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Abstract
Machine unlearning, the targeted removal of
knowledge from LLMs, is vital for AI safety
and privacy, yet robustly evaluating its success
remains a significant challenge. Existing black-
box evaluation protocols provide an incomplete
picture of unlearning robustness, fail to explain
utility loss mechanisms, or offer comprehensive
guarantees. This work proposes a novel evalua-
tion framework grounded in Singular Learning
Theory (SLT), employing the refined Local Learn-
ing Coefficients (rLLC) to quantitatively analyze
the geometric signatures imprinted by unlearning
algorithms on neural network loss landscapes.
We demonstrate that these rLLCs reveal distinct,
layer-specific geometric changes for methods
like Gradient Ascent (GA), Representation
Misdirection (RMU), and Negative Preference
Optimization (NPO), and that these geometric
signatures correlate with macroscopic unlearning
properties. Our analysis on TinyStories models
substantiates these findings and highlights
the utility of rLLCs in diagnostics, such as
identifying RMU’s intervention layer, positioning
rLLCs as a powerful tool for advancing the
principled evaluation of machine unlearning.

1. Introduction
Machine unlearning, the targeted removal or suppression of
specific knowledge from trained models like LLMs while
preserving general capabilities is increasingly vital for AI
safety, privacy compliance, and responsible AI development
(Yao et al., 2024; Barez et al., 2025). As models grow more
powerful, managing their knowledge—especially poten-
tially harmful or private information—becomes paramount.
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However, evaluating the success of unlearning remains a
significant challenge (Liu et al., 2024). Standard evaluation
protocols typically treat the unlearned model as a black box,
measuring performance changes on specific forget and re-
tain datasets (Shi et al., 2024; Maini et al., 2024; Thaker
et al., 2024). While necessary, this approach provides an in-
complete and potentially misleading picture. It struggles to
measure the robustness of forgetting—unlearning might be
superficial and easily reversed under relearning attacks (Hu
et al., 2024; Farrell et al., 2024; Łucki et al., 2024). It fails to
explain the mechanisms behind catastrophic utility loss on
tasks beyond the retain set, and it offers limited assurance of
safety or privacy beyond the specific examples tested (Barez
et al., 2025; Hayes et al., 2024). A more robust evaluation
paradigm requires methods that probe the internal, structural
changes induced within the model by the unlearning process.

We propose a novel evaluation framework grounded
in Singular Learning Theory (SLT) (Watanabe, 2009),
which provides tools to analyze the geometry of neural
network loss landscapes. Specifically, we employ refined
Local Learning Coefficients (rLLCs) (Wang et al., 2024).
The LLC (Lau et al., 2023), λ(w∗), measures the local
geometric complexity or effective dimensionality near a
parameter point w∗; lower values indicate higher parameter
degeneracy or simpler local geometry. Refined variants
allow focusing this measure on specific parameter subsets
(weight-refined wrLLC) or evaluating complexity relative to
specific data distributions (data-refined drLLC). Our central
hypothesis is that different unlearning algorithms imprint
distinct geometric signatures detectable by layer-specific
drLLCs, and that these signatures correlate with macro-
scopic properties like unlearning effectiveness, selectivity,
and robustness. While complementary to mechanistic
interpretability approaches that trace specific circuits (El-
hage et al., 2022), our geometric lens offers a quantitative
perspective on the structural changes induced by unlearning.

Applying this framework, we analyze Gradient Ascent (GA)
(Jang et al., 2023), Representation Misdirection (RMU)
(Li et al., 2024b), and Negative Preference Optimization
(NPO) (Zhang et al., 2024). We show that these methods
yield distinct layer-wise geometric signatures, particularly
in terms of inter-layer variance and structural persistence.
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For instance, GA tends towards uniform geometric degra-
dation across layers, while RMU exhibits highly selective,
layer-differentiated effects tied to its intervention point. To
validate these findings we leverage the TinyStories dataset
to enable controlled analysis of how geometric signatures
evolve across models of varying scale (1M-28M parame-
ters). This paper makes the following contributions:

1. We establish and apply a framework using refined LLCs
(global and layer-specific drLLCs) to quantitatively eval-
uate and compare the geometric impact of different ma-
chine unlearning algorithms.

2. Our layer-wise rLLC analysis on TinyStories models
empirically reveals distinct geometric signatures for GA,
RMU, and NPO, quantified by inter-layer variance (σ)
and ranking stability (ρ).

3. We show that the geometric view enables precise diagnos-
tics, including accurately identifying the specific layer
targeted by RMU’s intervention.

By connecting macroscopic unlearning outcomes to micro-
scopic geometric changes, this work positions rLLCs as a
powerful tool for advancing the principled evaluation and
understanding of machine unlearning techniques.

2. Background and Related Work
Approximate Unlearning Approximate machine unlearn-
ing seeks efficient methods to modify a target model M to
remove the influence of specific undesired data or concepts
represented by a forget set Dforget, while preserving general
capabilities associated with data Dretain. (Liu et al., 2024;
Barez et al., 2025). The goal is an unlearned model that
behaves as if Dforget was never part of its training data Dpre
(Bourtoule et al., 2021). This work studies three represen-
tative approximate unlearning strategies: Gradient Ascent
(GA) directly optimizes the model parameters by maxi-
mizing the loss function (e.g., negative log-likelihood) on
Dforget, effectively pushing the model away from generating
or recognizing forget content (Jang et al., 2023; Maini et al.,
2024). Representation Misdirection (RMU) intervenes
at specific layers, modifying the hidden representations for
inputs related to Dforget by steering them towards a random
noise vector (Li et al., 2024b; Barez et al., 2025). Nega-
tive Preference Optimization (NPO) leverages preference
learning frameworks, treating examples from Dforget as im-
plicitly rejected completions and optimizing the model to
decrease their likelihood relative to a reference policy, often
the original model M (Zhang et al., 2024). See Appendix A
for additional descriptions of the methods.

Challenges in Unlearning Evaluation Evaluating the
success of approximate unlearning, particularly for large
language models (LLMs), presents significant challenges
(Barez et al., 2025). Current evaluations predominantly rely

on black-box metrics, such as performance changes (loss,
accuracy, perplexity) measured on specific forget and retain
datasets (Shi et al., 2024; Maini et al., 2024). However, this
approach provides limited insight. It often fails to distin-
guish superficial forgetting—where knowledge appears
removed but is easily recoverable via fine-tuning or targeted
relearning attacks (Hu et al., 2024; Łucki et al., 2024; Far-
rell et al., 2024)—from genuine removal. Such evaluations
may also inadequately capture utility degradation (catas-
trophic forgetting) on tasks unrelated to the specified retain
set (Barez et al., 2025). Furthermore, they struggle to assess
the generalization of unlearning beyond the specific forget
examples, verify the prevention of privacy leakage through
mechanisms like membership inference (Shi et al., 2024;
Hayes et al., 2024), or provide assurance given the impracti-
cality of retraining large models as a ground truth (Liu et al.,
2024). These shortcomings necessitate evaluation methods
that can probe the internal structural modifications induced
by unlearning algorithms.

