
Fantasy: Transformer Meets Transformer in
Text-to-Image Generation

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present Fantasy, an efficient text-to-image generation model marrying the1

decoder-only Large Language Models (LLMs) and transformer-based masked im-2

age modeling (MIM). While diffusion models are currently in a leading position in3

this task, we demonstrate that with appropriate training strategies and high-quality4

data, MIM can also achieve comparable performance. By incorporating pre-trained5

decoder-only LLMs as the text encoder, we observe a significant improvement in6

text fidelity compared to the widely used CLIP text encoder, enhancing the text-7

image alignment. Our training approach involves two stages: 1) large-scale concept8

alignment pre-training, and 2) fine-tuning with high-quality instruction-image data.9

Evaluations on FID, HPSv2 benchmarks, and human feedback demonstrate the10

competitive performance of Fantasy against state-of-the-art diffusion and autore-11

gressive models.12
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Figure 1: Comparison of data usage,
training time and image quality. Colors
from dark to light represent parameters
increasing in size, and circles from small
to large indicate improvements in image
quality.

Recent advances in text-to-image (T2I) models [3, 5, 12]14

have become focal points within the computer vision field.15

Most advances in T2I models, focused on generating high-16

quality images based on relatively short descriptions, strug-17

gle with intricate long-text semantic alignment due to in-18

herent structure constraints and data limitations. Text19

encoders used for T2I fall into three categories: CLIP20

[30], encoder-decoder LLMs, and decoder-only LLMs.21

Models using encoder-decoder LLMs like T5-XXL [31]22

have shown improved text-image alignment over CLIP23

by exploiting enhanced text understanding, increasing to-24

ken capacity, yet without delving into the semantic align-25

ment for longer texts. ParaDiffusion [43] indicates that26

directly aligning text embeddings with visual features with-27

out prior image-text knowledge is not the most effective28

approach. Previous works [38, 45] have highlighted short-29

comings in existing text-image datasets [37], including30

image-text mismatches, a lack of informative content, and31

a pronounced long-tail effect. These deficiencies notably32

impair training efficiency for T2I models and restrict their33

ability to learn complex semantic alignment.34

Existing diffusion-based T2I models [33, 5, 9, 26] have achieved unprecedented quality. However,35

as detailed in Fig. 1, these advanced models come with significant computational demands. The36
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A snowy Sweden lake in a
vibrant, cinematic style with
intense detail and raytracing.

A furry cat. Studio photo portrait of Lain
Iwakura wearing floral garlands
over her traditional dress.

A tiny planet image of Rio de
Janeiro.

A 3d render of a cute, blue,
anthropomorphic dragon with
ice crystals growing off her,
sharp focus.

Majestic ornate great hall ,
grand library, baroque, torches,
s t a i ne d g l a s s w i nd o w s ,
moonlight rays, dreamy mood.

T he s o l i t a r y g r e a t t r e e
c e n t e r e d i n t he i m a ge .
cloudless sunny sky. l it tle
islands in the flooded plain.

B r ea t h t a k i ng b e a u t i f u l ,
aesthetically pleasing, gouache
ocean waves ripples, sea foam,
sunset, digital concept art.

Beautiful warm tavern seen
from the outside, middle age,
river crossed by a bridge next
to the tavern, crepuscular light.

Ted bundy in a pixar movie.

Figure 2: Samples produced by Fantasy (512× 512). Each image, generated in 1.26 seconds (without
super-resolution models), is accompanied by a descriptive caption showcasing diverse styles and
comprehension.

considerable expenses of these models create significant barriers for researchers and entrepreneurs.37

Meanwhile, economical text-to-image models [25, 15, 48] compromise on image quality, yielding38

lower resolution and diminished aesthetic appeal.39

Given these challenges, a pivotal question arises: Can we develop a resource-efficient, high-quality40

image generator for long instructions? In this paper, we present Fantasy, significantly reducing41

training demands while maintaining the capability of instruction understanding and competitive42

image generation quality, as shown in Fig. 2. To achieve this, we propose three core designs:43

