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Abstract
We study geodesically convex (g-convex) prob-
lems that can be written as a difference of Eu-
clidean convex functions. This structure arises
in key applications such as matrix scaling, M-
estimators of scatter matrices, and Brascamp-Lieb
inequalities. In particular, we exploit this struc-
ture to make use of the Convex-Concave Proce-
dure (CCCP), which helps us bypass potentially
expensive Riemannian operations and leads to
very competitive solvers. Importantly, unlike
existing theory for CCCP that ensures conver-
gence to stationary points, we exploit the overall
g-convexity structure and provide iteration com-
plexity results for global optimality. We illus-
trate our results by specializing them to a few
concrete optimization problems that have been
previously studied in the machine learning litera-
ture. We hope our work spurs the study of mixed
Euclidean-Riemannian optimization algorithms.

1. Introduction
We study optimization problems that assume the form

min
x∈M

ϕ(x) = f(x)− h(x), (1.1)

where ϕ : M → R is a geodesically convex (g-convex)
function on a Riemannian manifoldM (within an ambient
Euclidean space), while h is a smooth Euclidean convex
function. Problems with such structure most commonly
arise when the manifold M arises from the interior of a
Euclidean convex cone, such as the nonegative orthant or
the set of semi-definite matrices.

Some problems relevant to machine learning where the
model (1.1) arises: Tyler’s and related M-estimators (Tyler,
1987; Wiesel, 2012; Ollila and Tyler, 2014; Sra and Hos-
seini, 2015; Franks and Moitra, 2020); certain geometric op-
timization problems (Sra and Hosseini, 2015; Bacák, 2014);
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metric learning (Zadeh et al., 2016); robust subspace recov-
ery (Zhang, 2016); matrix barycenters (Sra, 2016a); matrix-
square roots (Sra, 2016b); computation of Brascamp-Lieb
constants (Weber and Sra, 2022a; Sra et al., 2018; Allen-
Zhu et al., 2018; Bennett et al., 2008); certain Wasserstein
bounds on entropy (Courtade et al., 2017); learning Deter-
minantal Point Processes (DPPs) (Mariet and Sra, 2015),
optimistic likelihood estimation (Nguyen et al., 2019).

A powerful tool for solving (1.1) is Riemannian optimiza-
tion (Absil et al., 2009; Boumal, 2020; Boumal et al., 2014).
Under suitable regularity conditions on the objective and
its gradients, both local (Udriste, 1994; da Cruz Neto et al.,
1998; Absil et al., 2009) and global convergence rates for
many Riemannian methods can be attained (Zhang and Sra,
2016; Bento et al., 2017). The corresponding algorithms typ-
ically need Riemannian objects such as exponential maps,
geodesics, and parallel transports (or retractions and vector
transports). But for g-convex problems that with the special
difference of convex (DC) structure (1.1), one may wonder
if simpler, potentially more efficient methods exist?

Our goal is to answer this question, where the idea is
to exploit the DC structure of (1.1) via the well-known
Convex-Concave Procedure (CCCP) of Yuille and Rangara-
jan (2001). This method assumes differentiability of h(x) to
construct a monotonically decreasing sequence {ϕ(xk)}k≥0

of objectives by successively minimizing upper bounds
on ϕ. In general, for nonconvex problems, known CCCP
analyses can ensure only asymptotic convergence (Lanck-
riet and Sriperumbudur, 2009), and at most to stationary
points (Le Thi and Pham Dinh, 2018; Yurtsever and Sra,
2022). But our nonconvex cost function is not arbitrary: it is
geodesically convex. Our aim is therefore to understand the
much stronger result on non-asymptotic convergence rates
to ϵ-global optimality, i.e., to ensure ϕ(x)− inf ϕ ≤ ϵ.

1.1. Main contributions
1. We identify the DC structure (1.1) across several Rie-

mannian optimization problems. Subsequently, we de-
velop global non-asymptotic convergence guarantees
for CCCP (Alg. 1) applied to these problems. To our
knowledge, this work presents the first general class
of nonconvex DC optimization problems (beyond the
Polyak-Łojasiewicz class) for which global iteration
complexity of CCCP could be established.
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2. We illustrate the benefits of using Euclidean CCCP
for several applications, including M-estimators of
scatter matrices, barycenters of positive definite matri-
ces, and computation of the Brascamp-Lieb constant
(which also comes up in “operator scaling / Sinkhorn”
procedures). Importantly, our theory provides non-
asymptotic convergence guarantees, where previously
only asymptotic convergence guarantees were available.
Moreover, our theory offers a transparent analysis for
several existing algorithms that were previously ob-
tained either in an ad hoc manner, or had a much more
involved analysis.

Notably, our theoretical analysis turns out be simple, in
that it does not require any deep tools from Riemannian
geometry and it is largely built on existing Euclidean results.
Our focus in the paper is thus less on the analysis itself,
but more on its far-reaching implications, as well toward
drawing attention to the following key realization:

“Many Riemannian optimization problems can be solved
efficiently via a Euclidean lens.”

Ultimately, we hope this realization paves the way for a
broader study of mixed Riemannian-Euclidean optimiza-
tion. On a more technical note, we remark that while the
Euclidean view bypasses the usual Riemannian tools, and
can thus potentially be computationally more efficient, the
CCCP approach requires an oracle more powerful than a
gradient oracle, which makes it a less general choice. Nev-
ertheless, for several important applications, we show that
such an oracle is actually available. We illustrate the practi-
cality of the resulting methods in numerical experiments.