Singular Learning Theory (SLT) and Local Learning
Coefficients SLT offers a mathematical framework for
analyzing neural networks, which are typically singular—
possessing parameter degeneracies where the Fisher infor-
mation matrix is rank-deficient (Watanabe, 2009). Unlike
classical theories assuming model regularity, SLT provides
tools to study the non-Euclidean geometry of the loss land-
scapes inherent to deep learning (Wei et al., 2022). The
learning coefficient λ in SLT measures the complexity of a
model class relative to the true data distribution and appears
in the asymptotic expansion of the Bayesian free energy
(Watanabe, 2009). Its value reflects the geometric struc-
ture of the optimal parameter set W0 = {w | K(w) =
infK(w′)}, where K is the Kullback-Leibler divergence
to the true distribution (Watanabe, 2009; Lau et al., 2023).
Extending this, the Local Learning Coefficient (LLC),
denoted λ(w∗), quantifies the geometric complexity or ef-
fective dimensionality specifically in the vicinity of a pa-
rameter point w∗ (e.g., a local minimum) (Lau et al., 2023).
A smaller λ(w∗) indicates higher degeneracy, implying a
simpler geometry where parameters can vary more widely
without substantially increasing the loss (Lau et al., 2023).
The LLC can be estimated using the local free energy:

λ̂(w∗) = nβ
[
Ew∼π(w|w∗,β,γ)[ℓn(w)]− ℓn(w

∗)
]

(1)

Here, ℓn(w) is the empirical loss over n samples, and
expectation Ew∼π[·] is over localized Gibbs posterior
π(w|w∗, β, γ) ∝ exp(−nβℓn(w)− γ

2 ∥w−w∗∥22), parame-
terized by inverse temperature β and localization strength γ.

Refined Local Learning Coefficients For more targeted
analysis, Wang et al. (2024) introduced refined Local Learn-
ing Coefficients (rLLCs). The weight-refined LLC (wr-
LLC), denoted λ(w∗;V ), measures the geometric complex-
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ity associated with a subset of parameters V ⊆ W , while
keeping parameters U = W \ V fixed at u∗. Formally, if
w = (u, v) with u ∈ U, v ∈ V , the wrLLC is defined via
the volume scaling of {v | ℓ(u∗, v)− ℓ(u∗, v∗) < ϵ} within
a neighborhood of v∗. Additionally, the data-refined LLC
(drLLC), λ(w∗; q′), measures complexity relative to a spe-
cific data distribution q′ (e.g., Dforget or Dretain) by using the
loss ℓ′n(w) calculated on data from q′ in the LLC estimation.
Combining these allows us to probe how different model
components are geometrically affected by unlearning with
respect to different data distributions. See Appendix A for
additional background.

3. Methodology: Geometric Analysis of
Unlearning
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Figure 1: Example online LLC trace during SGLD sampling. The
estimate converges as samples (wt) explore the local posterior
around w∗.

We apply rLLCs to analyze the geometric impact of un-
learning. By measuring the local complexity of different
model components (e.g., layers) with respect to relevant
data distributions (Dforget and Dretain) using layer and data-
refined LLCs, denoted λ(w∗;Layeri, q

′), we probe the in-
ternal structural changes induced by different methods.

3.1. LLC Estimation via SGLD

We estimate the LLC using the local free energy formula-
tion (Eq. 1). The challenge lies in estimating the expecta-
tion term Ew∼π[ℓn(w)] over the localized Gibbs posterior
π(w|w∗, β, γ). We employ Stochastic Gradient Langevin
Dynamics (SGLD) (Welling & Teh, 2011), a scalable
MCMC method suitable for large models. SGLD approxi-
mates sampling from π by iteratively updating parameters
wt based on mini-batch gradients and injected Gaussian
noise:

wt+1 ← wt −
ϵ

2
(nβ∇wℓm(wt) + γ(wt − w∗)) +

√
ϵηt (2)

where ℓm(wt) is the mini-batch loss, ϵ is the step size, γ
controls localization towards the reference point w∗, nβ is
the effective inverse temperature modulating the loss land-
scape’s influence, and ηt ∼ N (0, I) is isotropic Gaussian

noise facilitating exploration. The expectation is then ap-
proximated by averaging the full-batch loss ℓn(wt) over T
samples {wt} collected after an initial burn-in period, often
across multiple independent chains for robustness (Figure 1).
Estimating LLCs, especially refined variants, remains com-
putationally intensive. While SLT justifications for the LLC
estimator are strongest near local minima (Lau et al., 2023),
its empirical application during dynamic phases like training
has proven insightful in prior work (Wang et al., 2024). We
adopt this practical approach, finding that despite estimating
LLCs during the non-equilibrium unlearning process, the
resulting geometric measures reveal consistent and inter-
pretable dynamics. Nonetheless, careful interpretation is
warranted due to potential sensitivity to hyperparameters
and sampling variance in non-equilibrium settings.

3.2. Proposed Geometric Metrics

To translate the high-dimensional geometric information
captured by layer-wise LLCs into interpretable measures
of unlearning effects, we propose three key metrics derived
from the profile of layer-specific drLLCs (λ(w∗;Layeri, q

′)
across layers i = 1..L):

1. Inter-Layer Variance (σq′): Defined as the standard
deviation of the LLC values across a relevant set of layers
(e.g., L1-L7 in our experiments) for a specific data distribu-
tion q′ (q′ = Dforget or q′ = Dretain). A lower σq′ indicates
that unlearning induces a geometrically more uniform state
across layers with respect to q′, while a higher σq′ suggests
greater geometric differentiation among layers.

2. Layer Ranking Stability (ρq′ ): Calculated as the Spear-
man rank correlation between the LLC rankings of layers
(L1-L7) at two different stages (e.g., end of finetuning
vs. end of relearning), measured with respect to data q′.
A higher ρq′ indicates that the relative geometric impor-
tance or contribution of different layers is better preserved
through the unlearning and subsequent processes.

3. Geometric Selectivity Index (log(GSI)): Quantifies the
selectivity of the unlearning process by comparing the
relative change in inter-layer variance between the retain
and forget distributions. Specifically, it measures the log-
ratio of the relative change in retain variance to the relative
change in forget variance between the target model (M)
and the unlearned state (UL):

log(GSI) = log

(
σRetain, UL

σRetain, M

)
− log

(
σForget, UL

σForget, M

)
(3)

where σ denotes the inter-layer variance computed over
a representative subset of layers. A positive log(GSI)
suggests greater geometric selectivity, indicating that the
unlearning process preserves geometric differentiation on
the retain set relatively more than on the forget set.

These metrics aim to provide quantitative insights into the
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uniformity, structural persistence, and selectivity of geomet-
ric changes induced by different unlearning methods.

3.3. Diagnostics: Geometric Fingerprint of RMU

Algorithm 1 Detecting the RMU Injection Block via Largest
Positive Jump

Require: Epoch-averaged layer-wise LLC profile LLC(1:L)
Ensure: Estimated noise injection layer L̂noise.
1: Calculate transitions

∆(i)← LLC(i+1)− LLC(i) (i = 1:L−1).
2: Find index of largest positive jump:

L̂noise ← argmaxi max(0,∆(i)).
3: return L̂noise.

Beyond quantitative evaluation, rLLC analysis can offer
diagnostic capabilities, potentially revealing the internal
mechanisms of specific unlearning methods. We look at
RMU which intervenes locally by modifying activations
hLnoise at a chosen layer Lnoise for forget set inputs x ∈
Dforget, typically by adding a steering vector v: hLnoise(x) 7→
hLnoise(x) + v, for x ∈ Dforget.

Theoretically, such a localized perturbation primarily alters
the function computed by the downstream network layers.
This functional change, in turn, modifies the local geometry
of the loss landscape associated with the downstream param-
eters w>Lnoise . Since the LLC reflects local geometric com-
plexity and effective dimensionality (Watanabe, 2009; Lau
et al., 2023), the RMU intervention is expected to induce a
significant, localized change or discontinuity in the layer-
wise LLC profile specifically around the interface involving
layer Lnoise. This expectation can be formalized under spe-
cific assumptions about the model and the perturbation’s
effect (e.g., linear response approximation, properties of the
loss Hessian or GGN matrix):

Theorem 3.1 (RMU-Induced Geometric Discontinuity - In-
formal). Assuming the RMU intervention sufficiently alters
the local geometric structure downstream from layer Lnoise

(e.g., changing the effective rank of the parameter subspace),
a quantifiable discontinuity in the layer-wise LLC profile is
expected at the interface between layer Lnoise and Lnoise +1,
relative to other layer transitions. (See Appendix B for
formal derivation and assumptions).

