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A B S T R A C T

We introduce an approach for tracking detailed 3D poses of multiple people from
a single monocular camera stream. Our system maintains temporally coherent
predictions in crowded scenes filled with difficult poses and occlusions. Rather
than detect poses and associate them to current tracks, our model directly updates
all tracked poses simultaneously given a new input image. We train on numerous
single-image and video datasets with both 2D and 3D annotations to produce a
model that matches the 3D pose estimation quality of state-of-the-art systems while
performing faster and more accurate tracking on in-the-wild videos.

1 I N T R O D U C T I O N

Some of the most exciting applications of computing require understanding where people are and
how they move. A single monocular camera can support a variety of human-centric applications if it
is coupled with a system that can model the motion of all humans in its visual field. For the broadest
range of applications, we are interested in systems that (a) see multiple people, (b) estimate their
poses in 3D, (c) track their poses through time in a monocular video stream, even through occlusion,
and (d) do so online, in a streaming fashion, processing each frame and updating everyone’s estimated
3D poses without peeking into the future.

For such a system to work in the wild, it must handle cluttered scenes that are crowded with people.
As people move about, the model must keep track of who is who from frame to frame in order to
produce a coherent 3D motion estimate. This can be difficult as people occlude each other, pass
behind objects, and step out of view. Maintaining accurate 3D pose estimates online is particularly
challenging, as the model cannot leverage future context to fill in the gap for a missing observation.
Instead, the model must forecast to the best of its ability and snap to the correct state as soon as the
person is visible again.

Many existing approaches to pose tracking follow a two-stage detect-and-associate paradigm (Insa-
futdinov et al., 2017; Xiao et al., 2018; Doering et al., 2022; Rajasegaran et al., 2022). The idea is to
run a state-of-the-art pose estimation system for each frame, and then link poses across frames using
cues such as proximity and appearance. As with many two-stage approaches, the second-stage pose
estimates and tracks can be undermined by flaws in the first stage. If a detection is missed in the first
stage, some other mechanism must be introduced to update the pose. For example, one option is to
fill in any missing poses offline using the context of the full track (Goel et al., 2023). However, this
solution is not suitable for online applications that deal with live video.

We present CoMotion, a video-based approach that performs frame-to-frame pose updates in a
fundamentally different manner. Following the tracking by attention paradigm (Meinhardt et al.,
2022), we do not link independent per-frame detections – rather, we train a recurrent model that
maintains a set of tracked 3D poses and updates them when a new frame arrives. To update the poses,
CoMotion directly ingests the pixels of the new frame. There is no separate pose estimation module
that is run first to provide candidate poses. The model uses whatever evidence is available in the
pixels to update the poses of all people in the scene simultaneously – even those who may not be
currently visible. One advantage of this approach is that CoMotion can learn to utilize subtle pixel
cues. A pair of feet poking out may be insufficient to trigger an independent detection, but can still
be quite informative if the model has been following that person’s movement.
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Figure 1: CoMotion tracks 3D poses online from monocular RGB video. Rather than detect new
poses in each frame and associate them to existing tracks, CoMotion updates tracks directly from
incoming image features. As a result, CoMotion keeps track of distinct individuals as they overlap in
the camera frame (top) and occlude each other (bottom). Arrows highlight some points of interest.

Data is a challenge with such a video-based approach, for both training and evaluation. No dataset
exists that provides ground-truth 3D poses of groups of people moving in diverse, cluttered real-
world scenes. As a result, it is rare to find video-based 3D multi-person pose methods that support
in-the-wild videos with large numbers of people. Comparable methods evaluate tracking on limited
settings with a handful of people (Reddy et al., 2021; Sun et al., 2023). Only top-down methods
report tracking results on more challenging real-world videos (Rajasegaran et al., 2022).

We find that we can achieve excellent performance by training on a heterogeneous mixture of
datasets. Each dataset offers a complementary form of supervision – some are single-image, some
are video, some are synthetic, and some provide partial ground truth. From 2D keypoint video
datasets (Andriluka et al., 2018; Vendrow et al., 2023), our model learns robust tracking behavior,
while from single-image pseudo-labeled data it learns accurate 3D pose estimation. We are unaware
of any prior work in this area that trains on a comparably heterogenous mix of datasets. In particular,
there are no multi-person 3D pose methods that supervise temporally unrolled predictions on complex
videos such as those provided by PoseTrack (Andriluka et al., 2018; Doering et al., 2022).

We evaluate pose estimation performance and multi-person tracking using standard datasets for
each task. CoMotion exhibits state-of-the-art pose estimation performance, while providing bet-
ter and faster tracking with fewer temporal artifacts such as jitter and dropped poses. On Pose-
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Track21(Doering et al., 2022), CoMotion improves MOTA by 8% and IDF1 by 10% relative to the
prior state of the art. Figure 1 illustrates this combination of 3D pose estimation accuracy and tracking
stability. At the same time, CoMotion is an order of magnitude faster than the prior state of the art.

2 R E L AT E D W O R K

Many approaches to pose estimation and tracking have been explored. Some detect poses only in a
single image, some operate on video but only handle a single person, and some track multiple people
in video but don’t estimate their poses. Few take on the holistic setting of predicting and tracking
the poses of multiple people in video, let alone in a streaming (online) manner. For an accessible
overview of the different perspectives, we classify relevant work along two dimensions, namely the
input modality (single image or video) and the handling of multiple people.

Single-person, single-frame 3D pose. Many approaches to 3D human pose estimation predict a pose
from a single image that is cropped to the target person (Bogo et al., 2016; Kanazawa et al., 2018;
Pavlakos et al., 2018). Poses are commonly represented by the SMPL model (Loper et al., 2015),
which defines a mesh from joint angles and shape parameters. The SMPL parameters can be regressed
directly from an input image (Goel et al., 2023). Another common strategy is to employ a feedback
loop that alternates between predicting SMPL parameters and observing the reprojection to image
space to inform further updates (Zhang et al., 2021a; 2023a;b;c; Wang & Daniilidis, 2023). Much
progress in this setting can be attributed to scaling up datasets, model sizes, and training times (Goel
et al., 2023; Khirodkar et al., 2024).

Single-person pose from video. This setting assumes that a person has already been detected and
tracked, such that it can be presented to the model through a sequence of cropped frames or bounding
boxes. A line of work operates on pre-extracted 2D keypoints (Zheng et al., 2021; Zhang et al.,
2022; Tang et al., 2023; Zhao et al., 2023) with transformers because the sparse input signal enables
modeling of large temporal windows. Alternatively, recurrent networks enable online aggregation
of features between frames. VIBE (Kocabas et al., 2020) and PMCE (You et al., 2023) use a GRU,
and RoHM (Zhang et al., 2024) uses a denoising diffusion model to decode subsequent frames. Our
approach also uses a GRU to run inference on video. However, where these prior methods rely on an
external tracking solution and can only perform inference on a single subject, our method does its
own tracking to handle multiple subjects in parallel.

