Comparison of predicted trajectories of the Chua circuit.
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A.8.3 RESULTS OF INCREASING NOISE LEVEL AND TRAINING DATA NUMBER

To further compare the predictive performance of the models, we evaluated them by increasing
the noise and the amount of training data, respectively. In addition to the evaluation metrics used
previously, including RMSE of state derivatives and energy and VPT of state trajectories, we added
the mean negative log likelihood (MNLL) to evaluate the prediction uncertainty provided by the GP
models, and it is defined by

MNLL = − 1

|D|
∑

(x,y)∈D

logN (y | µ (x) , var (x)) , (99)

where D = {(x,y)} is the test set, µ (x) and var (x) are predicted mean and variance at a test
state x by the GP models. The lower the MNLL, the more effectively the forecast uncertainty
reflects the prediction error. Table 3 (visualized by Fig. 8) shows the experimental results on a
damped pendulum with increasing standard deviation of Gaussian noise in training data, and Table 4
(visualized by Fig. 9) shows the effect of increasing the amount of training data on the performance
of the model. From these results we can observe that our model (SPHHD-GP) performs best at every
noise level and data amount relative to the baseline models.
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Figure 8: Results with increasing standard deviation (SD) of Gaussian noise in training data.

Table 3: Results with increasing standard deviation σ of Gaussian noise in training data (σ = 0.01,
0.05, 0.1 and 0.2) for the damped pendulum. The RMSEs and VPT are in the scale of ×10−2. All
metrics are recorded in the form of mean ± standard deviation and bold font indicates best results.

Noise SD σ Model Evaluation Metrics

RMSE of Derivatives↓ VPT ↑ RMSE of Energy ↓ MNLL ↓

0.01

D-HNN 186.90 ± 27.19 0.40 ± 0.07 94.59 ± 24.22 N/A
Div-GP 57.59 ± 22.65 1.21 ± 0.23 N/A 0.26 ± 0.80
Ind-GP 76.45 ± 27.85 3.14 ± 1.18 N/A -0.08±1.69

GIM-GP 17.34 ± 8.05 11.22 ± 5.20 N/A -2.11 ± 0.33
HHD-GP (ours) 24.87 ± 16.75 4.66 ± 1.16 44.49 ± 23.74 -1.63±0.41

SPHHD-GP (ours) 8.21 ± 6.24 22.67 ± 16.09 0.79 ± 0.29 -2.78±0.29

0.05

D-HNN 180.99 ± 39.94 0.38 ± 0.07 85.44 ± 25.09 N/A
Div-GP 44.71 ± 15.76 1.03 ± 0.20 N/A -0.29 ± 0.21
Ind-GP 58.41 ± 28.81 1.50 ± 0.30 N/A -1.13 ± 0.20

GIM-GP 24.49 ± 10.61 2.09 ± 0.46 N/A -0.97 ± 0.50
HHD-GP (ours) 35.70 ± 20.39 1.55 ± 0.30 21.72 ± 10.26 -0.65 ± 0.49

SPHHD-GP (ours) 15.66 ± 10.49 2.97 ± 0.47 3.75± 2.33 -1.53 ± 0.23

0.1

D-HNN 186.59 ± 40.77 0.38 ± 0.06 63.49 ± 24.51 N/A
Div-GP 71.07 ± 18.38 0.74 ± 0.13 N/A 0.13± 0.24
Ind-GP 90.02 ± 21.02 1.15 ± 0.32 N/A -0.47± 0.33

GIM-GP 32.25 ± 9.25 1.14 ± 0.24 N/A -0.56± 0.20
HHD-GP (ours) 62.70 ± 18.84 0.90 ± 0.23 22.72 ± 7.94 -0.21± 0.24

SPHHD-GP (ours) 27.49 ± 11.59 1.44 ± 0.30 7.45 ± 6.05 -0.84± 0.40

0.5

D-HNN 177.92 ± 35.05 0.33 ± 0.04 85.26± 25.39 N/A
Div-GP 77.80 ± 22.74 0.65 ± 0.08 N/A 0.28± 0.15
Ind-GP 104.84 ± 21.14 0.77 ± 0.18 N/A 0.02± 0.23

GIM-GP 47.53 ± 15.08 0.87 ± 0.25 N/A -0.12± 0.19
HHD-GP (ours) 75.38 ± 23.71 0.65 ± 0.07 21.70± 8.17 0.23± 0.20

SPHHD-GP (ours) 35.46 ± 11.10 0.99 ± 0.24 11.81± 4.92 -0.40± 0.22
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Figure 9: Results with increasing number of training data.

Table 4: Results with increasing number of training data (20, 100, 260 and 420) for the damped
pendulum. The RMSEs and VPT are in the scale of ×10−2. All metrics are recorded in the form of
mean ± standard deviation and bold font indicates best results.