1.2. Related work

CCCP and DC programming. Riemannian DC problems
have been studied recently, notably in (Almeida et al., 2020;
Souza and Oliveira, 2015; Ferreira et al., 2021). This line of
work studies the difference of geodesically convex functions
as opposed to difference of Euclidean convex functions. We
follow a different approach that generalizes (Mairal, 2015)
to problems of the form 1.1. The methods of (Souza and
Oliveira, 2015; Ferreira et al., 2021) involve solving noncon-
vex subproblems at each iteration, whereas the Euclidean
CCCP approach requires solving convex ones.

Riemannian optimization. Riemannian optimization has
recently seen a surge of interest in machine learning. Gen-
eralizations of classical Euclidean algorithms to the Rie-
mannian setting have been studied for convex (Zhang and
Sra, 2016), nonconvex (Boumal et al., 2019), stochas-
tic (Bonnabel, 2013; Zhang and Sra, 2016; Zhang et al.,
2016) and constrained problems (Weber and Sra, 2022b;
2021), among others. A textbook treatment can be
found in (Absil et al., 2009; Boumal, 2020), whereas the

works (Udriste, 1994; Bacák, 2014; Zhang and Sra, 2016)
focus on the geodesically convex setting. Some recent work
has considered schemes that bypass expensive Riemannian
operations in specific applications (Gao et al., 2019; Ablin
and Peyré, 2022). However, there has been little work on
methods that combine insights from both Euclidean and
Riemannian viewpoints.

Recent connection between CCCP and Frank-Wolfe.
Very recently, Yurtsever and Sra (2022) highlighted a
deep connection between CCCP and the Frank-Wolfe al-
gorithm (Frank and Wolfe, 1956). However, in non-
convex settings (such as 1.1) their results only guaran-
tee non-asymptotic convergence rates to stationary points,
whereas our results ensure convergence to global optimal-
ity (by adding an L-smoothness assumption and exploiting
geodesic convexity).

2. Background and Notation
2.1. Riemannian geometry
A manifoldM is a locally Euclidean space that is equipped
with a differential structure. Its tangent spaces TxM con-
sist of the tangent vectors at points x ∈ M. We focus on
Riemannian manifolds, i.e., smooth manifolds with an inner
product ⟨u, v⟩x defined on TxM for each x ∈M. To map
between a manifold and its tangent space, we define expo-
nential maps Exp : TxM → M, y = Expx(gx) ∈ M,
given with respect to a geodesic γ : [0, 1]×M×M→M,
where γ(0;x, y) = x, γ(1;x, y) = y and γ̇(0;x, y) = gx.
The inverse exponential map Exp−1 :M→ TxM defines
a diffeomorphism from the neighborhood of x ∈ M onto
the neighborhood of 0 ∈ TxM with Exp−1

x (x) = 0. The
inner product structure on TxM defines a norm ∥v∥x :=√
⟨v, v⟩x for v ∈ TxM. We define the geodesic distance

of x, y ∈ M as d(x, y). Finally, we note that to ease ex-
position, we limit our attention to Hadamard manifolds
(complete, connected Riemannian manifolds with globally
nonpositive curvature) as they present the simplest setting
for discussing geodesic convexity.

The goal of this paper is the optimization of functions
ϕ : M → R. If ϕ is differentiable, then its gradi-
ent gradϕ(x) is defined as the vector v ∈ TxM with
Dϕ(x)[v] = ⟨gradϕ(x), v⟩x. We say that ϕ is geodesi-
cally convex (short: g-convex), if for all x, y ∈M

ϕ(y) ≥ ϕ(x) + ⟨gradϕ(y), Exp−1
x (y)⟩x. (2.1)

In the applications considered in this paper,M will be the
manifold of positive definite matrices, i.e.,

M = Pd := {X ∈ Rd×d : X = XT , X ≻ 0} , (2.2)

i.e., the set of all real symmetric matrices with only positive
eigenvalues. We can define a Riemannian structure on Pd
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with respect to the inner product

⟨A, B⟩X = tr
(
X−1AX−1B

)
X ∈ Pd,

A,B ∈ TX(Pd) = Sd ,

where Sd denotes the space of symmetric matrices.

Throughout the paper, ∥·∥2 will denote the Euclidean norm.
Remark 2.1. Observe that we did not define the usual
Lipschitz continuity of Riemannian gradients, as we will not
be using it. Instead, we will blend the Riemannian view with
the Euclidean, and will require Euclidean L-smoothness,
which for a C1 function h(·) is defined as:

∥∇h(x)−∇h(y)∥2 ≤ L∥x− y∥2.

Note that here,∇h(·) denotes the Euclidean gradient.

2.2. Difference of convex functions

Our goal is efficiently minimize g-convex functions that are
difference of (Euclidean) convex (short: DC) functions. The
original motivation for this paper arose from objectives ϕ(·)
that can be written as f(·)− h(·) of the form

−
n∑

j=1

log det(Xj)︸ ︷︷ ︸
f(X1,...,Xn)

−
[
− log det

( n∑
j=1

A∗
jXjAj

)]
︸ ︷︷ ︸

h(X1,...,Xn)

, (2.3)

− log det(X)︸ ︷︷ ︸
f(X)

−
[∑

j
− log det(A∗

jXAj)
]

︸ ︷︷ ︸
h(X)

. (2.4)

As shown in (Sra et al., 2018), objectives (2.3) and (2.4) are
g-convex. Since log det(X) is Euclidean concave, it is clear
that (2.3) and (2.4) are DC programs of the form (1.1). We
will revisit problem (2.4) later in Section 4.4.

3. CCCP with global iteration complexity via
g-convexity

We propose a Euclidean CCCP method for solving g-convex
DC problems. Our proposed method (Alg. 1) utilizes in-
sights on the structure of problem 1.1 from both Euclidean
and Riemannian viewpoints. Importantly, we exploit the
g-convexity of the DC objective to obtain a non-asymptotic
iteration complexity, i.e., a non-asymptotic convergence rate
to the global optimum, while exploiting Euclidean Lipschitz-
smoothness to control CCCP iterates. This approach is in
contrast to the standard CCCP approach that typically only
guarantees asymptotic convergence.

