
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGUAGE MODELS NEED INDUCTIVE BIASES TO
COUNT INDUCTIVELY

Anonymous authors
Paper under double-blind review

ABSTRACT

Counting constitutes a core skill underlying a wide range of tasks, such as formal
language recognition, multi-hop reasoning and simulating algorithms. Generaliz-
ing counting inductively is central to task success on out-of-distribution (OOD)
instances where testing inputs are longer than those seen in training. While there is
a large body of literature reporting poor length generalization in language models,
few papers have tried to distill the “reasoning” failure to the simplest case of count-
ing failure. We aim to provide a broader picture on whether various language model
architectures can a) learn to count, and b) generalize counting inductively. This
work provides extensive empirical results on architectures ranging from RNNs,
Transformers, State-Space Models and RWKV. We present carefully-designed task
formats, auxiliary tasks and positional embeddings to avoid limitations in general-
ization with OOD-position and OOD-vocabulary. We find that while traditional
RNNs trivially achieve inductive counting, Transformers have to rely on positional
embeddings (PEs) to count OOD. Further analyses on interpreting the learned
solution reveal that different PEs encode different inductive biases that facilitate
counting in different task formats. As counting is the basis for many arguments
concerning the expressivity of Transformers, our finding calls for the community
to reexamine the application scope of primitive functions defined in formal charac-
terizations. Finally, modern RNNs also largely underperform traditional RNNs in
generalizing counting inductively, hinting at the tradeoff modern RNNs struggle to
balance between parallelized training and maintaining their recurrent nature.

1 INTRODUCTION

“Difficulty in generalizing to longer instances” is a recurring theme in the discussion of Transformer
limitations, regardless of the task domain (Dziri et al., 2023; Saparov et al., 2023; Zhang et al., 2023;
Del’etang et al., 2022; Liu et al., 2022; Bhattamishra et al., 2020). We find that, although the notion of
length may vary across domains (e.g. sequence length, recursion depth, counter states for DSAs, stack
sizes for PDAs), counting is always involved as a required component to successfully handle the task.
In fact, counting might be leveraged by Transformers more often than necessary as it circumvents
the need to implement recurrence. For example, Liu et al. (2022) indicates that Transformers may
rely on internal representations of counts to model counter languages, as a remedy for its lack of a
recurrent mechanism, but failing immediately on instances with OOD counts. Further, Zhang et al.
(2023) indicates that for recursive problem-solving, specialized attention heads count the recursion
depth, dependent on which depth-specific solutions are learned. Therefore, counting is crucial for
Transformers to perform a variety of tasks, from formal language recognition to algorithmic reasoning.
And generalizing to OOD counts is crucial for handling longer instances. However, it remains unclear
whether Transformers can learn to count inductively.

On the other hand, RASP (Weiss et al., 2021), a programming language designed to mimic Trans-
former computations, treats counting as a primitive function based on which more complex algorithms
are built (e.g. sorting, reverse, Dyck). We question the generality of counting as a primitive building
block for Transformer computation. This paper conveys an important message that counting does not
come effortlessly as one might expect for a primitive function. Nontrivial requirements on positional
embeddings, input formats, and the amount of training have to be satisfied in order for a Transformer
to learn counting in-domain. Moreover, Transformers do not learn to count inductively, e.g. when
the model knows increment(50)=51, it still cannot output the length of a 51-symbol sequence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

as 51 if it has only been trained on up to 50-length sequences. Notably, in this work we do a direct
comparison with both modern and classical recurrent architectures to begin elucidating the source of
this modern limitation, not shared by previous approaches.

We conduct extensive experiments training Transformers to count inductively. We carefully design
the input-output formats, auxiliary tasks and positional embeddings to overcome the OOD-position
and OOD-vocabulary issues. However, we find negative evidence. Shallow 1L or 2L Transformers
struggle to generalize inductively. Successful generalization is observed with 4L Transformers, but
requiring different positional embeddings for different forms of counting. Expanding our comparison
to recurrent architectures, we find that RNN and LSTM succeed at everything we have asked,
whereas newer RNN architectures (e.g. State-Space Models and RWKV) have degraded performance.
Our work opens up attractive challenges for augmenting Transformers with a counter-equivalent
mechanism, as well as hybridizing Transformer and RNN without breaking their inherent strengths.

2 BACKGROUND

The inductive counting principle: If a word in an ordered number word list refers
to sets with cardinality n, then the next word refers to sets with cardinality n+ 1

(Rips et al., 2006; Piantadosi et al., 2012).

2.1 DEFINITION OF COUNTING

We define counting as the ability to map a number word to the cardinality of a set containing a
corresponding number of items. The crucial inductive step requires that, having learned the mapping
of the first n words to the first n cardinality values, one has to infer that adding one more item results
in a cardinality value corresponding to the (n+ 1)th word in the number word list. This definition
of counting is extensively studied in a branch of cognitive science concerning how children learn to
count (Davidson et al., 2012; Rousselle & Vossius, 2021; Sarnecka & Carey, 2008; Spaepen et al.,
2018). The cognitive science research informs that children learn to count from 1 to 5 independently
in early ages, then drastically generalize to the entire natural number system by inductively inferring
how the number words in one’s native language map to cardinality values (Wynn, 1992; Margolis
& Laurence, 2008). Further, the structure of the language (e.g. avoiding special cases or change of
bases) correspond to learning to count earlier in childhood (Rousselle & Vossius, 2021).

Note how counting differs from knowing the ordered list of number words: reciting the number
word list constitutes an important prerequisite of counting, but establishing the mapping of numbers
from the language context to the cardinal context is the core problem of interest. Also note that the
complexity of number words may vary across languages. This would only affect the difficulty of
learning the number word list, without changing the requirements for establishing the mapping and
performing induction. Thus, the counting task studied in this paper is language-independent, and
we use arabic numerals, without loss of generality, for notational consistency. To avoid confusion
between number words and cardinality values, in our writings we use arabic numerals with single
quotation to denote numbers in the language context (e.g. ‘3’), and use arabic numerals with vertical
bars (e.g. |3|) to denote numbers in the cardinal context. Numbers in the language context are treated
in the same way as input/output tokens in a language model, whereas numbers in the cardinal context
may only appear as internal states and its exact form may vary across individuals.

2.2 THE TRANSFORMER ARCHITECTURE

A Transformer takes a discrete sequence as input and outputs a discrete sequence. The input and
output sequences share a vocabulary Σ. The embedding and unembedding layers project a one-hot
vector with dim = |Σ| to the Transformer’s hidden_dim and back to |Σ|.
Between the embedding and unembedding layers are L layers of interleaved self-attention and MLP
blocks, with LayerNorm and residual connections inserted at appropriate locations. For an intuitive
understanding, self-attention layers communicate information across tokens, while MLP layers
allow each token to update information across the feature dimension (i.e. hidden_dim) individually.
Importantly, parameters are shared across tokens, and all input tokens perform the same operation in
parallel rather than sequentially. Equation 1 mathematically defines the self-attention function.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Attn(Q,K, V)t =

∑T
i=1 e

qTt ki ⊙ vi∑T
i=1 e

qTt ki

(1)

Since all input tokens perform the same operation in parallel, the Transformer does not intrinsically
distinguish tokens based on positions. Thus, positional information is needed to break this symmetry.

Sinusoidal Positional Embedding (SinePE)(Vaswani et al., 2017) SinePE computes positional
embeddings based on sine waves, which is added to token embeddings at the input layer.

Absolute Positional Embedding (APE)(Devlin et al., 2019) APE assigns learnable vectors to
position ids 1, ...,P, which is added to token embeddings at the input layer.

Rotary Positional Embedding (RoPE)(Su et al., 2021) RoPE multiplies query and key vectors by
an unlearnable rotation matrix, such that the relative rotation angle between two positions captures
relative position. It requires a maximum sequence length P to be predetermined.

Scaler Positional Embedding (SPE)(Yao et al., 2021) SPE sides aside one dimension from the
Transformer’s hidden_dim and inserts positional information through a scaler value. Proposed by Yao
et al. (2021) who found SPE’s advantage over APE in modeling Dyck languages with bounded depth.

No Positional Embedding (NoPE) NoPE denotes the vanilla Transformer without positions. Haviv
et al. (2022) suggests that the causal mask could leak positional information, by potentially allowing
each token to count the number of predecessors. However, this raises the same question of whether
Transformers can count. Thus, our experiments with NoPE will also inform how reliable Transformers
figure out absolute positions solely from causal masks.

A model easily falls apart if it has never seen the embedding for a position beyond the training length.
To tackle the OOD-position issue Kiyono et al. (2021) proposes to augment the input position_ids
(PIDs) with a random shift (shifted PEs) so that you start numbering positions from a random integer
between 1 and P, instead of always starting from 1. This ensures that all position embeddings will be
trained. Ruoss et al. (2023) proposes a more general augmentation (randomized PEs), where the PIDs
for a length=k sequence is the sorted list of k integers randomly drawn from [1, P]. We empirically
find that randomized PEs perform much worse than shifted PEs. Thus we adopt shifted PEs.

2.3 AXES OF SEQUENTIAL COMPUTATION IN DIFFERENT ARCHITECTURES

The induction step of counting can be trivially afforded by sequential modeling, where “adding one
more item to the set” is operationalized as the model consuming one more input, and the increment
on cardinality is operationalized as unrolling one more step along the sequential axis. Table 1
summarizes the axes for sequential computation in Transformers as well as in five representative
recurrent architectures. It is important to highlight the contrast between architectures dominated
by parallel computation and architectures dominated by sequential computation. Our work reveals
the implication of these differences on counting. In Transformers, due to the parallel processing of
attention, in order for a token to build on the computation results of its predecessors, it has to proceed
to the next layer. Thus, sequential computation occurs along the axis of Transformer layers. In RNNs,
sequential computation is realized through state transitions. SSMs share the concept of state transition
with RNNs, but have varied implementations specific to individual models. For further information,
Appendix A.1 reviews the design of recurrent architectures and Appendix F.3 discusses the trade-off
between recurrence and parallelization.