This theoretical discontinuity suggests a potential geometric
signature. If it manifests empirically as a consistent, identi-
fiable feature – for example, a distinct positive jump when
LLC(Lnoise + 1)− LLC(Lnoise) is significantly positive —
then it can be used for detection. Based on this principle, we
propose Algorithm 1 to identify the RMU injection site. The
algorithm analyzes the layer-wise LLC profile and locates
the index k⋆ corresponding to the largest positive inter-layer
LLC difference. If our assumptions hold and the charac-
teristic positive jump is a reliable consequence of RMU at

the true injection layer, this algorithm estimates the inter-
vention layer L̂noise = k⋆. This algorithm thus transforms
rLLC analysis into a potential tool for generating an au-
ditable signature, enabling post-hoc identification of the
layer targeted by RMU.

4. Evaluating Unlearning Dynamics with
LLCs on TinyStories

This section employs rLLCs to analyze the geometric dy-
namics of unlearning on small language models. We com-
pare GA, RMU, and NPO to investigate how the observed
geometric dynamics scale with model size.

4.1. Experimental Setup

We utilize Transformer models from TinyStories (El-
dan & Li, 2023), specifically variants with 1M, 8M,
and 28M parameters, all featuring 8 layers but vary-
ing widths. These models are pretrained on the TinyS-
tories dataset. The initial pretrained state for each size
serves as our Base model. For Dretain, we use the
train split of roneneldan/TinyStories for train-
ing and the validation split for testing. For Dforget, we
use andjela-r/mlm-harry-potter for training and
vapit/HarryPotterQA for testing which are widely
used in the literature (Eldan & Russinovich, 2023). Loss val-
ues reported throughout are average negative log-likelihoods.
These models provide a controlled environment to study the
scaling properties of geometric unlearning dynamics, given
their consistent architecture across varying sizes.

We study the dynamics across different phases, using
the following protocol: 1. Finetuning (FT): The Base
model for each size (1M, 8M, 28M) is finetuned on a
50/50 mixture of the Dretain and Dforget training data for 5
epochs (AdamW, LR 1e-5, BS 32), saving checkpoints
FT1 through FT5. 2. Unlearning (UL): Starting from FT5,
we apply GA, NPO, and RMU to all three model sizes for
5 epochs (AdamW, LR 5e-5, BS 16). For RMU, noise
(α = 100, steering coefficient = 100) is injected targeting
the activations of Layer 3 in 1M, Layer 4 in 8M and Layer 5
in 28M. Due to computational limitations, NPO was applied
only to the 1M model for 5 epochs (AdamW, LR 5e-5, BS
16, β = 0.1, using FT5 as reference). 3. Relearning (RL):
To measure knowledge recovery, the unlearned models
are retrained for 5 epochs (AdamW, LR 5e-5, BS 16)
on the same 50/50 mixture of Dretain and Dforget training
data used during FT (Additional details in Appendix C).
The training splits are used during FT, UL, and RL stages,
while evaluations involving test splits use the respective test
datasets. We compute LLCs using the SGLD estimation
procedure (Sec. 3.1), implemented via the devinterp
library (van Wingerden et al., 2024). Key SGLD parameters
were Nchains = 4, Ndraws = 200, ϵ = 10−5, γ = 100, with
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β computed per model state based on the training split size.

4.2. Overall Loss and Global LLC Dynamics

We first analyze the macroscopic effects of unlearning
by examining overall loss trajectories and the dynamics
of global, data-refined LLCs λ(w∗; q′) where q′ is either
Dforget or Dretain.

Dynamics in the 1M Model Figure 2 shows the relative
loss dynamics for the 1M model across the FT, UL, and RL
phases for GA, RMU, and NPO. As expected, the FT phase
reduces loss on both Forget and Retain sets, indicating adap-
tation. In the subsequent UL phase, all methods increase
Forget loss, fulfilling the primary unlearning goal. However,
GA incurs catastrophic utility damage (large loss increase
on Retain), while NPO shows excellent utility preservation
(Retain loss remains low). RMU sits in between, showing
better Retain selectivity than GA but worse than NPO. We
also observe that while RMU achieves low Forget loss on
the training split during UL, its test loss is higher than GA
or NPO, suggesting potential overfitting at this scale. The
RL phase shows the fragility of current unlearning meth-
ods; Forget loss plummets rapidly for all methods upon
re-exposure to the mixed data, indicating that the forgotten
knowledge is easily reacquired.

The corresponding global drLLC dynamics (Figure 3) pro-
vide a geometric interpretation of these phases. FT leads
to a significant increase in global LLC with respect to both
Forget and Retain data, suggesting the model transitions to
parameter regions of lower degeneracy (higher complexity)
adapted to the task. During UL, the geometric complex-
ity associated with the forget data decreases sharply for all
methods, signifying a collapse towards more degenerate
parameter configurations related to the forgotten knowledge.
Reflecting the loss trends, GA shows the largest decrease
in Retain LLC, NPO induces the largest LLC drop on For-
get data, reaching the most degenerate state, while RMU
also shows a substantial drop, greater than GA. The RL
phase mirrors the loss recovery with a sharp restoration of
geometric complexity on the Forget data for all methods,
demonstrating the geometric plasticity of the model and the
superficial nature of the unlearning achieved.

Condition LLC Loss Ratio (LLC/Loss)

GA Forget 0.1442 0.1415 1.02
GA Retain 0.1810 0.1793 1.01
RMU Forget 0.1837 0.1813 1.01
RMU Retain 0.0921 0.0936 0.93

Table 1: Sensitivity Comparison (TinyStories-1M). Avg. deriva-
tive magnitude for normalized LLC vs. Loss. Comparable values
suggest LLC tracks loss dynamics effectively.

Sensitivity Comparison We compare the sensitivity of
LLC and loss as indicators of dynamic changes by exam-
ining the average magnitude of their step-wise derivatives,
normalized to the same scale (Table 1 for GA/RMU). The
results show comparable sensitivity across conditions (Ratio
≈ 1). This finding demonstrates that global LLC, while
derived from a geometric perspective, is similarly respon-
sive to changes during FT, UL, and RL as the standard
loss metric. It can thus serve as an effective alternative for
monitoring the progression of unlearning.

Model Scale Modulates Global Unlearning Geometry
The geometric impact of unlearning, measured by global
drLLC, is significantly modulated by model scale, as shown
for GA and RMU in Figure 4. While all models (1M, 8M,
28M) exhibit analogous drLLC increases during FT, their
responses diverge markedly during UL. GA induces geo-
metric changes highly dependent on model size. The 28M
model undergoes the most profound degeneracy increase
(largest LLC drops), particularly on the Retain set, indicat-
ing severe utility impact geometrically. Counterintuitively,
the 8M model displays remarkable geometric stability under
GA, experiencing minimal drLLC disruption. This suggests
GA’s impact is not monotonic with size, or is sensitive to
hyperparameter choice. RMU shows different scaling dy-
namics. On the Forget set, the 1M model suffers the largest
geometric disruption, while the 8M and 28M models are
less affected; while on the Retain set, both 8M and 28M
models robustly preserve retain-set geometry. This contrasts
sharply with GA and suggests RMU’s localized mechanism
scales more effectively in preserving utility-related geom-
etry. The rapid Forget LLC recovery during RL across
all settings further underscores the challenge of achieving
robust unlearning.