Multi-person, single-frame pose. A straightforward approach to predicting poses of multiple
people is detecting their individual bounding boxes and processing those via a single-person pose
estimator (Goel et al., 2023; Fang et al., 2017; Papandreou et al., 2017; Huang et al., 2017). However,
this approach scales poorly to crowded scenes. More recently, several works extract a dense feature
map from the input image and perform cross-attention on a set of query tokens regressed from a
ResNet or ViT applied to the same image (Liu et al., 2023; Shi et al., 2022; Baradel et al., 2024).
In these approaches, the costly dense feature extractor is only run once per image. We also apply
cross-attention, but our model produces queries in each timestep conditioned on past history and must
also attend to people who may not be visible in the current frame (e.g., because they temporarily
move out of the camera’s field of view), which would not be relevant in the single-image setting.

Multi-person pose from video. A key challenge in multi-person pose from video is associating
new observations with pre-existing tracks. An early approach was to estimate a graph of pose
keypoints with intra-/inter-frame edge weights and then estimate connected components by solving
a minimum-cost multi-cut problem (Insafutdinov et al., 2017). Better results were later obtained
using a track-and-detect paradigm, where independent per-frame detections are grouped into tracks
using visual keypoint features and image location (Girdhar et al., 2018) as well as 2D motion (Xiao
et al., 2018). More recently, PHALP (Rajasegaran et al., 2022) adopted this mechanism for 3D
pose rather than 2D, and also used the predicted 3D poses as an additional feature for grouping.
4D Humans (Goel et al., 2023) went further with a more general-purpose pose representation (Loper
et al., 2015) and new architecture. These approaches achieve excellent results on modern benchmarks
but scale poorly on videos with many subjects, since they run a pose estimator independently on each
cropped detection. In contrast to these tracking-by-detection methods, CoMotion estimates poses and
localizes existing tracks in parallel, reasoning over all poses simultaneously. In addition to a more
holistic treatment of the scene, this approach is an order of magnitude faster.
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Figure 2: Overview. CoMotion estimates 3D poses for all people in a frame. Existing tracks from
previous frames are updated C⃝ and matched to detected bounding boxes D⃝ produced by an off-the-
shelf pretrained bounding box detector A⃝. Unmatched tracks are deleted E⃝ and new tracks initialized
F⃝ from unmatched bounding boxes. An image encoder B⃝ yields image tokens to instantiate new
D⃝ tracks for unmatched bounding boxes and update all tracks C⃝ & G⃝. The heart of CoMotion is
the pose update module C⃝ & G⃝, which encodes tracks (3D poses and hidden states) to query image
tokens and produce new poses and hidden states. The hidden state serves to provide learned features
for the network to encode auxiliary information that is not included in the SMPL pose parameters.
Fixed modules are blue, learnable modules are orange.

Unlike tracking-by-detection, tracking-by-attention (Meinhardt et al., 2022; Sun et al., 2020) detects
new objects and updates existing tracks jointly by performing cross-attention between an image and
a set of learned per-track and new-object query tokens. While many of these works condition the
query tokens only on the previous few frames (Zeng et al., 2022), MeMOTR maintains a long-term
memory of per-track query tokens and gradually updates them based on new observations (Gao &
Wang, 2023). We follow the tracking-by-attention paradigm in this work, but find that there are
many challenges to instantiating this paradigm for multi-person 3D pose tracking, including the
nature of available training data. Bounding-box-based methods can get away with training on pairs
of frames (Meinhardt et al., 2022), but we find that it is critical to unroll on longer video sequences
during training to learn to track detailed 3D poses accurately.

3 C O M O T I O N

Preliminaries. Given a sequence of monocular RGB images {I1, I2, ..., It} ∈ Rh×w×3, we aim
to produce 3D pose estimates for each person in the scene at each time-step t conditioned only on
the past and the present (no peeking into the future). Each prediction should be associated with
a particular identity such that we know all poses belonging to a given individual. Predictions are
provided as complete trajectories from the beginning to the end of a track. That is, there are no gaps
in estimates due to temporary occlusions, although we do not support long-term reidentification.

We follow standard practice from prior work (Bogo et al., 2016; Kanazawa et al., 2018) and parame-
terize each person with SMPL (Loper et al., 2015), which consists of a translation term γ ∈ R3, joint
angles θ ∈ R72 (including a global orientation), and shape parameters β ∈ R10. As we focus our
training and evaluation on 3D keypoint positions, we disregard other shape properties represented by
β. That is, we expect our approach to accurately estimate bone lengths (which are determined by β),
but not the actual body shape as this is not accurately reflected in the pseudo-ground truth SMPL
annotations available for training.

All estimates are made in the camera coordinate frame. We do not explicitly model any changes
to the camera pose or intrinsics (e.g., due to camera motion or zooming). During inference, the
system accepts as input an intrinsics matrix K. All output 3D estimates will project correctly back
into the image according to this provided matrix using the pinhole camera model. If no ground
truth intrinsics are available, we fall back to reasonable defaults. To increase robustness against an
incorrect intrinsics, we augment K during training. This allows us to make predictions on in-the-wild
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Algorithm 1 CoMotion

1: tracks← {}
2: for It ← 1 to T do
3: A⃝ bboxes← detector(It)
4: B⃝ F t ← encoder(It)
5: if len(tracks) > 0 then ▷ Update tracks and compare to provided boxes
6: C⃝ tracks← update(F t, tracks)
7: D⃝ bboxesunmatched, tracksunmatched ← compareIOU(bboxes, tracks)
8: E⃝ tracks← cleanup(tracks, tracksunmatched)
9: F⃝ tracksnew ← initialize(F t, bboxesunmatched)

10: G⃝ tracksnew ← update(F t, tracksnew)
11: H⃝ tracks← concat(tracks, tracksnew)
12: else ▷ No existing tracks, start a new batch
13: tracks← initialize(F t, bboxes)
14: tracks← update(F t, tracks)
15: end if
16: end for

videos by providing a generic setting for K while also using the correct intrinsics when they are
available.