Architectures Repetitive components that realize sequential computation
Transformer Attention + MLP Blocks

RNN Matrix Multiplication +
LSTM Matrix multiplication + + Multiplicative gating

S4, Mamba Matrix multiplication
Linear Attention (e.g. RWKV) Moving avg. of history with discounted weights

Table 1: Sequential computation enjoys the reuse of computation performed in previous steps and is
realized along different axes in different architectures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

…

Modular (mod 10)

Selective
+ Modular (mod 4)

Input
Output

Input
Output

Input
Output

Selective

a a aa a aa a a a a a aa a aa a a a a

1 2 43 5 76 8 9 10 1 2 43 5 76 8 9 10 1

a1 a2 a1a2 a1 a3a1 a1 a2 a1 a1 a2 a3a3 a1 a1a3 a1 a3 a2 a3

1 1 22 3 14 5 3 6 7 4 32 8 94 10 5 5 6

1 1 22 3 14 1 3 2 3 4 32 4 14 2 1 1 2

a1 a2 a1a2 a1 a3a1 a1 a2 a1 a1 a2 a3a3 a1 a1a3 a1 a3 a2 a3

Examples

Helper token
Input

Output

Input
Output

31 b bb b ..b b.. b bb b b b b

31 32 3433 35 ..36 93.. 94 9695 97 98 99 100

66 a ..a a a a

66 6867 98 99 10020 21 ..22 61 62 63

20 a ..a a a a
Helper token
+ Shifted start Input

Output

Shifted start
10 11 ..12 50 51 52

10 a ..a a a a

45 46 ..47 69 70 71

45 a ..a a a a

20 21 ..22 61 62 63

20 a ..a a a a

66 a ..a a a a

66 6867 98 99 100

Input
Output

Input
Output

Training/IND Testing OOD Testing

1 2 ..3 48 49 50

a a ..a a a a b b ..b b b b

1 32 98 99 100

Count('a') ∈ [1, 50]
Count('b') ∈ [1, 100]

Count('a') ∈ [51, 100]

Count('a') ∈ [1, 50]
Count('b') ∈ [1, 100]
shiftedstart+Count('a') ∈ [1,100]
shiftedstart+Count('b') ∈ [1,100]

shiftedstart+Count('a') ∈ [51,100]

Count('a') ∈ [51, 100]

Count('a') ∈ [1, 50]
shiftedstart+Count('a') ∈ [1,100] shiftedstart+Count('a') ∈ [51,100]

Count('a') ∈ [51, 100]

Count('a') ∈ [1, 50] Count('a') ∈ [51, 100]

Count('a1') ∈ [0, 10]

Count('a10') ∈ [0, 10]
Count('a1') + . . . + Count('a10')

∈ [1, 50]
Count('a1') + . . . + Count('a10')

∈ [51, 100]

Vanilla
+ Succession

Input
Output 1 2 ..3 48 49 50

a a ..a a a a

Vanilla
Input

Output 1 2 ..3 48 49 50

a a ..a a a a

1 2 ..3 97 98 100

2 43 98 99 100

Count('a') ∈ [51, 100]Count('a') ∈ [1, 50]

…
Count('a1') ∈ [0, 10]

Count('a4') ∈ [0, 10]
Count('a1') + . . . + Count('a4')

∈ [1, 64]

…
Count('a1') ∈ [0, 10]

Count('a10') ∈ [0, 10]

Count('a1') ∈ [0, 10]

Count('a4') ∈ [0, 10]
Count('a1') + . . . + Count('a4')

∈ [65, 128]

Count('a') ∈ [51, 100]Count('a') ∈ [1, 50]

Task Design

Figure 1: Illustration of input-output formats. Every integer, as well as a, b, a1, ..., a10 are individual
tokens. Row 1: Vanilla counting, where each token outputs the count of a’s seen from the beginning
of the sequence up to itself. Row 2: Vanilla counting augmented with input-output pairs that inform
the order of number tokens. Row 3-4: b is the helper token, to be seen with larger counts. a is the
main token of interest, to bes seen with restricted counts during training and tested with OOD counts.
Row 7-8: a1, ..., a10 are distinct tokens. Each of them should maintain its own counter.

3 GENERAL EXPERIMENTAL SETUP

3.1 DATA CREATION

When generating the data, there are two important hyperparameters at play: MAX_TRAIN_SEQLEN
and MAX_OOD_SEQLEN. Note, MAX_IND_SEQLEN = MAX_TRAIN_SEQLEN. Please refer
to the rightmost two columns of Figure 1 for their exact values. Since loss is computed at every
token, rather than only at the last token, there is no need to include shorter training sequences.
In fact, all training sequences have identical lengths equal to MAX_TRAIN_SEQLEN, in order
to max out supervision on larger counts. Similarly, every testing sequence has a length equals to
MAX_IND/OOD_SEQLEN.

Data creation for selective counting requires additional effort to balance the distribution. As Figure 1
shows, each input sequence in selective counting can consist up to 10 unique tokens, a1...a10. If we
sample a1...a10 at random, their counts, Count(‘a1’), . . . , Count(‘a10’), will heavily bias towards
small values. It is desirable to balance the distribution so that each of Count(‘a1’), . . . , Count(‘a10’)
is uniformly distirbuted over [0, 10] in training. Thus, during training data generation, we upweigh
sequences where some tokens have larger counts, resulting in the distribution shown in Figure A7.
The distribution of Count(‘a1’), . . . , Count(‘a10’) in the OOD test set is skewed towards larger values
because they are longer while we restrict each unique token to appear less than ten times.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 IMPLEMENTATION

We follow the standard GPT-2 implementation1 and train 1, 2, 4-layer Transformers to count. Our
models are restricted to be shallow because counting should not take much computation if it truly
serves as the primitive building block for other complex functions. Weiss et al. (2021) suggested that
computing the length of a sequence can be done within one layer. We generously increase the budget
to four layers. The input-output formats are summarized in Figure 1 and detailed in Section 4. Each
number word is tokenized into an individual token, corresponding to whole-number tokenization in
the LLM literature. We note an alternative where numbers are tokenized into digits. We opt not to
use single-digit tokenization because previous studies show that when numbers are represented by
multiple tokens, early Transformer layers serve to “detokenize" , while late Transformer layers take the
additional reponsibility to "re-tokenize" (Elhage et al., 2022). This suggests that whole-numbers are
the preferable processing units in Transformers, while single-digit tokenization adds extra complexity
of mapping token spans and numbers back and forth. This work adopts whole-number tokenization
to avoid conflating the complexity of counting with that introduced by tokenization.

3.3 CHECKPOINTING AND EVALUATION

We checkpoint and perform IND/OOD testing every 30K steps. The evaluation is accuracy averaged
across the sequence dimension. The total length of training is typically 312.5K or 625K steps. These
stopping times are empirically chosen, by which the model has either experienced a long overfitting
period with plateaued testing accuracy, or already saturated to perfect. For each model, we report
performance on the best checkpoint over the entire course of training. We find different patterns in
the training and testing curves across task variants and types of positional embeddings. While IND
testing scores usually increase monotonically, OOD testing scores may bump and drop if the model
overfits. Due to the space limit, we only report the maximum performance along the curves as we
believe the performance upperbound is of more interest in this study, and leave the examination of
learning dynamics to future work. There is a possible connection between the bumps observed in
some of our counting tasks to the grokking (Nanda et al., 2023) phenomena. While it is impossible to
rule out late grokking that would have happen after we stopped our training jobs, we already allow a
long patience window within the training duration of 312.5K or 625K steps. Usually, no improvement
was observed in the latter half of training. Moreover, every experiment has been repeated with five
seeds, which further enlarges the search range for grokking if it could ever happen. Unless otherwise
noted, we report the best performance out of five seeds. Appendix B reports the median performance
out of five seeds which complement the main Transformer and RNN results in Table 2 and Table A1.

4 COUNTING

Training a model to count inductively requires us to provide 1) An ordered number word list covering
the full set of cardinality values, 2) Examples of mapping between number words and sets of objects
for small cardinalities. Crucially, the full list of ordered number words should be taught without
exposing the model to any set of objects with an out-of-distribution cardinality. Considering this,
a vanilla approach would be to add the succession sequence, i.e. ‘1’, ‘2’, ..., to the training data.
However, this is largely ineffective, as shown in Table 2-Top. This is because the model would easily
master the succession sequence by modeling the bi-gram statistics, which brings no help to counting.

A more helpful approach is to teach counting with a helper token, which is seen up to the cardinality
of M. The cardinality of the main object remains to be bounded by N in training. In fact, the helper
token trivializes generalization. Intuitively, this task asks: “If you have learned to count bananas up
to 100, but you have never seen as many as 100 apples, can you count apples up to 100?" (Figure 1,
row1). Though generalization under this setting does not require induction, we view this task as a
useful sanity-check because it is undesirable to establish the counting ability tied to specific objects.