Efficient T2I netwrok. To leverage the powerful understanding ability of a decoder-only LLM,44

we choose the lightweight Phi-2 [24] as our text encoder. We derive discrete image tokens from a45

pre-trained VQGAN [27], and employ Transformer-based masked image modeling (MIM) as our T2I46

architecture. We also utilize the pre-trained VQGAN decoder [27] for pixel space restoration.47

Hierarchical Training strategy. We propose a thoughtfully two-stage training strategy to address the48

high computational demands of current leading models while maintaining competitive performance:49

(1) large-scale concept alignment pre-training, (2) high-quality instruction-image fine-tuning. To50

facilitate a coarse image-text alignment, we initially train the T2I model from scratch using relatively51

lower-quality data. We then fine-tune the pre-trained T2I model and LLM on text-image pair data52

rich in information density with superior aesthetic quality.53

High-quality data. To achieve rough alignment while pre-training, we select the large-scale dataset54

LAION-2B [37] and employ the filtering strategy proposed by DataComp [14]. We collect long-55

text prompts and corresponding high-quality synthesized images for instruction tuning, including56

DiffusionDB [42] and JourneyDB [39]. We further filter and discard texts with special characters and57

data containing violence or pornography, retaining only instructions exceeding 30 words.58

Our main contributions are summarized as follows:59

1. We present Fantasy, a novel framework that is the first to integrate a lightweight decoder-only60

LLM and a Transformer-based MIM for text-to-image synthesis, allowing for long-form61

text alignment.62

2. We show that our two-stage training strategy with high-quality data enables MIM to achieve63

comparable performance at a significantly reduced training cost.64

3. We provide comprehensive validation of the model’s efficacy based on automated metrics65

and human feedback for visual appeal and text faithfulness.66
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Figure 3: (Up) Overview of Fantasy featuring text encoder, VQGAN (encoder E and decoder D),
masked image generator G, and super-resolution model. (Down) Our training pipeline involves two
stages. The red parts are trainable and the blue parts are frozen; the yellow part is optionally
utilized during inference.

2 Method67

2.1 Problem Formulation68

As depicted in Fig. 3, Fantasy consists of a pre-trained text encoder T , a transformer-based masked69

image generator G, a sampler S, a frozen VQGAN, and a pre-trained super-resolution model. T70

maps a text prompt t to a continuous embedding space. G processes a text embedding e to generate71

logits l for the visual token sequence. S draws a sequence of visual tokens v from logits via iterative72

decoding [4], which runs N steps of inference conditioned on the text embeddings e and visual tokens73

decoded from previous steps. Finally, D maps the sequence of discrete tokens to pixel space Z. To74

summarize, given a text prompt t, an image x̂ is synthesized as follows:75

x̂ = D(S(G, T (t))), ln = G(vn, T (t)), vn = M(E(x)) (1)

where n is the synthesis step, and ln are logits, from which the next set of visual tokens vn+1 are76

sampled. M denotes the masking operator that applies masks to the token in vn. We refer to [4, 3]77

for details on the iterative decoding process. The Phi-2 [24] for T and VQGAN [8] for encoder E and78

decoder D are used. G is trained on a large text-image pairs D using masked visual token modeling79

loss:80

L = E(x,t)∼D [CE (lN , E(x))] , (2)
where CE is a weighted cross-entropy calculated by summing only over the unmasked tokens.81

2.2 Model Architecture82

2.2.1 VQGAN as Image Processor83

VQGAN [8] is capable of transforming each image into discrete tokens with higher-level semantic84

information from a learned codebook, while ignoring low level noise. The autoregressive tokens85

prediction of VQGAN shares the same form as text tokens generated by LLMs. Prior research [46]86

has shown that unifying vision and language by the same token space could enhance the coherency87

for vision-text alignment. Furthermore, compared with RGB pixels, the visual token representation88

has proven to reduce disk storage and improve the capability of robustness and generalization.89

To reduce the computational burden, we initially compress an RGB image v ∈ RH×W×3 into a90

diminished representation with a resolution of h × w × 3, where h = H/f and w = W/f , with91

f denoting the downsampling factor. We then employ a pre-trained f16 VQGAN [27] encoder E92

to quantizate images x ∈ R3×256×256 into discrete tokens of spatial dimensions 16 × 16 from a93

pre-trained codebook Z = {zk}Kk=1 consisting of K = 8192 vectors, resulting in the quantized94

representation z = E(x,Z).95
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2.2.2 LLM as Text Encoder96

