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Abstract
Since previous emotional TTS models are based
on a two-stage pipeline or additional labels, their
training process is complex and requires a high
labeling cost. To deal with this problem, this pa-
per presents E3-VITS, an end-to-end emotional
TTS model that addresses the limitations of ex-
isting models. E3-VITS synthesizes high-quality
speeches for multi-speaker conditions, supports
both reference speech and textual description-
based emotional speech synthesis, and enables
cross-speaker emotion transfer with a disjoint
dataset. To implement E3-VITS, we propose
batch-permuted style perturbation, which gener-
ates audio samples with unpaired emotion to in-
crease the quality of cross-speaker emotion trans-
fer. Results show that E3-VITS outperforms the
baseline model in terms of naturalness, speaker
and emotion similarity, and inference speed.

1. Introduction
Over the past few years, the development of neural text-to-
speech (TTS) systems has shown significant advancements.
However, the majority of studies have primarily focused on
synthesizing speech in a standard reading style. This has
led to the emergence of enhancing the expressiveness of
generated speech as a new challenge. A potential method
to address this challenge is to consider various conditions,
such as prosody (Ren et al., 2019; 2021; Łańcucki, 2021;
Bak et al., 2021), language (Cho et al., 2022; Casanova
et al., 2022), and emotion (Wang et al., 2018). To achieve a
more human-like TTS system, it is crucial to improve the
modeling of varying emotions (Tan et al., 2021).

The most naive approach to implementing emotional TTS
models is relying on supervised learning (Lee et al., 2017;
Liu et al., 2021; Lei et al., 2021) with labeled emotional
speech corpora. However, this requires a large speech cor-
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pus for each pair of every speaker and emotion. Cross-
speaker emotion transferable models (Xue et al., 2021;
Kulkarni et al., 2021; An et al., 2021; Sam Ribeiro et al.,
2022; Terashima et al., 2022) alleviate this limitation but
still limited to predefined categorical labels. To address
this problem, unsupervised learning-based models (Wang
et al., 2018; Qiang et al., 2022) utilize a reference encoder
(Skerry-Ryan et al., 2018). In these models, the reference
encoder extracts emotional features from a reference speech,
allowing for the free use of diverse emotions.

To combine the advantages of both categorical labels and
reference encoder, some previous studies (Kim et al., 2021b;
Shin et al., 2022) have introduced certain language models
(Reimers & Gurevych, 2019; Brown et al., 2020). These
models employ both reference encoder and language model-
based style tag encoder, which extracts a style embedding
from a textual description of a speaking style called a style
tag. By leveraging linguistic information, these models are
able to synthesize speech with both seen and unseen style
tags. However, these models are two-stage models that re-
quire sequential training or fine-tuning of the vocoder, result-
ing in an increased effort compared to single-stage training.
While there have been several end-to-end TTS models with
single-stage training, their application in emotional speech
synthesis has been relatively limited. For instance, Period
VITS (Shirahata et al., 2022) is an end-to-end emotional
TTS model that utilizes pitch to achieve stability. However,
this model relies on external modules and manually labeled
phoneme duration from professional annotators, and does
not support cross-speaker emotion transfer.

In this study, we present E3-VITS, a multi-speaker end-to-
end emotional TTS model that facilitates speech synthesis
using both reference speech and textual emotional descrip-
tions, without the constraint of predefined categorical labels.
We adopt domain adversarial training (DAT) to disentangle
text representation from speaker and emotion features. To
enhance the expressiveness of cross-speaker emotion trans-
fer, we introduce batch-permuted style perturbation. Using
these techniques, our model generates high-quality emo-
tional speeches without any external modules or additional
duration data. By allowing cross-speaker emotion transfer
with a disjoint dataset, E3-VITS reduces the demand for
large quantities of emotional speech corpora, enabling more
cost-effective training.
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Figure 1. Block diagram of a system overview of E3-VITS in (a) training procedure and (b) inference procedure.

2. Method
The proposed E3-VITS model is built upon the architecture
of VITS (Kim et al., 2021a) as illustrated in Figure 1. We
add style embedding and the style encoder (Shin et al., 2022)
to enable emotion control and attach domain classifiers to
prevent entanglement. We also modify generative adversar-
ial network training with batch-permuted style perturbation
to improve the quality of cross-speaker emotion transfer. To
ensure stable duration prediction (Casanova et al., 2022), the
stochastic duration predictor of VITS is replaced with the
deterministic duration predictor of FastSpeech 2 (Ren et al.,
2021). This replacement improves the robustness of the
model and ensures accurate phoneme duration prediction.

