Differentiable Lifting for Topological Neural Networks

Jorge Luiz Franco Gabriel Duarte Alexander Nikitin
University of Sdo Paulo Federal Institute of Ceara Aalto University
Instituto Curvelo g.jonas.duarte@gmail.com alexander.nikitin@aalto.fi

jorge.luiz@usp.br

Moacir Ponti Diego Mesquita Amauri H. Souza
University of Sao Paulo Getulio Vargas Foundation Federal Institute of Ceara
moacir@icmc.usp.br diego.mesquita@fgv.br amauriholanda@ifce.edu.br

Abstract

Topological neural networks (TNNs) enable leveraging high-order structures on
graphs (e.g., cycles and cliques) to boost the expressive power of message-passing
neural networks. In turn, however, these structures are typically identified a priori
through an unsupervised graph lifting operation. Notwithstanding, this choice is
crucial and may have a drastic impact on a TNN’s performance on downstream
tasks. To circumvent this issue, we propose Olift (DiffLift), a general framework
for learning graph liftings to hypergraphs and cellular- and simplicial complexes in
an end-to-end fashion. In particular, our approach leverages learned vertex-level
latent representations to identify and parameterize distributions over candidate
higher-order cells for inclusion. This results in a scalable model which can be
readily integrated into any TNN. Our experiments show that Jlift outperforms
existing lifting methods on multiple benchmarks for graph and node classification
across different TNN architectures. Notably, our approach leads to gains of up to
45% over static liftings, including both connectivity- and feature-based ones.

1 Introduction

Topological neural networks (TNNs) [6, 34, 50] have recently emerged as a prominent class of
models for learning on topological domains, such as hypergraphs and simplicial complexes, with
many researchers arguing they represent the new frontier for relational learning [32]. Akin to graph
neural networks (GNNs) [13, 43], typical TNNs employ message-passing layers where each element
of the input (e.g., nodes or cells) updates its representation (features) based on those of its topological
neighbors. Thus, these models generalize convolution-like operations on graphs to higher-order
relational objects. Importantly, the primary application of TNNs has been to enhance the capabilities
of graph-based models, particularly in terms of expressivity [6, 7]. In this context, the input graphs
must first be transformed to the domain on which a TNN operates — a process known as [ifting.

Llftlllg methods explore graph connec- 1U[Fhoice of domain is data-dependent 1()()Choice of lifting is data-dependent
tivity and features to create higher- o] B -hop

order relational structures. For in- & Hypereronh | oy 80 o i :
stance, clique lifting [7] produces asim- 2 5o : 60

plicial complex by leveraging cliques 2 . o

in the input graph while cycle lifting

[18] detects cycles to generate a cell 60— Empire Cora 20— o Wisconsin
colrr(liplex.. In gerll(?rzil, lf.(lir. each top (()ilogl- Figure 1: [Left] Lifting to different domains can lead to disparate
cal domain, multiple lifting procedures performances depending on the dataset. Accuracies taken from the

are available (cf Table 3 in [48]). best TNNs in [48]. [Right] Performances of liftings to the same
domain (hypergraph) vary greatly. Values taken from Table 4.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Input graph Node embeddings (Hierarchical) cell sampler Lifted cell complex

sampled

hyper-edge o
- S| 4
. Oxg® > 3 * z
= e =

> £ > o % o > > g
5 o © <
& Ay (-9
& 00> 2v > dv e
sampled

rank-1 cell
sampled rank-2 cell

Figure 2: Overview of Olift. For a given input graph, we first compute node embeddings using GNNs.
Then, we use these embeddings to select cells/hyperedges. Cell-level embeddings run through MLPs
responsible for returning acceptance probabilities. For hierarchical domains (e.g., cell complexes),
cells are generated in increasing dimensionality. From the accepted cells, we form a relational object
that is sent to an off-the-shelf TNN for graph/node-level predictions. The model is trained end-to-end.

Not surprisingly, for a given task, it is

unclear which target domain and, consequently, the lifting method one should pick. These choices are
highly data-dependent. Figure 1 compares TNNs on different domains, showing opposite behaviors
depending on data. Even within the same domain, the results are susceptible to lifting.

Strikingly, despite the high impact of the lifting operation on TNNs, most lifting methods are
not supervised and thus not informed by the task at hand [18, 48], which may lead to suboptimal
architectures. To date, differentiable lifting has only been explored in the context of cell complexes [3].

In this paper, we propose Jlift (DiffLift) — a general, differentiable lifting framework applicable to
various domains, including hypergraphs, simplicial complexes, and cell complexes. Our method uses
a probabilistic approach to sample candidate cells of adaptive sizes. Specifically, we parameterize
distributions over cells using node embeddings derived from arbitrary graph models (e.g., GNNs or
Graph Transformers [39]). For each candidate cell, we compute its embedding and use a multilayer
perceptron (MLP) to estimate the probability of accepting or rejecting the cell — that is, determining
whether it should be included in the output structure. Figure 2 provides a schematic overview of dlift.

To model the typical hierarchical structure of topological objects, we propose an iterative sampling
procedure, where cells are generated in increasing order of dimensionality: samples of dimension
¢ are used to inform the sampling of dimension (i + 1)-cells. Notably, our approach generalizes
across multiple topological domains and can be seamlessly integrated into standard TNN pipelines.

We evaluate 0lift on 12 datasets spanning graph and node classification tasks using four different TNN
models. Our results show that Olift consistently outperforms unsupervised lifting methods in nearly all
graph-level classification benchmarks — achieving superior performance in 22 out of 24 experiments,
often by a substantial margin. These gains are robust across all TNN architectures. For example,
when using CW Networks [6], Olift yields performance gains of up to 45%. For node classification,
dlift achieves competitive performance relative to static lifting methods and outperforms DCM [3] (a
differentiable lifting baseline) overall. Additionally, we analyze the sensitivity of Olift to the choice
of its GNN component, highlighting that while this choice often impacts the overall performance, our
design is robust and produces strong empirical results even when adopting simple GNNs (e.g., graph
isomorphism networks [53]).

2 Background

This section overviews the main types of relational structures and respective neighborhood notions,
message-passing networks for relational data, and graph lifting methods. In the following, we assume
readers are familiar with basic notions in topology (e.g., topological spaces); see [31] for reference.

Graphs and hypergraphs. We denote an undirected graph as a tuple G = (V, E) where V is a set
of vertices (or nodes) and FE is a set of unordered vertex pairs, i.e., edges. The set of neighbors of
anode v in G is denoted by N¢(v) = {u € V : {v,u} € E}. Hypergraphs generalize graphs by
allowing edges to connect multiple nodes. Formally, a hypergraph on a nonempty set V' is a pair
(V,K), where K C 2V \) and its elements are called hyperedges.