The analysis in this section relies on the following manifold-
dependent assumption on the relation between Euclidean
and geodesic distances:
Assumption 3.1. Let x, y ∈ M. We have ∥x − y∥2 ≤
αM(d(x, y)), where αM is a bounded and positive function
that depends on the geometry ofM only.

We note below a crucial point, namely that Assumption 3.1
is fulfilled for important instances of Problem 1.1. Indeed,
if M is an embedded submanifold (e.g., the unit sphere
or the hyperboloid), Assumption 3.1 holds with αM being
the identity. IfM = Pd (which includes all applications
discussed in §4), we can show the following useful bound:

Lemma 3.2. Let X,Y ∈ Pd. Then,

∥X − Y ∥2F ≤
√
2
ed(X,Y ) − 1

ed(Y,Y )
max{∥X∥F, ∥Y ∥F} .

We defer the proof of Lemma 3.2 to the appendix.

3.1. Algorithm: Euclidean CCCP

Algorithm 1 Euclidean CCCP for Riemannian DC
1: Input: x0 ∈M, K
2: for k = 0, 1, . . . ,K − 1 do
3: LetQ(x, xk) = f(x)−h(xk)−⟨∇h(xk), x− xk⟩.
4: xk+1 ← argminx∈MQ(x, xk).
5: end for
6: Output: xK

Recall from (1.1) that we have ϕ(x) = f(x)− h(x). Since
−h(x) is concave, we can upper bound it as

−h(x) ≤ −h(y)− ⟨∇h(y), x− y⟩. (3.1)

We build on the classical CCCP method and use gradients to
linearize the concave part −h(x) of the objective. Observe
that only smoothness of h is required, and f can be non-
smooth. CCCP utilizes the bound (3.1) in its update rule. In
each iteration it seeks to minimize the upper bound

ϕ(x) ≤ Q(x, y) := f(x)− h(y)− ⟨∇h(y), x− y⟩.

Since we must ensure that x ∈ M, the CCCP update step
(CCCP oracle) in our case is

xk+1 ← argmin
x∈M

Q(x, xk), k = 0, 1, . . . . (3.2)

The resulting algorithm is described schematically in Alg. 1.

3.2. Convergence analysis

The convergence of Algorithm 1 can be established via an
easy adaptation of the Euclidean MISO algorithm (convex
case) (Mairal, 2015, Prop. 2.7) to g-convex Riemannian
DC problems. Our non-asymptotic convergence analysis
requires us to place some regularity assumptions on the
gradient ∇h(x), which we discuss below.

We first recall the notion of first-order surrogates and recall
some of their basic properties (Mairal, 2015).
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Definition 3.3 (First-order surrogate functions). Let ψ :
M→ R. We say that ψ is a first-order surrogate of ϕ near
x ∈M, if

1. ψ(z) ≥ ϕ(z) for all minimizers z of ψ;

2. the approximation error θ(z) := ψ(z) − ϕ(z) is L-
smooth, θ(x) = 0 and ∇θ(x) = 0.

Lemma 3.4. Let ψ be a first-order surrogate of ϕ near
x ∈M. Let further θ(z) := ψ(z)− ϕ(z) be L-smooth and
z′ ∈M a minimizer of ψ. Then:

1. |θ(z)| ≤ L
2 ∥x− z∥

2;

2. ϕ(z′) ≤ ϕ(z) + L
2 ∥x− z∥

2.

The proof of this lemma is straightforward. For complete-
ness, we provide a proof in the appendix. We can now state
our main convergence results:

Theorem 3.5. Let d(x0, x∗) ≤ R for some x0 ∈ M with
ϕ(x) ≤ ϕ(x0). If the functions Q(x, xk) in Alg. 1 are first-
order surrogate functions, then

ϕ(xk)− ϕ(x∗) ≤
2Lα2

M(R)

k + 2
∀k ≥ 1. (3.3)

Remark 3.6. Theorem 3.5 and the variants discussed below
are subject to a bounded set assumptions. Such conditions
also permit non-trivial (i.e., non-constant) g-convex func-
tions on both non-compact and compact manifolds. En-
suring that iterates remain within this set is guaranteed,
provided that the condition holds for the initial level set
since CCCP is a descent method.

To prove this theorem, we first derive a condition under
which the CCCP oracle is defined via first-order surrogates:

Lemma 3.7. The function Q(x, xk) as defined in Alg. 1 is
a first-order surrogate of ϕ near xk, if h is L-smooth.

Proof. We have to show that Q(x, xk) fulfills all conditions
in Definition 3.3. Note that, by construction, condition (1)
is fulfilled, i.e., Q(x, xk) ≥ ϕ(x) for all x and hence also
for all minimizers. Let

θ(x) := Q(x, xk)− ϕ(x)
= h(x)− h(xk)− ⟨∇h(xk), x− xk⟩ .

We see that this term is L-smooth whenever h is L-smooth.
Moreover, θ(xk) = 0, and ∇θ(xk) = 0.