Recent studies [10, 5, 3] tend to use encoder-decoder LLMs [31] for text encoding over CLIP [30],97

which is adept at handling tasks that involve complex mappings between input and output sequences.98

Due to the tremendous success of ChatGPT, attention has been drawn to models that consist solely of a99

decoder. Also, [43] presents an insight that efficiently fine-tuning a more powerful decoder-only LLM100

can yield stronger performance in long-text alignment. Consequently, to capitalize on the enhanced101

semantic comprehension and generalization potential of LLMs while simultaneously reducing the102

training burden, we employ Phi-2 [24], a state-of-the-art, lightweight LLM, as the text encoder.103

Given the text prompt t, Fantasy first passes it through Phi-2, extracting the text embedding from the104

last hidden layer L. However, typically, decoder-only architectures are not adept at feature extraction105

and mapping tasks. [23] proposes that the conceptual representations learned by LLM’s are roughly106

linearly mappable to those learned by models trained on vision tasks. Therefore, the embedding107

vectors are linearly projected to the hidden size of the image generator G:108

c = P(TL(t)) (3)

where T (·) denotes the decoder-only Phi-2 and L is the index of the last hidden layer. P represents109

the projection from text space to visual space, and c is the text feature suitable for the image generator.110

2.2.3 MIM as Image Generator111

MIM narrows the gap between its modeling and the extensively studied area of language modeling,112

making it straightforward to leverage the findings of the LLMs research community. Therefore, we113

adopt a masked transformer as the image generator backbone of Fantasy [46].114

During training, we leave the projected text embeddings c unmasked and the image tokens z are115

masked at a variable masking rate based on a Cosine scheduling M as [4, 3]. Specifically, for116

each training example, we sample a masking rate r from [0, 1] from a truncated arccos distribution117

with density function p(r) = 2
π (1− r2)−

1
2 . While autoregressive methods learn fixed-order token118

distributions P (zi|z<i), random masking with variable ratios enables learning P (zi|z̸=i) for any119

token subset, crucial for our parallel sampling scheme. The sampling of a new state sn+1 at each120

successive step is conditioned on the previous state and the specified text condition c:121

P (s | c) =
∫

P (sN | sN−1, c)

N−1∏
n=1

P (sn | sn−1, c) ds1 . . . dsN−1 (4)

For each training example, the most confidently predicted tokens are revealed at each step n, main-122

taining cos
(
n
N · π

2

)
masked until reaching N total steps.123

For the base model, we use a variant of MaskGiT [4], a masked image generative Transformer to124

predict randomly masked tokens by attending to tokens in all directions. Leveraging the multi-layered125

structure of the Transformer, we have developed scalable image generators with varying layer counts,126

ranging in size from 257M parameters to 611M parameters (for the image generator; the Phi-2 model127

has an additional 2.7B parameters). We first employ a series of Cross Attention blocks to optimize128

text-driven feature extraction, before passing through O layers of the masked image generator. Each129

layer o of the Transformer is again formed by Multi-Head Self-Attentuib(MSA), LayerNorm (LN),130

Cross Attention (CA) and Multi-Layer Perceptron (MLP) blocks:131

Yo = MSA(LN(Zo)), Zo+1 = MLP(CA((LN(Yo), c))). (5)

At the output layer, to reduce the training burden, ConvMLP [18] is utilized to transform masked132

image embeddings into logits sets, aligning with the VQGAN codebook dimensions. Eventually, the133

reconstructed lower-resolution tokens are restored with the pre-trained 256× 256 resolution VQGAN134

decoder to the pixel space, resulting in the generated image x̂:135

x̂ = D(ConvMLP(ZO),Z) (6)