Next, we propose “shiftedstart", a modification to the input-output format, to simultaneously achieve
1) full exposure of the vocabulary (as well as its ordering) and 2) bounded exposure of cardinalities.
Given that, we can test generalization with the OOD cardinalities. Concretely, we insert a number
word (k) at the initial position to shift the beginning of the output counting sequence from 1 to k+1.
We illustrate this in Figure 1, row 3. Compared to the helper token setting, the shiftedstart setting

18 heads, 1,024 dim and 4,096 MLP-dim. LR=1e-4 with 3k steps of linear warmup. Batch size is 32.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

NoPE Sine APE RoPE SPE
Task L IND OOD IND OOD IND OOD IND OOD IND OOD

2 2.0 0.0 100 0.0 100 0.0 2.0 0.0 100 0.0Vanilla
+ Succession 4 2.0 0.0 100 0.0 100 0.0 2.0 0.0 100 0.0

2 100 100 100 76.4 100 80.6 100 100 100 92.9Helper Token 4 100 100 100 71.7 100 69.3 100 100 100 99.8

1 100 4.1 99.7 0.0 100 13.6 100 7.4 100 4.1
2 100 100 100 100 100 81.34 100 78.7 100 18.3Helper Token

+ Shifted Start 4 100 100 100 95.6 100 100 100 100 100 99.8

1 100 16.7 100 4.3 100 50.5 100 37.7 100 9.0
2 100 25.0 100 78.7 100 27.8 100 92.5 100 57.8Shifted Start
4 100 46.1 100 48.6 100 51.9 100 98.86 100 83.8

1 11.8 11.8 100 100 100 71.2 11.8 11.8 100 8.2
2 12.0 11.8 100 100 100 100 11.8 11.8 100 8.2Modular (mod10)
4 11.8 11.8 100 100 100 100 11.8 11.8 100 12.1

1 96.0 9.3 99.5 68.8 100 10.6 99.7 29.9 99.8 61.3
2 99.7 94.1 99.8 32.6 100 13.9 99.7 49.1 99.7 86.9Selective
4 99.7 100 100 100 100 100 99.7 52.5 99.4 98.2

2 92.3 56.4 96.5 47.4 99.8 27.2 98.1 32.3 99.7 46.8Selective
+ Modular (mod4) 4 97.4 91.8 100 98.2 99.9 97.3 98.5 39.8 98.2 54.6

Table 2: Top: When the vocabulary corresponding to OOD-cardinality is exposed via the succession
sequence, models achieve perfect accuracy on reciting the Succession sequence, yet perform pooly
on counting. This clearly show that augmenting training data with the ordered number word list
offers no assistance to counting. Middle: We teach the model number words covering both IND
and OOD counts, without exposing the model to OOD cardinalities. This is ensured via either
an auxiliary task involving a Helper Token, or modifying the input-output format with a Shifted
Start. Bottom: Transformer counting for the Modular or Selective variants (or both). Positional
embeddings are augmented with random shift by default. We denote Layers, L, and In/Out-of
distribution as IND/OOD. OOD accuracies are only calculated at extrapolation positions.

imposes a greater challenge since a cardinality above N is strictly absent from training data. Moreover,
shifted starts discourages a model to exploit a rigid mapping from input positions to outputs — an
undesirable solution that may inflate performance. Finally, we also experiment with a “Helper Token
+ Shifted Start" to enrich the evidence that our task design does not permit easily-hackable solutions.

Table 2-Middle shows the counting performance of Transformers, with the training data augmented
with a helper token, shifted starts, or both. A helper token indeed makes the task easier, as evidenced
by near-perfect OOD accuracy of all five positional embeddings. When the order of number words is
only exposed by virtue of the shifted starts, only a 4L RoPE Transformer is able to generalize. The
poor results for 1L and 2L models suggest that counting in Transformers may require a non-trivial
computation budget. This initial result already calls into question the validity of treating counting as
a primitive operation in existing papers. Further, reasoning problems that treat counting as a primitive
operation would impose larger demands in order for inductive generalizations. Otherwise, instances
with larger counter states should be explicitly demonstrated during training. Extrapolation to larger
counter states do not trivially emerge as a result of mastering in-domain data. A more generous read
is that current results relying on counting should only be interpreted as valid for in-domain settings —
not as general computational engines as papers often characterize them.

Modular Counting In the previous section, we found that Transformers largely failed to generalize
inductively except for those equipped with RoPE. This calls for the next question: If it is too hard
for Transformers to simulate “unbounded counters", can they simulate modular counters — only
requiring a finite counter states? Modular counting will not run into the OOD-vocabulary issue,
so remedies we apply in the last section, including the helper token or shifted starts are no longer
necessary. However, modular counting introduces additional complexity for modelling periodicity.
We believe modular counting should be as powerful as “unbounded counting" because, for example, a
stack of mod10 counters, coordinating appropriately, would give us the entire natural number system.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2 row 5 shows that only APE and SinePE generalize well on modular counting. NoPE and
RoPE failed catastrophically, not even fitting the training data. The failure of RoPE is particularly
interesting because one would expect its formulation to inherently inform periodicity. Section 5
provides explanation. Briefly, RoPE only modifies queries and keys, which does not help with
symmetry breaking of a homogeneous input where all value vectors are identical in the first place. In
this sense, RoPE behaves similarly to NoPE. Appendix C provides results showing that NoPE and
RoPE must rely on an explicit beginning-of-sequence token to achieve modular counting in-domain.
SPE achieves perfect in-domain accuracy but breaks immediately once extrapolation is required.

Selective Counting We examine whether Transformers can selectively count predecessors satis-
fying a condition. In the counting context, selective counting is worth exploring because when an
unbounded counter is approximated via a modular counter stack, counters above the first level will
have to perform selective-modular counting. More broadly, selectivity is important because obser-
vations that carry useful information are sparse — the same consideration that motivates Mamba’s
proposal of selective-scan (Gu & Dao, 2023). In the general form of selective-counting, a predicate
function pred can be learned such that each token x outputs the number of predecessors xi where
pred(x, xi) = True. This corresponds to the “selector_width" primitive in RASP. Our experiments
simply regard the identity indicator function as the selection condition. Learning predicate functions
adds complexity along an axis orthogonal to inductive counting, which we leave for future research.

Note, we remove the requirement for generalizing to OOD counts via induction on the mapping
between vocabulary and cardinality, because this is the primary subject of discussion in Section 4. In
this section, we focus on the additional challenge related to selectivity. We generate the training data
containing ten unique tokens such that the count of each unique token ranges from zero to ten. In the
testing data, we also ensure that the counts do not exceed ten. However, our testing sequences are
longer than the maximum training length. Thus, the summation of counts for all tokens, as well as
the range of dependency in order to perform selection, are OOD.

Table 2 row 6 shows the results for selective counting. All PEs except for RoPE succeed given 4
layers. The observation that NoPE outperforms other PEs on selective counting is interesting. It
suggests that causal masking may indeed aid in symmetry breaking. And, in fact, our results indicate
that PEs might unintentionally introduce exploitable shortcuts or inductive biases unfavorable to
generalization. Finally, we perform experiments on selective-modular counting. We adopt a smaller
base (4 instead of 10), in order to prevent a substantial growth of sequence length, since a selective
counting sequence contains 10 unique tokens interleaved together, unlike a homogeneous sequence
in previous counting tasks. Results are shown in Table 4 row 6, which demonstrate a clear message:
only PEs — SinePE and APE — which generalizes on both modular counting and selective counting
performs well on selective-modular counting. NoPE also achieves a fairly good performance on
selective-modular counting, in contrast to its poor performance on modular counting. To explain this
observation, NoPE’s limitation on modular counting stems from its inability to break the symmetry
of a homogeneous sequence. Such a limitation no longer applies to selective-modular counting as the
input becomes heterogeneous. Section 5 and Appendix D,E provide further evidence.

There are two major takeaways from our Transformer counting experiments: 1) When counting is
treated as a primitive towards more complicated reasoning, it is better to cover all possible counter
states in-domain, as Transformers struggle to count inductively and rely on supervised encounter with
each cardinality value. 2) Different PE schemas exhibit strength in different forms of counting. Put
concisely, RoPE succeeds at unbounded counting with shifted starts; SinePE and APE generalize at
both modular and selective counting; NoPE and SPE are only competitive on selective counting. Our
results motivate the integration of multiple PE schemas to take advantage of orthongonal strengths.

5 WHY DO EACH OF THE PE STRATEGIES BEHAVE DIFFERENTLY?

We proceed to find hidden factors that account for the observed performance differences among
PE schemas. We proposes two generalizable mechanisms, for modular and selective counting,
respectively. Each mechanism demands particular inductive biases. Each PE schema either supports
or goes against certain inductive biases. The strengths and shortcomings of each PE schema revealed
in our analysis consolidate our core argument that language models need inductive biases to count
inductively. Our contributions are novel in two regards: 1) recognizing unique sets of inductive
biases for modular and selective counting that are plausible for a Transformer to implement — where
parallel computation dominates, and 2) studying how these inductive biases are realized by PEs. We

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

believe our findings will both inspire theoretical studies to quantify how much expressivity is added
to Transformers by separate PE schemas, and advise downstream applications on the choice of PE
based on the demand for inductive biases.

Modular Counting The mechanism that allows for perfect generalization to the OOD test set
consists of two steps: First Token Recognition and Position-based Modular Subtraction. The first
step, First Token Recognition, is necessary to address the additional complexity introduced by the
position-shift technique (Section 2.2). The model must locate the first token in each input sequence
in order to figure out the position-shift value. In the second step (Equation 2), each token attends to
the first token and compute the difference in their PIDs modulo 10, which gives the desired output.

output =
(
(PIDfirst_tok%10)− (PIDcurrent_tok%10)

)
%10 (2)

First Token Recognition demands the inductive bias for breaking symmetry. Since the input sequences
in our modular counting task are homogeneous, the model must leverage PEs to distinguish among
identical tokens. To test for how well each PE schema supports this inductive bias, we design a first
token recognition task (dubbed first_tok_homogeneous) whose details are described in Appendix D.
We train 1L Transformers with five PE schemas and find that only APE, SinePE and SPE are able
to fit the training data and generalize to unseen sequence lengths. NoPE and RoPE’s inability to
recognize the first token explains their failure in modular counting, as the position-shift technique
renders any rigid mapping from PID to the output useless.