We can now prove Theorem 3.5:

Proof. Using the assumption that Q(x, xk) is a first-order
surrogate of ϕ at xk, Lemma 3.7 together with Lemma 3.4(2)
implies

ϕ(xk) ≤ min
x∈M

[
ϕ(x) + L

2 ∥x− xk−1∥2
]

≤ min
x∈M

[
ϕ(x) + L

2 α
2
M(d(x, xk−1))

]
,

where the second inequality follows from Assumption 3.1.
We now follow Nesterov’s classical proof technique (Nes-
terov, 2013) to see that

ϕ(xk) ≤ min
s∈[0,1]

[
ϕ(γ(s;xk−1, x

∗)) + Ls2

2 α2
M(d(x∗, xk−1))

]
≤ min

s∈[0,1]

[
sϕ(x∗) + (1− s)ϕ(xk−1) +

Ls2

2 α2
M(R)

]
,

where we have replaced the minimization over x ∈M with
minimization over the geodesic γ(s;xk−1, x

∗) and inserted
the bound d(x∗, xk−1) ≤ R. Since ϕ(xk) is a monoton-
ically decreasing sequence, we can invoke the bounded
level-set assumption (ϕ(x) ≤ ϕ(x0) ∀x ∈M) to obtain

ϕ(xk)− ϕ(x∗) ≤ min
s∈[0,1]

[(1− s)(ϕ(xk−1)− ϕ(x∗))

(3.4)

+ 1
2Lα

2
M(R)s2

]
.

Let ∆k := ϕ(xk)− ϕ(x∗).

We introduce the shorthand ∆k := ϕ(xk) − ϕ(x∗), with
which we have

∆k ≤ min
s∈[0,1]

[
(1− s)∆k−1 +

1
2Lα

2
M(R)s2

]
.

We want to find s, such that the right hand side is mini-
mized, which is equivalent to minimizing over the geodesic
γ(s;xk−1, x

∗). We now distinguish between two cases re-
garding the value of ∆k−1 relative to the term Lα2

M(R):

1. If ∆k−1 ≥ Lα2
M(R), then the minimum is attained on

the boundary, i.e., s∗ = 1, whereby we immediately
have ∆k ≤ 1

2Lα
2
M(R).

2. Otherwise, assume ∆k−1 ≤ Lα2
M(R). Then Eq. 3.4

implies that the sequence (∆k)k is monotonically de-
creasing; the minimum is attained at s∗ = ∆k−1

Lα2
M(R)

,

which implies ∆k ≤ ∆k−1

(
1− ∆k−1

2Lα2
M(R)

)
or equiv-

alently

∆−1
k ≥ ∆−1

k−1

(
1− ∆k−1

2Lα2
M(R)

)
≥ ∆−1

k−1 +
1

2Lα2
M(R)

.

Here, the second inequality follows from (1− x)−1 ≥
1 + x ∀x ∈ (0, 1).

Now iteratively apply the two inequalities to conclude.
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3.3. Implementing the CCCP oracle

The complexity of Alg. 1 relies crucially on the complexity
of the CCCP oracle. In the following section, we discuss
several instances where the CCCP oracle has a closed form
solution, resulting in a competitive algorithm.

Remark 3.8. Note that if the CCCP oracle can be solved in
closed form for a specific objective ϕ, then Alg. 1 is metric
independent. In this context, it is interesting to consider
under which metric, for which ϕ is g-convex, the constant
αM in Thm. 3.5 is smallest.

However, in general, a closed-form solution may not always
be available. In this section, we discuss several instances
of this setting. First, we investigate an inexact variant of
Alg. 1, where we solve the CCCP oracle only approximately.
Secondly, we investigate a CCCP approach that exploits
finite-sum structure (Alg. 2), which we encounter in many
problems of the form 1.1.

We remark that while we require h to be smooth and Eu-
clidean convex, we have imposed no such constraint on f .
In particular, both Lem. 3.7 and Thm. 3.5 hold, if f is non-
differentiable. This widens the range of problems that can
be analyzed with our CCCP framework.

3.3.1. INEXACT CCCP ORACLE

In general, we may only be able to solve the CCCP oracle
approximately. Therefore, we complement our analysis of
Alg. 1 with the study of an inexact variant. We assume that
in iteration k, we perform an inexact CCCP update, i.e., we
compute an ϵ-approximate minimum Q̃k, such that

Q̃k ≤ min
x∈M

Q(x, xk) +
1

2
Lα2

M(R)s2kϵ , (3.5)

where sk again denotes the step size defined in the proof
of Thm. 3.5. A simple adaption of our convergence proof
above gives the following non-asymptotic guarantee:

Theorem 3.9. Let d(x0, x∗) ≤ R for some x0 ∈ M with
ϕ(x) ≤ ϕ(x0) and let Q(x, xk) be first-order surrogate
functions. Let

(
Q̃k

)
k≥0

be a sequence of ϵ-approximate
CCCP updates in the sense of Eq. 3.5. Then

ϕ(xk)− ϕ(x∗) ≤
2Lα2

M(R)(1 + ϵ)

k + 2
∀ k ≥ 1. (3.6)

The proof is a simple adaption of the proof of Thm. 3.5 and
can be found in the appendix.

Remark 3.10. We note that the convergence analysis in this
section provides an iteration complexity, i.e., a complexity
guarantee in the sense of a bound on the number of iterations
required to achieve an ϵ-approximate solution to the original
problem. A more refined convergence analysis would also
include the impact of the “degree of inexactness” of the

CCCP oracle, because in general, one might not be able to
implement the oracle exactly (although for the applications
presented in this paper, the oracle is indeed exact).

3.3.2. EXPLOITING FINITE-SUM STRUCTURE

In applications, we frequently encounter instaces of (1.1),
where h has a finite-sum structure h(x) := 1

m

∑m
i=1 hi(x),

where the hi are L-smooth. Notice that in this case, comput-
ing the CCCP step requires m gradient evaluations, which
may be expensive, if m is large. Instead of recomputing the
full surrogate as in Alg. 1, we could make only incremental
updates to the surrogate in each iteration. We outline an in-
cremental update scheme in Alg. 2, which requires only one,
instead of m gradient evaluations, significantly reducing the
complexity of the CCCP oracle.