2.3 Training Strategy136

Fig. 3 illustrates Fantasy’s two-stage training approach. Following prior works[43, 35, 9], we employ137

large-scale pre-training to achieve general text-image concept alignment, and simultaneous fine-tuning138

of Phi-2 [24] and the masked image generator using high-quality instruction-image pairs.139
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Pre-training Stage. To perform general text-image concept alignment, the VQGAN and LLM140

weights are frozen, and only the image generator is pre-trained on deduplicated LAION-2B [37]141

with images above a 4.5 aesthetic score. We exclusively preserve prompts in English, filter out142

images above a 50% watermark probability or above a 45% NSFW probability, yielding a final set143

of 9 million images. Since the computational cost of upsampling is much lower than training a144

super-resolution model, Fantasy is started with training at a resolution of 256× 256. Note that the145

pre-training only needs approximate image-text alignment, substantially lowering the training costs.146

Fine-tuning Stage. [43] has proven that LLMs trained solely on text data lack prior image-text147

knowledge, and that merely aligning their text embeddings with visual features might not be optimal.148

Therefore, in the second stage, we gather an internal dataset of 7 million high-quality instruction-149

image pairs to fine-tune both the Phi-2 model and the image generator of Fantasy, which ensures150

enhanced compatibility of text embeddings within the text-image pair space, facilitating the use of151

decoder-only LLMs in text-to-image generation tasks and harnessing their inherent advantages. To152

prevent catastrophic forgetting in LLMs and preserve their understanding abilities during training, we153

select questions from BIG-bench [2] and monitor the common sense question-answering ability of154

Phi-2 in real-time throughout the training process. We construct our training dataset for the fine-tuning155

stage by incorporating JourneyDB [39] and an internal synthetic dataset to enhance the aesthetic156

quality of generated images beyond realistic photographs. To facilitate instruction-image alignment157

learning, we retain only data with descriptions exceeding 30 words, as these provide enough detailed158

insights into the image objects, including attributes and spatial relations.159

With this approach, Fantasy trains a 0.6B parameter T2I model in about 69 A100 GPU days,160

significantly reducing computation compared to existing diffusion-based methods, while maintaining161

comparable visual and numerical fidelity. Throughout this paper, we present a comprehensive162

evaluation of Fantasy’s efficacy, showcasing the potential in training high-quality transformer-based163

image synthesis models compared to diffusion-based models in future.164

2.4 High-quality Data Collection165

To ensure rough alignment in the pre-training phase, we utilize the large-scale dataset LAION-2B166

[37] and apply the filtering strategy developed by DataComp [14]. Furthermore, we gather long-167

text prompts and corresponding high-quality images to achieve finer-grained text-image alignment168

through instruction tuning. CapsFusion [47] employs a fine-tuned LLaMA [40] for recaptioning169

LAION-2B [37] and LAION-COCO [1]. However, this approach still results in suboptimal image170

quality and occasional mismatches between images and text. SAM-LLAVA [5] utilizes LLaVA [20]171

to recaption the SAM dataset [17], which leads to images with blurred faces, a consequence of the172

dataset’s inherent face-blurring. Therefore, we shift focus to synthesize images, mainly including173

DiffusionDB [42] and JourneyDB [39], produced by Stable Diffusion and MidJourney, respectively.174

To augment the diversity of the images, we minimize the use of datasets from specific domains, such175

as gaming and anime. Furthermore, we implement filtering to discard texts with special characters176

and data containing violence or pornography, retaining only instructions exceeding 30 words.177

3 Experiments178

In this section, we outline detailed training, inference, and evaluation protocols, followed by compre-179

hensive comparisons across three key metrics.180

3.1 Implementation Details181

Training Details. Different from the prior works [9, 43, 32, 34], we used a lightweight but powerful182

decoder-only large language model Phi-2 [24] as the text encoder. Diverging from prior approaches183

that extract a standard and fixed short text tokens, we extend the extraction to 256 tokens to master184

long-term instruction-image alignment, ensuring precise alignment for more fine-grained prompts.185

For the entire training process, we train Fantasy on 4×A100 80G GPUs and set the accumulation186

step to 2. At different stages, we employ varying learning rate strategies with single-cycle cosine187

annealing decay. Furthermore, the AdamW optimizer [22] is utilized with a weight decay of 0.01.188

Fantasy trains a 0.6B parameter T2I model in about 84.5 A100 GPU days, significantly reducing189

computation compared to existing diffusion-based methods as shown in Fig. 1.190
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Table 1: Evaluation of diffusion (upper) and transformer (down) models on HPSv2. We underline the
highest value and color the first above Fantasy in blue .

