
The Training Agents with Foundation Models Workshop at RLC 2024

Concept-Based Interpretable Reinforcement
Learning with Limited to No Human Labels

Zhuorui Ye∗ †

Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, China
cuizhuyefei@gmail.com

Stephanie Milani∗

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213
smilani@cs.cmu.edu

Geoffrey J. Gordon
Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213
ggordon@cs.cmu.edu

Fei Fang
Software and Societal Systems Department
Carnegie Mellon University
Pittsburgh, PA 15213
feifang@cmu.edu

Abstract

Recent advances in reinforcement learning have predominantly leveraged neural
network-based policies for decision-making, yet these models often lack interpretabil-
ity, posing challenges for stakeholder comprehension and trust. Concept bottleneck
models offer an interpretable alternative by integrating human-understandable con-
cepts into neural networks. However, a significant limitation in prior work is the
assumption that human annotations for these concepts are readily available dur-
ing training, necessitating continuous real-time input from human annotators. To
overcome this limitation, we introduce a novel training scheme that enables RL
algorithms to efficiently learn a concept-based policy by only querying humans
to label a small set of data, or in the extreme case, without any human labels.
Our algorithm, LICORICE, involves three main contributions: interleaving concept
learning and RL training, using a concept ensembles to actively select informative
data points for labeling, and decorrelating the concept data with a simple strategy.
We show how LICORICE reduces manual labeling efforts to to 500 or fewer concept
labels in three environments. Finally, we present an initial study to explore how we
can use powerful vision-language models to infer concepts from raw visual inputs
without explicit labels at minimal cost to performance.

1 Introduction

In reinforcement learning (RL), agents are tasked with learning a policy, a rule that makes sequential,
reactive decisions in complex environments. In recent RL work, agents typically represent the policy
as a neural network, as such representations tend to lead to high performance (Mirhoseini et al., 2021).
However, this choice can come at a cost: such policies are challenging for stakeholders to interpret —
particularly when the inputs to the network are also complex, such as high-dimensional sensor data.
This opacity can become a significant hurdle, especially in applications where understanding the
rationale behind decisions is critical, such as healthcare (Yu et al., 2021) or finance (Liu et al., 2022).
In such applications, decisions can have significant consequences, so it is essential for stakeholders to
fully grasp the reasoning behind actions in order to confidently adopt or collaborate on a policy.

∗Equal Contribution.
†This work was done when Ye was a visiting intern at CMU.

The Training Agents with Foundation Models Workshop at RLC 2024

To address interpretability concerns in the supervised learning setting, recent works have integrated
human-understandable concepts into the decision-making process through concept bottleneck mod-
els (Koh et al., 2020; Espinosa Zarlenga et al., 2022). These models incorporate a bottleneck layer
whose units correspond to interpretable concepts, ensuring that the final decisions depend on these
concepts instead of just on opaque raw inputs. By training the model both to have high accuracy on
the target task and to accurately match experts’ concept labels, these models learn a concept-based
representation that is simultaneously meaningful to humans and useful for machine learning tasks.

More recently, these techniques have been applied to RL by incorporating a concept bottleneck in
the policy (Grupen et al., 2022; Zabounidis et al., 2023), such that the actions taken by the agent are
a function of the human-understandable concepts. However, past work assumes that human-provided
concept annotations are accessible in the training loop of RL, which presents a significant challenge.
In novel domains, we may only have access to data that is not in an interpretable representation, such
as RGB or multispectral satellite imagery, while the RL agent needs to know the concepts present in
every state and action it encounters during training — even though RL training sets can often be
measured in millions or billions of state-action pairs. As a result, the human labelers would need to
be actively involved in the training process, providing concept labels for unreasonable numbers of
observations. This level of involvement is not only detrimental to the human labeler but also risks
introducing potential errors in the labels due to fatigue (Marshall and Shipman, 2013).

