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Abstract

Genomic language models (gL Ms) have transformed biomedical research by en-
abling large-scale generation and analysis of DNA sequences. Evo, a powerful
gL.M trained across multiple species, was designed to uncover patterns that link
genetic variation to traits and disease risk. However, its generative capabilities
raise biosafety concerns: given minimal input, Evo can produce sequences resem-
bling those found in harmful biological agents. In this study, we analyze Evo’s
susceptibility to generating toxic outputs. Using a curated dataset of experimen-
tally validated toxic bacterial sequences, we prompt Evo with partial contexts and
evaluate its completions using ToxinPred3 and ToxinPred2. While reconstruction
fidelity improves with longer prompts, we observe that toxic protein predictions
double in the presence of prompt context. These findings highlight a pressing need
to assess and regulate the use of genomic foundation models in laboratory and
clinical settings, where malicious intent can lead to harmful generation.

1 Introduction

The rapid advancement of genomic foundation models (gLMs) has redefined the landscape of
biological sequence modeling, enabling tasks that have been. previously reliant on labor-intensive
experimentation to be addressed computationally at scale. Inspired by the architecture and learning
paradigms of large language models (LLMs), these models operate directly on nucleotide sequences
and have shown unprecedented generalization across species and sequence lengths.

This trend toward deep learning-driven biological modeling is also reflected in work like AlphaFold,
which achieved high-accuracy protein structure prediction from amino acid sequences Jumper et al.
[2021]]. Although distinct from language models, AlphaFold demonstrated the capacity of neural
architectures to extract structural and functional signals from raw biological sequences alone. This
development reinforced the feasibility of using sequence-only modeling to solve complex biological
problems and helped lay the conceptual groundwork for generative genomic models.
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In light of these contributions, models such as Evo Meier et al.| [2023]], Evo2 |Arc Institute] [2024]],
and HyenaDNA [Poli et al.|[2023]] have demonstrated the capacity to capture meaningful biological
representations, ranging from mutational impacts to protein functionality. Evo was among the
first to apply transformer-based architectures at genome scale, revealing how language modeling
approaches could generalize to molecular sequences. Evo2, developed as an up-scaled version of Evo,
increased both the size of the model and the training data: trained on OpenGenome?2, it spans 9.3
trillion nucleotides and more than 128,000 genomes, positioning it as one of the most comprehensive
generative models in biology to date Arc Institute|[2024]. HyenaDNA, on the other hand, utilizes
efficient Hyena operators to model long-range dependencies without relying on attention mechanisms,
showing promise in enhancer and regulatory sequence modeling Poli et al.|[2023].

These advances mark a pivotal shift in genomics, with gLLMs now being used for tasks including
sequence generation, genome annotation, mutation effect prediction, and synthetic genome design.
Studies such as|Feng et al.|[2024] have benchmarked a variety of genomic models—DNABERT-2,
NT-v2, HyenaDNA—across over 50 classification tasks, revealing their utility in zero-shot settings
and their sensitivity to tokenization strategies, pooling layers, and training domain generalization.

However, while model capabilities have grown, research into their failure modes, particularly under
adversarial or high-risk conditions, is still limited. Given that gl. Ms are frequently trained on
publicly available genomic datasets—including pathogenic genomes and toxin-coding sequences |Arc
Institute| [2024],|Olson et al.|[2022]—they may be capable of reconstructing or approximating harmful
biological agents. This becomes especially dangerous when partial prompting allows the model to fill
in toxic sequences, a form of structural "leakage" from benign prompts. Unlike traditional sequence
alignment or motif-matching methods, generative models can synthesize novel combinations that
mirror functional bioactivity.

These risks highlight the importance of evaluating not just the accuracy of genomic models, but
also the conditions under which they may generate unsafe outputs. Understanding how architectural
differences and prompt design affect biosafety is essential for guiding responsible use and future
development of these models.

2 Problem and Motivation

Genomic foundation models (gL.Ms) are increasingly being adopted for critical applications such as
protein engineering, genome annotation, and de novo sequence design. Their generative capacity
introduces not only technical potential but also new categories of risk—particularly when models are
conditioned on biologically sensitive inputs.

In parallel, studies in the LLM domain have revealed that generative models are susceptible to
manipulation via adversarial or indirect prompting strategies prompting strategies Adversa|[2023]],
Wei et al.| [2022], Zou et al.|[2023] . Despite these findings, the safety landscape for biological
generation remains underdeveloped. Tools like Evo, Evo2, and HyenaDNA have yet to be thoroughly
tested for robustness in response to toxic or bioactive prompt inputs.