We note that several of the applications presented in sec-
tion 4 have a finite-sum structure. However, in those cases,
the CCCP oracle can actually be solved in closed-form,
resulting in a very competitive implementation of Alg. 1.

For the convergence analysis we again follow closely the
analysis of the MISO algorithm (Mairal, 2015, Prop. 3.1).
We show the following result:

Theorem 3.11. Let d(x0, x∗) ≤ R for some x0 ∈M with
ϕ(x) ≤ ϕ(x0). Assume that gkik as defined in Alg. 2 is a first-
order surrogate of hik near xk−1. Then Alg. 2 converges
almost surely.

We defer the proof details to the appendix.

Remark 3.12. An additional speed up in Alg. 2 can be
achieved by applying the SPIDER technique (Fang et al.,
2018; Nguyen et al., 2017) to the variance-reduced approx-
imation of the gradient. Here, the batch size decreases in
later epochs, reducing the cost of the gradient oracle.

4. Applications
In this section we present several applications that possess
the DC structure (1.1). All our examples are drawn from the
manifold of positive definite matrices, since a large number
of practical matrix estimation problems are known in this
setting (Wiesel, 2012; Sra and Hosseini, 2015), and it serves
to best illustrate the practical aspects.

Importantly, for the applications presented here, our frame-
work provides for the CCCP approach (Alg. 1) either (1)
the first non-asymptotic guarantees on suboptimality (for
barycenters of SPD matrices via S-divergence, sec. 4.3) or
(2) a simple and competitive algorithm and analysis (e.g.,
Brascamp-Lieb constants, sec. 4.4). We summarize pre-
vious convergence results in Tab. 1. Moreover,s ince the
CCCP oracle (line 4, Alg. 1) is solvable in closed-form, it
renders our approach into a practical method attractive for
downstream applications.

5



Global optimality for Euclidean CCCP under Riemannian convexity

Algorithm 2 Incremental CCCP for Riemannian DC with finite-sum structure
1: Input: x0 ∈M, K
2: Set g0(x) := 1

m

∑m
i=1 hi(x0)− ⟨∇hi(x0), x− x0⟩.

3: for k = 1, . . . ,K do
4: Choose ik ∼ [m] randomly.
5: Set gkik(x) := hik(xk)− ⟨∇hik(xk), x− xk⟩ and gki ≜ gk−1

i for i ̸= ik.
6: Set Q(x, xk) := f(x)− gk(x).
7: xk+1 ← argminx∈MQ(x, xk).
8: end for
9: Output: xK

Problem Asymp Non-asymp

Matrix scaling ✓ ✓∗
Tyler’s M-estimator ✓ ✓∗
PD Matrix square root ✓ ✗
PD Barycenter ✓ ✗
Brascamp-Lieb ✓ ✓∗
DPP ✓ ✗

Table 1. Summary of existing convergence guarantees for CCCP
algorithms for Riemannian DC problems. (∗ denotes a simplified
analysis with our approach.)

4.1. Matrix scaling

This application is purely expository, but we include it as
a likely more familiar problem. For diagonal positive def-
inite matrices, g-convexity reduces to ordinary convexity
after a global change of variables as in geometric program-
ming (Boyd et al., 2007). A canonical problem here is
matrix scaling, for which perhaps the best known method
is the classical Sinkorn algorithm (Sinkhorn and Knopp,
1967), though the problem has witnessed considerable re-
cent progress too (Allen-Zhu et al., 2017; Cohen et al., 2017;
Altschuler et al., 2017). We comment only on the most basic
version of the problem; see (Yuille and Rangarajan, 2003)
for more details.

We are given an n × n positive matrix M for which we
seek to compute diagonal scaling matrices D and E such
that DME is doubly stochastic, i.e., its rows and columns
sum to 1. Sinkhorn’s algorithm is known to be obtained by
applying CCCP to minimize the cost function

min
x>0

ϕ(x) := −
∑

j
log xj +

∑
i
log

(∑
j
xjMij

)
.

(4.1)
Here, {xj} are the diagonal elements of E, while the diag-
onal elements of D are 1/{

∑
j xjMij}. Observe that ϕ(x)

given by (4.1) is actually g-convex,1 and thus this problem is

1This observation follows immediately from the g-convexity
of the BL problem (2.3), of which problem (4.1) is known to be a
special case.

indeed of the form (1.1). Further, it can be verified that the
h(x) part of (4.1) satisfies the L-smoothness assumption,
since the logarithm is L-smooth on a domain with a positive
uniform lower bound.

4.2. M-estimators for scatter matrices

Estimating the shape of a covariance matrix for high-
dimensional data is an important problem in statistics. One
important class of covariance estimators, based on ellipti-
cally contoured distributions, is Tyler’s M-estimator (Ollila
and Tyler, 2014). There are several important asymptotic
properties of this estimator, and it has been extensively stud-
ied; for additional details and discussion we refer the reader
to the papers (Franks and Moitra, 2020; Sra and Hosseini,
2015; Wiesel, 2012; Wiesel et al., 2015; Ollila and Tyler,
2014; Zhang, 2016; Tyler, 1987). The best known algo-
rithms for computing Tyler’s M-estimator arise from care-
fully constructed fixed-point iterations. The convergence
analysis of those fixed-point iterations utilize the Hilbert
projective metrics, in a manner analogous to Birkhoff’s use
of the Hilbert projective metric for the convergence analy-
sis of problems closely related to matrix scaling (Birkhoff,
1957). Following our discussion above, Algorithm 1 deliv-
ers a transparent method for obtaining Tyler’s estimator by
solving (4.2), at least in the cases where g-convexity applies;
see also (Sra and Hosseini, 2015) for additional discussion.