Number of Training Data Model Evaluation Metrics

RMSE ↓ VPT ↑ RMSE Energy ↓ NMLL ↓

20

D-HNN 186.90 ± 27.19 0.40 ± 0.07 94.59 ± 24.22 N/A
Div-GP 57.59 ± 22.65 1.21 ± 0.23 N/A 0.26 ± 0.80
Ind-GP 76.45 ± 27.85 3.14 ± 1.18 N/A -0.08±1.69

GIM-GP 17.34 ± 8.05 11.22 ± 5.20 N/A -2.11 ± 0.33
HHD-GP (ours) 24.87 ± 16.75 4.66 ± 1.16 44.49 ± 23.74 -1.63±0.41

SPHHD-GP (ours) 8.21 ± 6.24 22.67 ± 16.09 0.79 ± 0.29 -2.78±0.29

100

D-HNN 46.58 ± 7.28 1.69 ± 0.20 31.02 ± 18.24 N/A
Div-GP 15.78 ± 0.93 1.15 ± 0.13 N/A 0.90± 0.20
Ind-GP 2.81 ± 0.76 45.01 ± 16.93 N/A -3.27± 0.70

GIM-GP 1.44 ± 0.35 31.75 ± 14.08 N/A -3.74± 0.14
HHD-GP (ours) 1.89 ± 0.99 44.09 ± 20.51 55.78± 30.51 -3.66± 0.07

SPHHD-GP (ours) 0.90 ± 0.31 49.72 ± 19.75 0.39± 0.11 -4.12± 0.11

260

D-HNN 15.21 ± 3.77 6.55 ± 3.37 33.63 ± 20.02 N/A
Div-GP 13.60 ± 0.17 1.15 ± 0.05 N/A 5.51±0.34
Ind-GP 0.97 ± 0.20 69.18 ± 9.79 N/A -4.14±0.48

GIM-GP 0.76 ± 0.16 49.95 ± 18.89 N/A -4.22±0.13
HHD-GP (ours) 0.89 ± 0.17 70.55 ± 18.08 37.83 ± 24.81 -4.18±0.10

SPHHD-GP (ours) 0.53 ± 0.10 71.62 ± 15.66 0.13 ± 0.04 -4.54±0.12

420

D-HNN 13.48 ± 2.37 4.24 ± 1.67 39.69± 19.62 N/A
Div-GP 13.39 ± 0.10 1.17 ± 0.07 N/A 10.21±0.35
Ind-GP 0.69 ± 0.11 75.71 ± 12.58 N/A -4.56±0.20

GIM-GP 0.59 ± 0.10 54.11 ± 20.25 N/A -4.43±0.13
HHD-GP (ours) 0.66 ± 0.10 78.55 ± 10.27 49.03± 21.57 -4.44±0.10

SPHHD-GP (ours) 0.45 ± 0.10 81.74 ± 11.78 0.10± 0.04 -4.79±0.15

28



Under review as a conference paper at ICLR 2024

A.8.4 EXPERIMENTS OF PREDICTING DYNAMICS WITH UNSEEN FRICTIONS

To demonstrate the interpretability of the learned curl-free features, we adapted the trained model
to predict dynamics with different friction coefficients. As detailed in the Appendix A.1, the curl-
free dynamics in the system is always caused by dissipative forces in the system (e.g., friction in
the mass-spring system and the pendulum). Utilizing this interpretation and the additive structure
of the HHD-based models, we can generalize the models to perform inference over dynamics with
different friction coefficients. We performed this experiment by first training HHD-GP, SPHHD-GP
and D-HNN with data when ρ = 0.1 (ρ is the friction coefficients), then generalizing the trained
models to dynamics when ρ = 0.05 and ρ = 0.5 by multiplying the learned curl-free component
with constants 0.5 and 5.0, respectively. The results are shown in Fig. 10, where we can observe
that the three models accurately predict the trajectories of the systems with a friction coefficient
of 0.1 (first column in Fig. 10), but HHD-GP and D-HNN are difficult to generalize to cases with
friction coefficients of 0.05 and 0.5 (second and third columns in Fig. 10). In contrast, SPHHD-GP
effectively captures the dynamics of different friction conditions, even though it has not been trained
for these specific friction coefficients. This adaptability is valuable because it allows the model to
be applied to real-world scenarios where friction coefficients may change.
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Figure 10: Adapting the trained models to predict trajectories for different friction coefficients. The
models are trained under ρ = 0.1, where ρ is the friction coefficients, then they are generalized
to predict trajectories for ρ = 0.05 and ρ = 0.5 by multiplying the learned curl-free component
with constants 0.5 and 5.0, respectively. The lines in the figure represent predicted trajectories from
different models (distinguished by different line styles), with the initial points for the two systems
(the first and second rows) being (1, 1) and (1.5, 1.5), respectively. The background vector fields
are the ground truth dynamics.
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