Overview. Figure 2 and Algorithm 1 provide an overview of the CoMotion architecture and logic.
Given a new (RGB) frame t, an image encoder B⃝ produces per-pixel features F t and an off-the-shelf
detector (Wang et al., 2023) A⃝provides bounding boxes. Unlike pipelines that crop to and predict
poses for each box, CoMotion uses the detected boxes solely for track instantiation and deletion.
Specifically, we check whether there is agreement between these bounding boxes and our current
tracks D⃝ and use any disagreement as a cue to instantiate new tracks. Agreement is quantified
in terms of intersection-over-union (IOU). Any unmatched boxes indicate a new track that can be
instantiated. Any unmatched tracks are candidates for deletion. The heart of CoMotion is formed by
the update module C⃝, which refines the current set of tracks. The update module does not use the
detected boxes, drawing instead on the full image context encoded in the feature tensor F t.

Image encoder B⃝. The image encoder produces features F t by means of a ConvNextV2-L back-
bone (Woo et al., 2023). We take features across intermediate stages of the network at four output
scales and linearly project and sum to produce a combined feature tensor at 1/8th the input resolution
of the image. Most of our experiments are performed at a 512x512 input resolution, so this yields
a 64x64 feature grid. We concatenate this with a positional embedding to encode (x, y) coordinate
locations and flatten the resulting features into a set of tokens. We apply an MLP to produce key and
value tensors that will be used in the attention operations in subsequent steps.

Initialization F⃝. The initialization module F⃝ accepts unmatched bounding boxes and outputs initial
track states. Given a set of detections, we run an initialization stage to produce initial pose estimates
that serve as the starting point for new tracks. More specifically, the output per bounding box is a
track state which is defined by the set of SMPL parameters (translation, shape, and joint angles) and
an additional latent feature vector used for a recurrent hidden state. We perform cross-attention to
attend to the current set of image tokens to get all initial track states. Bounding boxes are encoded
into a set of tokens with an MLP from which we then produce queries and attend to the per-pixel
keys and values defined above. The result of this attention operation is added to the encoded box
tokens and followed by residual transformer layers. We then apply an MLP decoder to produce initial
predictions for the SMPL poses and hidden feature states.

Update module C⃝ & G⃝. The update module C⃝ & G⃝ refines the current set of tracks. Cross-
attention is used in the same manner as in the initialization stage, but instead of encoding bounding
boxes into tokens we encode the per-track state. Each SMPL pose and hidden feature vector is passed
through an encoder to produce tokens to which we apply the same routine as above. The output
decoder in this case produces a new SMPL pose for each track as well as an update to each hidden
state. We use a GRU to perform the recurrent hidden state update.
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When encoding the current pose, we perform forward kinematics to get the 3D joint positions, and
then use the provided intrinsics matrix K to project those keypoints to 2D pixel positions. We pass
the original SMPL parameters, the 3D coordinates, the projected 2D locations, and the hidden state
into the encoder. For training stability, we detach the gradient of the SMPL pose parameters before
getting passed into the encoder, as such the only gradient signal that gets passed across time is through
the hidden features.

This update is the core of CoMotion. It can take an arbitrary number of tracks as input along with the
latest image tokens and determine the right changes to make to all people simultaneously. Over the
course of training, the network learns to associate the correct visual evidence to each person.

There are a couple of practical differences between this approach and a more traditional detect-and-
associate tracking method. First, as discussed above, the network can continue to make predictions
on tracks with no visible content in the current frame. CoMotion is structurally predisposed to learn
object permanence. Similarly, a partial or indirect observation that may not trigger a detection can be
leveraged by the network to maintain and update a pose track, even in the presence of overwhelming
occlusion. The network bears the responsibility for determining what information from the current
set of pixels is relevant for each track, and can draw on the entire image for this purpose. For more
architecture details, please refer to Appendix A.3.

Termination E⃝. We do not delete a track immediately if it does not align with the detected bounding
boxes. We keep tracks alive and continue to update their poses. This requires that our model performs
some degree of forecasting and motion modeling. This makes the tracker robust to brief occlusions,
but is not guaranteed to produce coherent long-term motion. In practice, we end tracks after a fixed
window of no matches for more than one second or after being out-of-bounds for more than half a
second.

4 T R A I N I N G

Our training procedure is simpler than the tracking setting deployed at test time. To train on a
particular clip we sample a subset of the annotated people in the scene, and provide their bounding
boxes as input at the first time step. The network then runs a single initialization pass followed by an
update for each frame of the video. We supervise all predicted poses at each timestep as well as the
outputs of the initialization module.

At no point do we instantiate new tracks or delete existing tracks as we unroll through a clip during
training. This is a practical detail to support training on minibatches. We also never train on more
than 8 simultaneous tracks, but find that the network generalizes to scenes with many more people.

4 . 1 D ATA S E T S

We train on the pseudo-labeled versions of InstaVariety (Kanazawa et al., 2019), COCO (Lin et al.,
2014), and MPII (Andriluka et al., 2014) provided by (Goel et al., 2023). These datasets provide
single images that capture diverse scenes and challenging poses with approximate SMPL annotations.

On video, we train on BEDLAM (Black et al., 2023), which is a synthetic dataset with motion sourced
from AMASS (Mahmood et al., 2019) that provides a large number of sequences with perfect 3D
ground-truth.

Finally, we train on PoseTrack (Andriluka et al., 2018) and JRDB (Martin-Martin et al., 2021), which
are both annotated with 2D keypoints. PoseTrack is an extension of MPII consisting of short clips,
while JRDB offers mostly pedestrian data but longer sequences with nontrivial tracking interactions.

4 . 2 C U R R I C U L U M

We train CoMotion in three stages, each utilizing a different mix of datasets, supervision strategies,
and loss functions.

Stage 1 begins with single-image pretraining. We fine-tune an off-the-shelf masked auto-encoder
(MAE) pretrained image encoder (Woo et al., 2023) to produce high-quality pose features. Since these
features are independent per frame, we achieve more efficient training with larger batch sizes focusing
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exclusively on single images from the pseudo-labeled InstaVariety, COCO, and MPII datasets. The
image encoder is frozen for all subsequent stages.

To optimize the model’s SMPL predictions, we employ three loss functions: an L1-loss to minimize
2D projection error, another L1-loss for the root-normalized 3D joint position error, and an L2-loss for
the difference in SMPL joint angles. Since the pseudo-labeled SMPL beta parameters are generally
unreliable, we refrain from training directly on them, instead applying regularization to minimize the
norm of predicted betas: Lβreg = λ∥β∥22 with λ = 0.005. Additionally, we use a keypoint heatmap
loss (Cao et al., 2017) as an additional auxiliary training signal. The model is trained for 300K
iterations, which take approximately 3 days on 8 V100 GPUs. By the end of this stage, the model
is capable of jointly estimating the 3D poses of multiple people within a single image, given their
bounding boxes.