In this work, we aim to address this challenge of requiring frequent human interventions during the
training of interpretable policies using RL. We propose LICORICE (Label-efficient Interpretable
COncept-based ReInforCEment learning), a novel training paradigm consisting of three main
contributions. First, LICORICE interleaves concept learning and RL training: it alternately freezes
the network layers corresponding to either the concept learning part or the decision-making part. We
believe this scheme improves our ability to learn from limited labeled data by reducing interference
between the learning tasks. Additionally, concept learning uses data that is more on-policy, which
means it is more relevant and useful for learning accurate concepts that directly impact the decision-
making process. Second, LICORICE utilizes concept ensembles to actively select the most informative
data points for labeling. By focusing on samples that are predicted to provide the most valuable
information for model improvement, this technique substantially reduces the number of labels needed
to achieve both high performance and high concept accuracy. Third, LICORICE includes a strategy
to decorrelate the concept data collected under the current policy. By generating a diverse set of
training data, this approach ensures the data remains unbiased and representative of various scenarios.
We demonstrate how these changes yield both higher concept accuracy and higher reward while
requiring fewer queries on three environments with image input, including an image input version of
CartPole and two Minigrid environments.

Given these results, we ask whether we can further reduce the reliance on manual concept labeling by
leveraging the potential of vision-language models (VLMs). This capability is important in scenarios
where manual concept annotation is impractical. We present an initial exploration of whether VLMs
can further reduce the concept annotation burden. We find that VLMs can indeed serve as concept
annotators for some but not all of the above environments. In these cases, the resulting policies can
achieve 80 to 95% of the optimal performance.

2 Preliminaries

Reinforcement Learning In RL, an agent learns to make decisions by interacting with an
environment (Sutton and Barto, 2018). The environment is commonly modeled as a Markov
decision process (Puterman, 2014), consisting of the following components: a set of states S, a set
of actions A, a state transition function T : S × A × S → [0, 1] that indicates the probability of
transitioning from one state to another given an action, a reward function R : S ×A× S → R that
assigns a reward for each state-action-state transition, and a discount factor γ ∈ [0, 1] that determines
the present value of future rewards. The agent learns a policy π : S ×A → [0, 1], which maps states
to actions with the aim of maximizing the expected cumulative discounted reward. We evaluate a

The Training Agents with Foundation Models Workshop at RLC 2024

policy via its value function, which is defined as V π(s) = Eπ[
∑∞

k=0 γkrt+k+1 | s0 = s],∀s ∈ S. The
ultimate aim in RL is to determine the optimal policy, π∗. To do so, the agent iteratively refines its
policy based on feedback from the environment.

Concept Bottleneck Models Concept-based explanations have emerged as a common paradigm
in explainable AI (Poeta et al., 2023). Concept bottleneck models (Koh et al., 2020) are an example
of concept-based explanations: they learn a mapping from samples x ∈ X to labels y ∈ Y through
two functions, g and f . The concept encoder function g : X → C maps samples from the input space
to an intermediate space of human-interpretable concepts. The label predictor function f : C → Y
maps samples from the concept space to a downstream task space, such as labels for supervised
classification. As a result, the prediction ŷ = f(g(x)) relies on the input x entirely through the
bottleneck ĉ = g(x).

Training Concept Models Training these models requires a dataset of X × C × Y , in which each
sample consists of input features x, a ground truth concept vector c ∈ {0, 1}k, and a task label y. The
functions f and g are parameterized by neural networks. These models are trained independently,
jointly, or sequentially. The independent training method trains f̂ and ĝ independently. Critically, f̂
is trained using the true c, but at test time it takes ĝ(x) as input. If directly applied to RL, this
approach would require continuous access to ground-truth concepts for training f̂ , which we would
like to avoid. In joint training, the model minimizes the weighted sum of the concept losses with the
task performance loss. This paradigm can be problematic, as it may require careful tuning to find
the right balance between the two losses. In sequential training, the model first learns ĝ. It then uses
the concept predictions ĝ(x) to learn f̂(ĝ(x)). As we will later show, this setup is problematic for
RL, as concepts may only emerge after the policy is sufficiently performant.

3 LICORICE

We now describe LICORICE, our algorithm for interactively querying for concept labels under a
limited concept label budget during RL training. In ??, we describe the architecture of the concept
bottleneck policy. We then detail our iterative training process (Section 3.1) and explain our active
learning approach for choosing informative training points (Section 3.2). Finally, in Section 3.3, we
detail how we use VLMs as a substitute for human concept labeling.