The resulting optimization problem involves obtaining a
scatter matrix by maximizing a likelihood of the form

L(X,A) := −n
2
log det(X) +

∑
i
log f(aTi X

−1ai),

(4.2)
where f is a so-called “distance generating function”. The
likelihood (4.2) generalizes the usual multivariate Gaussian
to the much larger class of Elliptically contoured distribu-
tions. Assuming that log f is concave and monotonic, it
is easily seen that (4.2) can be equivalently written as a
g-convex minimization problem (after reversing signs) of
the form (1.1). Empirically, the much faster run times ob-
tained via CCCP (which yields a fixed-point iteration for
solving (4.2)) has been explicitly highlighted in (Sra and
Hosseini, 2015; Hosseini et al., 2016). Notably, (4.2) has a
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finite-sum structure, which we can exploit by using Alg. 2
to compute the M-estimator with a faster gradient oracle.

4.3. Matrix square root and barycenter of PD matrices

The S-Divergence (Sra, 2016a) between two positive definite
matrices X,Y is defined as

δs(X,Y ) := log det
(

(X+Y )
2

)
− 1

2 log det(XY ). (4.3)

Matrix square root. Suppose M is a positive definite
matrix. In (Jain et al., 2017) the authors proposed a gradient
descent based method to compute the square root of M . A
faster algorithm was obtained in (Sra, 2016b) who proposed
the following iteration

X ← (X + I)−1 + (X +M)−1,

which was obtained as a certain fixed-point iteration to com-
pute the barycenter

min
X≻0

δ2s(X, I) + δ2s(X,M). (4.4)

More generally, in (Sra, 2016a) the barycenter version of
(4.4) is studied. Here, given n positive definite matrices
A1, . . . , An, one seeks to solve

min
X≻0

n∑
i=1

wiδ
2
s(X,Ai). (4.5)

Using the defintion (4.3) of δs, it is immediate that (4.5) is a
difference of Euclidean convex functions; its g-convexity is
more involved but follows from (Sra, 2016a). By applying
our CCCP Algorithm, one immediately recovers a proof of
convergence for the fixed-point iteration proposed in (Sra,
2016a) for solving (4.5).

4.4. Brascamp-Lieb Constant

Now we come to what is perhaps the most interesting ap-
plication of the problem structure (1.1). Indeed, as previ-
ously, this application is the one that motivated us to de-
velop the method studied in this paper. Specifically, we
study Brascamp-Lieb (short: BL) inequalities that form a
central class of inequalities in functional analysis and prob-
ability theory, offering a great generalization to the basic
Hölder inequality, and being intimately related with entropy
inequalities too. As a special instance of the Operator Scal-
ing problem (Garg et al., 2017), they relate to a range of
problems in various areas of mathematics and theoretical
computer science (Bennett et al., 2008).

The computation of BL constants can be formulated as an
optimization task on Pd:

F (X) = − log det(X) +
∑

i
wi log det(Φi(X)), (4.6)

where Φi(X) = A∗
iXAi, and wi ≥ 0 with wT 1 = 1.

Notably, the objective is g-convex (Sra et al., 2018), which
allows for applying Algorithm 1 with global convergence
guarantees. Since log det(Φ(X)) is a concave function of
X , it can be upper bounded as

log det(Φi(X)) ≤ log det(Φ(Z)) + tr(Z−1Φi(X)− Z).
(4.7)

Using (4.7) we thus have the following upper bound

F (X) ≤ − log det(X) + log det(Z)

+
∑

i
wi tr(Z

−1Φi(X))− d

=: g(X,Z).

The CCCP update step is

Xk+1 ← argmin
X>0

g(X,Xk), (4.8)

which results in iteration of the map

Xk+1 =
[∑

i
wiAi(A

∗
iXkAi)

−1A∗
i

]−1

. (4.9)

Our analysis delivers non-asymptotic guarantees for com-
puting BL constants, a result that was obtained by analyzing
a more involved operator Sinkhorn iteration in (Garg et al.,
2017), as well as, more recently in (Weber and Sra, 2022a)
with more involved tools from Finslerian geometry.

4.5. Determinantal Point Processes

Discrete Determinantal Point Processes are often charac-
terized by a positive semidefinite matrix, the DPP kernel.
Consider the problem of fitting a DPP kernel L to observa-
tions (Y1, . . . , Yn) ⊆ Y (Gillenwater et al., 2014):

max
L⪰0

n∑
i=1

log det(LYi)− n log det(I + L), (4.10)

where for each i, LYi = U∗
i LUi for a suitable partial isome-

try Ui. Notice that (4.10) is g-convex; remarkably, exploit-
ing this g-convexity was already stated as an open problem
in (Mariet and Sra, 2015), who presented a fast fixed-point
iteration toward solving (4.10). Assuming that L ≻ 0, any
critical point of (4.10) is a solution to the matrix equation

n∑
i=1

Ui(U
∗
i LUi)

−1U∗
i − n(I + L)−1 = 0 . (4.11)

To solve (4.11) Mariet and Sra (2015) propose the following
fixed-point iteration:

Lk+1 ←
1

n

n∑
i=1

Ui(U
∗
i LkUi)

−1U∗
i − (I + Lk)

−1 + L−1
k ,

whose validity they justify by appealing to the CCCP frame-
work. But the convergence analysis in (Mariet and Sra,
2015) is limited to local guarantees, whereas our CCCP
framework provides global, non-asymptotic guarantees.

7
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Figure 1. Performance of CCCP approach in comparison with Riemannian Steppest Descent (Riem-SD), Riemannian LBFGS (Riem-
LBFGS), Riemannian Trustregions (Riem-TR) and Riemannian Conjugate Gradient (Riem-CG) for computing matrix square roots with
inputs of dimension d.