Position-based Modular Subtraction requires the capability to cluster token representations based on
their PID modulo 10. Both APE and SinePE support such constructions, as evidenced by the PCA
plots of hidden states. Figure A3 plots the first two principal components of intermediate states, color
coded by PID modulo 10. Tight clusters indicate that the model produce close representations for
tokens whose PIDs modulo 10 have the same value. Such clustering pattern is only observed for APE
and SinePE, but not for SPE models. We believe that injecting positional information only through
a single dimension limits an SPE Transformer’s ability to build richer features based on positions,
which probably explains why SPE succeeds at first token recognition but fails at modular counting.

Selective Counting The generalizable mechanism suitable for the Transformer architecture again
consists of two critical steps: First Token Recognition and Token-based Attention. This mechanism
closely resembles the construction in Chiang & Cholak (2022) for recognizing PARITY, which
crucially depends on 1) a beginning-of-sequence (BOS) symbol and 2) uniform attention over tokens
that are either the BOS or identical to self. Though our task format does not include a BOS, we
argue that causal masking is sufficient for first token recognition, as long as the input sequence is
largely heterogeneous. This is verified through a variant of the first token recognition task (dubbed
first_tok_heterogeneous), in which the input is a shuffled sequence containing 10 unique tokens, each
occurring a random number of times. We find that a NoPE 1L causal Transformer is able to generalize
well on first_tok_heterogeneous. Appendix E provides details about first_tok_heterogeneous and
mechanistically describes how causal masking helps to accomplish it.

The first token, once recognized, can serve the role of BOS for subsequent layers. Following Chiang
& Cholak (2022), subsequent layers should construct features that represent two quantities for each
token: 1/n and k/n, where k is the desired output (i.e. the count of identity tokens on or before
the current token) and n is the total count of tokens up to the current token. Next, LayerNorm and
MLP will learn the map (1/n, k/n) → k. The key to construct representations for k/n is computing
attention weights purely based on token identity, regardless of PIDs. Indeed, given the task format,
positional information is not needed to solve selective counting. Therefore, one of the critical factors
accounting for the different performance between PE schemas is whether the model can ignore PEs.
A NoPE Transformer effortlessly achieves this, thereby already generalizing well with 2L. SPE
only minimally injects positional information through a single dimension, thus not imposing much
difficulty when the PEs are supposed to be ignored. In that sense, SPE performs closer to NoPE, in
accordance with our results in Table 2 row 6. APE and SinePE only generalize well with 4L, due to
two possible reasons: 1) It requires non-trivial effort for APE/SinePE Transformers to ignore PEs.
2) PEs are actually helpful for first token recognition, a prerequisite subtask, thus complicating the
picture. We additionally experiment with Selective Counting + BOS and the results corroborate our
hypothesis. Explicitly feeding BOS lowers the complexity and removes the supervision signals which
might be at odds with the need for disregarding PEs. Table A7 shows that both APE and SinePE are
able to emulate NoPE with 1L when BOS is included.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Nevertheless, RoPE does not benefit from BOS, indicating that its struggle may majorly come from
the second subtask, Token-based Attention. Unlike APE, SinePE and SPE, where positions affect the
input representations, RoPE directly use positions to modify queries and keys. Such modifications
encode a recency bias (Su et al., 2021) — an unfavorable inductive bias in this case — which we
believe is hard to be escaped by the rest of the network through learning. We hypothesize that the
enforcement of recency bias leads to the difficulty of implementing pure token-based attention. One
indicative piece of evidence is the variation of attention scores as the input PIDs varies, keeping the
same input token ids (TIDs). Figure A6 visualizes the standard error of attention score (i.e. entries of
QKT) between each pair of TIDs, across all PID pairs they can take. For models trained on selective
counting, attention scores in RoPE subject to the largest amount of variation influenced by PIDs,
while attention scores in APE are the least sensitive to PIDs. There may be other explanations for why
RoPE struggles more than other PE schemas at selective counting, which is left for future work. We
hope the counting tasks proposed in this work provide a lens through which inductive biases enabled
by PEs that are not otherwise encoded in self-attention can be studied in isolation. Future work may
extend this work by exploring how those inductive biases carry over to broader arithmetic domains.

Shifted Start Counting For shifted start counting, we are unaware of a generalizable solu-
tion, which calls into question the seemingly successful generalization of RoPE 4L in Table 2
row 4. However, the ability for RoPE to generalize is fragile. Successful generalization when
MAX_TRAIN_SEQLEN = 50, MAX_OOD_SEQLEN = 100 does not imply success when the
ratio between them is arbitrarily extreme. In fact, we have easily challenged RoPE 4L to failure
by making MAX_OOD_SEQLEN four times larger than MAX_TRAIN_SEQLEN. Table A8 sum-
marizes the performance of RoPE 4L with different combinations of MAX_TRAIN_SEQLEN,
MAX_OOD_SEQLEN, clearly demonstrating a worsening trend as the ratio makes generalization
harder. The fragility of RoPE, as well as the failure of other PE schemas indicate that the OOD-
cardinality issue remains unsolved, which is the core obstacle to inductive counting in Transformers.
Our work raises the importance of OOD-cardinality as a harder barrier hindering generalization on in-
ductive counting. OOD-cardinality poses a separate difficulty from OOD-position, OOD-vocabulary,
or OOD-range-of-dependency problems, and shall not be confused with these problems that the liter-
ature on length generalization (Press et al., 2021; Kiyono et al., 2021; Ruoss et al., 2023; Kazemnejad
et al., 2024; Anil et al., 2022; Zhou et al., 2024) has been targeting at.

6 COUNTING IN OTHER LM ARCHITECTURES

As counting is a fundamentally recurrent task, it is natural to validate our conditions on recurrent
architectures. Both the explicit modeling of hidden state transitions, and the sequential unrolling of
computation along the input sequence dimension, naturally facilitate inductive counting. Note, there
exists prior work hinting at counting in such architectures (Shi et al., 2016; Suzgun et al., 2019), but
not directly evaluated in a systematic comparison. We find that traditional recurrent architectures,
RNN (Elman, 1990) and LSTM (Hochreiter & Schmidhuber, 1997), achieve perfect generalization
with a single layer, except that RNN slightly falls short on selective counting (Table A1). This
highlights that a recurrent bias is likely key for inductive counting, which is precisely what the
Transformer lacks and must therefore rely on PEs as substitute.

The recent literature has seen a resurgence of modern RNN architectures (Gu & Dao, 2023; Gu et al.,
2021a; Peng et al., 2023; 2024) claiming to enjoy the best of both worlds: parallelizable training, like
Transformers, and recurrent inference, like RNNs. It is important to investigate whether the recurrent
formulation of these architectures affords inductive counting in the same way as traditional RNNs.
To this end, we experiment with three modern RNNs — S4 (Gu et al., 2021a), Mamba (aka S6) (Gu
& Dao, 2023) and RWKV-v6 (aka Finch)(Peng et al., 2024) that rival Transformers on large-scale
LM benchmarks. The key observation is that modern RNNs generalize much worse than traditional
RNNs on counting. We suspect the reason lies in less flexible state transitions, especially for Mamba
and RWKV. The very design that enables parallel training through reformulating the model into the
“convolutional mode" also limits the expressivity of state transitions. As illustrated in Table 1 and
Appendix A.1, while traditional RNNs apply a nonlinearity to state transitions, modern RNNs only
apply matrix multiplication or linear interpolation to history states, for the sake of easy contraction of
multiple sequential updates into a single computation step. A potential limitation of this design is
manifested through our counting tasks, opening up questions about what architectural elements imbue
the necessary inductive biases for counting, and how these can be transferred to hybrid architectures.
Appendix A provides implementation details and results for counting on other LM architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RELATED WORKS

Formal Theories on Transformer Expressivity Transformer expressivity can be formally analyzed
from the perspectives of functional libraries (Weiss et al., 2021; Lindner et al., 2023; Zhou et al.,
2023), boolean circuits (Cong et al., 1996; Yang & Chiang, 2024; Strobl et al., 2024; Merrill et al.,
2022), or Automata Theory (Del’etang et al., 2022; Yao et al., 2021; Liu et al., 2022; Ebrahimi et al.,
2020). We expand the discussion on this large body of literature in Appendix F. Formal studies have
established proofs for Transformers’ inability to count in a length-generalization regime (Hahn, 2020;
Bhattamishra et al., 2020) (usually in the context of modeling counter languages). However, the proofs
involve assumptions such as 1) hard attention, i.e. hardmax instead of softmax, 2) infinite sequence
length, 3) pure-attention architecture, i.e. without layernorm or PEs, 4) infinite or log precision. It is
unclear how certain assumptions in theoretical proof translate to real applications. Although we do
not contribute new theoretical results, our work complements formal studies in important ways. First,
we provide empirical evidence that echoes the theoretical proofs, under a realistic setting. Second,
theories on Transformer or self-attention seldomly treat different PEs as separate cases. We argue
that PEs in fact encode various inductive biases the worth detailed examination. Third, PE shift is
another important realistic consideration which may affect expressivity but has been simplified away
in theories. Overall, our work lays the ground where future theoretical discussions may branch out
according to PE types, as well as inspiring practical design choices revolving around PEs.

Empirically assessing Transformer expressivity Abundant prior works have empirically studied
the capacity of Transformer-based LMs. Categorizing by scale, these works include 1) testing
Transformers with hand-constructed weights (Chiang & Cholak, 2022); 2) testing Transformers
trained from scratch (Del’etang et al., 2022; Abbe et al., 2023; Ebrahimi et al., 2020; Zhou et al.,
2023; McLeish et al., 2024); and 3) testing pretrained LMs with finetuning (Anil et al., 2022) or
prompting (Zhou et al., 2022). Categorizing by task design, prior works usually adopt synthetic tasks
organized into hierarchies, with a notion of complexity informed by formal languages (Del’etang et al.,
2022; Zhou et al., 2023; Hao et al., 2022; Liu et al., 2022; Kazemnejad et al., 2024; Ebrahimi et al.,
2020; Ruoss et al., 2023) or boolean functions (Bhattamishra et al., 2022; Abbe et al., 2023). Our
work contributes to this body of empirical evidence. Our task design additionally draws inspiration
from cognitive science (Rousselle & Vossius, 2021; Sarnecka & Carey, 2008). Of particular note is
that Zhou et al. (2023) also studied counting, which differs from ours by definition: the input includes
a start and an end token, the output is an incremental expansion, e.g. 12 16 > 12 13 14 15 16. We
believe that this can be handled by mastering the succession sequence plus a termination checking.
Hence, their definition of counting involves neither numbers in the cardinality context nor induction.