4.3. Layerwise Geometric Analysis via Refined LLCs

While global loss and LLC dynamics (Section 4.2) pro-
vide a macroscopic view, understanding the internal mecha-
nisms and selectivity of unlearning methods requires a finer-
grained geometric perspective. We achieve this by com-
puting weight- and data-refined LLCs on individual Trans-
former layers (V = Layeri) and evaluating complexity rela-
tive to the Forget or Retain data distributions (q′ = Dforget
or Dretain).

Figures 5 and 6 illustrate the evolution of these layer-
specific, data-refined LLCs (λ(w;Layeri, q

′)) for the 1M
and 8M TinyStories models across the FT, UL, and RL
stages (1M NPO and 28M results are in Appendix D, Figs. 9
and 8). As the final layer (L8) consistently shows near-
constant LLC, we focus on layers L1-L7. We compute the σ
across layers L1-L7 averaged over epochs within each stage
(Table 2) and the ρ between FT5 and RL5 (Table 3). We use
the calculated σ values to compute the log(GSI) to measure
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relative selectivity (Table 4).

Finetuning Establishes Adapted Layer Geometry
Adapting the pretrained model (Base → FT5) generally in-
creases layer-refined LLCs across L1-L7 (Figs. 5, 6), reduc-
ing degeneracy. While deeper layers often develop slightly
higher complexity, the inter-layer variance (σ) typically sta-
bilizes or decreases compared to the Base state (Table 2, FT
rows), suggesting layers reach a coordinated geometric state
adapted to the FT data prior to unlearning.

Unlearning Imprints Distinct and Scalable Geometric
Signatures The unlearning phase (FT5 → UL5) shows
sharp contrasts, particularly between GA and RMU. GA
tends to induce a relatively uniform increase in degeneracy
(LLC decrease) across layers for both Forget and Retain
data (Figs. 5, 6). This is reflected in its moderate σ (Ta-
ble 2), suggesting a more homogeneous impact consistent
with its known tendency for degrading utility. In contrast,
RMU exhibits a highly selective signature. On the Forget
set, it forces layers into a highly consistent degenerate state,
significantly minimizing σ compared to GA across scales.

On the Retain set, RMU often increases σ, particularly at
the 1M scale (Table 4). Visual inspection (Fig. 5, right)
shows pre-injection layers (L1-L2) becoming more degen-
erate while post-injection layers (L4-L7) maintain higher
complexity, highlighting RMU’s selective preservation of
utility-related geometry. NPO (1M model, Fig. 9) shows
relatively uniform LLC drops similar to GA, but less severe
on the Retain set, aligning with its better utility preservation
observed globally. Model size amplifies absolute σ values
(Table 2), but the relative geometric differences between
GA and RMU persist, indicating these are fundamental sig-
natures. The log(GSI) metric (Table 4) quantifies RMU’s
superior selectivity at 1M, which surprisingly diminishes
at larger scales where GA shows marginally better relative
selectivity despite its overall impact on utility.

Relearning Shows Partial Recovery and Lasting Struc-
tural Reorganization The relearning phase (UL5 → RL5)
shows incomplete and non-uniform geometric recovery.
Layer LLCs increase but rarely reach FT5 levels (Figs. 5, 6).
Forget set variance σ typically increases as layers recover
unevenly (Table 2). Notably, the unlearning/relearning cycle
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1M 8M 28M
Dataset Stage GA RMU NPO GA RMU GA RMU

Forget Base 1.385* 1.385* 1.385* 1.342* 1.342* 3.087* 3.087*
FT 0.942* 0.942* 0.942* 1.289* 1.289* 3.337* 3.337*
UL 1.021 0.544 1.050 1.997 1.391 3.527 3.357
RL 1.105 0.753 0.638 1.825 0.739 3.621 2.792

Retain Base 1.076* 1.076* 1.076* 1.206* 1.206* 3.194* 3.194*
FT 0.917* 0.917* 0.917* 1.866* 1.866* 2.928* 2.928*
UL 0.790 1.392 0.772 2.012 0.874 2.888 2.735
RL 0.731 1.107 0.531 2.045 0.922 3.070 2.186

Table 2: Inter-Layer Variance (σ). Lower σ implies more uniform layer
geometry. Bold and highlighted cells indicate the method with lower variance
for each comparison (Dataset, Stage, Size). Values marked with * are shared
as they correspond to the Base or FT stages before unlearning methods diverge.
RMU consistently achieves lower Forget σ during UL/RL than GA across scales.
NPO (1M) shows low RL variance.

Model Dataset GA (ρ) RMU (ρ) NPO (ρ)

1M Forget 0.714 0.536 0.857
Retain 0.643 0.571 0.286

8M Forget 0.682 0.495 —
Retain 0.611 0.525 —

28M Forget 0.647 0.482 —
Retain 0.598 0.503 —

Table 3: Layer Ranking Stability (ρ). Higher ρ indi-
cates better preservation of layer importance hierarchy
(FT5 vs RL5). Bold and highlighted cells indicate
higher correlation. GA consistently shows higher sta-
bility than RMU. Stability decreases with model size.
NPO exhibits high Forget but low Retain stability.

1M Model 8M Model 28M Model
Metric GA RMU NPO GA RMU GA RMU

log(GSI) −0.231 0.967 −0.280 -0.363 −0.835 −0.069 -0.074

Table 4: Log Geometric Selectivity Index. Measures relative change in Retain vs. Forget inter-layer variance during unlearning
(log(GSI) > 0 indicates higher selectivity). Bold and highlighted cells indicate the method with higher log(GSI). RMU shows strong
selectivity at 1M, but this diminishes significantly at larger scales, unlike GA/NPO (1M) which show negative selectivity.

permanently alters the relative geometric importance of lay-
ers, as shown by Layer Ranking Stability (ρ, Table 3). GA
consistently maintains higher stability (ρ) than RMU across
scales, suggesting its uniform geometry leads to a state
closer to the original hierarchy post-relearning. However,
stability decreases notably with model size for both meth-
ods, indicating that the layer specializations in larger models
are harder to restore after geometric disruption. NPO (1M)
shows high Forget stability but very low Retain stability,
suggesting it strongly preserves the forget-related hierarchy
while potentially disrupting the retain-related one during the
UL/RL cycle.

In summary, layer-wise rLLC analysis reveals unlearning
as a layer-heterogeneous process. Metrics like σ quantify
selectivity, differentiating RMU’s targeted approach from
GA’s uniform degradation, while ρ measures structural per-
sistence, revealing lasting changes in the model’s internal
functional hierarchy, especially at larger scales.

4.4. RMU Geometric Fingerprint

Beyond comparing aggregate geometric properties, refined
LLC analysis can yield diagnostic insights into specific
unlearning mechanisms. We investigated whether RMU,
characterized by its localized activation intervention at a
layer Lnoise leaves a detectable geometric signature. As
motivated theoretically (Sec. 3.3 and Lemma 3.1), such an
intervention is expected to induce a localized discontinuity

in the layer-wise LLC profile near Lnoise.
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Figure 7: RMU Fingerprint: Positive LLC Jump. Layer dr-
LLCs on Dretain during RL phase for RMU (Lnoise ∈ {3, 4, 5} for
1M, 8M, 28M models). Error bands are std. error over epochs.
A distinct positive jump consistently appears between Lnoise and
Lnoise + 1. Dashed lines mark k⋆ found by Alg. 1, correctly identi-
fying Lnoise for each model.