This gap motivates our investigation into the safety implications of gL.Ms when conditioned on partial,
toxicity-relevant genomic fragments. We examine how prompt length and structure influence both
sequence reconstruction fidelity and the generation of potentially harmful biological outputs across
different model families. into the safety implications of genomic language models (g.Ms) when
conditioned on partial, toxicity-relevant prompts.

We examine the extent to which prompt length influences both the accuracy of sequence reconstruction
and the generation of toxic content across multiple gLM architectures. Specifically, we evaluate
whether providing partial genomic contexts can induce biologically unsafe completions, and how this
behavior varies as a function of both model architecture and prompting strategy.

3 Related Work

Genomic foundation models (gLMs) have recently gained attention for their ability to model and
generate biological sequences. Evo, Evo2, and HyenaDNA represent key advancements in this
space. Evo established the use of transformer-based architectures for modeling biological sequences,
while Evo2 extended this framework to support over 9.3 trillion nucleotides spanning more than



128,000 genomes. HyenaDNA introduced Hyena operators as a computationally efficient alternative
to attention mechanisms, enabling more scalable training on long genomic contexts.

While not a genomic language model, AlphaFold demonstrated that deep learning architectures can
accurately infer protein structure from sequence alone, without relying on co-evolutionary features
or templates Jumper et al.| [2021]]. This result reinforced the feasibility of learning biologically
meaningful representations directly from raw sequences, and helped lay conceptual groundwork
for models like Evo and HyenaDNA that aim to capture structure and function through generative
modeling.

While the architectural innovation in these models is significant, prior work has largely empha-
sized predictive performance rather than generation safety. For example, benchmarked models
like DNABERT-2 and HyenaDNA across 57 classification tasks, evaluating runtime efficiency and
generalization ability. However, these evaluations primarily focused on embedding quality and did
not assess whether the models could produce biologically harmful outputs.

In parallel, research on large language models has revealed how prompting techniques can lead to
unintended or unsafe outputs. Techniques such as Best-of-N sampling Zou et al.| [2023]], Chain-
of-Thought prompting [Wei et al.|[2022], and jailbreak taxonomies /Adversal[2023]] have been used
to stress-test model alignment. These strategies, while developed for text-based models, suggest
similar risks could emerge in genomic contexts, especially where training data includes pathogenic or
toxin-related sequences.

To our knowledge, few studies have investigated how gl.LMs behave when prompted with toxicity-
relevant inputs. Most safety work in bioinformatics has focused on static toxicity prediction using
tools like ToxinPred2 [Sharma et al.|[2022], rather than integrating these classifiers into the generative
evaluation of modern language models. Our study contributes to this underexplored area by adver-
sarially probing multiple gL.Ms to characterize prompt-induced toxicity and assess their biosafety
robustness.

4 Methodology

Split genomes into prefix/
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CCAAATTCACTATTCTCTTG AAATATTACTTATACACAAC
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generated completion

ATGACGTCGAAATTGTATT ATCGTTTTGAATITATTTTTC
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Model-generated vs. expected
suffixes. Evo's generated completions
are compared against the true suffix
for evaluation.

3

AlphaFold2 was used to predict protein
structures from generated sequences.

Figure 1: Prompting Pipeline

Table 1. Toxicity rates for each sequence set

Toxic f Total (%)
Peptides, generated only 474/2,699 (17.6)
Peptides, prompt + generated  194/1,106 (17.5)
Proteins, generated only 26/188 (13.8)
Proteins, prompt + generated ~ 56/181 (31.0)

Sequence set

Biosafety analysis was performed using
ToxinPred2 and ToxicPreds3 to evaluate the
toxicity of generated protein sequences



4.1 Data Collection

Bacterial DNA sequences were collected as FASTA files from the Bacterial and Viral Bioinformatics
Resource Center (BV-BRC) dataset. We filtered for genomes that were representative genomes,
occured in mammals, and for their sequences to exude toxic traits in vivo to ensure biological
relevance. We ended up with a total 185 after filtering constraints.

4.2 Prompting Strategies
4.2.1 Model Initialization and Tokenization

We choose to use evo-1-8k-base which is the base Evo 1 model with 8192 context accessed through
Evo’s HuggingFace repository in order to. All generated tokens are the standard DNA nucleotides
{A,G.C T}

4.2.2 Dataset Preparation

All available FASTA files from the BV-BRC data are merged, upper-cased, stripped of whites-
pace, and deduplicated. No sequences were above the 8192 token context length requirement of
evo-1-8k-base, yielding 185 unique samples {s; } 125 with |s;| < 8192.