We additionally review the literature on modern recurrent architectures in Appendix F.3.

8 CONCLUSION

Building on a growing body of work on formalizing the computation in Transformers, this work
investigates counting, which is believed to be a primitive function enabling a Transformer to perform
a wide range of complex tasks, such as modeling counter languages (Bhattamishra et al., 2022;
Hao et al., 2022; Ebrahimi et al., 2020), simulating algorithms (Anil et al., 2022; Zhong et al.,
2024; Veličković et al., 2022), and tracking the depth of reasoning chain (Saparov et al., 2023).
However, there is an important distinction between counting in-domain and counting infinitely, which
is understudied in the literature. While counting in-domain can be achieved with various approxi-
mations, counting infinitely imposes a significant challenge concerning induction and extrapolation.
We provide extensive empirical evidence showing that 1) Counting is not a primitive function of
Transformer computation as others have claimed, as it may require multiple layers to succeed at
counting in-domain; 2) Different positional embeddings enable out-of-domain generalization in
different forms of counting. Our findings have implications for avoiding out-of-distribution counter
states in practical scenarios and the promise of integrating different positional embeddings. We also
extend our investigation to recurrent architectures, including both traditional and modern models.
We observe that while traditional RNNs easily generalize counting inductively, no single modern
RNN generalizes on all six variants of our counting tasks, implying that inductive counting not only
requires a recurrent formulation, but also demands expressive state dynamics. Thus, our investigation
reveals a potential limitation where modern RNN architectures pay the cost for their lauded parallel
training, motivating better solutions to combine the merits of Transformer and RNNs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In International Conference on Machine Learning, pp. 31–60.
PMLR, 2023.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

S. Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability of self-attention networks to recognize
counter languages. ArXiv, abs/2009.11264, 2020. URL https://api.semanticscholar.
org/CorpusID:221856691.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
and their ability to learn sparse boolean functions. arXiv preprint arXiv:2211.12316, 2022.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. arXiv preprint
arXiv:2202.12172, 2022.

Jason Cong, John Peck, and Yuzheng Ding. Rasp: A general logic synthesis system for sram-based
fpgas. In Proceedings of the 1996 ACM fourth international symposium on Field-programmable
gate arrays, pp. 137–143, 1996.

Kathryn Davidson, Kortney Eng, and David Barner. Does learning to count involve a semantic
induction? Cognition, 123(1):162–173, 2012.

Gr’egoire Del’etang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Marcus Hutter, Shane Legg, and Pedro A. Ortega. Neural networks and the chomsky hierarchy.
ArXiv, abs/2207.02098, 2022. URL https://api.semanticscholar.org/CorpusID:
250280065.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associa-
tion for Computational Linguistics, 2019. URL https://api.semanticscholar.org/
CorpusID:52967399.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaïd Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. ArXiv, abs/2305.18654, 2023. URL https://api.semanticscholar.
org/CorpusID:258967391.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize dyck-n
languages? arXiv preprint arXiv:2010.04303, 2020.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Kamal
Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac
Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,
Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish,
Dario Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/solu/index.html.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1.

11

https://api.semanticscholar.org/CorpusID:221856691
https://api.semanticscholar.org/CorpusID:221856691
https://api.semanticscholar.org/CorpusID:250280065
https://api.semanticscholar.org/CorpusID:250280065
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:258967391
https://api.semanticscholar.org/CorpusID:258967391
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. ArXiv, abs/2203.16634, 2022. URL
https://api.semanticscholar.org/CorpusID:247839823.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Kentaro Inui. Shape: Shifted absolute po-
sition embedding for transformers. ArXiv, abs/2109.05644, 2021. URL https://api.
semanticscholar.org/CorpusID:237491629.

David Lindner, J’anos Kram’ar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr:
Compiled transformers as a laboratory for interpretability. ArXiv, abs/2301.05062, 2023. URL
https://api.semanticscholar.org/CorpusID:255749093.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. ArXiv, abs/2210.10749, 2022. URL https://api.
semanticscholar.org/CorpusID:252992725.

Eric Margolis and Stephen Laurence. How to learn the natural numbers: Inductive inference and the
acquisition of number concepts. Cognition, 106(2):924–939, 2008.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024.

William Merrill. Sequential neural networks as automata. arXiv preprint arXiv:1906.01615, 2019.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36, 2024.

12

https://api.semanticscholar.org/CorpusID:247839823
https://api.semanticscholar.org/CorpusID:237491629
https://api.semanticscholar.org/CorpusID:237491629
https://api.semanticscholar.org/CorpusID:255749093
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:252992725

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemys l aw Kazienko, G Kranthikiran, Jan Koco’n,
Bartlomiej Koptyra, Satyapriya Krishna, Ronald McClelland, Niklas Muennighoff, Fares Obeid,
Atsushi Saito, Guangyu Song, Haoqin Tu, Stanislaw Wo’zniak, Ruichong Zhang, Bingchen
Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, and Ruijie Zhu. Eagle and finch: Rwkv with matrix-
valued states and dynamic recurrence. ArXiv, abs/2404.05892, 2024. URL https://api.
semanticscholar.org/CorpusID:269010053.

Steven T Piantadosi, Joshua B Tenenbaum, and Noah D Goodman. Bootstrapping in a language of
thought: A formal model of numerical concept learning. Cognition, 123(2):199–217, 2012.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear bi-
ases enables input length extrapolation. ArXiv, abs/2108.12409, 2021. URL https://api.
semanticscholar.org/CorpusID:237347130.

Lance J Rips, Jennifer Asmuth, and Amber Bloomfield. Giving the boot to the bootstrap: How not to
learn the natural numbers. Cognition, 101(3):B51–B60, 2006.

Laurence Rousselle and Line Vossius. Acquiring the cardinal knowledge of number words: A
conceptual replication. Journal of Numerical Cognition, 7(3):411–434, 2021.

Anian Ruoss, Gr’egoire Del’etang, Tim Genewein, Jordi Grau-Moya, R. Csordás, Mehdi Abbana
Bennani, Shane Legg, and Joel Veness. Randomized positional encodings boost length generaliza-
tion of transformers. ArXiv, abs/2305.16843, 2023. URL https://api.semanticscholar.
org/CorpusID:258947457.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Seyed Mehran
Kazemi, Najoung Kim, and He He. Testing the general deductive reasoning capacity of
large language models using ood examples. ArXiv, abs/2305.15269, 2023. URL https:
//api.semanticscholar.org/CorpusID:258865898.

Barbara W Sarnecka and Susan Carey. How counting represents number: What children must learn
and when they learn it. Cognition, 108(3):662–674, 2008.

Xing Shi, Kevin Knight, and Deniz Yuret. Why neural translations are the right length. In Jian Su,
Kevin Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2278–2282, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1248. URL https://aclanthology.
org/D16-1248.

Elizabet Spaepen, Elizabeth A Gunderson, Dominic Gibson, Susan Goldin-Meadow, and Susan C
Levine. Meaning before order: Cardinal principle knowledge predicts improvement in understand-
ing the successor principle and exact ordering. Cognition, 180:59–81, 2018.

Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers
as transducers. arXiv preprint arXiv:2404.02040, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced trans-
former with rotary position embedding. ArXiv, abs/2104.09864, 2021. URL https://api.
semanticscholar.org/CorpusID:233307138.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and Sebastian Gehrmann. LSTM networks can per-
form dynamic counting. In Jason Eisner, Matthias Gallé, Jeffrey Heinz, Ariadna Quattoni, and Guil-
laume Rabusseau (eds.), Proceedings of the Workshop on Deep Learning and Formal Languages:
Building Bridges, pp. 44–54, Florence, August 2019. Association for Computational Linguistics.
doi: 10.18653/v1/W19-3905. URL https://aclanthology.org/W19-3905.

Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tommaso Guidi, Marco Gori, and Stefano Melacci.
On the resurgence of recurrent models for long sequences: Survey and research opportunities in
the transformer era. arXiv preprint arXiv:2402.08132, 2024.

13

https://api.semanticscholar.org/CorpusID:269010053
https://api.semanticscholar.org/CorpusID:269010053
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:258947457
https://api.semanticscholar.org/CorpusID:258947457
https://api.semanticscholar.org/CorpusID:258865898
https://api.semanticscholar.org/CorpusID:258865898
https://aclanthology.org/D16-1248
https://aclanthology.org/D16-1248
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://aclanthology.org/W19-3905

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark.
In International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. arXiv preprint arXiv:1906.04284, 2019.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu,
Quanlu Zhang, Mosharaf Chowdhury, et al. Efficient large language models: A survey. arXiv
preprint arXiv:2312.03863, 1, 2023.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. ArXiv, abs/2106.06981,
2021. URL https://api.semanticscholar.org/CorpusID:235421630.

Karen Wynn. Children’s acquisition of the number words and the counting system. Cognitive
psychology, 24(2):220–251, 1992.

Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into
softmax transformers. arXiv preprint arXiv:2404.04393, 2024.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. In Annual Meeting of the Association for Com-
putational Linguistics, 2021. URL https://api.semanticscholar.org/CorpusID:
235166395.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh Susskind. An attention free transformer. ArXiv, 2021. URL https://arxiv.org/abs/
2105.14103.