Graph Simplicial Complex Cell Complex Hypergraph Combinatorial Complex

A Ao Jm Fo de

Figure 3: Examples of topological domains.

Simplicial complexes are topological spaces comprised of simple mathematical objects called
simplices (points (0-simplices), line segments (1-simplices), triangles (2-simplices), and their
higher-dimensional analogues). In particular, an abstract simplicial complex (ASC) over a vertex
set V' is a set KX of subsets of V' (the simplices) such that, for every ¢ € K and every non-empty
T C o, we have that 7 € K. Thus, we can define ASCs as a family of subsets K C 2V of V that
is closed under taking subsets. The dimension of a simplex is equal to its cardinality minus 1, and
the dimension of an ASC is the maximal dimension of its simplices. We say 7 is on the boundary
of a simplex o, denoted by 7 < o, iff 7 C o and there is no § such that 7 C § C o, i.e., < defines
the boundary relation of K. We note that undirected graphs correspond to 1-dimensional ASCs.

Cell complexes. A regular cell complex [19] is a topological space X with a partition { X, },cp, of
subspaces X, of X called cells such that

1. For each x € X, there is an open neighborhood of x that intersects finitely many cells;

2. Forallo,7 € Px, X, N X, # ®only if X, C X, where X, denotes the closure of X, (the
intersection of all closed sets containing X);

3. Every cell X, is homeomorphic to RP- for some D, which we call X,’s dimension;

4. For all 0 € Py, there is a homeomorphism ¢ of a closed ball in RP- to X, such that the
restriction of ¢ to the interior of the ball is a homeomorphism onto X.

Importantly, the conditions (2) and (4) impose a poset structure 7 < o <= X, C X, which fully
characterizes the topology of the underlying cell complex X. This topological information can be de-
scribed by the boundary relation < between two cells: o < 7 iff ¢ < 7 and there is no cell § such that
0 < & < T, where < denotes the strict version of the partial order < above. We note that the class of
cell complexes subsumes simplicial complexes. For more details on cell complexes, we refer to [6, 21].

Combinatorial complexes. A combinatorial complex (CC) [18] is a tuple (V, K, rk) where V is a
finite set, K C 2V \ 0 comprises a set of cells, and rk : K — Z> is a ranking function such that

1. Forallv € V,{v} € K;
2. Forallo,0' € K,0 C o’ = rk(o) < rk(o’).

The idea of CCs is to generalize hierarchical structures (e.g., simplicial complexes) by imposing
mild relationships between cells via ranking functions — CCs only require the order-preserving
property in condition (2) — while being flexible to accommodate non-hierarchical structures such
as hypergraphs. Figure 3 depicts the most popular relational structures in topological deep learning.

Neighborhood structures. We can exploit boundary relations (or rank functions) to specify local
neighbors for each cell. In particular, Bodnar et al. [7] introduce four neighborhood structures:

* Boundary and co-boundary: Ng(c) = {7 : 7 < o} and N¢(¢) = {7 : 0 < 7}, respectively
* Upper/lower adjacency:Ny (o) ={7:3dst7 < §,0 < d} and N (0)={7:3dstd < 7,0 < o}

Analogs of these neighborhoods and other structures can also be obtained via ranking functions [18].

Features / signals. In this work, we consider relational structures equipped with features. Let K be
a set of cells or hyperedges of a relational domain. Its attributed counterpart is a tuple (K, x) where
x : K — R% assigns a feature vector z(c) to each cell 0. Hereafter, we denote the features of o by 2.

Topological neural networks (TNNs). Most TNNs employ message-passing mechanisms to obtain
cell-level representations [34]. In particular, let \V; be a finite sequence of neighborhood structures.
Also, define N¢(0,7) = Ne(0) N Ne (1) and N(o,7) = Np(o) N Np(7). In its general form,

starting from h) = =, for all cells o, a message-passing TNN [6] recursively computes

{oei(hE, RE RE) - T € Ni(0),6 € N(o,7)}, if N; =N

mf,ﬂ': {{(b@,’b(hﬁvhf;ahg) :TEM(U)76€NC(U,T)}}, lfM :NT (1)
Lei(hL) : 7 € Ni(o)}, otherwise.

hett = (hf},) Agg, (mf,g)>)

where h’ is the embedding of o at layer £,) and Agg, are inter- and intra-neighborhood aggregation
functions, respectively, and ¢ is an update function (e.g., MLP).

Graph lifting. A graph lifting is a map lift : G — T from the space of attributed graphs, G, to a
target domain, T, such that G =g G’ = lift(G) =g lift(G’), where 1 denotes the isomorphism
relation in domain T. One of the most widely used methods for lifting graphs to cell complexes is
cycle lifting [6]. This is a static (non-learnable) approach that constructs 2-cells by identifying basic
cycles (elements of a cycle basis) in input graphs. Specifically, the vertices involved in a basic cycle
are grouped to form a 2-cell in the resulting cell complex. A cycle basis of a graph G is a minimal set
of cycles such that any other cycle in GG can be expressed as a modulo-2 sum of cycles from this set.

3 Differentiable Lifting

In this section, we introduce Olift (read DiffLift), a general framework for learning graph lifting
functions. Section 3.1 provides an iterative description of our method, allowing for learning structures
of increasingly higher order — when the target domain is hierarchically structured. Section 3.2 and
Section 3.3 instantiate Olift for graph-to-hypergraph and graph-to-cell-complex liftings, respectively.
Moreover, we formulate our approach for simplicial- and combinatorial complexes in Appendix A.

3.1 General formulation

Lifting consists of determining which higher-order cells should be added to an input graph G,
satisfying the constraints of the target domain. To do so, we propose the following recipe.

dlift : general recipe for differentiable graph liftings

Input: Attributed graph G = (V, E, x), target domain T, and maximum dimension D y.

Step 1: Compute node embeddings. Use an arbitrary GNN to compute a vector representa-
tion (embedding) z, for each node v € V. This GNN component can be either a pre-trained
model or learned end-to-end. Set the current domain dimension to D = 1.

Step 2: Elicit candidate cells. Given the node embeddings {z,},cv, define a set of
candidate cells C C 2" of dimension D. For each cell C' € C, compute an embedding
2c = @, cc zv» Where @ is an arbitrary permutation-invariant aggregation function. Note
that the exact procedure for defining candidate cells depends on the target domain T, as
candidates must respect possible hierarchical constraints.

Step 3: Accept/reject candidate cells. Apply a neural network ¢ (e.g., an MLP) that defines
an acceptance probability ¢(z¢) for each candidate cell C'. Finally, draw a sample y¢ from
a Bernoulli distribution with parameter ¢(z¢) indicating whether cell C' is accepted or not.
The resulting domain is then given by VU EU {C € C : yo = 1 with yo ~ Ber(¢(z¢))}-

Step 4: Termination check. If D = Dy, halt; otherwise, D <— D + 1 and return to Step 2.