Figure 2. Performance of CCCP approach in comparison with Riemannian Steppest Descent (Riem-SD), Riemannian LBFGS (Riem-
LBFGS), Riemannian Trustregions (Riem-TR) and Riemannian Conjugate Gradient (Riem-CG) for computing Brascamp-Lieb constants
for n input matrices of size d× k. Here, the loss function is the value of the objective 4.6, i.e., the value attained by the BL constant.

4.6. Experiments

To demonstrate the efficiency of our proposed approach,
we complement our discussion with experimental results
for two of the applications discussed above. We show
that CCCP performs competitively against several popu-
lar Riemannian Optimization methods for the problem of
computing matrix square roots (Fig. 1) and for computing
Brascamp-Lieb constants (Fig. 2). In both experiments we
compare against the Manopt (Boumal et al., 2014) imple-
mentation of the algorithms for inputs of different sizes. We
do note, however, that this advantage in running time is
more pronounced for larger problems, as expected.

5. Conclusion
We consider geodesically convex optimization problems
that admit a Euclidean difference of convex (DC) decom-
position. We analyzed the global iteration complexity of
Euclidean CCCP applied to solving such problems, where
geodesic convexity played an important role to help bound
function suboptimality, while Euclidean smoothness (of
one of the DC components) helped control the progress of
CCCP. While simple, this work captures a sufficiently valu-

able class of nonconvex optimization problems for which
CCCP can be shown to converge globally. We illustrate our
ideas on several important applications where such a DC
structure arises, and for which CCCP either delivers a new
convergent algorithm, or helps us explain the convergence
of an existing algorithm.

An important question in this context is whether there exist
an efficiently computable DC representation for any geodesi-
cally convex cost function? Since M is a manifold, it is
an open set. Hence, nonconvex nonsmooth functions that
satisfy bounded-variation admit a DC representation; more-
over, in case ϕ ∈ C2 (i.e., twice continuously differen-
tiable), there always is a DC representation, regardless of g-
convexity (Konno et al., 1997). The key challenge is whether
one can efficiently find such a representation. This problem
seems to be of considerable difficulty. In Appendix 1.1 we
give an example of how the well-known Riemannian dis-
tance function dR(X,Y ) = ∥ log(X−1/2Y X−1/2)∥F on
the positive definite matrices admits such a DC represen-
tation, albeit one that seems quite intricate as it involves
integrating over infinitely many functions.

We hope that our work spurs not only an investigation of
the fundamental question raised above, but of better algo-
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rithms and complexity analysis for CCCP and other related
procedures when applied to the class of g-convex functions
studied in this paper. We believe that it should be possible
to drop the dependence on the gradient Lipschitzness L in
the CCCP method studied in this work, but expect that a
completely different approach will be needed to analyze
the method. Finally, in the same vein, it will be valuable
to extend our study to non-differentiable g-convex func-
tions that enjoy a Euclidean DC representation. We leave
investigation of these important problems to the future.
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A. DC representation of Riemannian distance on Pd

We will need the following useful integral representation of the squared logarithm:
Lemma A.1. Let x > 0. Then, the following representation holds

(log x)2 =

∫ ∞

0

[log(1 + tx) + log(t+ x)− log x− 2 log(1 + t)]
dt

t
. (A.1)

Proof. This is easily verified using, e.g., Mathematica. However, for a more general theory of such integrals we refer the
interested reader to (Šilhavý, 2015).

We are now ready to state our result on the DC representation of Riemannian distance.
Theorem A.2. Let X,Y ∈ Pd and let dR(X,Y ) = ∥ log(X−1/2Y X−1/2)∥F be the Riemannian distance between them.
Then, d2R(X,Y ) is g-convex jointly in (X,Y ) and it admits a DC representation

d2R(X,Y ) =

∫ ∞

0

[ft(X,Y )− ht(X,Y )]dµ(t), (A.2)

where ft and ht are convex, and µ is a suitable measure.

Proof. It is well-known that dR is jointly g-convex—see e.g., (Bhatia, 2009, Ch.6) for a proof. Consequently, d2R is also
g-convex. In deriving our proof of the DC representation of d2R, we will also obtain an alternative (and to our knowledge, a
new) proof of this joint g-convexity as a byproduct.

Begin with observing that d2R(X,Y ) = ∥ log(X−1/2Y X−1/2)∥F =
∑

i(log λi(X
−1Y ))2. For brevity, we write λi ≡

λi(X
−1Y ) and ldet ≡ log det; then, using the integral (A.1) we have

d2R(X,Y ) =
∑
i

∫∞
0

[log(1 + tλi) + log(t+ λi)− log λi − 2 log(1 + t)] dt
t

=
∫∞
0

[
ldet(I + tX−1Y ) + ldet(tI +X−1Y )− ldet(X−1Y )− 2n log(1 + t)

]
dt
t

=
∫∞
0

[ldet(X + tY ) + ldet(tX + Y )− 2 ldet(X)− ldet(Y )− 2n log(1 + t)] dt
t

=
∫∞
0

[−2 ldet(X)− ldet(Y )− 2n log(1 + t)− (− ldet(X + tY )− ldet(tX + Y ))] dt
t

=
∫∞
0

[ft(X,Y )− ht(X,Y )] dt
t ,

where ft(X,Y ) = −2 ldet(X)− ldet(Y )− 2n log(1 + t) and ht(X,Y ) = − ldet(X + tY )− ldet(tX + Y ). Convexity
of both ft and ht is immediate from the well-known convexity of − log det(X) on X ≻ 0.