4.2.3 Prompt Construction

For each s; we create five deterministic prompts consisting of {10, 20, 30,40,50}% of the in-
put sequence. We then prompt the model to generate its best fit rendition of the corresponding
{90, 80, 70, 60, 50}% DNA sequence.

4.2.4 Decoding Policy

Continuations are generated with strict greedy decoding. No temperature, nucleus, or top-k sampling
is applied. This is done to ensure reproducibility and that the generation is the model’s most probable
output.

4.2.5 Accuracy Metric

We report the normalised Needleman—Wunsch alignment score

A NW (¢, ¢
NAS(¢, t) = 2|(t) € [0,1],
with match=+2, mismatch=—1, gap-open=—2, gap-extend=—0.5. This is designed to mimic BLAST
similarity which shows how similar two sequences are to each other. In this case, we compare each
suffix sequence generated by Evo to the corresponding portion of the input/ground-truth sequence.

4.3 Toxicity Evaluation

We chose to evaluate toxicity through multiple metrics. The first is the normalized BLAST-like score
above to measure sequence similarity. We choose to use two sets of sequences: the prompt and Evo’s
generation, versus Evo’s generation alone. We then convert each set’s DNA sequences to protein and
peptide sequences through BioPython, transcribing from all 6 Open Reading Frames, 3 from the
forward strand and 3 from reading from the reverse strand. We define peptides to be any sequence to
be greater than or equal to 5 AA and less than 50 AA to account for functional purposes, and proteins
to be any sequence greater than 50 AA. Then, we filter out any duplicate sequences from transcribing
from multiple ORFs, and make sure the amino acid sequences derived from the prefix + generation
are distinct from the transcribed sequences from just the generation. Then we choose to use ToxPred
3.0 and ToxPred 2.0 to classify each peptide/protein as toxic or non-toxic.

4.4 Compute Resources

All experiments were conducted on an NVIDIA H200 GPU with 141 GB of memory, accessed
through RunPod. Each experimental run (generating completions for 185 sequences across 5 prompt
lengths) required approximately 5 hours of execution time.



Average Normalized Alignment Score vs Input Percentage
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Figure 2: Normalized Alignment Score per Input Percentage
5 Results

Evo’s alignment performance improves substantially with increased prompt length but begins to
saturate beyond the 30% input threshold. Specifically, providing just the first 30% of a toxic reference
sequence yields a normalized alignment score of 0.47, nearly matching the maximum score of 0.48
achieved at 50%. This suggests that Evo recovers the core sequence structure early in generation,
with further context contributing minimally to reconstruction fidelity.

Table 1: Toxicity rates for each sequence set

Sequence set Toxic / Total (%)

Peptides, generated only 474/2,699 (17.6)
Peptides, prompt + generated 194/1,106 (17.5)
Proteins, generated only 26/188 (13.8)
Proteins, prompt + generated ~ 56/181 (31.0)

ToxinPred2 and ToxinPred3 were used to classify each protein and peptide sequence respec-
tively as toxic or non-toxic. In terms of toxicity, peptide sequences exhibited consistent rates
across both generation strategies, with 17.6% of generated-only sequences and 17.5% of
prompt plus generated sequences classified as toxic by ToxinPred2. However, protein
sequences showed a more pronounced shift: the proportion of toxic proteins rose from 13.8% in the
generated-only condition to 31.0% when prompts were included.

Taken together, these results show that prompting enhances fidelity with diminishing re-
turns beyond a third of the input, and that while peptide toxicity is stable, protein toxicity appears
sensitive to context length and composition. This pattern may reflect the model’s capacity to extend
functional or pathogenic motifs present in the input prompt, particularly in longer and more complex
protein-coding regions. Notably, the sharp increase in protein toxicity suggests that longer prompts
could amplify bioactive patterns embedded in the original sequence, even without direct supervision.
These findings highlight the need to further investigate sequence-level attributes that predispose
models to unsafe completions, especially for outputs with known or suspected functional roles.



6 Limitations

This study has a few limitations that may affect the generalization and interpretation of the results. The
genomic inputs used in the experiments consist of partial sequences rather than complete genomes.
While these fragments were selected for relevance to toxic biological traits, they may not fully capture
the structural and regulatory complexity of intact genomic contexts.