Stage 2 extends training to multiple frames. We continue to train on individual images, but now
introduce short, 4-frame video clips from BEDLAM. The same loss functions from Stage 1 are applied,
with one key modification: the model is now directly supervised on the SMPL beta parameters using
high-quality ground truth from BEDLAM. During this stage, we freeze the image encoder and train
the weights of the initialization and update modules for an additional 300K iterations, which also take
approximately 3 days. By the end of Stage 2, the model has learned to predict and track 3D poses of
multiple people through a short video snippet with improved temporal consistency.

Stage 3 focuses on the model’s ability to handle longer video sequences. We again train on BEDLAM
but expand the clip length to 16 frames. Additionally, we train on 8-frame clips from PoseTrack and
16-frame clips from JRDB. Since the only available supervision for these datasets is 2D, we only
apply a 2D loss on PoseTrack and JRDB. The model is fine-tuned for 150K iterations over 2 days,
keeping the image backbone frozen. By the end of stage 3, the model exhibits improved stability
when tracking 3D poses across longer sequences.

This training curriculum allows us to efficiently train a system to handle video by front-loading the
initial visual feature learning on single images before the slower video training stage. Also, we can
fit much larger batches during video training since we do not have to calculate gradients for or update
the weights of the image encoder. And even though we only train on short half-second clips, the
model behaves well when unrolled for longer sequences.

5 E X P E R I M E N T S

No standard benchmark evaluates the full combination of characteristics that CoMotion was designed
for: tracking 3D poses of multiple people through video. For quantitative comparisons to prior work,
we resort to evaluating CoMotion on a subset of its capabilities at a time, “projecting” it to existing
benchmarks that focus either on tracking stability (without evaluating 3D pose accuracy) or pose
estimation on images (without evaluating tracking). We use established benchmarks for 2D and 3D
pose estimation and, separately, tracking, and adhere to established evaluation protocols and metrics.
See the appendix for controlled experiments on the model architecture, datasets, and the training
curriculum.

Tracking. Standard tracking benchmarks do not typically evaluate pose accuracy, but rather metrics
based on bounding-box IOU. For tracking evaluation, we run our full stack on a video from beginning
to end. Detections are provided by an off-the-shelf model that operates on individual image frames.
(The frames are padded and resized to 512x512.) Poses are unrolled through video and no cropping
is done to individuals.

To evaluate tracking across long sequences in crowded scenes, we use PoseTrack21 (Doering et al.,
2022). We use the evaluation code provided by Doering et al. (2022) to compute standard tracking
metrics. We report Multi-Object Tracking Accuracy (MOTA) which is an aggregate score that
penalizes for missed detections, false positives, and ID switches (100 is a perfect score). Other
metrics such as IDF1 and ID precision and recall (IDP and IDR) communicate how well the network
preserves a single tracked identity per person. The results are listed in Table 1(top). CoMotion
substantially outperforms prior work, improving MOTA by 8% and IDF1 by 10% relative to the prior
state of the art.
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Table 1: Tracking evaluation. Performance of CoMotion and several baselines on PoseTrack21.
We report results using the official evaluation code (top) as well as results after fixing a bug in the
evaluation code that caused the ‘ignore’ regions to be handled incorrectly (bottom, marked with a †).

Method PoseTrack21
MOTA↑ IDF1↑ IDP↑ IDR↑

TRMOT (Wang et al., 2020) 47.2 57.3 70.0 46.6
FairMOT (Zhang et al., 2021b) 56.3 63.2 81.0 51.8
CorrTrack + ReID (Doering et al., 2022) 52.0 66.5 72.4 61.4
Tracktor++ (Bergmann et al., 2019) 59.5 69.3 76.4 63.5
CoMotion (ours) 64.3 76.3 83.0 70.5
4DHumans (Goel et al., 2023) † 56.7 70.9 87.1 59.7
CoMotion (ours) † 68.1 77.9 86.7 70.5

Table 2: PoseTrack18 vs. PoseTrack21. The annotations in PoseTrack18 are drastically incomplete,
penalizing methods that correctly detect and track people in the scene. Indeed, this inspired the
creation of PoseTrack21 (Doering et al., 2022), which provides more complete annotations and was
released as a direct replacement of PoseTrack18 (same images, more complete annotations). We
provide results on PoseTrack18 for backward compatibility with Goel et al. (2023), but strongly
recommend that all future work adopt PoseTrack21 instead. (* We rerun the authors’ code in order to
report performance on PoseTrack21.)

Method PoseTrack18 PoseTrack21
HOTA↑ IDs↓ MOTA↑ MOTA↑ IDF1↑ IDP↑ IDR↑ FP↓ FN↓ FPS↑

4DHumans (Goel et al., 2023) 57.8 382 61.4 – – – – – – -
4DHumans (reproduced)* 58.0 349 61.8 56.7 70.9 87.1 59.7 7817 50652 0.51
CoMotion strict 58.2 232 59.9 61.8 74.0 89.1 63.3 6086 45664 -
CoMotion 54.2 332 51.3 68.1 77.9 86.7 70.5 8617 34438 8.34

In the course of performing this evaluation and analyzing the results, we found a bug in the Pose-
Track21 evaluation code. PoseTrack21 provides partial annotations accompanied by ‘ignore’ regions
that mark parts of images in which ground-truth data is missing. The ‘ignore’ regions are crucial for
evaluation because they signify that tracks predicted in these regions should not be regarded as false
positives – they may be correct, but may not align with ground-truth annotations because annotations
in these regions are known to be missing. The bug pertains to the handling of these ‘ignore’ regions
and caused many detections in the ‘ignore’ regions to be incorrectly regarded as false positives.
Table 1(bottom) reports results after this bug is fixed. (Here we can only benchmark CoMotion and
a method that is reproduced in our environment, since it’s not possible to carry numbers over from
prior literature.) We will release our fix to PoseTrack21 and recommend that future work adopts the
corrected evaluation code. More details can be found in the appendix.

The most competitive baseline is 4D Humans (Goel et al., 2023). The paper of Goel et al. (2023)
reports results on PoseTrack18 (Andriluka et al., 2018) but not on the more accurately and completely
annotated PoseTrack21. Unfortunately, due to the drastically incomplete annotations in PoseTrack18
(which motivated the creation of PoseTrack21), we observe that tracking evaluation on PoseTrack18
can be substantially misleading. Many sequences in PoseTrack18 only have annotations for a fraction
of the people in the scene, and models are penalized for correctly detecting and tracking people who
lack annotations. See the appendix for examples.