Shizhuo Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can transformers
learn to solve problems recursively? ArXiv, abs/2305.14699, 2023. URL https://api.
semanticscholar.org/CorpusID:258865729.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks. Advances in Neural Information Processing Systems,
36, 2024.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.
Teaching algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
ArXiv, abs/2310.16028, 2023. URL https://api.semanticscholar.org/CorpusID:
264439160.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

14

https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:235421630
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:235166395
https://arxiv.org/abs/2105.14103
https://arxiv.org/abs/2105.14103
https://api.semanticscholar.org/CorpusID:258865729
https://api.semanticscholar.org/CorpusID:258865729
https://api.semanticscholar.org/CorpusID:264439160
https://api.semanticscholar.org/CorpusID:264439160

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A COUNTING IN OTHER LM ARCHITECTURES

A.1 OVERVIEW OF RNNS AND SSMS

A recurrent architecture, at each step, maintains a hidden state, updates the hidden state when consum-
ing a new input, and produces an output based on both the current hidden state. We denote these three
key operations, namely reception, transition and emission, by i → h, h → h, and h → o, respectively.
A standard (Elman) RNN implements these three steps as a matrix multiplication followed by a
nonlinear activation (σ). An LSTM adopts additional parameters to compute multiplicative gates for
these three steps, achieving more effective forgetting and memory.

ht = σ(Whhht−1 +Wihxt + bh) ot = σ(Whoht + bo) (3)

State Space Models (SSM) also incorporate reception, transition and emission operations (Eq. 4).
Moreover, there is a feedthrough matrix Wio directly sending information from the input to output,
bypassing the hidden state.2 Importantly, an SSM differs from a standard RNN in omitting the
nonlinearity in state transitions. This enables a reparameterization of SSMs into a convolutional form,
presented in Equation 5. The kernelization trick is essential for parallelization during training.

ht = Whhht−1 +Wihxt ot = Whoht +Wioxt (4)

o = x ∗K K = (WhoWih,WhoWhhWih, ...,WhoWhh
kWih, ...) (5)

Linear Attention Zhai et al. (2021), aims to substitute dot-product attention with sub-quadratic
complexity. Linear attention initially suffered from severe performance drop, but was recently
revitalized by the RWKV model family, introducing input-dependent parameters to boost performance.
At the core of RWKV is the wkv operation where qTt ki, as in attention, is replaced by a weighted
sum of history states with discounted weights. A major innovation of RWKV-v6 versus previous
RWKV models lies in input-dependent derivation of the decay factor w.

wkvt =

∑t
i=1

(
e−(t−1−i)w+ki ⊙ vi

)
+ eu+kt ⊙ vt∑t

i=1 e
−(t−1−i)w+ki + eu+kt

(6)

The discounted moving average of history states can be rewritten in a recurrent form, thereby
exhibiting a flavor of state transition.

let αt =

t∑
i=1

(
e−(t−1−i)w+ki ⊙ vi

)
, then αt = e−wαt−1 + ekt ⊙ vt (7)

A.2 EXPERIMENTS AND RESULTS

Comparing performance between Transformers, RNNs and SSMs is important because the dominance
of sequential computation in RNNs or SSMs may encode inductive biases unavailable in Transformers
and favorable for inductive counting. We use the same data and experiment settings described in
Section 3 for RNNs and SSMs. We select the most performant hyperparameters for each individual
architecture.3. Results are shown in Table A1. The key takeaway is that while Transformers need
careful design decisions to count, the simple RNN is able to do everything we have asked, and the
newer SSM architectures have degraded performance. We believe that the inferior performance of
Mamba or RWKV is due to their compromised expressivity in modeling state transitions in exchange
for easy adaptation into the parallel training regime.

B MEDIAN PERFORMANCE OUT OF FIVE RANDOM SEEDS

We sometimes observe high variances across random seeds, suggesting the difficulty for SGD
to find a generalizable solution. Table A2 & A3 report the median performance for the same

2Wih, Whh, Who and Wio correspond to B, A, C and D, respectively, in the SSM community.
3lr∈{5e−5, 1e−{4, 3, 2}}, w_decay∈{0.0, 0.01, 0.001}, dim∈2{5,7,10}, dropout ∈ {0.0, 0.1}, batch=32

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

RNN LSTM S4 Mamba RWKV-v6
Task L IND OOD IND OOD IND OOD IND OOD IND OOD

Helper Token
1 100 100 100 100 100 100 100 15.5 100 100
2 100 100 100 100 100 100 100 12.1 100 100
4 100 100 100 100 100 100 100 76.5 100 100

Helper Token
+ Shifted Start

1 100 100 100 100 100 100 100 1.5 100 3.2
2 100 100 100 100 100 100 100 5.1 100 0.0
4 100 100 100 100 100 100 100 100 100 100

Shifted Start
1 100 100 100 100 100 96.3 100 7.8 99.9 29.4
2 100 100 100 100 100 100 100 99.9 100 30.8
4 100 100 100 100 100 100 100 97.5 100 93.8

Modular (mod10)
1 100 100 100 100 100 98.3 91.8 11.5 100 8.2
2 100 100 100 100 100 100 100 11.1 100 11.0
4 100 100 100 100 100 100 100 16.6 100 12.8

Selective
1 99.3 94.5 100 100 78.3 59.3 100 99.8 100 100
2 99.4 95.1 100 100 91.3 66.7 100 96.6 100 100
4 97.8 85.3 100 100 98.3 72.9 100 97.0 100 100

Selective
+ Modular (mod4)

1 100 100 100 100 87.7 27.8 58.4 28.2 98.5 83.1
2 100 100 100 100 92.9 31.4 99.4 60.7 99.2 56.5
4 100 100 100 100 99.2 37.8 100 59.7 100 56.8

Table A1: Results for recurrent architectures (in-distribution, IND, and OOD). OOD accuracies are
only calculated at extrapolation positions.

experiments presented in Section 4 (Table 2 & A1). There are large discrepancies between the best
and median results for Transformers with SinePE, APE, or SPE. Mamba and RWKV-v6 also exhibit
such instability. As such, although certain architectural choices allows for generalizable solutions,
learnability remains to be a matter of chance. We hope further study on training dynamics can find
out why the likelihood of learning a generalizable solution varies across architectures.

NoPE Sine APE RoPE SPE
Task L IND OOD IND OOD IND OOD IND OOD IND OOD

Helper Token 2 100 98.5 100 66.3 100 55.3 100 100 100 14.2
4 100 100 100 59.9 100 68.4 100 100 100 65.8

Helper Token
+ Shifted Start

1 100 4.1 99.4 0.0 100 13.1 100 5.3 100 4.1
2 100 100 100 99.3 100 81.3 100 48.5 100 6.8
4 100 99.7 100 84.3 100 100 100 100 100 84.5

Shifted Start
1 100 15.3 99.8 2.7 100 40.6 100 37.4 99.6 8.7
2 100 20.9 100 2.0 100 19.7 100 86.6 100 43.7
4 100 39.2 100 36.7 100 26.6 100 96.6 100 30.7

Modular (mod10) 1 11.8 11.8 100 97.9 100 56.5 11.8 11.8 100 8.3
2 11.8 11.8 100 100 100 99.5 11.8 11.8 100 8.3
4 11.8 11.8 100 100 100 99.9 11.8 11.8 100 10.2

Selective
1 95.4 9.2 95.8 51.0 100 10.6 99.7 26.4 99.7 57.1
2 99.7 94.1 99.3 16.3 100 13.5 99.7 48.9 99.7 81.2
4 99.7 100 100 99.8 100 99.9 99.7 47.6 99.7 95.4

Selective
+ Modular (mod4)

2 92.2 55.1 98.7 37.9 99.7 27.2 98.1 32.1 99.6 46.1
4 98.0 91.0 98.8 70.2 99.3 95.0 98.5 38.6 98.2 49.9

Table A2: Results for Transformers corresponding to Table 2, switching from best to median performance out
of 5 runs. Bold entries indicate a >10 absolute gap between the median and best results.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

RNN LSTM S4 Mamba RWKV-v6
Task L IND OOD IND OOD IND OOD IND OOD IND OOD

Helper Token
1 100 100 100 100 100 100 100 15.5 100 0.0
2 100 100 100 100 100 100 100 4.5 100 2.0
4 100 100 100 100 100 100 100 37.0 100 100

Helper Token
+ Shifted Start

1 100 100 100 100 100 100 100 0.7 100 0.0
2 100 100 100 100 100 100 100 5.0 100 0.0
4 100 100 100 100 100 100 100 100 100 44.2

Shifted Start
1 100 100 100 100 100 95.9 100 5.2 99.9 25.0
2 100 100 100 100 100 100 99.8 48.5 100 30.8
4 100 100 100 100 100 100 100 51.7 100 84.0

Modular (mod10)
1 100 100 100 100 100 97.8 89.5 11.5 100 8.2
2 100 100 100 100 100 100 100 11.1 100 8.2
4 100 100 100 100 100 100 100 11.0 100 9.3

Selective
1 98.6 92.5 100 100 72.9 53.0 100 99.3 99.9 98.6
2 99.3 93.7 100 100 91.3 66.7 100 94.8 100 99.9
4 97.3 81.9 100 100 98.2 67.2 100 96.7 100 97.7

Selective
+ Modular (mod4)

1 100 100 100 100 86.1 27.3 58.1 27.4 98.5 83.1
2 100 100 100 100 91.0 31.4 99.1 55.0 99.2 56.5
4 100 100 100 100 99.2 35.9 100 57.9 100 55.1

Table A3: Results for recurrent architectures corresponding to Table A1, switching from best to median
performance out of 5 runs. Bold entries indicate a >10 absolute gap between the median and best results.