. J

Importantly, Olift is learned in an end-to-end fashion, using the straight-through estimator [4] to propa-
gate gradients through samples at Step 3. For hypergraphs, we assume hyperedges have dimension one,
causing Olift to stop once it reaches Step 4. We note that Steps 2 and 3 are the only domain-dependent
ingredients of our algorithm. Next, we explain how these steps can be adapted to specific domains.

Learning 1-dim cells Learning 2-dim cells

<7 v
9&39
A x

v ky ~ Ty o—o

9

Set Function
x & L « X
N
Find basic cycles
DeepSet
<

Figure 4: Two iterations of Jlift for cell complexes. At the first iteration, we leverage each node u’s
GNN embedding z,, to delineate candidate 1-dim cells. Specifically, we consider cell-equivalent of
edges linking u to each of its k,, NNs in embedding space, where k,, is a random variable parameter-
ized by z,,. We use a set function over the embedding of nodes within each cell to compute their accep-
tance probabilities. At the second iteration onwards, we use cycle lifting in our augmented cell com-
plex to elicit candidate cells, whose acceptance probabilities are computed similarly to the first step.

3.2 Graph-to-hypergraph lifting

= [Step 2] For notational convenience, suppose we wish to learn up to one hyperedge per node.
For each node v, we define a candidate hyperedge C'(v) using the k, nearest neighbors of v in the
embedding space:

Co)y={ScV:|S|=kyandw ¢ S = dist(zy, 2,) > maxdist(zy, 2,)}, 3)

u€es
where dist (-, -) denotes a dissimilarity metric. Here, we consider the Euclidean distance.

To allow for adaptive hyperedge sizes, we sample k, according to a probability distribution param-
eterized by (a function of) v’s embedding z,. More specifically, we define the (kmax — kmin + 1)-
dimensional probability vector 7, o exp o MLP(z,) and draw k, ~ Categorical(m,), where kmpin
and k.« are lower- and upper-bounds on k.

= [Step 3] We define the probability of acceptance (i.e., of b, = 1) for C'(v) as a function of the
(multiset of embeddings of) nodes in C(v). More specifically, we define b, as

by ~ Ber(U({z, : ue C(v)})), (€]
where W is learned and maps from multisets (i.e., ¥ is order-invariant) of elements in R to (0, 1).
Feature lifting. Each accepted hyperedge C(v) receives a feature vector z¢(,) computed as a

multiset operation over {z,, : u € C(v)}. Specifically, we employ a scaled sum projection:

1
Tow) = T EXC%)xu, Vo such that b, = 1. 3)

3.3 Graph-to-cell-complex lifting

For computational reasons, we split the lifting procedure for cell complexes into two cases. We
provide an overview of our proposed graph-to-cell-complex lifting in Figure 4.

Case D = 1: Learning edges

= [Step 2] Similarly to Step 2 of graph-to-hypergraph lifting, for each node v, we sample a
neighborhood size k&, and define a set C'(v) C V' \ {v} containing the nodes associated with the k,
nearest neighbors of v in the embedding space, excluding v itself.

= [Step 3] Next, we construct candidate edges (1-cells) by considering each pair (v, v") and define
their probability of acceptance (i.e., of b, ,» = 1) as a function of the embeddings of v and v’.
Specifically, we set by, ,» ~ Ber (U({zy, 2. })), where ¥ is an order-invariant function.

At end of this iteration, the obtained cell complex is given by:

K'=VUEU{{v,v'}:v e Vv € Cv) with b, ,, = 1}. (6)

Regarding feature lifting, we apply scaled sum projection, identically to the hypergraph case.

Case D > 2: Learning D-cells

To select candidate cells of arbitrary dimension, we need the notion of n-cycles of a cell complex.
Let C),(K') denote the n-chains of the cell complex K equipped with Z /2Z-vector space structure.
Also let 9y, : Cp,(K) — Cp,_1(K) be the boundary linear map on K. Then, the n-cycles of K are
given by Z,,(K) = ker(9,,). We provide further details in the supplementary material.

= [Step 2] Let KP~! be the cell complex at the end of iteration D— 1. We select a basis for (D—1)-
setof cycles Zp_1(KP~1)in KP~! to serve as candidate cells. Recall a basis for cycles is a minimal
collection of cycles such that any cycle can be written as a module-2 sum of cycles in the basis.

= [Step 3] Let C be the set of candidate (D — 1)-cycles from Step 2. We define the probability of
accepting C' € C (i.e., setting b = 1) using a DeepSet model [57] over the multiset of embeddings
{2, }vece of all nodes v in C'. The output complex at this iteration is then

KP =KP'u{CcecC:bo=1}. (7

For simplicity, again, the features of D-cells are obtained via sum projection lifting.

Remark 1 Despite the generality of lift, in the experiments we only consider 2-dimensional cell
complexes (D = 2) and use the algorithm in [37] (available at the toolbox NetworkX [15]) to
identify basic 1-cycles in graphs. This is mainly due to the fact that current implementations of TNNs
for cell complexes only support 2-dimensional objects — for instance, see TopoBenchmarkX [48].

Remark 2 We can obtain a deterministic version of Olift using a probability threshold, i.e., we
simply set bo = 1[¥(-) > ~] with, e.g., v = 0.5, for all candidate cells C.

4 Related Works

Topological deep learning. Traditional graph deep learning methods are limited to modeling only
pairwise interactions, making them unsuitable for capturing higher-order dependencies involving
multiple nodes [18, 33]. To address this limitation, a variety of deep topological learning methods have
been developed for hypergraphs [1, 54], simplicial complexes [14, 17, 30, 55], and cell complexes
[16, 18], the works that are based on the topological signal processing field [2, 40, 42, 44].[35] also
use GNNs to enhance TDL, where the lifted topological domain is transformed into augmented Hasse
graphs. These methods have demonstrated their effectiveness across several practical applications,
including action recognition [20, 51], bioinformatics [28], and neuroscience [29, 52].

Liftings to topological domains. Most relational datasets and benchmarks are defined on discrete
structures such as graphs. To apply topological deep learning methods to these datasets, a transforma-
tion process known as lifting is required, which maps discrete data into topological domains [5, 18, 48].
This lifting process can be either predefined — e.g., based on structural features like node proximity or
the presence of cycles — or learned directly from the data [3, 26]. Graph structure learning methods
[8, 12, 25, 26, 38, 47, 49] are closely related to the graph lifting literature and can be interpreted as in-
stances of graph lifting to graph domain. Our approach represents the most general form of learnable
lifting proposed so far and empirically outperforms the aforementioned methods in many benchmarks.