We insert a concept bottleneck layer into the policy network, such that π maps from states S to
concepts C to actions A, π = f(g(s)). These concepts serve as intermediaries in the policy network,
which subsequently maps the concept vector to a distribution over possible actions. This setup allows
the policy to base its decisions on understandable and meaningful features. We describe additional
modifications necessary to accommodate the concept bottleneck in Appendix A.2. As a result, we can
use any RL algorithm as long as we accommodate an additional loss function for concept prediction.

Loss Function We now describe how we use the two loss functions for training in our iterative
training scheme, described in more detail in Section 3.1. Because we employ an iterative training
scheme, we disentangle the two loss functions to prevent interference between them. In this way,
the concept prediction loss LC only affects g, the part of the model responsible for predicting
concepts, and the standard RL loss LRL only affects f . For training g, we employ two types of loss
functions depending on the nature of the concepts (MSE for continous concepts; cross-entropy loss for
categorical concepts). If the problem requires mixed-type concepts, we could discretize the continuous
attributes, converting them into categorical forms suitable for classification. This approach ensures
that our method accommodates a diverse range of concept types.

3.1 Training Process

We now present LICORICE, our novel algorithm for optimizing concept-based models for RL within
a fixed concept query budget. Our iterative training approach extends the sequential bottleneck
training paradigm by incorporating multiple phases. Intuitively, this strategy can be advantageous
for obtaining accurate on-policy concept estimates. To collect candidate training data for g, we

The Training Agents with Foundation Models Workshop at RLC 2024

Algorithm 1 LICORICE (Label-efficient Interpretable COncept-based ReInforCEment learning)
1: Input: Total budget B, number of iterations M , sample acceptance threshold p, ratio τ for

active learning, batch size for querying b, number of concept models N to ensemble
2: Initialize: training set Dtrain ← ∅, and validation set Dval ← ∅
3: for m = 1 to M do
4: Allocate budget for iteration m: Bm ← B

M
5: while |Um| < τ ·Bm do
6: Execute policy πm to collect unlabeled data Um using acceptance rate p
7: end while
8: Initialize iteration-specific datasets for collecting labeled data: D′

train ← ∅, D′
val ← ∅

9: while Bm > 0 do
10: Train N concept models {g̃i}N

i=1 on Dtrain ∪ D′
train, using Dval ∪ D′

val for early stopping
11: Calculate acquisition function value α(s) for all s ∈ Um \ (D′

train ∪ D′
val)

12: Choose bm = min(b, Bm) unlabeled points from Um according to arg maxs α(s)
13: Query for concept labels to obtain new dataset Dm ← {(s, c)}bm

14: Split Dm into train and validation splits and add to D′
train,D′

val
15: Decrement budget: Bm ← Bm − bm

16: end while
17: Aggregate datasets: Dtrain ← Dtrain ∪ D′

train, Dval ← Dval ∪ D′
validation

18: Continue training the concept network g on Dtrain, using Dval for early stopping
19: Freeze g and train f using standard RL training to obtain πm+1
20: end for

employ our current policy for rollouts. To minimize data point correlation and collect a diverse range
of data, we use a decorrelation strategy. To select more informative points to query for concept
labels, we use a concept ensemble to calculate disagreement.

More specifically, LICORICE (Algorithm 1) proceeds in three main stages within each iteration
m ∈M : data collection, concept ensemble training for data selection, and concept bottleneck policy
training. First is the data collection stage (lines 4 to 8), in which we collect a dataset of unlabeled
concept data Um from rolling out our current policy πm. Crucially, during this step, we decorrelate
the data to ensure the data points are diverse (line 6). Specifically, we set an acceptance probability
p for adding the data point to the dataset, as they are generated by the temporally-correlated RL
policy. This prepares a diverse dataset for the next stage, with the aim of promoting more accurate
and generalizable concept ensemble and concept model training.