B. Proof Details
B.1. Relation between Euclidean and Riemannian metrics on Pd

Lemma B.1. Let x, y ∈ Pd. Then the Euclidean and Riemannian distance relate as

∥x− y∥22 ≤
√
2
ed(x,y) − 1

ed(x,y)
max{∥x∥2, ∥y∥2} .

Proof. Recall that the Thompson metric δT and the Riemannian distance d for positive definite matrices are given by

δT (x, y) := ∥log
(
x−

1
2 yx−

1
2
)
∥

d(x, y) := ∥log
(
x−

1
2 yx−

1
2
)
∥F ,

where ∥·∥ denotes the operator norm and ∥·∥F the Frobenius norm. It is well-known that ∥x∥ ≤ ∥x∥F for x ∈ Pd. This
implies δT (x, y) ≤ d(x, y). The claim follows from a relation between the Euclidean distance and the Thompson metric,
established by Snyder (2016):

∥x− y∥22 ≤
√
2
eδT (x,y) − 1

eδT (x,y)
max{∥x∥2, ∥y∥2} .
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B.2. Properties of surrogate functions

We sketch a proof for Lem. 3.4:

Lemma B.2. Let ψ be a first-order surrogate of ϕ near x ∈M. Let further θ(z) := ψ(z)− ϕ(z) be L-smooth and z′ ∈M
a minimizer of ψ. Then:

1. |θ(z)| ≤ L
2 ∥x− z∥

2;

2. ϕ(z′) ≤ ϕ(z) + L
2 ∥x− z∥

2.

Proof. For (1) recall a classical inequality, which follows from the L-smoothness of the surrogate function:

|θ(z)− θ(x)− ⟨∇θ(x), x− z⟩| ≤ L

2
∥x− z∥22 .

The claim follows from θ(x) = 0 and ∇θ(x) = 0.

For (2), note that we have by construction

ϕ(z′) ≤ ψ(z′) ≤ ψ(z) = ϕ(z)− θ(z) .

Inserting (1) directly gives the claim.

B.3. Inexact CCCP oracle

For completeness, we give a proof of Thm. 3.7:

Theorem B.3. Let d(x, x∗) ≤ R for all x ∈ M, ϕ(x) ≤ ϕ(x0) and let Q(x, xk) be first-order surrogate functions. Let(
Q̃k

)
k≥0

be a sequence of ϵ-approximate CCCP updates in the sense of Eq. 3.6. Then

ϕ(xk)− ϕ(x∗) ≤
2Lα2

M(R)(1 + ϵ)

k + 2
∀ k ≥ 1. (B.1)

Proof. Replacing exact with inexact CCCP updates, we have

ϕ(xk) ≤ min
x∈M

[
ϕ(x) +

L

2
∥x− xk−1∥2 + 1

2Lα
2
M(R)s2ϵ

]
.

Following the steps of the proof of Thm. 3.5 to Eq.(3.5), we get

ϕ(xk)− ϕ(x∗) ≤ min
s∈[0,1]

[(1− s)(ϕ(xk−1)− ϕ(x∗))

+ 1
2Lα

2
M(R)s2(1 + ϵ)

]
.

The claim follows from an analysis the step-sizes analogously to the proof of Thm. 3.5.

B.4. Exploiting Finite-sum Structure

We give a proof of Thm. 3.8:

Theorem B.4. Let again d(x, x∗) ≤ R for all x ∈ M and ϕ(x) ≤ ϕ(x0). Assume that gkik as defined in Alg. 2 is a
first-order surrogate of hik near xk−1. Then Alg. 2 converges almost surely.

Proof. As outlined in Alg. 2, we use the following majorization to construct the CCCP oracle:

gk(x) :=
1

m

m∑
i=1

gki (x)

gki (x) =

{
hik(xk)− ⟨∇hik(xk), x− xk⟩, if i = ik

gk−1
i , if i ̸= ik

.
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By construction, this gives

gk(x) = gk−1(x) +
gkik(x)− g

k−1
ik

(x)

m
. (B.2)

Observe that

gk(xk)
(1)

≤ gk(xk−1)

(2)
= gk−1(xk−1) +

gkik(xk−1)− gk−1
ik

(xk−1)

m

(3)
= gk−1(xk−1) +

hik(xk−1)− gkik(xk−1)

m
(4)

≤ gk−1(xk−1) .

Here, (1) follows from xk being the argmin determined in the CCCP step and (2) from Eq. B.2. By assumption, gkik is a
first-order surrogate of hik near xk−1, which implies by Def. 3.3(2) that gkik(xk−1) = hik(xk−1) and therefore (3). (4)
follows from gk−1

ik
being a majorization of hik . With this, {

(
gk(xk)

)
}k≥0 is monotonically decreasing. Due to the level-set

assumption this ensures that the sequence converges almost surely.

Taking expectations in the chain of inequalities, we get monotone convergence of {E
[
gk(xk)

]
}k≥0. For the analysis of the

approximation error
(
gk(xk)− h(xk)

)
, note that

E
[ ∞∑
k=0

gkik(xk)− hik+1
(xk)

]
(5)
=

∞∑
k=0

E
[
gkik+1

(xk)− hik+1
(xk)

]
(6)
=

∞∑
k=0

E
[
E
[
gkik+1

(xk)− hik+1
(xk)|Fk

]]
=

∞∑
k=0

E
[
gk(xk)− h(xk)

]
(5)
= E

[ ∞∑
k=0

gk(xk)− h(xk)
]
<∞ .

Here, (5) follows from the Beppo Levi lemma; in (6), we have rewritten the previous equality with respect to the sigma-field
Fk generated by the xk. With this, we have that {

(
gk(xk) − h(xk)

)
} → 0 almost surely. Now, following the proof of

Thm. 3.5, we conclude that the sequence of objective values generated by Alg. 2 convergences to the optimum almost
surely.
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