Static liftings. Hajij et al. [18] characterized static liftings, such as the n-hop and cycle-based
liftings. These liftings embed a graph into a topological domain by, respectively, aggregating
each node’s n-hop neighborhood or by tracing its cycles. The repertoire of static liftings was later
broadened by the ICML TDL challenge [5], which added methods based on k-nearest neighbours
(kNN), Voronoi decompositions, and random walks. Our work proposes a more flexible, data-driven
approach to defining liftings, which, as shown in Figure 1, offers benefits across a range of tasks.

S Experiments

In this section, we evaluate Jlift on two complementary tasks: graph classification and node clas-
sification. We compare it against broadly used lifting schemes for both hypergraphs and cell
complexes. We also report results across different TNNs within each of these domains. We run
experiments using PyTorch [36] and PyTorch Geometric [11]; our code is anonymously available at
https://anonymous.4open.science/r/tdl_knn_lifting_ gnn-AD22.

https://anonymous.4open.science/r/tdl_knn_lifting_gnn-AD22

5.1 Graph classification

Datasets. We evaluate model performance on six widely used graph-level benchmark datasets
for molecular property prediction: NCI1, NCI109, MUTAG, MOLHIV, PROTEINS, and
ZINC [10, 22, 27]. These datasets are standard benchmarks in the literature for assessing the effec-
tiveness of graph-based models [9, 48]. All tasks are binary classification problems, with the exception
of ZINC, which is a regression task. We provide more details regarding datasets in the Appendix.

Baselines. We compare 0Jlift with four existing graph lifting methods: cycle lifting, k-hop lifting,
k-nearest-neighbor (k-NN) lifting, and kernel lifting. Among these, cycle lifting is the most widely
adopted strategy for graph-to-cell-complex liftings and has become the de facto standard in virtually
all TNNs operating on cell complexes [6, 48]. Similarly, k-hop lifting is the predominant approach for
constructing hypergraphs from graphs and is often the sole method considered in recent benchmarks
such as [48]. We also consider k£-NN lifting as it shares similarities with our approach due to the
use of k-NN. Finally, we consider kernel lifting, one of the most successful approaches in the ICML
TDL challenge [5]. Notably, our choice of baselines covers lifting methods based on connectivity
(cycle and k-hop liftings), features (k-NN lifting), and both connectivity and features (kernel lifting).
We provide formulations for the baseline liftings in Appendix B. We consider the following TNNs:
CWN [6] and CXN [16] for cell complexes, and UniGCNII and UniGIN [23] for hypergraphs.

Evaluation setup. For ZINC and MOLHIV, we use the publicly available train/val/test data splits;
for the remaining datasets, we use a random 80/10/10% split. We optimize the hyper-parameters
of the lifting methods and take the optimal hyperparameter values from [48] whenever available;
otherwise, we select optimal values based on the optimal results using cycle or k-hop lifting. We
provide further details on the choice of hyperparameters and model selection in the supplementary
material. We compute the mean and standard deviation of the performance metrics (MAE | for ZINC,
AUC 1 for MOLHIV, and accuracy 7 for all other datasets) over three independent runs.

Table 1: Graph classification: Olift vs static liftings. We denote the best-performing model for each
dataset/TNN in bold. For any fixed TNN and dataset, Jlift is better than static liftings in 90% of
cases, offering a performance improvement of up to 45%.

Domain TNN Lifting NCI1T NCI109 T MOLHIVt MUTAG?T Proteinst ZINC|
Graoh GCN - 74.45+1.05 76.46+1.03 74.99+1.00 64.91+4906 70.18+1.35 0.87+0.01
P GIN - 76.89+1.75 76.90+0.80 70.76+2.46 80.70+2.48 72.50+2.31 0.62+0.01
CWN Cycle 76.93+1.18 76.71+1.3¢ 70.15+3.98 66.67+12.41 69.05+2.05 0.46+0.01
olift 79811010 80.55:050 75371080 85.96:196 70.54:331 0.17:0.00

Cellular
CXN Cycle 72.02+1.60 75.01+0.62 69.17+1.20 61.40+2.48 70.83+1.52 0.79+0.02
olift 82.08 150 8257040 74.83+1.96 84.21+4.30 69.94+2.10 0.17+0.01
k-hop 72.70+052 72.01+1.55 50.72+1.06 61.40+248 72.92+1.11 0.66+0.02
UniGCN2 k-NN 71.78+0.20 68.60+0.93 57.73+6.84 64.91+2.48 73.51+0.42 1.10+0.01
kernel 73.80+0.94 72.64+0.40 57.07+1032 63.16+859 73.21+0.73 0.79+0.02
olift 77454188 75304110 69.32+1.62 89.47 1130 73511081 0.56+0.03
Hypergraph k-hop 65.50+1.99 66.97+7.25 63.49+055 64.91+245 T71.43+073 1.15+0.01
UniGIN k-NN 72.83+1.00 70.14+1.48 52.34+3.21 59.65+4.96 72.62+1.52 1.10+0.02
kernel 60.50+1.26 66.59+1.49 49.60+0.07 57.89+4.30 66.67+1.83 1.45+0.02
olift 64.88+1.00 79.74+023 T72.04:0s838 66.67+656 73.81+t152 1.01+0.05

Results. Table 1 shows that 0lift is the best-performing lifting operator in over 90% of the
TNN/dataset combinations, both for cell complexes and hypergraphs. Notably, Olift resulted in
an improvement in average accuracy of up to ~ 45% compared to static liftings using the same TNN.
For CWN and UniGCNII, our method outperforms static liftings on all datasets. On NCI109 and
ZINC, 0lift is consistently better than the static liftings, being close to SOTA on these datasets, and
outperforms other topological deep learning methods, such as[35] and [24]. We also observe that
TNNs perform better than GNNs. Overall, these results validate the effectiveness of our proposal.

Impact of GNN choice on performance. Here, we aim to assess how sensitive our approach is to
the choice of GNN. To do so, we report results using GIN [53] and GPS (Graph Transformer) [39].

Table 2 indicates that choosing GNNs that are able to generate richer and more informative latent
node representations leads to better results in Olift. In particular, GPS performs better than GIN in
most datasets. A possible explanation for this observation is the greater expressivity of GPS, which

benefits from the incorporation of positional encodings. Notably, on cell complexes and ZINC dataset,
GPS allows reducing the MAE from 0.46 to 0.17.

Table 2: Effect of GNN backbone on the performance of Jlift. The results suggest that the expressive
power of backbone GNNs have a direct impact in Olift’s performance. Except for MOLHIV and
NCI1, GPS leads to better performance than GIN overall.