C IMPORTANCE OF BOS FOR NOPE AND ROPE

We observed grevious failures of NoPE and RoPE on Counting + Succession and Modular counting
(Table 2 rows 1 & 5), where both IND and OOD performances were below chance-level. The inability
to fit in-domain data took us by surprise. We perform further analysis and find that NoPE and RoPE
crucially depend on the presence of a begin-of-sequence (bos) token in order to fit the in-domain
data. Concretely, we insert <bos>, a token distinct from the remaining vocabulary, at the beginning
of each training sequence. Loss computation at the output side of <bos> is skipped. After such
adjustment, NoPE and RoPE are able to achieve perfect IND accuracy on both Counting + Succession
and Modular counting. Notably, <bos> also improves RoPE-OOD performance on modular counting
well beyond the chance level. A question immediately arises: why other tasks were accomplished
initially? To account for the IND success of NoPE and RoPE in other tasks studied in Section 4,
we believe that the first token in a shifted start sequence may have concurrently played the role of
<bos>4. For selective counting, the task nature may remove the dependence on bos.

The special role of bos has been discussed in the literature. Chiang & Cholak (2022) manually
constructed Transformer weights for recognizing two regular languages, where bos plays key roles in
multiple steps of their construction. Elhage et al. (2021) pointed out a phenomenon called “resting",
where an attention head predominantly attends to a meaningless token by default (i.e. resting
position) if there is no token matches what it looks for. The bos token and punctuation tokens are
common examples of resting positions in a pretrained Transformer. Similarly, Vig & Belinkov (2019)
discovered that 57% of attention was directed to the first token in pretrained GPT-2. These works
provide clues for why bos is critical for NoPE and RoPE in certain counting tasks. A detailed answer
is left for future work. Another intriguing question is why other PEs performed well without bos.
One possibility is that different PEs tend to direct the Transformer towards different solutions, among
which some relies on bos while others do not, implying a diverse algorithmic phase space (Zhong
et al., 2024) in Transformers. Future work is needed to 1) characterize Transformers’ algorithmic
phase space, and 2) analyze how PEs constrain the “navigation" through such a space.

4For the Helper Token task, we reused the data generation process for shifted start sequences, simply fixing
the shift to be 0. We realized later that this inadvertently offered the opportunity for the shifted start token to
serve as <bos> in Helper Token task in the same way as in the Shifted Start task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

w/o bos w/ bos
NoPE RoPE NoPE RoPE

Task L IND OOD IND OOD IND OOD IND OOD

Vanilla
+ Succession

1 2.0 0.0 2.0 0.0 100 0.0 100 0.0
2 2.0 0.0 2.0 0.0 100 0.0 100 0.0
4 2.0 0.0 2.0 0.0 100 0.0 100 0.0

Modular (mod10) 1 11.8 11.8 11.8 11.8 100 10.1 100 27.8
2 12.0 11.8 11.8 11.8 100 8.6 100 40.3
4 11.8 11.8 11.8 11.8 100 8.6 100 41.6

Table A4: Grevious in-domain failures of NoPE and RoPE can be addressed by the bos token, though
their OOD performance benefits less from bos. This finding calls for future work to investigate how
bos affects NoPE and RoPE, and why other PEs/tasks are not affected.

D MODULAR COUNTING ANALYSIS

This section complements Section 5. We describe the additional experiments and analysis performed
upon in-depth investigation of what influential factors account for the empirical observations on
Modular Counting. The mechanism permitting generalization to longer sequences consists of two
steps: First Token Recognition and Position-based Modular Subtraction. These two steps demand a
model to break symmetry and build representations indicative of PID%10, respectively. Figure A1
and Figure A4 show that the model’s inner workings highly align with our mechanism.

APE SinePE

2/
4L

2/
2L

Value vectors Attention output

1/
2L

2/
4L

Figure A1: The first token’s intermediate representations stand out w.r.t the first and second principal
components. And this precedes the attention layer exhibiting an attention pattern concentrating on
the first_tok.

NoPE Sine APE RoPE SPE
Model Configs IND OOD IND OOD IND OOD IND OOD IND OOD

1L, 1h, 32d 0 0 100 100 100 100 0 0 100 100
1L, 1h, 4d 0 0 100 100 100 100 0 0 100 100

Table A5: Results of 1L Transformers trained on the first_tok_homogeneous task. We report the
accuracy of only the first token’s prediction, because a model would easily learn to predict the
majority label ‘F’, which would already allows for a fairly high average accuracy.

First, we design a first_tok_homogeneous task to examine how well each PE schema supports the
inductive bias for breaking the symmetry of a homogeneous sequence. The input-output format is

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Causal Transformer

T F FF F F FF F F FF F F FFOutput

Input

Token embedding (TE) ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’ ‘a’

Position embedding (PE) s+1 s+2s s+3 s+5 s+6s+4 s+7 s+9 s+10s+8 s+11 s+13 s+14s+12 s+15 s: PE shift

Figure A2: Input-output format of the first_tok_homogeneous task, designed for the purpose of
examining which types of PE can be leveraged by Transformers to distinguish among identical tokens.

APE

1st layer output 2nd layer queries 2nd layer MLP intermediate

SinePE

SPE

Figure A3: PCA of intermediate states for 2L APE/SinePE/SPE Transformers trained on modular
counting. This differentiates SPE from APE/SinePE in the ability to count modularly, although all
three PEs accomplish fist token recognition.

illustrated in Figure A2. Each token is supposed to predict a binary label indicating whether it is
the first token in the input sequence. We construct training/IND sequences of length 50 and OOD
sequences of length 128. Following the experimental setup in Section 3, we 1) adopt the position-shift
augmentation, 2) run each training job up to 312.5K or 625K steps (depending on when the model
exhibits strong signs of saturation or plateauing), 3) select the best checkpoint over the entire training
course for each training job, and 4) report the best result out of five seeds. The metric is accuracy,
for which we only evaluate on the first token’s prediction. This is because a model would easily
learn to predict the majority label ‘F’, which would already allows for a fairly high average accuracy.
It is indeed observed that all models have perfectly learned to predict ‘F’ on non-first tokens, so
the performance difference is only manifested via the first token’s prediction. Table A5 presents
the results: Transformers equipped with SinePE, APE or SPE can recognize the first token among
a homogeneous sequence, while NoPE and RoPE cannot. It is worth explaining that RoPE fails

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

APE SinePE

3/
4L

2/
4L

2/
2L

4/
4L

Figure A4: Heads that concentrate their attention on the first_tok are prevelant beyond the first
layer. Note that first_tok heads do not unanimously attend the to the first_tok. Instead, they are
selective for position indices with specific mod-10 values. Encoding such fourier features allows
multiple first_tok heads to collaboratively attend to the first token and may help subsequent layers in
performing modular arithmetic.

because it only modifies queries and keys, leaving the values identical for a homogeneous sequence.
No matter how the attention weights vary, the attention output (i.e. weighted sum of identical value
vectors) would still be identical throughout the sequence.

Second, to investigate whether a model builds representations indicative of PID%10, we visualize
principal components of intermediate states for 2L APE/SinePE/SPE Transformers trained on modular
counting. The fact that APE/SinePE models construct 10 dinstinct groups of representation whereas
SPE models do not, differentiates SPE from APE/SinePE in the ability to count modularly, although
all three PEs accomplish fist token recognition.

Concretely, we feed an input sequence of 128 ’a’ tokens with PIDs 0-127 and record representations
at the 1st layer’s output, the 2nd layer’s queries and the 2nd layer’s MLP intermediate states.
In Figure A3 we plot the first two principal components for 128 tokens, color coded by PID%10,
e.g. tokens whose PIDs belong to 1, 11, 21, 31 ... are assigned the same color. To implement a
generalizable solution for modular counting, tokens with the same value of PID%10 should have
close representations. From the plot we see that the APE/SinePE representations form clean clusters
based on PID modulo 10, while the SPE representations do not.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

w/ Causal Masking w/o Causal Masking
Model Configs IND OOD IND OOD

NoPE 1L, 1h, 4d 100 100 4.0 0.0

Table A6: Results of 1L Transformers trained on the first_tok_heterogeneous task. We report the
accuracy of only the first token’s prediction, because a model would easily learn to predict the majority
label ‘F’, which would already allows for a fairly high average accuracy. PEs are not implemented in
order to demonstrate that Transformers can simply leverage causal masking to accomplish this task.

E SELECTIVE COUNTING ANALYSIS

This section complements Section 5. We describe the additional experiments and analysis performed
upon in-depth investigation of what influential factors account for the empirical observations on
Selective Counting. Section 5 proposes two factors demanded by a mechanism that permits general-
ization: First Token Recognition and Token-based Attention. Unlike modular counting, where the
inputs are homogeneous, selective counting is designed to have heterogeneous inputs containing 10
unique tokens. First Token Recognition on heterogeneous inputs can be achieved purely with causal
masking. PEs may aid First Token Recognition, but at the meantime introduce intricacies interfering
with Token-based Attention, as Token-based Attention ideally requires for the assignment of attention
weights irrespective of positional information.

Causal Transformer

T F FF F F FF F F FF F F FFOutput

Input

Token embedding (TE) ‘a’ ‘b’ ‘j’ ‘a’ ‘f’ ‘d’ ‘g’ ‘g’ ‘i’ ‘c’ ‘e’ ‘a’ ‘f’ ‘e’ ‘c’ ‘h’

Figure A5: Input-output format of the first_tok_heterogeneous task, designed to demonstrate that a
causal Transformer can recognize the first token in a heterogeneous input sequence without the need
for PEs.