Our experiments confirm this, revealing a reliable signature
across the 1M, 8M, and 28M TinyStories models, despite
varying the injection layer Lnoise (L3, L4, L5 respectively).
Figure 7 plots the layer-wise drLLCs measured on the retain
dataset during the relearning phase—conditions theoreti-
cally favoring a high signal-to-noise ratio (Appendix B.4).
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A consistent and prominent positive jump in LLC emerges
specifically between the true injection layer Lnoise and the
subsequent layer Lnoise + 1 for each model size. This layer-
specific positive jump validates the detection method pro-
posed in Algorithm 1. When applied to the empirical LLC
profiles from the (relearn, retain) measurements, the algo-
rithm achieved 100% accuracy in identifying the correct
Lnoise ∈ {3, 4, 5} for the corresponding model size across
all runs.

This finding demonstrates that rLLC analysis provides
powerful diagnostic capabilities. The distinct geometric
fingerprint—the positive LLC jump originating from the
injection layer allows the targeted layer of the RMU inter-
vention to be identified post-hoc. This offers an auditable
signature, potentially useful for verifying if RMU was ap-
plied correctly. It also presents a potential vulnerability, as
adversaries aware of this signature could use it to identify
the intervention site and focus subsequent relearning attacks
more effectively.

5. Conclusion and Future Work
This work demonstrated the utility of rLLCs from SLT as
a quantitative tool to analyze the internal geometric impact
of unlearning. Our experiments revealed distinct geometric
signatures for different unlearning methods (GA, RMU,
NPO) on TinyStories models, quantifiable via metrics like
inter-layer variance and layer ranking stability. We also
identified a diagnostic fingerprint for RMU, enabling post-
hoc identification of its intervention layer. These findings
establish rLLCs as a principled approach for evaluating and
comparing unlearning methods. Our analysis was conducted
on models up to 28M parameters. A key challenge is the
computational cost of SGLD-based LLC estimation, which
makes scaling to billion-parameter models difficult. Future
work should explore more efficient estimation techniques
and investigate how these geometric signatures evolve in
much larger models.
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A. Unlearning Method Descriptions
This section provides brief descriptions of the unlearning algorithms applied or discussed in this work.

Gradient Ascent (GA). GA directly maximizes the loss function (e.g., cross-entropy) specifically on the forget dataset
(Dforget) (Maini et al., 2024; Jang et al., 2023). This gradient is used to update model parameters, pushing the model’s
distribution away from the unwanted data. While simple, it often lacks mechanisms to prevent damage to general capabilities,
frequently resulting in utility loss.

Negative Preference Optimization (NPO). NPO reframes unlearning within a preference learning paradigm (Zhang
et al., 2024), adapting the Direct Preference Optimization (Rafailov et al., 2023) objective. It treats examples from Dforget
as implicitly ’rejected’ completions relative to a reference policy (often the original finetuned model). The optimization
encourages lowering the probability of forget examples while maintaining similarity to the reference policy. Implementations
may use KL Divergence Minimization on benign data (Dretain) to further mitigate utility loss.

Representation Misdirection for Unlearning (RMU). RMU injects noise into the hidden representations at specific,
targeted layers during the forward pass only when processing inputs related to the forget set (Li et al., 2024a). This disruption
aims to prevent the model from effectively utilizing information necessary to produce the undesired output, without directly
modifying weights based on forget loss gradients. Effectiveness depends on the choice of layer(s) and noise characteristics.

A. Additional Background on Local Learning Coefficients
This appendix provides further theoretical background on the Local Learning Coefficient (LLC) and its refined variants,
drawing heavily from Singular Learning Theory (SLT) (Watanabe, 2009) and the exposition in Lau et al. (2023).

Complexity Beyond Parameter Count Traditional measures of model complexity, such as parameter count, often fail
to capture the effective complexity of deep neural networks (DNNs) (Lau et al., 2023; Zhang et al., 2016). DNNs exhibit
significant parameter redundancies and degeneracies, making them singular statistical models where the mapping from
parameters to functions is not one-to-one, and the Fisher information matrix may be rank-deficient (Watanabe, 2009; Wei
et al., 2022). SLT provides a framework to analyze such models by studying the geometry of their loss landscapes.

Geometric Intuition: Volume Scaling near Minima A key insight from SLT relates model complexity to the geometry
near minima of the population loss function L(w) = E(x,y)∼q[ℓ(f(x;w), y)], where q is the true data distribution and ℓ
is the per-sample loss. Consider a local minimum w∗. We define a neighborhood B(w∗) as a small closed ball in the
parameter space centered on w∗ where L(w∗) is the minimum loss value (i.e., for all w ∈ B(w∗), L(w) ≥ L(w∗)). Given a
small tolerance ϵ > 0, we then consider the volume of the subset of parameters within this ball whose loss is close to the
minimum:

V (ϵ;w∗) := Vol{w ∈ B(w∗) | L(w)− L(w∗) < ϵ} =

∫
w∈B(w∗),L(w)−L(w∗)<ϵ

dw (4)

For regular models where the loss is locally quadratic (L(w) − L(w∗) ≈ 1
2 (w − w∗)TH(w − w∗)), this volume scales

as V (ϵ;w∗) ∝ ϵd/2, where d is the parameter dimension (Lau et al., 2023). The exponent d/2 reflects the number of free
parameters.

However, for singular models like DNNs, the geometry near w∗ is more complex. SLT shows, via resolution of singularities
(Hironaka, 1964), that the volume scales according to a different law (Watanabe, 2009; Lau et al., 2023):

V (ϵ;w∗) = cϵλ(w
∗)(− log ϵ)m(w∗)−1 + o(ϵλ(w

∗)(− log ϵ)m(w∗)−1) as ϵ → 0+ (5)

where c > 0 is a constant, λ(w∗) is a unique rational number called the Local Learning Coefficient (LLC), and m(w∗) is
a positive integer called the local multiplicity.

LLC Definition and Interpretation The LLC λ(w∗) is formally defined as the leading exponent in the asymptotic volume
scaling law (Eq. 5). When the multiplicity m(w∗) = 1 (a common case), the formula simplifies to V (ϵ;w∗) ∝ ϵλ(w

∗). Thus,
the LLC quantifies how the volume of the low-loss region expands as the tolerance ϵ increases.
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A lower value of λ(w∗) implies that the volume grows more slowly as ϵ increases (since ϵ < 1), meaning there is relatively
more volume concentrated very close to the minimum L(w∗). This corresponds to higher degeneracy: there are more
directions or ways to vary the parameters w near w∗ without significantly increasing the loss L(w). Intuitively, a lower
LLC signifies a flatter or simpler local geometry around w∗. From an information-theoretic perspective, λ(w∗) relates to
the number of bits needed to specify a parameter achieving loss within ϵ of the minimum (Lau et al., 2023). In regular
models, λ(w∗) = d/2, linking back to the parameter count. In singular models, λ(w∗) is typically much smaller than d/2,
reflecting the model’s degeneracy. The LLC is also known as the Real Log Canonical Threshold (RLCT) in algebraic
geometry (Watanabe, 2009).

Estimation via Local Free Energy While the volume scaling definition provides theoretical intuition, practical estimation
relies on the connection between LLC and the local free energy Fn. The free energy, or negative log marginal likelihood, in
Bayesian statistics has an asymptotic expansion related to the (global) learning coefficient. Analogously, the free energy
calculated over a local region Bγ(w

∗) around w∗ (or using a localizing prior) has an asymptotic expansion involving the
LLC (Watanabe, 2009; Lau et al., 2023):

Fn(Bγ(w
∗)) = − log

∫
Bγ(w∗)

exp{−nLn(w)}ϕ(w)dw ≈ nLn(w
∗) + λ(w∗) log n+O(log log n) (6)

where Ln(w) is the empirical loss over n samples and ϕ(w) is a prior. This suggests an idealized estimator by solving for
λ(w∗).