TNN GNN NCI1t NCI1091t MOLHIV{T MUTAG?T Proteinst ZINC,|
CWN GPS 79.81+0.40 80.55+050 64.31+5.32 87.72+2.48 70.54+3.314 0.17+0.00
GIN 81.59:080 78.69+1.43 75.37+0.80 82.46+2.45 T1.13+2.76 0.46-+0.00

CXN GPS 79.97+061 82.57+0.40 65.58+1.42 84.21+430 6994210 0.17+0.01
GIN 81.351220 79.98+1.01 72.25+3.23 77.19+2.48 67.86+2.19 0.43+0.01

UniGCN2 GPS 78.67+1.46 T74.50+1.16 68.22+2.38 89.47 430 73.81+0.42 0.56+0.03
n GIN 75.38:130 74.98:11> 68.73:205 64.91:656 73.51+051 0.63-0.01
UniGIN GPS 66.42+-1.79 79.74+023 68.32+3.12 66.67+6.56 72.32+0.73 1.01+0.05
n GIN 64.40+0.41 785341060 68.86+3.05 70.18+:656 72.02+5.71 1.12+0.26

5.2 Node classification

Datasets. For node classification, We evaluate Jlift on four datasets: Cora , Citeseer [56], Texas, and
Winsconsin [41]. Within these datasets, two are knowingly homophilic (Cora and Citeseer) and two
are heterophilic datasets (Texas and Wisconsin). Dataset statistics can be found in Appendix D.

Baselines. We also compare our method (for cell domains) against the learnable approach in
[3], called Differentiable Cell Complex Module (DCM), which was originally evaluated on node
classification tasks. To do so, we consider 0lift combined with CWN. We also include results of
CWNss with cycle lifting. We consider the same hypergraph TNN baselines as in Section 5.1.

Evaluation setup. For all datasets, we use random train/val/test data split with 60/20/20% split. Simi-
larly to the experiments for graph classification, we optimize the hyper-parameters of the lifting meth-
ods and take the optimal TNN hyperparameters from [48] when available. Otherwise, we choose them
to maximize the validation accuracy using k-hop lifting. For more details, please refer to the supple-
mentary material. We report the average accuracy and standard deviation over three independent runs.

Results. Table 3 compares 0lift against DCM and cycle lifting. Our method achieves the highest
accuracies in two out of four datasets and the best average performance across the datasets. In
particular, Olift obtains an average of 77.74 compared to 73.52 of the second-best method (cycle
lifting). On Texas and Wisconsin, the heterophilic datasets, 0lift outperforms DCM by a large margin.

Table 3: Comparison of DCM and 0lift on node classification. 0lift achieves the highest average
performance across all datasets (rhs) and significantly outperforms DCM on heterophilic datasets.

TNN Lifting Cora Citeseer Texas Wisconsin | Avg

DCM - 80.73+0.33 77.90+0.80 56.76+6.62 73.86+1.85 | 72.31
CWN Cycle 74.80 £0.08 75.83+£0.90 63.06+7.75 80.39+4.24 | 73.52
CWN OLift 80.17+1.59 72.83+215 80.18+3.37 77.78+3.70 | 77.74
CWN JLift 80.17+1.59 72.83+215 80.18+3.37 T77.78+t3.70 | 77.74
TopoTune JLift 80.17+1.59 72.83+215 80.18+3.37 77.78+t3.70 | 77.74

Table 4 reports results of lifting methods for hypergraph neural networks. Compared to k-hop, our
approach is better on heterophilic datasets but worse on homophilic ones for UniGCN2. Additionally,
Table 4 shows that 0lift leads to better average accuracy than other static liftings.

6 Conclusion

Topological neural networks (TNNs) are receiving increasing attention in the graph machine learning
community. Yet, their effectiveness depends crucially on the choice of graph lifting procedure.

Table 4: Comparison of 0lift and static lifting baselines for hypergraphs on node classification. Our
method outperforms all static liftings on average across the selected node classification datasets.

TNN Lifting Cora Citeseer Texas Wisconsin \ Avg
k-hop 86.03£0.63 7840+0.36 66.67£6.74 69.28+5.62 | 75.09
UniGCN2 k-NN 74.00 £0.65 18.17+0.05 7027 £3.82 79.74+2.45 | 60.54
kernel 29.93+1.33 18.07+0.21 57.66+7.75 57.52+10.42 | 40.79
JLift 81.93+1.11 78.03+£0.91 69.37+255 73.20+5.62 | 75.63
k-hop 78.73£0.66 T74.47+£1.72 65.77£9.19 58.82+5.77 | 69.44
UniGIN k-NN 62.00+1.08 19.33+0.48 65.77+1.27 73.20£4.03 | 55.07
kernel 40.93 £2.52 18.53+0.61 58.56+£7.09 51.63+£4.03 | 4241
OLift 8423 £0.53 77.97+0.45 63.96+6.37 63.40+4.03 | 72.39

Despite its central role, lifting has remained largely unsupervised and task-agnostic, which can lead
to the construction of suboptimal topological representations for downstream learning.

To address this limitation, we introduced 0lift, a general-purpose, differentiable lifting framework
that is compatible with multiple topological domains. Across a broad set of benchmarks and TNN
architectures, Olift consistently outperformed traditional unsupervised lifting methods, demonstrating
the benefit of making the lifting process learnable and task-informed. Moreover, we believe that
formally analyzing the impact of enriching topological structures with learnable liftings on mitigating
oversmoothing and oversquashing in TNNSs is an interesting research direction.

Limitations. For hypergraph domains, Jlift can create candidate hyper-edges and decide whether
to keep them in embarrassingly parallel fashion — rendering 0Olift especially compute-efficient for
this domain. However, for cell complexes, we need to compute a cycle basis to elicit candidate
cells, which may come at a cubic with respect to the number of nodes in the input graph. In this
case, we may reduce the number of candidate cells by, for instance, regularizing the k, variables or
shifting their distribution towards zero. Nonetheless, devising more efficient algorithms for candidate
identification in hierarchical domains is a clear direction of improvement for future works.

Future work. Our method can be extended to other topological domains, such as point clouds,
making it applicable to 3D mapping tasks. Additionally, future work should focus on addressing
the computational challenges of DiffLift and scaling it to handle larger graphs. Another promising
direction is to explore differentiable lifting in dynamic or temporal graphs, where topological
structures evolve over time. Moreover, integrating Olift with pretraining strategies could yield
generalizable topological priors across tasks.

Broader impact. We do not foresee any direct negative impacts arising from this work. On the
contrary, we believe our work opens an avenue to boost the performance of TNNs in real-world
applications where experts lack sufficient information to manually design effective lifting operations.

References

[1] Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention. Pattern
Recognition, 110:107637, 2021.

2

—

Sergio Barbarossa and Stefania Sardellitti. Topological signal processing over simplicial complexes. /[EEE
Transactions on Signal Processing, 68:2992-3007, 2020.