The second stage is concept ensemble training for data selection (lines 9 to 16). In this stage, we
train the concept ensemble — consisting of N independent concept models — from scratch on the
dataset of training points Dtrain that has been aggregated over all iterations (line 10). We use this
ensemble to calculate the disagreement-based acquisition function, which evaluates whether each
candidate in our unlabeled dataset Um ought to receive a ground-truth concept label (line 11). This
function targets samples where prediction disagreement is highest, detailed in Section 3.2. We then
query for Bm ground-truth concept labels (line 13) to prepare us for the next stage.

We are now prepared for the third stage: concept bottleneck policy training (lines 17 to 19). We
aggregate the concept datasets from the second stage with data from previous iterations, and continue
training the concept network g on Dtrain (line 18). After early stopping dictates that we stop g
training, we freeze g and train f using standard RL training method — for example, PPO — to
obtain the policy for collecting data in the next iteration (line 19). With that, we are prepared to
start the process again from the first stage.

The Training Agents with Foundation Models Workshop at RLC 2024

3.2 Active Concept Learning

For our disagreement-based acquisition function for actively querying for concept labels, we use
an ensemble of concept models. To quantify the concept disagreement of a state U(s), we use two
different formulations, depending on the concept learning task.

Classification For concept classification, we use a query-by-committee (Seung et al., 1992) approach.
When the models produce diverse predictions, it indicates that the instance is difficult and more
information would be particularly valuable. Conversely, if all models agree, the instance is likely
already well understood, and additional labels would be less beneficial. More specifically, we prioritize
points with a high proportion of predicted class labels that are not the modal class prediction (also
called the variation ratio Beluch et al. (2018)). This is given by U(s) = 1−maxc∈C

1
N

∑N
i=1[g̃i(s) = c],

where g̃i(s) is the concept prediction of the i-th model on state s.

Regression For concept regression, we observe that we can instead directly use variance as a measure
of disagreement. Specifically, the concept disagreement of a state is quantified by the unbiased
estimation of variance U(s) = σ2(s) of the predictions across the concept models, due to Bessel’s
correction, defined as: U(s) = σ2(s) = 1

N−1
∑N

i=1(g̃i(s)− µ(s))2, where µ(s) = 1
N

∑N
i=1 g̃i(s) is the

mean prediction of the N concept models.

3.3 Using Vision-Language Models for Concept Labeling

Equipped with our overall algorithm, we now seek to further reduce human annotation burden.
To do so, we turn to VLMs due to their remarkable performance in understanding and generating
human-like descriptions of visual content (Radford et al., 2021). Within the pipeline of LICORICE,
we keep all aspects of our algorithm the same but use the VLM as the concept annotator in the
training loop. By doing so, we effectively decrease the human annotation effort to zero, albeit with
some labeling inaccuracy introduced.

In our experiments, we use GPT-4o (gpt), a closed-source model that is possibly the most capable
vision-language model in the world at the time of writing the paper. During the training loop of
LICORICE, we query GPT-4o each time the algorithm requires a concept label (line 13 in Algorithm 1).
As we use a pre-specified concept set, we design prompts with detailed general descriptions of the
scene layout and definitions of all concepts, in a similar fashion to giving labeling instructions to
real humans. We then prompt the GPT-4o to obtain the generated labels. In environments where
continuous concept values are required, we ask GPT-4o to give as accurate estimates as possible; in
environments with concepts that are discrete and more intuitive to label, we provide clear instructions
of how to read the concept numbers according to the input image. More details in Appendix A.3.

4 Experiments

In our experiments, we investigate the following questions:
RQ 1 Does LICORICE enable both high concept accuracy and high environment reward?;
RQ 2 How effectively does LICORICE allocate the concept labeling budget?;
RQ 3 Can LICORICE be used alongside powerful vision-language models to further alleviate the
labeling burden?

We then conduct an ablation study (in Appendix B for space). We evaluate our approach on three
environments. For each one, we define a concept set (Appendix A).

PixelCartPole In PixelCartPole-v1 (Yang et al., 2021), the states are the past four images, and the
concepts are the original continuous features in the standard environment. To obtain the mapping
from images to concepts, we use a fixed window of 4 most recent images for the temporal concepts,
such as the cart velocity, and we also incorporate the last action to ensure the input information is
sufficient to infer concept values. This domain is deceptively difficult due to the temporal concepts.