To make this practical, Lau et al. (2023) adapt the Widely Applicable Bayesian Information Criterion (WBIC) approach
(Watanabe, 2013). Instead of integrating over a hard region Bγ(w

∗), they use a soft localization via a Gaussian prior
centered at w∗, ϕγ(w − w∗) ∝ exp(−γ

2 ∥w − w∗∥2), leading to the Gibbs posterior π(w|w∗, β, γ) defined in the main text.
The local free energy associated with this posterior is approximated by the expectation term Ew|w∗,β∗,γ [nLn(w)] with a
specific temperature β∗ = 1/ log n. Substituting this approximation into the rearranged asymptotic form (Eq. 6) yields the
practical LLC estimator used in this work (Eq. 1 in the main text):

λ̂(w∗) = nβ∗ [Ew∼π(w|w∗,β∗,γ)[Ln(w)]− Ln(w
∗)
]

This estimator measures the expected increase in empirical loss under perturbation by samples from the localized Gibbs
posterior, scaled appropriately. A smaller value indicates that perturbations likely under the posterior do not significantly
increase the loss, consistent with higher local degeneracy.

Refined LLCs: Formal Definitions Building on the concept of LLC, refined variants allow targeted analysis (Wang et al.,
2024):

Weight-refined LLC (wrLLC): λ(w∗;V ). Consider a parameter decomposition w = (u, v) where v ∈ V ⊆ W represents
the parameters of interest (e.g., a layer) and u ∈ U = W \ V are the fixed parameters (u = u∗). The wrLLC measures the
complexity associated with V by considering the loss function restricted to this subspace, ℓrestr(v) = ℓ(u∗, v). Formally, it’s
defined via the volume scaling exponent analogous to Eq. 5 but calculated using ℓrestr(v) in a neighborhood of v∗:

λ(w∗;V ) = lim
ϵ→0+

− logVol{v | ℓrestr(v)− ℓrestr(v
∗) < ϵ}

− log ϵ
(7)

The estimator λ̂(w∗;V ) is obtained by modifying the Gibbs posterior in Eq. 1 to sample only v while keeping u = u∗, i.e.,
using p(v; v∗, β, γ) ∝ exp(−nβLn(u

∗, v)− γ
2 ∥v − v∗∥2).

Data-refined LLC (drLLC): λ(w∗; q′). This measures the geometric complexity relative to a potentially different data
distribution q′ (compared to the distribution q underlying the original loss L). Let L′(w) = E(x,y)∼q′ [ℓ(f(x;w), y)] be the
population loss under q′. The drLLC is the scaling exponent defined analogously to Eq. 5 but using L′(w) instead of L(w):

λ(w∗; q′) = lim
ϵ→0+

− logVol{w | L′(w)− L′(w∗) < ϵ}
− log ϵ

(8)

The estimator λ̂(w∗; q′) uses the empirical loss L′
n(w) calculated on samples from q′ within the expectation and the Gibbs

posterior definition in Eq. 1. This allows assessing how the geometry around w∗ appears specifically through the lens of the
data distribution q′.
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These refined LLCs, particularly when combined (e.g., layer-specific drLLCs), provide the foundation for the granular
geometric analysis of unlearning presented in the main paper.

B. Theoretical Basis for RMU Fingerprint (§3.3)
Theorem B.1 (RMU-Induced Geometric Discontinuity). The localized intervention of Representation Misdirection (RMU)
at a specific layer Lnoise induces a quantifiable discontinuity in the layer-wise Local Learning Coefficient (LLC) profile at the
interface between layer Lnoise and Lnoise +1. This signature is empirically detectable, allowing for post-hoc identification of
the intervention layer.

Derivation. This appendix provides theoretical justification for the geometric fingerprint induced by Representation
Misdirection Unlearning (RMU) and the effectiveness of the proposed detection algorithm (Algorithm 1)The derivation
proceeds by analyzing the effect of the intervention on the local geometry of the loss landscape, approximated by the
Generalised Gauss-Newton (GGN) matrix, and then analyzing the consistency of an estimator based on this effect.

We consider a Transformer model f parameterized by weights w ∈ Rdtot , composed of L layer blocks w = (w1, . . . , wL).
The model is trained by minimizing a population loss L(w; q) = E(x,y)∼q[ℓ(f(x;w), y)], where ℓ is a per-token loss
function (e.g., cross-entropy) and q is a data distribution. Near a parameter point w∗, the geometric complexity associated
with a parameter subset V ⊆ Rdtot can be quantified by the weight-refined Real Log Canonical Threshold (RLCT), also
known as the Local Learning Coefficient (LLC) (Watanabe, 2009; Lau et al., 2023):

λ(w∗;V ) = lim
t→0+

− log Vol{v ∈ V : L(w∗ + v; q) ≤ L(w∗; q) + t}
− log t

. (9)

This quantity reflects the effective dimensionality or degeneracy of the loss landscape restricted to the parameters V ; lower
values indicate higher degeneracy.

B.1. GGN Approximation and RMU Perturbation

Let Lnoise ∈ {1, . . . , L} be the specific layer where RMU injects a fixed steering vector v into the activations hLnoise for inputs
x from the forget distribution qfor. We partition the model’s weights accordingly: w = (w≤Lnoise , w>Lnoise), representing
parameters up to and including layer Lnoise, and parameters strictly after layer Lnoise, respectively.

We approximate the local curvature of the loss landscape using the Generalised Gauss–Newton (GGN) matrix (Martens &
Grosse, 2015; Schraudolph, 2002). The GGN matrix block corresponding to the downstream parameters w>Lnoise , computed
with respect to a data distribution q and parameters w, is defined as:

G>Lnoise(q;w) := E(x,y)∼q

[
J>L(x;w)Hℓ

(
f(x;w), y

)
J>L(x;w)

⊤
]
, (10)

where aLnoise(x;w) are the activations output by layer Lnoise (input to the downstream network g>Lnoise ), J>L(x;w) =
∂g>Lnoise/∂w>Lnoise(aLnoise(x;w)), and Hℓ is the Hessian of the per-token loss ℓ with respect to the model’s output logits. For
the standard softmax cross-entropy loss, Hℓ has rank at most 1 (Martens & Grosse, 2015).

Let wul denote the model parameters during the RMU unlearning phase. Define the baseline GGN on the forget distribution
qfor using the standard activations at wul:

Gbase
>Lnoise

:= G>Lnoise(qfor;wul). (11)

Assumption A (Linear Response to Small Shift). During RMU unlearning on qfor, the activations are perturbed:
afor
Lnoise

(x) = aLnoise(x;wul) + v, where ∥v∥2 = α. We assume a linear-response regime where α is sufficiently small
compared to the typical activation norm ∥aLnoise(x;wul)∥2. In this regime, the Jacobian J>L(x;wul) changes negligibly, and
the primary effect on the GGN matrix arises from the change in the expectation in Eq. (10) due to the perturbed activations
afor
Lnoise

influencing the loss Hessian term Hℓ.

Let Gfor
>Lnoise

be the GGN matrix computed on qfor using the perturbed activations afor
Lnoise

(x). Under Assumption A, the
relationship is approximated by:

Gfor
>Lnoise

≈ Gbase
>Lnoise

+R, (12)
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where the perturbation matrix R captures the average effect of the shift v. Since this effect enters through the low-rank (rank
≤ 1) loss Hessian Hℓ, the resulting perturbation R also satisfies rank(R) ≤ 1. The GGN block corresponding to upstream
parameters w≤Lnoise is assumed to be unaffected to first order by this downstream perturbation.