Since 4D Humans does not report results on PoseTrack21, we rerun their method and reproduce
their original predictions (which match the numbers reported in their paper on their PoseTrack18
evaluation). In order to do well on the incomplete PoseTrack18 setting, it appears that 4D Humans
is calibrated to produce fewer detections to avoid getting incorrectly penalized for tracking people
who were not annotated in the dataset. This results in potentially lower MOTA on PoseTrack21 than
they might achieve had they calibrated their system differently. We dig further into this in Table 2,
observing that we can match their numbers in the original PoseTrack18 setting by applying a stricter
threshold on bounding box detection scores (0.7 instead of 0.3) to preserve tracks and dismissing a
larger number of (correct) detections.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Pose estimation. Normalized PCK accuracy on projected 2D keypoints at varying thresholds
on the COCO and PoseTrack datasets, alongside MPJPE of 3D keypoints on the 3DPW dataset. As
noted by Goel et al. (2023), the 3DPW metrics can be anti-correlated with performance in the wild.
See text for analysis.

Method COCO PoseTrack 3DPW
PCKn@0.05↑ PCKn@0.1↑ PCKn@0.05↑ PCKn@0.1↑ MPJPE↓ PA-MPJPE↓

PyMAF (Zhang et al., 2021a) 0.68 0.86 0.77 0.92 92.8 58.9
CLIFF (Li et al., 2022) 0.64 0.88 0.75 0.92 69.0 43.0
PARE (Kocabas et al., 2021) 0.72 0.91 0.79 0.93 82.0 50.9
PyMAF-X (Zhang et al., 2023a) 0.79 0.93 0.85 0.95 78.0 47.1
HMR 2.0a (Goel et al., 2023) 0.79 0.95 0.86 0.97 70.0 44.5
HMR 2.0b (Goel et al., 2023) 0.86 0.96 0.90 0.98 81.3 54.3
CoMotion 0.84 0.96 0.90 0.98 77.2 51.2

When evaluated on PoseTrack21 we observe that our ‘strict’ model is better than 4D Humans across
the board. When we replace the strict threshold with our default, the system is heavily penalized in
PoseTrack18, since many correct tracks are regarded as false positives, lowering MOTA from 59.9 to
51.3. But when these same predictions are evaluated on the more complete annotations provided by
PoseTrack21, MOTA increases from 61.8 to 68.1.

Pose estimation. Pose estimation is typically assessed in an ‘oracle’ single-person setting where
the bounding box of the target individual is known in advance. To compare to pose estimation
methods using standard pose estimation metrics, CoMotion is constrained to operate within single
frames and tight bounding-box crops. We evaluate both 2D and 3D metrics, since 2D pose datasets
offer more diverse in-the-wild data with challenging poses. Specifically, we report Percentage of
Correct Keypoints (PCK) on COCO (Lin et al., 2014) and PoseTrack18 (Andriluka et al., 2018), and
Mean Per-Joint Position Error (MPJPE) on 3DPW (von Marcard et al., 2018). PCK calculates the
percentage of estimates whose distance to the ground truth falls under a given threshold, while MPJPE
is the mean distance between 3D points after centering around the pelvis. PA-MPJPE performs an
additional Procrustes Alignment step first. The results are summarized in Table 3. We follow the
same setup as prior work, with the same bounding boxes, cropping, and resizing of each subject.
Note that no video information is used here, so CoMotion is restricted to a subset of its capability. In
this constrained single-image pose estimate regime, we perform on par with the state-of-the-art HMR
2.0b model (Goel et al., 2023).

As noted by Goel et al. (2023), 3DPW metrics are not necessarily correlated to in-the-wild perfor-
mance. We tuned CoMotion for performance in the wild and will release the model upon publication.

Analysis. CoMotion substantially outperforms the state of the art on multi-person tracking, while
also yielding state-of-the-art 3D pose estimates. At the same time, CoMotion is an order of magnitude
faster than 4DHumans, the strongest comparable system in the literature (Goel et al., 2023). Beyond
the numerical results, there are substantial qualitative differences in the behavior of CoMotion and
4DHumans. On challenging or truncated poses, 4DHumans sometimes exhibits high-frequency,
abrupt changes as it jumps between possible interpretations of a given track from frame to frame. In
contrast, CoMotion is more temporally coherent due to recurrently unrolling predictions across time
(Figure 3). See the appendix and the supplement for additional analysis and results.

5 . 1 C O N T R O L L E D E X P E R I M E N T S T

We conduct several controlled experiments on architecture and dataset decisions and only report key
results here due to space constraints. For a more thorough overview of these results we refer the
reader to Appendix A.2.

Architecture: We test how the model performs when removing the initialization module and replacing
the initialization with a heuristic placement in camera space conditioned on the provided bounding
box and a default SMPL pose. The network is able to learn to update this initial estimate, but keypoint
localization accuracy drops by 22%. We also test removing the recurrent hidden features. In this case,
pose accuracy is not too adversely affected, but we see ID switches increase by about 25%.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: We compare predictions made by CoMotion and 4D Humans unrolled through time on a
sample from PoseTrack. With no temporal consistency we see that 4D Humans occasionally makes
abrupt changes to the estimated pose in this challenging setting where most of the person is truncated
out the right side of the frame.

Training setting: We further analyze how training datasets and curriculum affect performance. If we
leave out BEDLAM (Table 5), the performance on PoseTrack is nearly the same as it measures only
2D accuracy, but 3D performance drops significantly on 3DPW. In addition, we find that the model
benefits from the full multi-stage training curriculum. In particular, training on longer sequences
(16 frames as opposed to 4) yields improvements. We expect training on much longer temporal
windows to lead to even more robust tracking behavior, but leave this exploration to further work due
to substantial increase in required computational resources.

6 C O N C L U S I O N

CoMotion performs joint multi-person 3D pose tracking from monocular video. It operates online,
processing each incoming frame in a streaming fashion. By unrolling predictions across time and
allowing the network to jointly attend to all pose tracks and the full image context, CoMotion
maintains accurate and temporally stable tracking and robust inference through occlusion.

Many characteristics of the system can benefit from scaling, including model size, training time, and
input resolution. A significant impediment to progress is the lack of high-quality video training data.
Given the beneficial effect of large-scale pseudo-labeled single-image datasets (Goel et al., 2023), we
believe that the community would benefit from analogous efforts in the video domain.