2.1. Style Embedding

In E3-VITS, emotional information is incorporated by uti-
lizing a style embedding, which has the same dimension
of 256 as the speaker embedding. The style embedding is
obtained from the style encoder, which is composed of the
reference encoder (Min et al., 2021) and SBERT (Reimers
& Gurevych, 2019)-based style tag encoder (Shin et al.,
2022). The style embedding is inputted into each module
alongside the speaker embedding. In each training itera-
tion, E3-VITS randomly selects a style embedding from the
reference speech or the style tag with an equal probability.

2.2. Domain Adversarial Training

To separate speaker information from text representation
htext, we implement DAT (Ganin et al., 2016) which is used
in TTS (Cho et al., 2022; Li et al., 2022; Kim & Chang,
2022) by integrating a speaker reversal classifier. We fur-
ther introduce a style reversal classifier that classifies the
style tag to remove emotional information from the text
representation. However, in our preliminary experiments,
the style classifier does not exhibit significant improvement

due to overfitting. To avoid the complexity inherent in style
tags, which are fine-grained labels, we employ more general
classes, emotional categories, as coarse-grained labels in
the style classification, which lead to more expressive syn-
thesized speech. These two labels are detailed in Section
3.1. Both the speaker and style classifiers consist of fully
connected layers and a gradient reversal layer, receiving the
hidden text representation htext as an input. Additionally,
we include the same speaker classifier that gets the style
embedding from the style encoder as input to prevent the
potential leakage of speaker information.

2.3. Batch-permuted Style Perturbation

Inspired by the adversarial loss of X. An et al. (An et al.,
2021), we introduce a method to improve the quality of the
synthesized speech with unpaired speaker and emotion that
are not paired in the dataset by feeding not only generated
audio sample with paired speaker and emotion, but also
generated audio sample with unpaired speaker and emotion
set during training. In the proposed method, we perturb the
style embedding of latent variables z in a batch by referring
voice conversion process of VITS through its flow mod-
ule (Kim et al., 2020; 2021a). Thus, style-perturbed latent
variables z̃ of the unpaired set are calculated as follows:

z̃ = f
(
f−1(z|s, e)|s, ẽ

)
, (1)

where f denotes normalizing flow, z are latent variables
of the paired set, s and e are paired speaker embedding
and style embedding, and ẽ is a style embedding that is not
paired with the speaker of s in the training dataset. For
each batch, unpaired style embeddings are generated from
randomly permuted paired style embeddings. A stop gradi-
ent operator (van den Oord et al., 2017) is applied after the
forward process of flow to limit its impact on other modules.
After calculating z̃, z and z̃ are concatenated and fed into the
decoder. In the discriminator, the paired ground truth audio
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sample is utilized as a real sample for the generated audio
sample of unpaired set. Hence, discriminator adversarial
loss LD

adv and generator adversarial loss LG
adv of E3-VITS

are described as:

LD
adv =Ey,z

[
(D(y)− 1)

2
+D (G(z))

2
]

+ Ey,z̃

[
(D(y)− 1)

2
+D (G(z̃))

2
]
, (2)

LG
adv =Ez

[
(D(G(z))− 1)

2
]

+ Ez̃

[
(D(G(z̃))− 1)

2
]
, (3)

where G denotes the decoder, D denotes the discriminator,
and y is the ground truth waveform. Since feature matching
loss (Larsen et al., 2016) is used in adversarial training
of VITS, we also modify feature matching loss LG

fm to
consider the style perturbation:

LG
fm =Ey,z

[
T∑
l=1

1

Nl

∥∥Dl(y)−Dl(G(z))
∥∥]

+ Ey,z̃

[
T∑
l=1

1

Nl

∥∥Dl(y)−Dl(G(z̃))
∥∥] , (4)

where T is the total number of layers of the discriminator,
and Dl(x) denotes outputted feature map of Nl features
from the lth layer of the discriminator with input x.

2.4. Objective Function

To learn emotional features, we employ the loss function
Lstyle comprises of the three style losses (Shin et al., 2022)
given by:

Lstyle = αLemb
s + βLrec

s + γLcon
s , (5)

where Lemb
s , Lrec

s , and Lcon
s denotes style embedding loss,

style reconstruction loss, and style contrastive loss, respec-
tively with loss weights α = β = 45 and γ = 0.45. The
ratio of the weights is set consistently with the setting of Y.
Shin et al. (Shin et al., 2022), while weights are scaled up to
the same weight as mel reconstruction loss to integrate the
style encoder with VITS. The temperature of Lcon

s is fixed
at 1.0 to stabilize training.