First, we design a first_tok_heterogeneous task to demonstrate that causal masking enables First
Token Recognition on heterogeneous inputs. The input-output format is illustrated in Figure A5.
It differs from first_tok_homogeneous in that 1) each input sequence contains a random number
of 10 different tokens, and 2) the removal of PEs. We construct training/IND sequences of length
50 and OOD sequences of length 128, randomly selecting the number of occurrences for each
token and randomly shuffling the sequence. The experimental setup and evlauation metric are
identical to first_tok_homogeneous. Table A6 presents the results: With causal masking, a NoPE
Transformer can accomplish the task with as few as one head and four hidden dimensions. This
is no longer achievable without causal masking, emphasizing the critical role played by causal
masking in first_tok_heterogeneous. In fact, we are able to understand the inner workings of a causal
Transformer on first_tok_heterogeneous. Thanks to causal masking, the first tok will have nothing to
attend to other than itself. Non-first tokens will merge features from predecessors during attention.
MLP layers will learn to distinguish between representations resulted from merges vs. representations
that have not been merged.

Second, we argue that PEs complicate the picture, because PEs might be initially involved in First
Token Recognition, but should better be ignored in order for Token-based Attention. This explains
why NoPE 2L generalizes well in selective counting, whereas APE/SinePE/SPE only achieves
generalization with 4L (Table 2 row 6). SPE’s performance is second to NoPE in a sense that it
suffers less from the complication introduced by PEs — only a single dim is affected by PIDs in SPE.

The complication caused by PEs is further evidenced through comparing performance with vs. without
BOS. Concretely, we repeat our selective counting experiments except for the explicit inclusion of a
beginning-of-sequence (BOS) token. With BOS, PEs need not to be actively engaged in First Token
Recognition. Hence, APE and SinePE will receive cleaner supervision signals encouraging them to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

NoPE Sine APE RoPE SPE
Task L IND OOD IND OOD IND OOD IND OOD IND OOD

Selective 1 100 9.3 100 68.8 100 10.6 100 29.9 100 61.3
Selective + bos 1 100 99.5 100 98.3 100 99.4 100 68.2 100 98.3

Selective 2 100 94.1 100 32.6 100 13.9 100 49.1 100 86.9
Selective + bos 2 100 99.9 100 100 100 95.8 100 40.9 100 99.9

Table A7: Selective Counting requires a subtask of first token recognition. Such a requirement can
be removed by explicitly providing a BOS. With BOS, NoPE and SPE Transformers can learn a
generalizable solution using one layer less than what would be required without BOS. Moreover, the
once noticeable performance gap between APE/SinePE and NoPE disappears with BOS.

ignore PEs. As expected, the performance gap between NoPE/SPE and APE/SinePE vanishes when
BOS is explictly included — they generalize equally well on selective counting with either 1L or 2L
(Table A7).

Lastly, we explain why RoPE is inferior to other PE schemas in both Selective and Selective+BOS.
We hypothesize that the enforcement of recency bias in RoPE makes it hard to escape the influence
of positions when computing attention weights. This is in contrast to APE/SinePE/SPE in which case
it is possible to ignore the influence of PEs through learning. To measure the amount of sensitivity to
PEs in the computation of attention weights, for each pair of (TIDsource,TIDtarget), we compute
the std of qsourcekTtarget across all (PIDsource,PIDtarget) pairs that the source and target tokens can
possibly take. Figure A6 visualizes such variation in attention weights for 1L APE/SinePE/SPE/RoPE
Transformers trained on the Selective+BOS task, color coded according to the std value interval.
Darker cells suggest larger std values, implying greater amounts of variation in attention scores
caused by PEs. Attention scores in an APE model are the least affected by varying PIDs, which is
conducive to Token-based Attention. On the other hand, a RoPE model exhibits the greatest sensitivity
to PEs when computing attention weights, suggesting that it insufficiently learns to disregard PEs as
required by the task. Such a shortcoming of RoPE prevents it from generalizing on selective counting.

APE SinePE SPE RoPE

Figure A6: Variation in attention scores influenced by PEs. First, we take the best performing 1L
checkpoints trained on the Selective Counting + BOS task and compute attention scores (pre-softmax
qkT) between all pairs of tokens. Then we compute the std of attention scores across all possible
assignments of PIDs. Hence, the value of each cell in each of the panels visualized here equals to
the std of qsourcekTtarget values across all PID pairs that the source and target tokens can take (i.e.
PIDsource ≥ PIDtarget following the causal rule).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F ADDITIONAL RELATED WORKS

F.1 FORMALLY CHARACTERIZING TRANSFORMER EXPRESSIVITY

RASP (Weiss et al., 2021) introduces a functional library of Transformer capabilities, based on the
Python programming language. It lays an important foundation for follow-up works to expand on.
For example, Tracr (Lindner et al., 2023) proposes a compiler that allows for automatic crafting of
Transformer weights from a RASP script. This facilitates the comparison of solutions learned through
SGD versus “canonical” ones a human would create. Zhou et al. (2023) updates the RASP library by
adding more realistic assumptions on the numerical bounds, as well as how the position indexes can
contribute to the computation graph.

Others characterize Transformer computations from the perspective of boolean circuits (Cong et al.,
1996; Yang & Chiang, 2024; Strobl et al., 2024; Merrill et al., 2022), where primitives are atomic
boolean operations. This is distinct from RASP, Tracr and our work, as we deal with functional prim-
itives, but may contribute complementary insights. Also note that there lacks empirical validations
accompanying this line of research, opening the room for future work to bridge this gap.

Transformers can be analyzed through Automata Theory (Liu et al., 2022; Del’etang et al., 2022).
This branch has not reached agreement on where the hard boundary for Transformer’s capacity lies.
For example, while (Hahn, 2020) proves the hard limits of self-attention on modeling Dyck, (Yao
et al., 2021; Ebrahimi et al., 2020) demonstrated empirical success. We believe that nuances regarding
the task format, architectural modifications and the definition of generalization vary across studies. It
invites significant future contributions to either remove this complication or unify these nuances.

F.2 RECOGNIZING THE PARITY LANGUAGE

There is a strong connection between our work and previous works on PARITY or counter languages.
Hahn (2020) suggested that Transformers have theoretical difficulty in expressing PARITY, while
Chiang & Cholak (2022) demonstrated that such limitation can be overcome via hand-constructed
weights Regarding this topic, it is important to distinguish between two notions of difficulty: difficulty
to fit in-domain data vs. difficulty to length-generalize. In the context of theoretical discussions,
the difficulty of PARITY for transformers often means the inability to fit the training data when the
training sequence length approaches infinity, i.e. Transformers cannot express PARITY for arbitrarily
long sequences. Such a limitation is empirically corroborated for pure-attention Transformers.
Bhattamishra et al. (2020) argued for the necessity of PEs in recognizing PARITY, while admitting
that PEs learned in-domain cannot be used for sequences of higher lengths. Our results similarly
suggest that PEs enable Transformers to fit the training data where NoPE fails to learn. However,
“difficulty" in the context of this paper mainly refers to generalization beyond the training SEQLEN
range. The PE shift trick used in our experiments presents one step towards better generalization
performance. But we demonstrate that PE shift only lifts one barrier towards generalization (OOD-
position), leaving the other barriers (OOD-cardinality, OOD-range-of-dependency) unsolved.

F.3 RECURRENCE WITH ATTENTION

Many studies attempt to promote new architectures that address the fundamental tradeoff between
efficient training and efficient inference. Transformers achieve the former thanks to the parallel
attention mechanism, while an RNN features the latter with linear time complexity and constant
history memory. Towards achieving the best of both worlds, previous works have focused on either
proposing attention-ish mechanisms with subquadratic time complexity (Zhai et al., 2021; Peng et al.,
2023; 2024), or modernizing RNN to permit parallelized training (Gu et al., 2021b; Gu & Dao, 2023;
Nguyen et al., 2024). We refer the reader to Tiezzi et al. (2024); Wan et al. (2023) for surveys on this
emergent area. Extending the expressivity analysis for Transformers to these new RNN architectures
(Merrill, 2019; Merrill et al., 2024) would be a fruitful direction.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G ADDITIONAL FIGURES AND TABLES

Count('a1') in the input sequence Count('a1') in the input sequenceCount('a1') in the input sequence

Training Data IND Testing Data OOD Testing Data

Figure A7: Distribution of the number of occurrences for token ‘a1’ in Selective Counting. In the
OOD test set, Count(‘a1’) is skewed towards larger values because OOD sequences are longer while
we restrict each token to appear less than ten times to avoid OOD-cardinality. Tokens ‘a2...a10’ have
similar distributions.

MAX_TRAIN_SEQLEN | MAX_OOD_SEQLEN
25 | 50 50 | 100 25 | 100 50 | 200 25 | 200

Task L IND OOD IND OOD IND OOD IND OOD IND OOD

Shifted Start 4 100 84.3 100 98.9 100 30.9 100 22.1 100 11.4

Table A8: Performance of RoPE 4L Transformers on Shifted Start Counting with varied combinations
of MAX_TRAIN_SEQLEN and MAX_OOD_SEQLEN. The MAX_PID hyperparameter is also
adjusted in proportion to MAX_OOD_SEQLEN. Generalization deteriorates as the ratio between
MAX_OOD_SEQLEN and MAX_TRAIN_SEQLEN becomes greater.

24

	Introduction
	Background
	Definition of Counting
	The Transformer Architecture
	Axes of Sequential Computation in Different Architectures

	General Experimental Setup
	Data Creation
	Implementation
	Checkpointing and Evaluation

	Counting
	Why do each of the PE strategies behave differently?
	Counting in Other LM Architectures
	Related Works
	Conclusion
	Counting in Other LM Architectures
	Overview of RNNs and SSMs
	Experiments and Results

	Median Performance out of Five Random Seeds
	Importance of BOS for NoPE and RoPE
	Modular Counting Analysis
	Selective Counting Analysis
	Additional Related Works
	Formally characterizing Transformer expressivity
	Recognizing the PARITY Language
	Recurrence with attention

	Additional Figures and Tables