Model Type Params Animation Concept-art Painting Photo DrawBench [36]

GLIDE [25] Diff 5.0B 23.34± 0.198 23.08± 0.174 23.27± 0.178 24.50± 0.290 25.05± 0.84
VQ-Diffusion [15] Diff 0.37B 24.97± 0.186 24.70± 0.149 25.01± 0.145 25.71± 0.222 25.44± 0.83
Latent Diffusion [34] Diff 1.45B 25.73± 0.125 25.15± 0.140 25.25± 0.178 26.97± 0.183 26.17± 0.85
DALL·E 2 [26] Diff 6.5B 27.34± 0.175 26.54± 0.127 26.68± 0.156 27.24± 0.198 27.16± 0.64
Stable Diffusion v1.4 [33] Diff 0.8B 27.26± 0.156 26.61± 0.082 26.66± 0.143 27.27± 0.226 27.23± 0.57
Stable Diffusion v2.0 [33] Diff 0.8B 27.48± 0.174 26.89± 0.076 26.86± 0.120 27.46± 0.198 27.31± 0.68
DeepFloyd-XL [11] Diff 4.3B 27.64± 0.108 26.83± 0.137 26.86± 0.131 27.75± 0.171 27.64± 0.72

LAFITE [48] Trans 0.075B 24.63± 0.101 24.38± 0.087 24.43± 0.155 25.81± 0.213 25.23± 0.72
FuseDream [21] Trans - 25.26± 0.125 25.15± 0.107 25.13± 0.183 25.57± 0.248 25.72± 0.71
DALL·E mini [7] Trans 0.4B 26.10± 0.132 25.56± 0.137 25.56± 0.112 26.12± 0.233 26.34± 0.76
VQGAN + CLIP [8] Trans 0.2B 26.44± 0.152 26.53± 0.075 26.47± 0.111 26.12± 0.210 26.38± 0.43
CogView2 [12] Trans 6B 26.50± 0.129 26.59± 0.119 26.33± 0.100 26.44± 0.271 26.17± 0.74

Fantasy (ours) Trans 0.6B 27.03±0.131 26.66±0.117 26.72±0.176 26.80±0.174 26.78±0.523

Table 2: Comparison with recent T2I models. ‘Trained’ indicates the model develops a text encoder
from scratch, foregoing a pre-trained one.

Method Type Text Encoder #Params #Images FID-30K (↓)
LDM [34] Diff Trained 1.4B 400M 12.64
GLIDE [25] Diff Trained 5.0B - 12.24
DALL·E 2 [26] Diff CLIP 6.5B 650M 10.39
Stable Diffusion v1.5 [33] Diff CLIP 0.9B 2000M 9.62
SD XL [29] Diff CLIP 2.6B - >18
Würstchen [28] Diff CLIP 0.99B 1420M 23.6
ParaDiffusion [43] Diff LLaMA V2 1.3B >300M 9.64
Pixart-α [5] Diff T5 0.6B - 5.51

Cogview2 [12] Trans CogLM 6B 35M 24.0
Muse [3] Trans T5-XXL 3B 460M 7.88

Fantasy Trans Phi-2 0.6B 16M 23.4

Inference Details. We use N = 32 sampling steps in all of our evaluation experiments. Since191

Fantasy is trained at a resolution of 256 × 256, we employ the pre-trained diffusion-based super-192

resolution model StableSR [41] to upscale images to 512× 512.193

Evaluation Metrics. We comprehensively evaluate Fantasy via four primary metrics, i.e., alignment194

on HPSv2 [44], FID [16] on MSCOCO dataset [19] and human evaluation on a collected dataset.195

3.2 Performance Comparisons and Analysis196

Results on HPSv2. We utilize HPSv2 [44] as our primary automated metric, a preference prediction197

model which can be used to compare images generated with the same prompt across five categories:198

anime, concept art, paintings, photography, and DrawBench [36]. We present the results of HPSv2199

between Fantasy and other state-of-the-art generative models in Tab. 1. Fantasy exhibited outstanding200

performance across all key aspects among previous Transformer-based methods like CogView2201