Thus, the total training objective functions of discriminator
LD
total and generator LG

total are defined as:

LD
total =LD

adv, (6)

LG
total =Lrecon + Lkl + Ldur

+ LG
adv + LG

fm + Lstyle + λLdat, (7)

where Lrecon, Lkl, Ldur comes from losses for training
original VITS, Ldat represents total loss for classification
loss in DAT, and λ is the scale factor. Ldat is the sum of the
three reversal classification losses with equal weights and λ
follows the schedule in SANE-TTS (Cho et al., 2022).

3. Experiments
3.1. Data

In this study, we utilize FSNR0 (Kim et al., 2021b) Korean
Style Tagging TTS dataset1 which includes speech record-
ings, transcriptions, emotional category, and style tags from
8 professional voice actors. The style tags are concise de-
scriptions of the speaking style with a total of 332 tags
classified into 16 general emotional categories. Examples
of style tags and their corresponding emotional categories
are shown in Table 1. To create a neutral source dataset, we
select 2 speakers from the dataset and only use samples with
a neutral style tag for these speakers. Data preprocessing
involves the conversion of transcriptions into phoneme se-
quences using an internal grapheme-to-phoneme converter
and the resampling to 22.05 kHz. The dataset is partitioned
into training and evaluation sets comprising 115,227 and
480 samples, respectively.

Table 1. Examples of style tags and their emotional categories. We
also add their English translation for understanding.

Emotional category Style tag Translation

ANGRY 위협하듯 threateningly
ANGRY 심술난듯 nasty

SAD 미안한듯 sorry
JOY 농담하듯 jokingly
JOY 신난듯 excitedly

3.2. Experimental Setup

For the language model of the style tag encoder, we uti-
lize an implementation of Korean SBERT2 (Reimers &
Gurevych, 2019). Since the VITS architecture feeds sliced
latent variables into the decoder, we set the length of the
sliced segment to 16,384 samples, twice that of VITS. This
is done to provide the reference encoder with sufficient lin-
guistic information when it receives the predicted mel spec-
trogram from the decoder. We train our proposed model
for 150 epochs using two NVIDIA A100 GPUs with an
initial learning rate of 2.0 × 10−5 and a batch size of 48,
employing mixed precision and gradient clipping during
the training process. The other hyperparameters follow the
original VITS and style encoder. As a baseline model, we
compare E3-VITS to Tacotron 2-GST3 (Wang et al., 2018)
with HiFi-GAN4 (Kong et al., 2020) vocoder which is also
used as a baseline in previous studies (Kim et al., 2021b;
Shin et al., 2022) of language model-based emotional TTS.

1https://www.aihub.or.kr/
2https://github.com/BM-K/Sentence-Embedding-Is-All-You-

Need
3https://github.com/jinhan/tacotron2-gst
4https://github.com/jik876/hifi-gan

3



E3-VITS: Emotional End-to-End TTS with Cross-speaker Style Transfer

Table 2. Results of naturalness, speaker similarity, and emotion similarity MOS evaluation

Method Naturalness Speaker similarity Emotion similarity

Neutral
Seen

emotional
Unseen

emotional Neutral
Seen

emotional
Unseen

emotional
Seen

emotional
Unseen

emotional

Ground truth 4.56 ± 0.11 4.79 ± 0.06 - 4.58 ± 0.13 4.44 ± 0.12 - 4.01 ± 0.14 -

Tacotron 2-GST 1.42 ± 0.13 1.19 ± 0.07 1.20 ± 0.08 1.53 ± 0.16 1.26 ± 0.11 1.47 ± 0.16 1.31 ± 0.12 1.18 ± 0.09

E3-VITS (style tag) 3.00 ± 0.16 2.96 ± 0.14 3.17 ± 0.17 3.77 ± 0.19 3.28 ± 0.22 3.13 ± 0.21 2.83 ± 0.22 3.02 ± 0.23
E3-VITS (reference) 2.92 ± 0.14 3.04 ± 0.17 3.03 ± 0.16 3.62 ± 0.19 3.17 ± 0.23 3.27 ± 0.22 2.85 ± 0.21 2.98 ± 0.20

3.3. Evaluation Metric

We assess the speech naturalness, speaker similarity, and
emotion similarity of three methods - Tacotron 2-GST (base-
line), E3-VITS (reference), and E3-VITS (style tag) - using
a 5-point mean opinion score (MOS) test on a 95% confi-
dence interval. E3-VITS (reference) and E3-VITS (style
tag) are speech synthesis methods that use reference speech
and style tag, respectively. We measure the MOS scores
separately for neutral and emotional speech synthesis. To
validate the cross-speaker emotion transferability, the emo-
tional synthesis is categorized by its speaker. Emotional
target and neutral source speakers speak with seen and un-
seen emotion, respectively.