B.2. Impact on Local Learning Coefficients

Singular Learning Theory (Watanabe, 2009) relates the RLCT λ to the local geometry. For loss landscapes locally
approximated by a quadratic form defined by the GGN matrix at a point w∗, the RLCT associated with parameters V is
related to the dimension of the GGN kernel restricted to V : λ(w∗;V ) ≈ 1

2 dimkerG(q;w∗, V ) (cf. Watanabe, 2009, Cor.
6.1.4).

Lemma B.2 (Interface Discontinuity Magnitude). Let ℓ⋆ = Lnoise − 1 be the index of the layer immediately preceding
the noise injection layer. Let λstate(ℓ) denote the layer-wise LLC profile for the baseline (base) or RMU-perturbed (for)
state, evaluated near wul. Under Assumption A, if the RMU perturbation R changes the rank of the downstream GGN block
G>Lnoise by exactly 1, then the magnitude of the discontinuity in the layer-wise LLC profile at the interface ℓ⋆ changes by
approximately 1/2: ∣∣(λfor(ℓ⋆ + 1)− λfor(ℓ⋆))− (λbase(ℓ⋆ + 1)− λbase(ℓ⋆))

∣∣ ≈ 1

2
.

Proof. Let Gbase = Gbase
>Lnoise

and Gfor = Gfor
>Lnoise

. From Eq. (12), Gfor ≈ Gbase + R with rank(R) ≤ 1. Let n>L be the
dimension of the parameter space V>Lnoise . The rank-nullity theorem states n>L = rank(G) + dimkerG. Let δ(·) denote
the change induced by the perturbation R. Then δ(rank(G)) + δ(dimkerG) = 0.

Since rank(R) ≤ 1, the change in rank satisfies |δ(rank(G))| ≤ 1. Consequently, the change in kernel dimension also
satisfies |δ(dimkerG)| ≤ 1. If we assume the perturbation causes the rank to change by exactly 1 (i.e., |δ(rank(G))| = 1),
then the kernel dimension must also change by exactly 1 (i.e., |δ(dimkerG)| = 1).

The LLC for the downstream parameters is λ>Lnoise ≈ 1
2 dimkerG>Lnoise . The change in this LLC is δλ>Lnoise = λfor

>Lnoise
−

λbase
>Lnoise

≈ 1
2δ(dimkerG). If the rank changes by 1, then |δλ>Lnoise | ≈ 1

2 .

We associate the layer-wise LLC λ(ℓ) with the parameters primarily within that layer block. The downstream LLC λ>Lnoise

is most directly associated with λ(ℓ⋆ + 1) (since ℓ⋆ + 1 = Lnoise, the first affected layer). The upstream LLC λ≤Lnoise ,
associated with λ(ℓ⋆), is assumed to be unaffected to first order by the downstream perturbation R, thus λfor(ℓ⋆) ≈ λbase(ℓ⋆).

Let Dstate = λstate(ℓ⋆ + 1)− λstate(ℓ⋆) denote the discontinuity at the interface ℓ⋆ in a given state (base or for). The change
in this discontinuity is:

∆D = Dfor −Dbase

= (λfor(ℓ⋆ + 1)− λfor(ℓ⋆))− (λbase(ℓ⋆ + 1)− λbase(ℓ⋆))

≈ (λbase(ℓ⋆ + 1) + δλ>Lnoise)− λbase(ℓ⋆)− (λbase(ℓ⋆ + 1)− λbase(ℓ⋆))

= δλ>Lnoise .

Therefore, the magnitude of the change in the discontinuity is |∆D| ≈ |δλ>Lnoise | ≈ 1
2 , given the assumption that the

perturbation changes the GGN rank by exactly 1. This confirms that the RMU intervention induces a significant, localized
change in the geometric profile at the interface ℓ⋆.

Empirical Observation and Estimator Target. While Lemma B.2 predicts a magnitude change of ≈ 1/2 at the interface
ℓ⋆ = Lnoise −1, it does not determine the sign. Our empirical results (§3.3, Figure 7) consistently show that this discontinuity
manifests as a positive jump when calculated as ∆(Lnoise) = LLC(Lnoise + 1)− LLC(Lnoise) > 0, under (relearn, retain)
measurement conditions. This suggests that the net effect in our experiments is an increase in degeneracy (lower LLC) for
the injection layer Lnoise relative to the subsequent layer. Algorithm 1 specifically targets this empirically reliable positive
jump, finding the index k⋆ = argmaxi max(0,∆(i)), which correctly identifies k⋆ = Lnoise.

B.3. Consistency of the Positive-Jump Estimator

The algorithm’s success relies on the mean of the targeted positive jump statistic being significantly larger at the true
injection layer index (i = Lnoise) than at other indices.
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Let Λℓt be the empirically estimated LLC for layer ℓ in epoch t of the relearning phase, measured on Dretain. Define the
per-epoch positive jump statistic at index i (representing the jump from layer i to layer i+ 1) as:

Zit = [Λi+1,t − Λi,t]+ = max(0,Λi+1,t − Λi,t). (13)

Let µi = E[Zit] be the true mean positive jump associated with index i. We assume measurements across epochs
t = 1, . . . , T are approximately independent.

Algorithm 1 computes the sample mean positive jump:

J+
i =

1

T

T∑
t=1

Zit. (14)

Let ℓ⋆ = Lnoise be the true index where the mean positive jump is maximized (µℓ⋆ > µi for i ̸= ℓ⋆, based on empirical
findings). Let k⋆ = argmaxi∈{1,...,L−1} J

+
i be the index estimated by the algorithm. Define the minimum mean gap

∆ = µℓ⋆ −maxi ̸=ℓ⋆ µi > 0.

Assumption B (Boundedness/Sub-Gaussianity of Zit). LLC estimates (Λℓt) derived from finite SGLD runs on bounded
data domains are typically bounded random variables, although their variance can be substantial. Differences and positive
parts Zit of bounded variables are also bounded. Bounded random variables are sub-Gaussian. We assume Zit are
sub-Gaussian with a uniform variance proxy σ2

L across indices i and epochs t.

Lemma B.3 (Estimator Consistency). Under Assumption B and assuming independence across epochs t, the probability of
the estimator k⋆ = argmaxi J

+
i failing to identify the true index ℓ⋆ = Lnoise is bounded by:

Pr[k⋆ ̸= ℓ⋆] ≤ 2(L− 2) exp

(
−T∆2

8σ2
L

)
,

for L ≥ 3.

Proof. We bound the probability that the empirical maximum J+
k occurs at an index k ̸= ℓ⋆. The event {k⋆ ̸= ℓ⋆} is the

union of events Bk = {J+
k ≥ J+

ℓ⋆} for all k ̸= ℓ⋆. We use Hoeffding’s inequality for the sample mean J+
i of T independent

sub-Gaussian variables Zit, which states Pr(|J+
i − µi| ≥ ϵ) ≤ 2 exp(−Tϵ2/(2σ2

sub)), where σ2
sub is the sub-Gaussian

variance parameter (here bounded by σ2
L).