The Training Agents with Foundation Models Workshop at RLC 2024

PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5
c Labels Algorithm R ↑ c MSE ↓ R ↑ c Error ↓ R ↑ c Error ↓

B Sequential-Q 0.24 0.10 0.51 0.47 0.64 0.01
Disagreement-Q 0.32 0.10 0.82 0.37 1.00 0.00

Random-Q 0.31 0.08 0.89 0.26 0.95 0.03
LICORICE 0.99 0.03 0.99 0.05 0.98 0.00

∞ CPM 0.98 0.01 1.00 0.00 0.99 0.00
Table 1: Evaluation of the reward R and concept error. Methods in the top section are given a
budget of B = [500, 300, 300], respectively; CPM is given an unlimited budget (in practice, it uses
4M, 4M, 1M concept labels respectively). For each row, the top-performing method with a limited
budget is in bold. Full results with standard deviation are in Table 5, Appendix B.

DoorKey In DoorKey-7x7 (Chevalier-Boisvert et al., 2023), the agent operates in a 5x5 grid1 to
pick up an item to unlock the door, then reach the green goal square. The states are fully observable
images. Concepts include the agent’s position and direction, the door’s position, and more.

DynamicObstacles In DynamicObstacles-5x5 (Chevalier-Boisvert et al., 2023), the agent operates
in a 3x3 grid to avoid two moving obstacles while navigating to the goal. Colliding with the dynamic
obstacles yields a large penalty, so the agent must correctly learn concepts to safely reach the goal.
The states are fully observable images. Concepts are similar to the other MiniGrid environment.

4.1 Experiment Details

For the backbone model and algorithm, we use the PPO implementation provided by Stable Baselines
3 (Raffin et al., 2021) but add a concept layer in the policy network. More implementation details
and hyperparameters can be found in Appendix A.2. In each experiment, we run each algorithm
three times with random seeds. We model concept learning for PixelCartPole-v1 as a regression
problem (minimizing mean squared error) as the concepts are real-valued, and concept learning for
DoorKey-7x7 and DynamicObstacles-5x5 as classification problems as the concepts are categorical.
To get an upper bound on the reward for each environment, we use ground-truth concept labels to
learn a policy. This leads to a reward of 500, 0.97, and 0.91 for the three environments respectively.
We report the reward as a ratio of this upper bound. Percentages (or ratios) make sense here since
the minimum reasonable reward is 0 in all environments: in PixelCartPole-v1 and DoorKey-7x7, all
rewards are nonnegative; in DynamicObstacles-5x5, a random policy would have negative reward
due to collisions, but the agent can ensure nonnegative reward by simply staying in place.

4.2 RQ 1: Balancing Concept Performance and Environment Reward

We first validate that LICORICE can achieve high reward in all test environments while accurately
identifying concepts. We first compare against baselines with a fixed budget of B = [500, 300, 300]
queries for PixelCartPole-v1, DoorKey-7x7, and DynamicObstacles-5x5, respectively, as depicted in
the first section of Table 1. We choose these budgets by starting from 500 then decreasing by units
of 100 until we find that LICORICE can no longer achieve 99% of the reward upper bound.

Comparison with Budget-Constrained Baselines To our knowledge, no previous algorithms
exist that seek to minimize the number of train-time labels for concept-based RL training, so we
implement our own baselines. In Sequential-Q, the agent spends all of B queries on the first B states
it sees under the initial policy rollout. In Disagreement-Q, the agent similarly spends its budget
at the beginning of its learning process; however, it uses active learning with the same acquisition
function as LICORICE to strategically choose the training data. In Random-Q, the agent receives
B concept labels at random points in the training process using a probability to decide whether

1In both of the Minigrid environments, the actual usable area is smaller than what shows in its name, as the
outermost layer is a boundary.

The Training Agents with Foundation Models Workshop at RLC 2024

PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5
B 300 400 500 100 200 300 100 200 300
R 0.29 0.69 0.99 0.72 0.92 0.99 0.96 0.97 1.00

c Error 0.11 0.06 0.03 0.29 0.10 0.05 0.05 0.01 0.00
Table 2: Performance of LICORICE for varying budgets. Full results with standard deviation are
in Table 6, Appendix B.

PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5
B 300 400 500 100 200 300 100 200 300

R (GPT-4o) 0.06 0.06 0.06 0.69 0.72 0.84 0.23 0.95 0.87
c Error (GPT-4o) 0.18 0.24 0.17 0.44 0.35 0.31 0.18 0.12 0.12

R (PPO w/o labels) 0.35 1.00 1.00
Table 3: Performance of LICORICE with GPT-4o integrated into the loop across different budgets.
We also compare against PPO without concept labels to inspect the reward difference. Full results
with standard deviation are in Table 7, Appendix B.

it asks a concept query for each state. We show the results in the first section of Table 1. In two
out of the three environments, LICORICE outperforms all baselines in terms of both reward and
concept error. We find that Random-Q, Disagreement-Q, and LICORICE perform similarly on
DynamicObstacles-5x5, indicating that this environment is relatively simple and may not benefit
from a more advanced strategy.

Comparison with Budget-Unconstrained Baseline We implement Concept Policy Model (CPM)
from previous work in multi-agent RL (Zabounidis et al., 2023) but for the single-agent setting. This
approach jointly trains the concept bottleneck and the policy, assuming unlimited access to concept
labels. It represents an upper bound on concept accuracy, as the agent receives continuous concept
feedback throughout learning. Surprisingly, LICORICE outperforms CPM in PixelCartPole-v1and
has similar performance to CPM in the other two environments in this unfair comparison. We
emphasize that CPM is given an unlimited budget, and in fact, it uses over 1M concept labels for
each environment, whereas LICORICE uses 500 or fewer. We therefore answer RQ 1 affirmatively:
compared to baselines, LICORICE demonstrates both low concept error and high reward on our
three test environments, all while using substantially fewer concept labels than existing algorithms.

4.3 RQ 2: Budget Allocation Effectiveness

We now seek to answer how effective LICORICE is under different concept labeling budgets. This
experiment helps to identify whether the human efforts can be further decreased without substantially
harming the performance. We choose the 3 budgets for each environment by starting with the B from
the previous experiments, then decreasing by steps of 100. The only component of our algorithm
that we vary is the number of iterations M . To report a single value in the table, we arbitrarily
choose the number of iterations to maximize the sum of the relative reward and inverse concept error,
as they are in the same magnitude of [0, 1]. The results of this experiment are shown in Table 2.

As expected, we see an increase in concept error and a decrease in reward for all environments as the
budget decreases. However, the magnitude of the difference in the reward is different depending on the
environment. DynamicObstacles-5x5 shows resilience to budget reductions, while PixelCartPole-v1
exhibits higher sensitivity. Specifically, we find that even with B = 100 for DynamicObstacles-5x5,
LICORICE can still achieve 96% of the optimal reward. In contrast, we see large jumps in reward
for the varying budgets for PixelCartPole-v1. Overall, the results suggest that while decreasing
the human labeling effort does lead to a decrease in performance, the extent of this impact is
environment-dependent. We therefore answer RQ 2 affirmatively: LICORICE can effectively allocate
the concept labeling budget in our test environments.

The Training Agents with Foundation Models Workshop at RLC 2024

4.4 RQ 3: Integration with Vision-Language Models

We now seek to understand whether VLMs can successfully provide concept labels in lieu of a human
annotator within our LICORICE framework. Since using VLMs as annotators effectively reduces the
number of human labels to zero, we compare our approach with directly training a policy with PPO
without using any concept labels. For consistency, we use the same hyperparameters for LICORICE
as in Section 4.3. Because using VLMs incurs costs and users requiring interpretable policies for
their environments may still face budget constraints, we operate within the same budget-constrained
setting as described in Section 4.3. Here, the reduction in the number of “human” labels required
translates to cost savings. We show the results in Table 3.