[12], which is expected. The results also reveal its competitive performance compared to prior202

diffusion-based methods, especially in concept-art and painting, demonstrating similar performance203

to DALL·E 2 [26]. This remarkable performance is primarily attributed to the text-image alignment204

learning in fine-tuning stage, where high-quality text-image pairs were leveraged to achieve superior205

alignment capabilities. In comparison, DeepFloyd-XL and other diffusion-based models achieve206

better scores, while utilizing larger models with significantly higher compute budget.207

Results on FID. We employ FID [16] to evaluate our models on COCO-30K [19]. To allow for208

a fair comparison, all images are downsampled to 256× 256 pixels. The comparison between our209

method and other methods in FID, and their training time is summarized in Tab. 2. We observe210

that the FID of Fantasy is substantially higher compared to other state-of-the-art models. Visual211

inspections reveal that images generated by Fantasy are smoother than those from other leading T2I212

models. This discrepancy is most noticeable in real-world images like COCO, on which we compute213

the FID-metric. Although the state-of-the-art models [43, 11, 29] exhibit lower FID, it relies on214

unaffordable resources. Furthermore, prior studies [29, 5, 11] have demonstrated that FID may not215
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Visual Appeal Text-image Alignment

(a) User study on long prompts.

Visual Appeal Text-image Alignment

(b) User study on short prompts.

Figure 4: User study on prompts with different length. VC. , CV2. , FT. , SD. , and PA. refer to
VQGAN+CLIP [8], CogView2 [12], our Fantasy, Stable Diffusion v2.0 [33], and Pixart-α [5].

be an appropriate metric for image quality evaluation, as a lower score does not necessarily reflect216

superior image generation, and it is more authoritative to use the evaluation of human users.217

3.3 Results on Human Evaluation218

Following prior works [5, 43, 28], we also conduct a study with human participants to supplement219

our evaluation and provide a more intuitive assessment of Fantasy’s performance. Participants are220

asked to select a preference of the images based on the visual appeal of the generated images and the221

precision of alignments between the text prompts and the corresponding images.222

As involving human evaluators can be time-consuming, we choose the top-performing open-source223

diffusion-based models (e.g., SD XL [33], and Pixart-α [5]) and transformer-based models (e.g.,224

VQGAN+CLIP [8] and CogView2 [12]) as our baseline, which are accessible through APIs and225

capable of generating images. We randomly select a total of 600 prompts from existing prompt226

sets (e.g., ParaPrompt [43], ViLG-300 [13], COCO Captions [6]). To comprehensively contrast the227

capabilities of Fantasy and other models in interpreting text prompts of varying lengths, we allocate228

one subset to consist of 300 prompts ranging from 10 to 30 characters and another subset comprising229

300 prompts exceeding 30 characters. For each model, we use a consistent set to generate images,230

which are then evaluated by 50 individuals.231

Fig. 4a clearly demonstrates that images generated on relatively long text prompts (longer than 30232

words) by Fantasy are distinctly favored among the four models in both two perspective, especially233

for text-image alignment, aligning closely with the intended use case of Fantasy. As illustrated234

in Fig. 4b, for text prompts shorter than 30 words, our model outperforms existing open-source235

Transformer-based models in fidelity and alignment for shorter prompts. Our model slightly lags236

behind diffusion-based models in visual appeal, limited by the 8,192 size of VQGAN’s codebook237

and not targeting visual appeal. Simultaneously, Fantasy lacks a distinct advantage in text-image238

alignment in the short subset. We hypothesize that this is due to two main reasons: diffusion-239

based models’ ability to handle shorter prompts, and vague prompts generating diverse images that240

make preferences more subjective, thus biasing outcomes towards aesthetically superior images. In241

summary, the human preference experiments confirm the observation made in the HPSv2 benchmarks.242

3.4 Case Study243
A close-up photo of a person. The
subject is a male. He was wearing a
wide-brimmed hat, a gray-white beard
on his face, a brown coat. His facial
expression looked pensive and serious,
with the clear blue sky in the
background.