3

—

Claudio Battiloro, Indro Spinelli, Lev Telyatnikov, Michael Bronstein, Simone Scardapane, and Paolo
Di Lorenzo. From latent graph to latent topology inference: Differentiable cell complex module. arXiv
preprint arXiv:2305.16174, 2023.

[4

—

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. ArXiv e-prints, 2013.

[5

—

Guillermo Berndrdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel
Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, et al. Icml
topological deep learning challenge 2024: Beyond the graph domain. arXiv preprint arXiv:2409.05211,
2024.

[6

—_

[7

—

(8]

(91

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Li0, Guido F Montufar, and Michael
Bronstein. Weisfeiler and lehman go cellular: CW networks. In Advances in Neural Information Processing
Systems (NeurlIPS), 2021.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and Michael
Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks. In International
Conference on Machine Learning (ICML), 2021.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in neural information processing systems, 33:19314—19326,
2020.

V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking graph neural
networks. Journal of Machine Learning Research, 24(43):1-48, 2023.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24(43):1-48,
2023.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In Workshop track
of the International Conference on Representation Learning (ICLR), 2019.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for
graph neural networks. In International conference on machine learning, pages 1972-1982. PMLR, 2019.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum
chemistry. In International Conference on Machine Learning (ICML), 2017.

Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial attention networks. arXiv preprint
arXiv:2204.09455, 2022.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and
function using networkx. In Gaél Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of
the 7th Python in Science Conference, pages 11 — 15, Pasadena, CA USA, 2008.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. arXiv preprint
arXiv:2010.00743, 2020.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Vasileios Maroulas, and Xuanting Cai. Simplicial
complex representation learning. arXiv preprint arXiv:2103.04046, 2021.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzman-Séenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K Dey, Soham Mukherjee, Shreyas N Sam-
aga, et al. Topological deep learning: Going beyond graph data. arXiv preprint arXiv:2206.00606,
2022.

J. Hansen and R. Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied and Computational
Topology, 2019.

Xiaoke Hao, Jie Li, Yingchun Guo, Tao Jiang, and Ming Yu. Hypergraph neural network for skeleton-based
action recognition. IEEE Transactions on Image Processing, 30:2263-2275, 2021.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.
Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint

arXiv:2005.00687, 2020.

Jing Huang and Jie Yang. UniGNN: a unified framework for graph and hypergraph neural networks. arXiv
preprint arXiv:2105.00956, 2021.

Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using persistent
homology. Advances in neural information processing systems, 36:63150-63173, 2023.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning

for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 66—74, 2020.

10

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

[39]

(40]

[41]

[42]

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Differentiable
graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):1606-1617, 2022.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Benchmark
data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.de.

Xuan Liu, Congzhi Song, Shichao Liu, Menglu Li, Xionghui Zhou, and Wen Zhang. Multi-way relation-
enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Bioinformatics, 38
(20):4782-4789, 2022.

Mohammad Madine, Islem Rekik, and Naoufel Werghi. Diagnosing autism using t1-w mri with multi-kernel
learning and hypergraph neural network. In 2020 IEEE International Conference on Image Processing
(ICIP), pages 438—442. IEEE, 2020.

Kelly Maggs, Celia Hacker, and Bastian Rieck. Simplicial representation learning with neural k-forms.
arXiv preprint arXiv:2312.08515, 2023.

J.R. Munkres. 7Topology. Featured Titles for Topology. Prentice Hall, Incorporated, 2000. ISBN
9780131816299. URL https://books.google.fi/books?id=XjoZAQAATAAJ.

Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue
Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane,
Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T Schaub,
Petar Velickovi¢, Bei Wang, Yusu Wang, Guowei Wei, and Ghada Zamzmi. Position: Topological deep
learning is the new frontier for relational learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pages 39529-39555. PMLR, 21-27 Jul 2024.

Mathilde Papillon, Mustafa Hajij, Audun Myers, Helen Jenne, Johan Mathe, Theodore Papamarkou, Aldo
Guzman-Sdenz, Neal Livesay, Tamal Dey, Abraham Rabinowitz, et al. Icml 2023 topological deep learning
challenge: Design and results. In Topological, Algebraic and Geometric Learning Workshops 2023, pages
3-8. PMLR, 2023.

Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane. Architectures of topological deep
learning: A survey on topological neural networks. ArXiv e-prints, 2023.

Mathilde Papillon, Guillermo Bernardez, Claudio Battiloro, and Nina Miolane. Topotune : A framework
for generalized combinatorial complex neural networks, 2025. URL https://arxiv.org/abs/2410.
06530.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. In Advances in Neural Information Processing Systems
(NeurlPS - Workshop), 2017.

Keith Paton. An algorithm for finding a fundamental set of cycles of a graph. Commun. ACM, 12(9):
514-518, September 1969. ISSN 0001-0782. doi: 10.1145/363219.363232. URL https://doi.org/10.
1145/363219.363232.

Chendi Qian, Andrei Manolache, Christopher Motris, and Mathias Niepert. Probabilistic graph rewiring
via virtual nodes. arXiv preprint arXiv:2405.17311, 2024.

Ladislav Rampések, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS *22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

T Mitchell Roddenberry, Michael T Schaub, and Mustafa Hajij. Signal processing on cell complexes. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 8852-8856. IEEE, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2020. URL
https://openreview.net/forum?id=HJxiMAVtPH.

Stefania Sardellitti, Sergio Barbarossa, and Lucia Testa. Topological signal processing over cell complexes.
In 2021 55th Asilomar Conference on Signals, Systems, and Computers, pages 1558-1562. IEEE, 2021.

11

http://graphkernels.cs.tu-dortmund.de
https://books.google.fi/books?id=XjoZAQAAIAAJ
https://arxiv.org/abs/2410.06530
https://arxiv.org/abs/2410.06530
https://doi.org/10.1145/363219.363232
https://doi.org/10.1145/363219.363232
https://openreview.net/forum?id=HJxiMAVtPH

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61-80, 2009.

Michael T Schaub, Yu Zhu, Jean-Baptiste Seby, T Mitchell Roddenberry, and Santiago Segarra. Signal
processing on higher-order networks: Livin’on the edge... and beyond. Signal Processing, 187:108149,
2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al Magazine, 29(3):93, Sep. 2008. doi: 10.1609/aimag.v29i3.2157.
URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls of
graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS 2018, 2018.

Qingyun Sun, Jianxin Li, Beining Yang, Xingcheng Fu, Hao Peng, and Philip S Yu. Self-organization
preserved graph structure learning with principle of relevant information. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 4643—4651, 2023.

Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Pavlo Vasylenko, Ghada Zamzmi, Mustafa Hajij,
Michael T Schaub, Nina Miolane, Simone Scardapane, and Theodore Papamarkou. Topobenchmarkx: A
framework for benchmarking topological deep learning. arXiv preprint arXiv:2406.06642, 2024.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Yogesh Verma, Amauri H Souza, and Vikas Garg. Topological neural networks go persistent, equivariant,
and continuous. In International Conference on Machine Learning (ICML), 2024.

Cheng Wang, Nan Ma, Zhixuan Wu, Jin Zhang, and Yongqgiang Yao. Survey of hypergraph neural networks
and its application to action recognition. In CAAI International Conference on Artificial Intelligence, pages
387-398. Springer, 2022.

Junqi Wang, Hailong Li, Gang Qu, Kim M Cecil, Jonathan R Dillman, Nehal A Parikh, and Lili He.
Dynamic weighted hypergraph convolutional network for brain functional connectome analysis. Medical
image analysis, 87:102828, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar.
Hypergen: A new method for training graph convolutional networks on hypergraphs. Advances in neural
information processing systems, 32, 2019.

Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial convolutional neural networks. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8847-8851. IEEE, 2022.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 40—48, New York, New York, USA, 20-22 Jun 2016. PMLR. URL https://proceedings.mlr.
press/v48/yangal6.html.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep sets. In Advances
in Neural Information Processing Systems (NeurIPS), 2017.

12

https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v48/yanga16.html
https://proceedings.mlr.press/v48/yanga16.html

A Additional background and formulations

A.1 Chains, boundary operators, and cycles
Here, we introduce some basic notions in algebraic topology. For simplicity, our exposition considers
abstract simplicial complexes (ASCs) equipped with coefficients in the finite field Z /27 = {0, 1}.

The space of n-chains is the vector space of all formal sums of n-dimensional simplices of an ASC
K. Formally, letn > 0 and K,y = {0 € K : dim(c) = n} be the n-skeleton of K. The n-chains

of K is the set C),(K) whose elements take the form

Y o ®)

€K (1)
where for all 0 € K., €, € Z/27.
Letc = ZaeK<n) €s0and ¢’ = ZaeK(n) €/ o be two n-chains. The sum of two chains (¢ + ¢’) and
the product of a chain by a scalar (\c) are respectively defined by
c+c = 2(60 +é)o 9)
Ae =Y "(Aeo)o (10)

o

where sums and products are module 2.

We define the boundary of a n-simplex o, denoted by 9,0 as the sum of its constituents (n — 1)-
simplices, i.e.,

Opo = >oooor (1)

TCo:|T|=|o|—1

This boundary extends linearly to chain spaces. In particular, the boundary operator 9, is a linear
map Oy, : Cp(K) — Cy—1(K) defined by

OpCc = 0Oy, Z €c0 = Z €50n0. (12)

UGK("> UEK(,,L)
Finally, we can define n-cycles. For n > 0, the n-cycles of K is the set Z,, (K) given by the kernel
of 9, that is
Zn(K) ={ce€ Cp(K) : 0pc = 0}. (13)

A2 Qlift for simplicial complexes

Note that for when D = 1 — i.e., when we must decide which edges to add — Steps 2 and 3 of
dlift for cell-complexes naturally result in a simplicial complex. To fully specify 0lift for simplicial
complexes, we are left with defining these steps when D > 1.

Case D > 2: Learning D-simplices

= [Step 2] When creating simplices of dimension D, we must ensure they respect the hierarchical
structure of simplicial complexes. Let K be the cell complex at the end of iteration £/ < D — 1. To
identify a preliminary set of candidates C’, we run static D-clique lifting on K''. For D > 2, it is
possible that a lower-order clique within some C' € C’ does not belong to K =1 Therefore, we must
filter out these elements, defining a refined set of candidates:

c={CecC|SeKP forall S C C} (14)
= [Step 3] Similarly to this respective step for cell complexes, we define the probability of accept-

ing C € C (i.e., setting bo = 1) applying a DeepSet over the embeddings { z, },cc, subsequently
sampling the Bernoulli variables {b¢ } cec. The output complex at this iteration is then

KP =KP'u{CcecC:bo=1}. (15)

We define the features for D-simplices using sum projection lifting.

13

A.3 Olift for combinatorial complexes

There are multiple ways to combine cell complexes with hypergraphs to obtain valid combinatorial
complexes (CC). Here, we would like to preserve the property that hyperedges exchange messages
with nodes via boundary (or lower incidences) neighborhoods. Thus, we propose first running Olift to
either cell or simplicial complexes — where ranking functions are given by cell/simplex dimensions.
Let K be the resulting complex. Then, we employ (in parallel) Olift to a hypergraph H, where
edges/hyperedges have rank 1. To ensure a valid combinatorial complex, we prune the sampled
hyperedges to include only those that are not supersets of any cell of rank greater than 1 in K.
Formallly, the resulting CC is givenby {h € H : Ao € K st.c Ch} UK.

B Topological liftings

Clique lifting. The set of cliques in a graph G is given by CI(G) = {¢c CV(G) :u # v € ¢ =
{u,v} € E(G)}, i.e., each element of CI(G) is a complete subgraph of G. The k-cliques of G are
the elements of CI(G) of size k, for k > 1, and we denote them as Clj(G). Formally, the k-clique
lifting operation is given by

lifterique x (G) = V(G) UF_, CLi(G). (16)

Note that the inclusion of all cliques of size smaller than k ensures the function returns a valid abstract
simplicial complex.

Cycle lifting. The idea of cycle lifting is to identify basic cycles in the input graph and use the tuple
of vertices in a cycle as a 2-rank cell of the output complex.

Let us consider modulo-2 sum operations for vertices and edges. Also, let 9; be the edge boundary
map for a graph G, i.e., 01 ({u,v}) = {u} + {v} for any edge {u,v} € E(G). The cycles of G are
L(G) ={l C E(G) : X ey O1(e) = O}

A basis for cycles of G is a minimal collection of cycles such that any cycle in G can be written
as a sum of cycles in the basis — i.e., the smallest set B C L such that VI € L,3B’ C B with
I =) e b. The cycle lifting map is

lifteyere (G) = V(G) U E(G) U {V(b) : b € B(G)}, (17)
where V'(b) denotes the set of vertices in the cycle b, and {V'(b) : b € B(G)} is the set of 2-dim cells.

DCM. Battiloro et al. [3] proposed a novel layer composed of several modules, with the Differ-
entiable Cell Complex Module (DCM) being central to latent topology inference. The DCM first
samples the 1-skeleton of the latent cell complex using the a-Differentiable Graph Module (a-DGM).
It then selects polygons—representing higher-order interactions—formed by cycles in the sampled
graph using the Polygon Inference Module (PIM). For a detailed description of a-DGM and PIM, we
refer the reader to Section 3 of [3].

k-hop lifting. The k-hop neighborhood of a node v € V(G) is defined as
Ni[v] = {u € V(G) : dist(u,v) < k}, (18)

where dist(u, v) is the shortest-path distance in the graph G, measured by the number of edges in
the path.