To generate audio samples for evaluation, we select 2 emo-
tional target speakers whose emotional speeches are in the
training dataset. As neutral source speakers, we use 2 speak-
ers in the neutral source dataset, defined in Section 3.1. Then
we randomly choose 10 emotional and 5 neutral samples of
each speaker from the evaluation set. But for neutral source
speakers, we gather emotional samples from the portion
that we subtracted from the FSNR0 dataset to create the
neutral source dataset. We synthesize speeches with the
corresponding text and speaker of the chosen ground truth
samples via the three speech synthesis methods. Tacotron
2-GST (baseline) and E3-VITS (reference) provide emotion
from the chosen samples as reference speeches, while E3-
VITS (style tag) uses style tags of the samples. Raters grade
ground truth and synthesized samples to assess speech natu-
ralness. To evaluate speaker and emotion similarity, raters
compare the synthesized samples to the ground truth sam-
ples with the same speaker and style tag. Every sample and
sample pair is rated by 6 native Korean speakers.

The inference speed of E3-VITS is compared with the base-
line by evaluating the real-time factors (RTF). RTF repre-
sents the time taken in seconds by the system to generate a
raw waveform of a second. To calculate RTF, we randomly
select 50 utterances from the evaluation set and divide the
total processing time by the length of synthesized audio sam-
ples. The experiments are conducted on a single NVIDIA
A100 GPU with a batch size of 1.

4. Results and Discussion
Audio samples of E3-VITS are available on demo page5.

4.1. Speech Quality

Table 2 presents the naturalness MOS scores for both ground
truth and synthesized samples using various methods. The
results show that E3-VITS-based approaches outperform
Tacotron 2-GST in both neutral and emotional speech syn-
thesis. We found that Tacotron 2-GST tends to produce sam-
ples with unclear pronunciation and unnatural duration in
some cases, caused by attention error. In contrast, E3-VITS
avoids these issues by utilizing the monotonic alignment
search (Kim et al., 2020) for duration prediction, generating
clearer speeches. Our proposed model does not exhibit a sig-
nificant difference in performance between neutral and emo-
tional speech synthesis nor between unseen and seen speech
synthesis, suggesting that the model performs equally well
across different scenarios.

The results in Table 2 indicate that E3-VITS is more effec-
tive than the baseline in preserving speaker characteristics.
This is likely due to the distortion of speaker characteris-
tics resulting from degraded speech quality in the baseline
model. Notably, E3-VITS exhibits higher speaker similarity
MOS in neutral synthesis compared to emotional synthesis,
which is attributed to the difficulty of maintaining speaker
identity in the presence of a broad range of emotions.

Table 2 reveals that E3-VITS achieves higher emotion sim-
ilarity MOS than Tacotron 2-GST in the emotion speech
synthesis. Moreover, both methods with style tag and refer-
ence speech show similar degrees of scores, regardless of
whether a seen or unseen emotion is used.

E3-VITS (reference) and E3-VITS (style tag) do not show
significant differences in every metric, meaning that style
tags function as conditions as well as reference speeches.

5https://wonbin-jung.github.io/e3-vits/
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4.2. Inference Speed

Table 3. Comparison of inference speed

Method Inference speed Inference
(RTF) speedup

Tacotron 2-GST 2.01 ×10−1 -
E3-VITS (style tag) 1.98 ×10−2 10.2 ×
E3-VITS (reference) 1.77 ×10−2 11.4 ×

As presented in Table 3, E3-VITS outperforms the Tacotron
2-GST in terms of the inference speed. Inference with both
style tag and reference speech is more than 10 times faster
than inference with the baseline model. Since E3-VITS
is single-staged and non-autoregressive, it overcomes the
two-stage autoregressive baseline model.

5. Conclusions
This paper presents E3-VITS, an end-to-end emotional
TTS model capable of synthesizing speech using reference
speech and textual description, without predefined categori-
cal labels. The model utilizes domain adversarial training
to separate text representation from speaker and emotion
features, and employs style perturbation to improve the
expressiveness of cross-speaker emotion transfer. The pro-
posed model outperforms the baseline in terms of natural-
ness, speaker and emotion similarity, and inference speed.
Additionally, it reduces the need for labeled emotional data,
enabling cross-speaker emotion transfer. Future research di-
rections include leveraging pitch information for enhanced
expressiveness and exploring automatic style tag labeling
for datasets without style tags.
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