Beyond scale and additional training data, a number of architectural ideas may benefit the system as
well. For example, detection could be treated jointly and trained end-to-end with pose estimation and
tracking. Recent work such as MultiHMR (Baradel et al., 2024) suggests that the basic cross-attention
formulation is well-suited to joint detection and pose estimation.

Another promising direction is to also model camera motion. An emerging body of work models 3D
poses in a consistent world coordinate frame (Shin et al., 2023; Wang et al., 2024; Kocabas et al.,
2024; Yin et al., 2024). We believe that decoupling the camera from the motion of people in the scene
can increase robustness to extreme camera motion. Furthermore, CoMotion does not currently reason
about absolute scale, thus 3D poses are not grounded in a shared extrinsic world frame. This is most
salient with children, who are not modeled well by the SMPL parameterization and are commonly
placed further into the distance as larger adult-sized humans.

CoMotion provides a clean high-performing starting point for exploring these and other ideas. We
will release the implementation and the trained model upon publication.
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A A P P E N D I X

A . 1 T R A C K I N G E VA L U AT I O N D E TA I L S

Figure 4: Incorrect handling of missing annotations in PoseTrack18. Due to incomplete annota-
tions in PoseTrack18, tracks may be incorrectly regarded as “false positives”. We show representative
samples where annotations are green and “false positives” are red.

Figure 5: Incorrect handling of missing annotations in PoseTrack 21. PoseTrack21 addresses
the incompleteness of PoseTrack18 annotations by providing ‘ignore’ regions to accompany the
annotated tracks. For the frame on the left, the center image illustrates the ground truth annotation,
which consists of the annotation of the person in the center (shown in green) and a polygon defining
the ‘ignore’ region in blue. The right image shows predicted tracks in red, which are still penalized
as false positives by the PoseTrack21 evaluation code despite being contained in the ‘ignore region‘.
This is a bug that we fix.

Tracking evaluation metrics are sensitive to false positives. When calculating MOTA a perfect score
is a 100.0, but there’s no bound to how negative a score may be when penalized for false positives.
For example, we observe on the scene illustrated in Figure 5, if false positives are not ignored our
method garners a MOTA of around -1500.

Figure 4 visualizes the problematic handling of missing annotations in PoseTrack18. Due to missing
annotations, correctly predicted tracks are labeled as false positives, which may produce misleading
results.

To address this problem, Doering et al. (2022) introduced PoseTrack21 with more comprehensive
annotations. PoseTrack21 provides keypoints for many more people and marks regions with missing
annotations through “ignore regions”. Unfortunately, the provided evaluation code contains a bug
that still allows for incorrect handling of missing annotations. Figure 5 visualizes the behavior of the
PoseTrack21 evaluation. Akin to PoseTrack18, predicted boxes in the ignore region are treated as
false positives.

The issue has to do with the calculation determining whether or not to ignore a box. The evaluation
code looks at the IOU between the ignore region and the box and discards any box with an IOU
greater than 0.1. Unfortunately, when the ignore region is particularly large, most boxes do not
intersect a large percentage of the region’s area. The IOUs in the example above vary between 0.01
and 0.07 – not enough to be discarded.
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We make a one line change to the PoseTrack21 evaluation code for our “fixed” evaluation: instead
of IOU, we calculate the percentage of the bounding box that overlaps with the ignore region. This
results in the expected evaluation behavior on scenes with ignore regions. We adjust the discard
threshold from 0.1 to 0.3, so this means if 30% of a bounding box overlaps into an ignore region it
will be discarded.

There are a few minor quirks that still remain in the annotations and evaluation. In some clips, ignore
regions appear and disappear, and occasionally completely overlap with ground-truth annotations.
We observe in the evaluation code by the PoseTrack21 authors that there is a mechanism to recover
predictions that are matched to ground-truth tracks that have been filtered out by the ignore region.
Perhaps this is to address the samples that have been both marked as ground-truth boxes and covered
in ignore regions. Overall, these present a modest amount of corner cases and do not adversely affect
the evaluation in the same way as the ignore region IOU calculation.

A . 2 C O N T R O L L E D E X P E R I M E N T S

We perform additional experiments to investigate the impact of major design decisions on the final
performance of the proposed approach. We report results on the PoseTrack validation set, on the
3DPW validation set, and on a subset of clips from EgoHumans (Khirodkar et al., 2023).

With EgoHumans, we do not follow an official evaluation setting, but create our own evaluation by
sampling some of the exocentric camera clips from the Lego, Tagging, and Fencing scenes. We find
EgoHumans interesting as one of the few datasets with 3D annotations and complete annotations for
multiple people. Critically, there are annotations through occlusion because data was collected in a
multi-view setting. Most other evaluation datasets specifically do not have ground truth for occluded
and truncated samples.

All evaluation is done across video in the multi-person setting with full images resized and padded to
512x512. For the purpose of this evaluation we do not use the tracking stack but provide boxes for
the target people we want predictions on in frame 0 and we then unroll the model through the full
sequence without adding or removing any tracks. On PoseTrack, we unroll 16 frames, and on 3DPW
and EgoHumans we unroll 48 frames.

One note, for these ablations, the 2D PCK @ 0.05 on PoseTrack is calculated differently from the
numbers reported in Table 3. It is more strict and not comparable to the values in the main paper. We
use this metric only in the context of ablations comparing different versions of our model.

A . 2 . 1 A R C H I T E C T U R E

We assess the importance of our proposed pose initialization and recurrent hidden features through
an ablation study. We report detailed metrics in Table 4. The first row represents our full approach,
the second row removes the hidden state, and the third row alternatively replaces the initialization
module with a simple heuristic.

Hidden state. Without a hidden state, the only information passed across consecutive frames are the
previous SMPL poses. For the vast majority of tracking situations this is sufficient to know which
pose corresponds to which person, but can lead to failures in tricky corner cases with similar poses
in similar positions. We observe that without a hidden state for each track overall performance on
challenging videos from PoseTrack drops, accompanied by a notable decrease in tracking performance.
Removing the hidden features increases ID switches by 15%.

Initialization module. We replace the initialization module with a simple heuristic that requires no
computation or learned parameters. From a bounding box, we define a fixed procedure to produce an
initial root position and default SMPL pose. This still provides a valid conditioning signal that the
update module can learn to refine. To compensate for the lost model capacity, we add more compute
to the update step. We find it is more helpful to provide a higher quality learned pose from the
initialization module. We observe that removing the initialization module results in a 22% reduction
in pose accuracy.
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Table 4: Architecture ablations. From our full system (first row) we remove alternatively the hidden
state (second row) or replace the pose initialization by a simple heuristic (third row). Removing the
hidden state worsens tracking performance on PoseTrack. Removing the pose initialization module
causes an even larger drop in tracking performance.