Additionally, the model outputs often contained repetitive base patterns. These patterns may reduce
the biological realism of the generations and potentially inflate alignment metrics or affect toxicity
classification outcomes.

These limitations should be considered when interpreting the findings, and future work should aim to
incorporate full-genome inputs and further investigate the impact of prompt structure on the fidelity
and safety of generated sequences.

7 Conclusion

This study demonstrates that genomic foundation models (gL.Ms), even when prompted with limited
sequence context, can generate biologically plausible continuations with high alignment fidelity.
Increasing prompt length was found to improve sequence reconstruction, but also introduced risks:
protein sequences generated from partial contexts exhibited significantly higher toxicity rates com-
pared to their unprompted counterparts.

These findings reveal a trade-off between generative accuracy and biosafety in gLMs. While longer
prompts enhanced the recovery of biological structure, they also increased the likelihood of producing
potentially harmful outputs. Peptide toxicity remained stable across prompt conditions, but protein
toxicity nearly doubled—underscoring the need for targeted safety mechanisms, especially when
generating longer and more functionally relevant bio-molecules.

Our evaluation contributes an initial framework for prompt-based adversarial analysis in gL.Ms,
showing that even well-aligned models can be steered toward undesirable behavior through prompt
manipulation. However, given that our experiments used partial genomic inputs and that model
outputs frequently contained repetitive base patterns, the biological realism of these sequences may be
limited. These constraints should be considered when interpreting biosafety implications, and future
studies should evaluate full-length genomic contexts and a broader range of model architectures.

As gl.Ms become more widely integrated into synthetic biology workflows, we emphasize the need
for pre-deployment safety audits, context-aware decoding strategies, and toxin-aware post-generation
filtering. Future work should incorporate empirical validation of toxicity predictions and establish
more comprehensive standards for responsible generative model use in biological domains.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions: analyzing Evo’s
susceptibility to generating toxic sequences, measuring reconstruction fidelity and toxicity
across prompt lengths, and highlighting biosafety implications. These claims are consistent
with the results presented in Sections 5 (Results) and 7 (Conclusion).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 6 explicitly discusses limitations: use of partial genomes rather than
complete ones, potential inflation of alignment scores due to repetitive base patterns, and
reduced biological realism. These constraints are openly acknowledged.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present new theorems or formal proofs. The work is
empirical, relying on experiments and evaluations of gLM outputs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methodology section (4) describes data sources (BV-BRC), preprocessing
steps, prompt construction, decoding policy, and alignment metric. While code is not
released, the description provides sufficient detail to replicate the experiments given access
to the same model and dataset.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not release the code or generated sequences due to biosafety risks. The
methodology (Section 4) provides sufficient detail for reproduction with access to Evo and
BV-BRC data, but releasing outputs directly could enable malicious use.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 details dataset preparation, model initialization, decoding policy, and
scoring. Hyperparameters are minimal because greedy decoding was used with no sampling.
These choices are clearly stated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: Results are presented as point values (alignment scores and toxicity rates)
without error bars, variance, or confidence intervals. While trends are clear, statistical
robustness is not quantified.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.4 specifies the compute setup. All experiments were run on a single
NVIDIA H200 GPU with 141 GB of memory via RunPod. Each full set of runs across 185
sequences and five prompt-length conditions required approximately 5 hours of execution.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work complies with NeurIPS Code of Ethics. The paper discusses
biosafety risks, emphasizes responsible use, and does not release unsafe assets. Anonymity
is preserved.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

11


https://neurips.cc/public/EthicsGuidelines

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 7 (Conclusion) and throughout the paper, both positive (scientific
insight, safety evaluations of gl. Ms) and negative (misuse potential for harmful sequence
generation) societal impacts are discussed. The need for safeguards and audits is highlighted.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: While no assets are released, the paper explicitly recommends safeguards such
as pre-deployment safety audits, toxin-aware post-generation filtering, and context-aware
decoding (Section 7). These are responsible precautions for high-risk applications.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The BV-BRC dataset (Olson et al. 2022) and Evo model (Meier et al. 2023)

are properly cited. Both are public research resources. Licensing details are handled via
their respective repositories.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets, models, or benchmarks are released. The contribution is
analysis and evaluation, not asset release.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The study does not involve human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human participants, thus IRB approval is not
applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The study uses genomic language models (gLMs) such as Evo, but not general-
purpose LL.Ms for methods. Any Al tools used for editing are outside the methodology, so
declaration is unnecessary.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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