FantasyParaDiffusion

A young man wearing a black leather
jacket and tie stood behind an old door,
his gaze firmly fixed on the camera.
The door had patterns of leaves and
flowers on it, revealing a yellow
background. His hair was casually
curled and he appeared to be deep in
thought or contemplating something. FantasyParaDiffusion

Figure 6: Visual Comparison with ParaDiffusion [43]:
Red markings and boxes highlight text misalign-
ments in images generated by ParaDiffusion.

Fig. 5 vividly illustrates Fantasy’s supe-244

rior visual appeal and text-image alignment245

over leading open-source transformer-based246

T2I models [12, 8] and diffusion-based T2I247

models [29, 26]. Fantasy significantly sur-248

passes existing transformer-based T2I mod-249

els, matches the performance of SDXL [29],250

and qualitatively outperforms Dall·E 2 [26].251

Despite being trained on images with a res-252

olution of 256× 256, Fantasy ensures gener-253

ated low-resolution images contain sufficient254

details, indirectly supporting long prompts.255

Limited by computing resources, we haven’t256
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Figure 5: Visual comparison with existing T2I models. (a) A hamster resembling a horse. (b) A
frontal portrait of a anime girl with chin length pink hair wearing sunglasses and a white T-shirt
smiling. (c) A colorful illustration of a suburban neighborhood on an ancient post-apocalyptic planet
featuring creatures made by Jim Henson’s workshop. (d) A blue-haired girl with soft features stares
directly at the camera in an extreme close-up Instagram picture. (e) A building in a landscape by
Ivan Aivazovsky. (f) Aoshima’s masterpiece depicts a forest illuminated by morning light. (g) The
image is a highly detailed portrait of an oak in GTA V, created using Unreal Engine and featuring
fantasy artwork by various artists.

Table 3: Ablation study on two stages with the best bolded. ‘Base’ indicates the model after the
pre-training stage.

Model Training Part Animation Concept-art Painting Photo DrawBench [36]

Base MIM 25.27± 0.190 24.20± 0.166 24.60± 0.146 25.32± 0.208 25.49± 0.230
Fantasy MIM+Phi-2 27.03±0.131 26.66±0.117 26.72±0.176 26.80±0.174 26.78±0.521

trained on higher resolutions like 512 × 512 but aim to enhance Fantasy by training at higher257

resolutions in the future.258

ParaDiffusion [43] pioneers the use of decoder-only large language models as text encoders in259

text-to-image generation. As illustrated in Fig. 6, our observations suggest that Fantasy more closely260

aligns details with prompts than ParaDiffusion [43].261

4 Ablation Study262

This section analyzes the effects of LLMs fine-tuning, and model scale on Fantasy’s performance263

through ablation studies. More ablation study refers to appendix.264

4.1 Effect of Language Model Fine-tuning265

To assess the effect of training strategies on the comprehension of complex instructions, we perform266

a human preference evaluation, as detailed in Sec. 3.3, using a subset of 300 prompts longer than267

30 characters. ‘Base’ denotes general text-image alignment with filtered LAION-2B [1] in the268

pre-training stage. Compared to the base model, our synergy fine-tuning with Phi-2 demonstrates a269

notable improvement in all aspects in Tab. 3.270
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Table 4: Ablation study on models at different scales with the
best bolded. DB. represents DrawBench [36].

Layers Param Animation Concept-art Painting Photo DB.

6 257M 25.79±0.15 25.84±0.11 25.92±0.19 25.63±0.18 25.18±0.22
12 421M 26.34±0.17 26.29±0.06 26.45±0.17 26.19±0.17 25.68±0.14
22 611M 27.03±0.13 26.66±0.11 26.72±0.17 26.80±0.17 26.78±0.52

Table 5: Training cost for Fantasy at
3 different scales. BS. denotes batch
size and LR. denotes learning rate.

Layers Pre-training Fine-tuning
Steps (K) BS. LR. Steps (K) BS. LR.

6 180 768 1e-4 180 192 1e-4
12 220 768 1e-4 250 192 1e-4
22 370 256 5e-4 280 128 3e-4

271

4.2 Scale of Image Generator272

L6 L12 L22

A wooden outhouse sitting in the grass near trees.

A small kitchen does have plenty of cabinets.

L6 L12 L22

Figure 7: Examples generated by mod-
els at different scales: 1st column for 6
layers, 2nd column for 12 layers and 3rd

column for 22 layers.