Initialization Hidden PoseTrack EgoHumans 3DPW

2D@0.05↑ MOTA↑ IDF1↑ IDs↓ 3D@0.1↑ MPJPE↓ 3D@0.1↑ MPJPE↓
✓ ✓ 66.92 67.2 77.4 459 59.69 111.41 81.00 77.05
✓ - 65.49 63.8 75.0 526 58.29 119.57 82.29 74.56
- ✓ 52.22 55.6 68.7 681 57.21 108.65 77.24 77.61

A . 2 . 2 E F F E C T O F A D D I N G 3 D V I D E O S U P E RV I S I O N

We investigate the role of 3D video supervision through BEDLAM (Black et al., 2023) in the
performance of our model. Table 5 reports results of our full model and without training on BEDLAM.
While removing BEDLAM marginally affects CoMotion’s 2D performance on PoseTrack and 3DPW,
we observe a strong effect on 3D performance on EgoHumans and 3DPW. This suggests that in order
to maintain high quality 3D poses while unrolling through video it is important to include some 3D
video supervision.

Table 5: Ablation study on the benefit of synthetic data (BEDLAM).

BEDLAM PoseTrack EgoHumans 3DPW

2D@0.05↑ 2D@0.05↑ 3D@0.1↑ MPJPE↓ 2D@0.05↑ 3D@0.1↑ MPJPE↓
✓ 66.92 67.31 59.69 111.41 91.29 81.00 77.05

66.04 63.81 48.98 133.58 92.44 72.84 92.72

A . 2 . 3 C U R R I C U L U M

We examine the decision to train the model in three stages (Table 6) while increasing the sequence
length. A model trained only on Stage 1 performs poorly, as it has only been exposed to single images
and lacks the ability to update poses across different frames (all of the evaluation in this table is
across 16-48 frames). With the inclusion of Stage 2, the model’s performance significantly improves
across all metrics. Stage 3 training further enhances the results. We also experiment with different
sequence lengths during Stage 3. Detailed results are included in Table 6.

Table 6: Ablation study on the training curriculum.

Stage 1 Stage 2 Stage 3 PoseTrack EgoHumans 3DPW

2D@0.05 2D@0.05 3D@0.1 MPJPE 2D@0.05 3D@0.1 MPJPE

✓ 26.20 12.98 9.29 320.62 27.90 18.17 243.64
✓ ✓ 52.29 59.61 57.53 121.03 90.50 81.99 75.49
✓ ✓ ✓(4f) 66.71 65.02 55.50 117.30 91.00 81.62 73.66
✓ ✓ ✓(16f) 66.92 67.31 59.69 111.41 91.29 81.00 77.05

A . 2 . 4 R U N T I M E

We measure the runtimes of CoMotion and baselines on the PoseTrack21 validation set and report
results in Figure 6. All measurements were made on the same hardware using the code provided
by the authors of each method. We measure the time to run the complete tracking stack unrolled
across all PoseTrack validation videos. We find that CoMotion significantly outperforms prior work.
Specifically, CoMotion is approximately 2x faster than PARE (123ms vs 258ms) and 17x faster than
4D Humans (123ms vs 2163ms) on average.
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Figure 6: Comparing the per-frame runtime of CoMotion with prior work on the PoseTrack21
validation set. All measurements were made on a V100 GPU using the code released by the respective
authors. CoMotion is significantly faster than prior work. Specifically, CoMotion is approximately 2x
faster than PARE (123ms vs 258ms) and 17x faster than 4D Humans (123ms vs 2163ms) on average.
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A . 2 . 5 S E N S I T I V I T Y T O P R O V I D E D C A M E R A I N T R I N S I C S .

To assess the sensitivity of our model to the provided camera intinsics, we evaluated CoMotion on
PoseTrack videos (for which we do not have ground truth camera calibration) and varied the camera
intrinsics. Figure 7 visualizes the results. We find that the network’s 2D keypoint accuracy remains
consistently high across a wide range of input focal lengths.
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Figure 7: Analysis on assumed focal length: To investigate how the focal length of the intrinsics
matrix affects performance we run our model on PoseTrack videos (for which we do not have ground
truth camera calibration) and report 2D PCK accuracy. We adjust the assumed focal length and
observe that the network’s 2D keypoint accuracy is consistent as long as we remain within a realm of
values which correspond to what one would typically find with most camera hardware apart from
extremely wide-angle options such as a fish-eye lens.

A . 3 A R C H I T E C T U R E D E TA I L S

Image encoder: We use the ConvNextV2 (Woo et al., 2023) implementation provided in the
timm library (Wightman, 2019). As with most convolutional backbones, features are extracted in
consecutive stages to progressively lower resolutions. There are four stages yielding features at
1/4th, 1/8th, 1/16th, and 1/32nd of the input image resolution. As a simple strategy to fuse early and
late features, we linearly project the outputs from each stage to a feature tensor at 1/8th the input
resolution. For example, a 2x2 convolution with stride 2 is used on the highest resolution features,
while a 1x1 convolution is applied to the lower resolution feature maps with an output of either 4
or 16 times the number of feature channels which can be reshaped into an upsampled tensor. The
resulting features are added together to produce a final tensor upon which the model will perform
cross-attention. Each feature vector at each spatial location now serves as one token to be attended to.
We use standard sinusoidal positional embeddings to encode the x and y location of each vector as
additional context. Here we provide PyTorch-like pseudo-code for producing the image keys and
values:

def get_image_tokens(image):
# Run ConvNextV2 stages
x = convnext.stem(image)
feat_pyramid = []
for stage in convnext.stages:

x = stage(x)
# Linearly project image features from each stage
feat_pyramid.append(conv(x))

# Upsample low-res features (using einops notation)
upsample_pattern = "... (c h2 w2) h w -> ... c (h h2) (w w2)"
feat_pyramid[2].rearrange(upsample_pattern, h2=2, w2=2)
feat_pyramid[3].rearrange(upsample_pattern, h2=4, w2=4)

# Fuse into single tensor at 1/8th input resolution
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px_feats = sum(feat_pyramid)
px_feats = layer_norm(px_feats)
px_feats = cat([px_feats, positional_encoding], 1))

# Flatten and rearrange into tokens
px_feats.rearrange("... c h w -> ... (h w) c")
image_key = linear(px_feats)
image_value = linear(px_feats)

return image_key, image_value

Cross-attention: We perform cross-attention in the same manner both during the initialization and
update stages. First, we encode inputs into a set of tokens to be operated on. This would either be
the bounding boxes or the current pose estimates and hidden state. Specifically, we apply two linear
layers with an intermediate layer normalization and GELU activation. This MLP maps from the input
dimension to an output dimensionality of M ∗ C which is rearranged to M tokens of dimensionality
C. This is computed separately per-person resulting in a set of tokens with the shape NxMxC where
N is the number of people.