To construct the k-hop hypergraph H from G, a hyperedge is formed for each node v € V (G) based
on its k-hop neighborhood:

liftk_hop(G) = {Nk [’U] NS V(G)}
One can note that when k = 1, k-hop is equal to neighborhood lifting. The parameter %k controls the

extent of the neighborhoods included as hyperedges, with larger k£ values progressively incorporating
nodes farther away in terms of shortest-path distance.

k-NN lifting. k-NN lifting constructs hyperedges by identifying the k nearest neighbors based on

their node features (feature space). For every node, a separate hyperedge is formed that includes the
node itself and its k closest neighbors.

14

Kernel lifting. Kernel lifting is a procedure that constructs hyperedges based on similarity measures
derived from kernels over graph nodes. These kernels can be defined in three ways: (i) over the graph
structure itself, (ii) over the node features, or (iii) as a composition that jointly incorporates both graph
and feature information. For a given reference node v, the method computes similarities between
v and all other nodes v* using a kernel function. A hyperedge is then formed by selecting a fixed
fraction (typically 0.5) of the nodes that are most similar to v according to the chosen kernel. This
process is repeated for each node to construct a set of hyperedges. The kernels can be defined several
forms: over nodes K (v, v*), features K, (x, x*), or over nodes and features C'(K (x, z*, v, v*)),
where C'is a valid composition function. Kernels over features are calculated as standard RBF or
exponential kernels [60], whereas kernels over graphs can be calculated as heat or Matérn kernels
[58, 62, 64].

C Implementation details

C.1 Models

Our implementation relies mainly on the Pytorch [36] and Pytorch Geometric [11] libraries. For
TNN models and static lifting we used TopoX [61] and TopoBenchmarkX[48].

Regarding the base TNNs, we use the hyperparameters (including learning rate, optimizer, batch size,
width, depth, and so on) reported in TopoBenchmarkX for CWN, CXN, and UniGCNII on NCI1,
NCI109, MOLHIV, MUTAG, Proteins, ZINC, Cora and Citeseer [48]. Since TopoBenchmarkX does
not report optimal hyperparameters for UniGIN, we use the same used for UniGCNII.

We note that MOLHIV, Texas and Wisconsin datasets were not present in TopoBenchmarkX. We use
two TNN layers for MOLHIV and one for Texas and Wisconsin with respective learning rates 10~2,
5x 1073 and 5 x 10~3. For these datasets, we fix the embedding size in 64 for all layers. And for
Texas and Wisconsin we used weight decay 5 x 107,

We are left with the task of optimizing the hyperparameters for the lifting operations (Olift, £-NN,
kernel). For Qlift, we consider using both GPS and GIN as backbone GNNs, with embedding
dimensions in {32, 64, 128}, network depth in {2, 3}, and kmax = {3,5,7,9,11}. For k-NN lifting
we choose k in {3,5,7,9}. For kernel lifting, we consider equally-spaced temperature values within
0.1 and 9.6, with 0.5 increments.

All models were trained for 200 epochs and with early stopping after 50 epochs without improvement
on validation accuracy. We run three independent trials for computing mean and standard deviation
of the performance metrics. We select the optimal hyperparameters based on validation accuracy.

C.2 Hardware

For all experiments, we use a cluster with Nvidia V100 GPUs — details regarding the compute
infrastructure are omitted for anonymity.

D Datasets

Graph-level tasks. The datasets NCI1, NCI109, PROTEINS, and MUTAG are part of the TUDatasets
[27] — a dataset collection broadly used for benchmarking GNNs. We also use ZINC-12K and
MOLHIV [22], popular benchmarks for molecular property prediction. Statistics for each dataset
are given in Table 5.

Table 5: Statistics of datasets for graph-level tasks.
Dataset #graphs Fclasses Avg #nodes Avg #edges Train% Val% Test%

NCII 4110 2 29.87 32.30 80 10 10
NCI109 4127 2 29.68 32.13 80 10 10
MUTAG 188 2 17.93 19.79 80 10 10

PROTEINS 1113 2 39.06 72.82 80 10 10
MOLHIV 41127 2 25.5 27.5 Public Split
ZINC 12000 - 23.16 49.83 Public Split

15

Node-level tasks. For node classification, we use six popular benchmarks: Cora, Citeseer [45, 46],
Texas, and Wisconsin [41]. Cora and Citeseer are citation networks where nodes represent papers and
edges denote citation between them. Node features are given by bag-of-word vectors and node labels
comprise the academic topics of the underlying articles. Texas and Wisconsin are datasets of webpages
from university departments. Nodes represent webpages and edges are hyperlinks between them.

For citation networks, we use the same data split as in [59], and for the remaining ones we use the split
in [63]. These are the standard and most used splits. Table 6 provides more details about the datasets.

Table 6: Statistics of datasets for node classification.
Dataset #Nodes #Edges #Features +#Classes #Train #Val #Test

Cora 2708 5429 1,433 7 1,208 500 1,000

Citeseer 3327 4732 3,703 6 1,827 500 1,000
Texas 183 309 1703 5 87 59 37
Wisconsin 251 499 1703 5 120 80 51

Supplementary References

(58]

[59]

[60]
[61]

[62]

[63]

[64]

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Deisenroth,
and Nicolas Durrande. Matérn gaussian processes on graphs. In International Conference on Artificial
Intelligence and Statistics, pages 2593-2601. PMLR, 2021.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, 2014.

Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Ruben Ballester,
Claudio Battiloro, Guillermo Berndrdez, Tolga Birdal, Aiden Brent, et al. Topox: a suite of python
packages for machine learning on topological domains. Journal of Machine Learning Research, 25(374):
1-8, 2024.

Alexander V Nikitin, ST John, Arno Solin, and Samuel Kaski. Non-separable spatio-temporal graph
kernels via spdes. In International Conference on Artificial Intelligence and Statistics, pages 10640—10660.
PMLR, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Sle2agrFvs.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. MIT press, 2002.

16

https://openreview.net/forum?id=S1e2agrFvS

	Introduction
	Background
	Differentiable Lifting
	General formulation
	Graph-to-hypergraph lifting
	Graph-to-cell-complex lifting

	Related Works
	Experiments
	Graph classification
	Node classification

	Conclusion
	Additional background and formulations
	Chains, boundary operators, and cycles
	lift for simplicial complexes
	lift for combinatorial complexes

	Topological liftings
	Implementation details
	Models
	Hardware

	Datasets