Consider a specific k ̸= ℓ⋆. Let ϵ = ∆/2. Note that ϵ ≤ (µℓ⋆ − µk)/2. The event Bk = {J+
k ≥ J+

ℓ⋆} implies that it cannot
be the case that both J+

k < µk + ϵ and J+
ℓ⋆ > µℓ⋆ − ϵ hold simultaneously. Thus, Bk is contained within the union of two

deviation events: {J+
k ≥ µk + ϵ} ∪ {J+

ℓ⋆ ≤ µℓ⋆ − ϵ}. Using the union bound and Hoeffding’s inequality (applying the
one-sided version Pr(J+

i − µi ≥ ϵ) ≤ exp(−Tϵ2/(2σ2
L)) and Pr(J+

i − µi ≤ −ϵ) ≤ exp(−Tϵ2/(2σ2
L))):

Pr(Bk) ≤ Pr(J+
k ≥ µk + ϵ) + Pr(J+

ℓ⋆ ≤ µℓ⋆ − ϵ)

≤ exp(−Tϵ2/(2σ2
L)) + exp(−Tϵ2/(2σ2

L))

= 2 exp(−T (∆/2)2/(2σ2
L)) = 2 exp(−T∆2/(8σ2

L)).

Finally, applying the union bound over all L− 2 possible incorrect indices k ̸= ℓ⋆ (assuming L ≥ 3):

Pr[k⋆ ̸= ℓ⋆] = Pr

 ⋃
k ̸=ℓ⋆

Bk

 ≤
∑
k ̸=ℓ⋆

Pr(Bk) ≤ (L− 2)× 2 exp

(
−T∆2

8σ2
L

)
.

The theoretically predicted local discontinuity (ensuring ∆ exists) combined with the empirically observed sign (ensuring
∆ > 0 for the J+ statistic) supports the estimator’s consistency.
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B.4. Rationale for Measurement Conditions

Measuring LLCs on the (relearn, retain) data split empirically provides the highest signal-to-noise ratio (∆/σL) for detecting
the RMU fingerprint via Algorithm 1. This choice is justified by several factors:

1. Inactive RMU Hook: During the relearning phase, the deterministic noise vector v is not added to activations. This
removes a source of potentially high variance that exists during the unlearning phase (especially when estimating LLCs
on Dforget where the hook is active), leading to more stable SGLD dynamics for LLC estimation.

2. Lower Retain Data Variance: The retain dataset Dretain typically represents knowledge the model preserves well.
Consequently, the loss L(w; qretain) and its derivatives often exhibit lower variance around the current parameter state
w∗ compared to the forget dataset Dforget. Lower loss variance generally translates to lower variance in the LLC
estimates derived from SGLD sampling, as Var[λ̂] ∝ Var[L(w(t))].

3. Persistent Geometric Signature: While relearning aims to restore forgotten knowledge, the geometric modifications
induced by the RMU unlearning process do not vanish instantaneously. The localized discontinuity involving Lnoise
persists for at least the initial epochs of relearning, providing a sufficient window for measurement before the model’s
geometry fully reverts or adapts away from the unlearned state.

These factors combine to minimize the estimator variance proxy σ2
L while preserving the signal ∆, thus enhancing the

reliability of detection according to Lemma B.3.

B.5. Summary

The theoretical framework presented relies on approximating the effect of RMU’s activation perturbation using the GGN
matrix under a linear-response assumption (Assumption A). This framework predicts a localized geometric discontinuity in
the layer-wise LLC profile at the interface involving the noise injection layer Lnoise, with a magnitude change of approximately
1/2 (Lemma B.2). Empirically, this discontinuity consistently manifests as a positive jump LLC(Lnoise+1)−LLC(Lnoise) >
0 under (relearn, retain) measurement conditions. Algorithm 1 leverages this empirical regularity, combined with the
theoretical localization, to accurately detect Lnoise. The choice of measurement conditions maximizes the signal-to-noise
ratio for this detection.

Caveat: The theoretical prediction of the discontinuity’s magnitude (≈ 1/2) relies heavily on the linear-response approx-
imation (Assumption A). This assumption may not hold accurately for the larger steering coefficients (α) often used in
practice to achieve effective unlearning. However, the core theoretical insight—that RMU induces a geometrically localized
change—remains plausible. The success of Algorithm 1 hinges only on correctly identifying the location of the largest
positive jump, not on verifying its exact magnitude. This likely explains the algorithm’s empirical robustness even when the
precise conditions of the linear theory are violated.

C. Hyperparameters for TinyStories Experiments
Model We utilized the roneneldan/TinyStories-1M, roneneldan/TinyStories-8M, and
roneneldan/TinyStories-28Mmodels, which are 1 million, 8 million and 28 million parameter causal
Transformers, accessed via the Hugging Face transformers library. Computations were performed on a CUDA-enabled
A100 GPU, leveraging bfloat16 precision.

Dataset and Preprocessing For each split, we selected a maximum of Ndocs = 50, 000 documents. This number was
chosen to ensure a sufficiently representative data sample while maintaining computational tractability for repeated LLC
estimations across multiple models and stages. Each document underwent tokenization using the model-specific tokenizer.
The tokenizer’s pad token was explicitly set to match its eos token. Tokenized sequences were segmented into
fixed-length chunks of Lchunk = 2048 tokens, a common context window size facilitating consistent processing across
models. Any final chunks shorter than 128 tokens were excluded to avoid potential instability or noise introduced by
very short sequences during loss and LLC calculations. Shorter chunks (length < Lchunk) were right-padded using the
pad token id.
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Data Loading Processed chunks were loaded using a PyTorch DataLoader. Data shuffling was enabled for each epoch.
A custom collation function (collate fn) was implemented to stack the input ids and attention mask tensors
from batch items and transfer the resulting tensors to the target compute device (DEVICE). The DataLoader utilized
Nworkers ≤ 4 parallel worker processes (system permitting) for data fetching.

D. Additional TinyStories Experiments
This section provides supplementary figures for the layerwise LLC analysis conducted on the TinyStories models, comple-
menting the discussion in Section 4.3.

Figure 8 displays the layer-specific data-refined LLC trajectories for the largest TinyStories model tested (28M parameters).
Compared to the smaller models (Figs. 5, 6), we observe a significant increase in the absolute LLC values across most layers
and stages, indicating overall lower geometric degeneracy (higher complexity) at this scale. The differentiation between
layers, particularly during and after finetuning, also appears more pronounced. Despite the increased scale and complexity,
the fundamental geometric signatures distinguishing GA and RMU persist: GA tends to impact layers more uniformly on
both Forget and Retain datasets during unlearning, while RMU maintains a clearer distinction, showing a more pronounced
drop and lower variance on the Forget set compared to the Retain set.
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Figure 8: Layer-specific LLC Trajectories (TinyStories-28M). Layer LLCs on Forget (left) / Retain (right) sets for the 28M model.
Compared to smaller scales (Figs. 5, 6), geometric complexity (LLC values) and inter-layer differentiation increase further. Despite this,
the distinct geometric unlearning signatures for GA and RMU persist.

Figure 9 shows the layer-specific data-refined LLC trajectories for the NPO unlearning method applied to the 1M TinyStories
model. During the unlearning phase (UL), NPO induces a sharp and relatively uniform decrease in LLC across layers L1-L7
with respect to the Forget data (left panel), achieving the most degenerate state observed among the methods (consistent
with global LLC in Fig. 3). With respect to the Retain data (right panel), the LLC decrease during UL is much less
severe compared to GA (Fig. 5), aligning with NPO’s objective of preserving utility via its reference model mechanism.
The relearning phase (RL) shows recovery, but the final layer LLC rankings differ significantly from the finetuned state,
particularly for the Retain data (reflected in the low ρ value for NPO Retain in Table 3).
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Figure 9: Layer-specific LLC Trajectories for NPO (TinyStories-1M). Layer LLCs on Forget (left) and Retain (right) sets through FT,
UL, RL stages for the NPO method. Shows deep, uniform LLC drop on Forget data during UL, but better preservation of Retain geometry
compared to GA.
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