Linear layers are applied to the pose tokens to get queries. From there, we perform cross-attention
with the image tokens and apply an MLP to the result to compute a residual update to the pose tokens.
We then apply a set of transformer layers to the pose tokens. These layers are applied in two stages.
To reduce the overhead of self-attention across the union of all tokens, we decompose the attention
operations such that they are applied first over the person dimension and then separately over the
token dimension. Finally, MLPs are used to decode the relevant outputs from the updated tokens.
For more model capacity, we instantiate and apply multiple rounds of cross-attention layers. For an
overview of these operations, we recommend referring to the pseudo-code provided below.
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def cross_attention(image_key, image_value, tokens):
# Image key and value shape
# B: batch_size, H ∗W: height x width, C: feature_dim
# Input tokens shape
# B: batch_size, N: num_people, M: num_tokens, C: feature_dim

# Perform cross attention on union of all tokens for all people
q = token_to_query(tokens)
q.rearrange("b n m c -> b (n m) c")
px_feedback = F.scaled_dot_product_attention(

q, image_key, image_value
)
px_feedback.rearrange("b (n m) c -> b n m c")
tokens = tokens + post_attention_mlp(px_feedback)

# Attention between people
tokens.rearrange("b n m c -> (b m) n c")
tokens = cross_people_attention(tokens)

# Attention per-person
tokens.rearrange("(b m) n c -> (b n) m c")
tokens = per_person_attention(tokens)
tokens.rearrange("(b n) m c -> b n m c")

return tokens

def initialization(K, image_key, image_value, bbox):
# Encode tokens
tokens = encode_bbox_to_tokens(bbox)

# Apply cross-attention
tokens = cross_attention(tokens)
tokens = cross_attention(tokens)

# Decode outputs
smpl_params = decode_pose(tokens)
smpl_params = adjust_trans(K, smpl_params)
hidden = decode_hidden(tokens)
return smpl_params, hidden

def update(K, image_key, image_value, smpl_params, hidden):
# Encode tokens
pred_2d = get_2d_projection(K, smpl_params)
tokens = encode_2d_to_tokens(pred_2d)
tokens += encode_smpl_to_tokens(smpl_params)
tokens += encode_hidden_to_tokens(hidden)

# Apply cross-attention
tokens = cross_attention(tokens)
tokens = cross_attention(tokens)

# Decode outputs
smpl_params = decode_update(tokens, smpl_params)
hidden = gru_update(tokens, hidden)
return smpl_params, hidden
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A . 4 A D D I T I O N A L T R A I N I N G D E TA I L S

Intrinsics: We take measures to ensure the model’s predictions align with the provided input intrinsics
matrix K. During initialization, instead of directly predicting a distance from the camera, the network
predicts a value ρ that is proportional to inverse depth. We use an exponential to ensure the value is
nonnegative. This is then multiplied by the provided focal length to give us an initial depth estimate.
The x, y values are predicted in pixel space (u,v) and mapped to an initial SMPL translation estimate
γ0 with the following steps:

z =
fx
eρ

(1)

γ0 = z ·

[
fx 0 cx
0 fy cy
0 0 1

]−1 [
u
v
1

]
(2)

During training, we have two settings that occur in our datasets. Either ground-truth intrinsics are
available (for example on a synthetic dataset like BEDLAM) or the images are sourced from the
internet and thus we have no knowledge of the corresponding calibration data. In the latter case,
we randomly sample focal lengths and provided a made-up intrinsics matrix to accompany training
samples. This encourages sensible behavior regardless of the input matrix (Figure 7).

SMPL parameter update: For the update step, we investigated whether to perform a residual update
to the current SMPL parameters or to predict new parameters. In the end, we use a mix of both:

• γ (translation): We find training to be more stable with a residual update to the translation
term. Note, we enforce a positive depth term at initialization since we only supervise the
model to initialize visible people in front of the camera. But this restriction does not hold
for subsequent updates. The network could potentially model situations where the person
falls behind the camera plane. Our datasets do not include many situations where this would
be annotated so it is not a case that we expect the model to handle particularly well and we
end tracks that fall out-of-bounds in such a manner.

• θ (pose): As for the pose term, we find we achieve better test time behavior when the network
predicts a new pose each timestep. While training does proceed well when predicting a
residual update, an unfortunate consequence is at test time the network steers towards odd
behavior across long temporal sequences. It has a tendency to accumulate updates into
out-of-distribution joint angles from which it cannot recover. If the network instead predicts
a new pose each step, we do not run into this issue.

• β (shape): We determined it is better to not update the betas which determine body shape.
When allowed to do so, the network would occasionally opt to make a person larger or
smaller instead of physically moving them towards or away from the camera. Results were
more sensible and stable with a fixed body shape across time.

In summary, the update module produces the following outputs: (∆γpred, θpred). And we define
γt = γt−1 +∆γpred, θt = θpred, and βt = β0.

Handling multiple annotation modalities: We integrate several datasets with different formats
for human body pose annotations. The mismatch in formats ranges from different granularity of
keypoints (e.g., COCO (Lin et al., 2014) provides face keypoints (eyes, ears, nose) while MPII
(Andriluka et al., 2014) has a keypoint for the top of the head) to the same type of keypoint being
associated with different locations on the body. As an example of the latter we find hips annotated in
2D datasets to mismatch the hip joint modeled in the kinematics of the SMPL parameterization – the
2D hip annotations tend to be higher and much wider than they would be in a corresponding SMPL
body fit to the same person.

Handling these differences naively by e.g. predicting outputs in the SMPL format while supervising
on 2D annotations from COCO and PoseTrack leads to the SMPL meshes being contorted to match
the 2D keypoint format. After investigating several different strategies to handle the format mismatch,
we settled on a simple but surprisingly effective approach. To better match the SMPL format, we
narrow the 2D hip annotations by a constant factor (we use 2 in all of our experiments). In case
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no ground truth is available for the SMPL β parameters, we regularize them with an L2 penalty to
prevent egregious shape fitting. We further regularize predictions through a 2D reprojection error to
the face keypoints in COCO. We observe this leads to better estimates of head direction, although
precise fitting of head shape could still be improved.
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