The hierarchical structure of the Transformer allows us273

to train image generators with varying numbers of Trans-274

former layers. As shown in Tab. 4, we evaluate models275

of different sizes on the HPSv2 benchmark. The insight276

indicates that as trainable parameters increase from 257277

million to 611 million, performance consistently improves.278

Therefore, we set the number of Transformer layers to 22279

with 611 million trainable parameters as the optimal set-280

ting. Tab. 5 showcases the required resources for models281

of three different scales. Fig. 7 offers visual comparisons282

across models of varying scales, illustrating a clear trend:283

models with fewer parameters underperform on the HPSv2284

benchmark, frequently resulting in distorted images and285

omitted details, yet they may still generate acceptable286

outcomes. Significantly, the visual quality diverges as287

model size increases, highlighting the potential for scaling288

up masked image modeling to enhance instruction-image289

alignment and elevate generation quality.290

5 Limitations and Social Impact291

Limitations. Despite Fantasy achieving competitive performance in text-image alignment and visual292

appeal, it requires improvements in handling complex scenes. We propose two possible strategies to293

overcome the challenge in future research: Firstly, augmenting the dataset with high-quality images294

can enhance diversity and refine the model. Secondly, since the scale of the masked image generator295

affects instruction-image alignment, training an upscale image generator based on higher resolution296

left further explored.297

Social Impact. Generative models for media bring both benefits and challenges. They foster creativity298

and make technology more accessible, yet pose risks by facilitating the creation of manipulated299

content, spreading misinformation, and exacerbating biases, particularly affecting women with deep300

fakes. Concerns also include the potential exposure of sensitive training data collected without301

consent. Despite generative models potentially offering better data representation, the impact of302

combining adversarial training with likelihood-based objectives on data distortion remains a crucial303

research area. Ethical considerations of these models are significant and require thorough exploration.304

6 Conclusion305

In this paper, we introduce Fantasy, a lightweight and efficient text-to-image model that combines306

Large Language Models (LLMs) with a transformer-based masked image modeling (MIM), effec-307

tively transferring semantic understanding capabilities from LLMs to the text-to-image generation.308

With our proposed two-stage training strategy and high-quality dataset, Fantasy significantly re-309

duces computational requirements while producing high-fidelity images. Extensive experiments310

demonstrate that Fantasy achieves comparable performance to models trained with significantly more311

computational resources, illustrating the viability of our approach and suggesting potential efficient312

scalability to even larger masked image modeling for text-to-image generation.313
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a complete (and correct) proof?501

Answer: [Yes]502

Justification: All theoretical results are accompanied by a clear statement of assumptions and503

are supported by complete proofs provided in the supplementary materials. Each theorem504
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Guidelines:506
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4. Experimental Result Reproducibility517
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of the paper (regardless of whether the code and data are provided or not)?520
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Justification: The paper provides detailed descriptions of the experimental setup, including522

data splits, hyperparameters, and the type of optimizer used. We also provide access to the523

source code and datasets in the supplementary materials to ensure full reproducibility.524
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• The answer NA means that the paper does not include experiments.526

• If the paper includes experiments, a No answer to this question will not be perceived527

well by the reviewers: Making the paper reproducible is important, regardless of528

whether the code and data are provided or not.529
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to make their results reproducible or verifiable.531
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instructions for how to replicate the results, access to a hosted model (e.g., in the case538
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appropriate to the research performed.540
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sions to provide some reasonable avenue for reproducibility, which may depend on the542

nature of the contribution. For example543

(a) If the contribution is primarily a new algorithm, the paper should make it clear how544

to reproduce that algorithm.545

(b) If the contribution is primarily a new model architecture, the paper should describe546

the architecture clearly and fully.547
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In the case of closed-source models, it may be that access to the model is limited in554
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benchmark).573
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.578

• The authors should provide scripts to reproduce all experimental results for the new579
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versions (if applicable).583
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6. Experimental Setting/Details586

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-587

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the588

results?589
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and the types of optimizers used.593
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Justification: All experimental results are presented with error bars reflecting the standard604

deviation across multiple runs. We provide a detailed explanation of how these were605

calculated and the assumptions underlying our statistical tests.606
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