We find that GPT-4o can indeed serve as an annotator for some but not all environments. In
DoorKey-7x7 and DynamicObstacles-5x5, LICORICE with GPT-4o labels can achieve 84% and
87% of optimal reward, whereas LICORICE with ground-truth (human) labels can achieve 99%
and 100% of the optimal reward, respectively (Table 2). The concept label error was also relatively
low, suggesting that GPT-4o could provide reasonably accurate labels with minimal budget. In
PixelCartPole-v1, the concept label error was relatively high across all budgets, indicating challenges
for GPT-4o in providing accurate labels in this environment. This suggests that while the VLM can
handle labeling tasks to some extent, its performance in PixelCartPole-v1 is limited by the complexity
of accurately identifying concepts. In two of the three environments, PPO training without concept
labels can lead to better reward performance, but it has the downside that it does not learn concepts.
We therefore answer RQ 3 with cautious optimism: there are cases in which LICORICE could be
used alongside VLMs. However, there are careful considerations to be made, including the precise
concept definitions.

5 Related Work

Interpretable Reinforcement Learning Interpretable RL has gained significant attention in
recent years (Glanois et al., 2024). One prominent approach uses rule-based methods — such as
decision trees (Silva et al., 2020; Topin et al., 2021), logic (Delfosse et al., 2024), and programs (Verma
et al., 2018; Penkov and Ramamoorthy, 2019) — to represent policies. These works either assume that
the state is already interpretable or that the policy is pre-specified. Unlike prior work, our method
involves learning the interpretable representation (through concept training) for policy learning.

Concept Learning for Reinforcement Learning Inspired by successes in the supervised set-
ting (Collins et al., 2023; Sheth and Ebrahimi Kahou, 2023; Zarlenga et al., 2023), concept-based
explanations have recently been incorporated into RL. One approach Das et al. (2023) learns a joint
embedding model between state-action pairs and concept-based explanations to expedite learning
via reward shaping. Unlike our work, their policy is not a strict function of the concepts, allowing
our techniques to be combined to provide both concept-based explanations and a concept-based
interpretable policy. Another example, CPM (Zabounidis et al., 2023), is a multi-agent RL concept
architecture that assumes concept labels are available continuously during training. As we have
shown, this approach uses over 1M concept labels in our test environments, whereas our approach
reduces the need for continuous human intervention, requiring only 500 or fewer concept labels to
achieve similar or better performance in single-agent environments.

Learning Concepts with Human Feedback Another line of work explores how to best leverage
human concept labels but not in the RL setting, and does not focus on reducing the labeling burden.
In contrast, our approach aims to reduce the concept labeling burden during training. One work Lage
and Doshi-Velez (2020) instead has users label additional information about the relevance of certain
feature dimensions to the concept label. Another work (Chauhan et al., 2023) develops an intervention
policy at prediction time to choose which concepts to request a label for with the goal of improving
the final prediction. Future work could explore using these techniques alongside our method.

The Training Agents with Foundation Models Workshop at RLC 2024

6 Discussion and Conclusion

In this work, we proposed LICORICE, a novel RL algorithm that addresses the critical issue of model
interpretability while minimizing the reliance on continuous human annotation. We introduced a
training scheme that enables RL algorithms to learn concepts more efficiently from little to no labeled
concept data. Our approach interleaves concept learning and RL training, uses an ensemble-based
active learning technique to select informative data points for labeling, and uses a simple sampling
strategy to better decorrelate the concept data. We demonstrated how this approach reduces manual
labeling effort. Finally, we conducted initial experiments to demonstrate how we can leverage powerful
VLMs to infer concepts from raw visual inputs without explicit labels in some environments. There
are broader societal impacts of our work that must be considered. These include both the impacts
of using VLMs in real-world applications, as well as considerations around interpretability more
generally. For a more detailed discussion, please refer to Appendix C.

Limitations and Future Work Although VLMs can be successfully used for automatic labeling
of some concepts, there are still hallucination issues (Achiam et al., 2023) and other failure cases,
such as providing inaccurate counts. We believe that future work that seeks to improve general VLM
capabilities and mitigate hallucinations would also help overcome this limitation.

The Training Agents with Foundation Models Workshop at RLC 2024

References
Hello gpt-4o. https://openai.com/index/hello-gpt-4o/.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler. The power of ensembles for active learn-
ing in image classification. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 9368–9377, 2018. URL https://api.semanticscholar.org/CorpusID:52838058.

K. Chauhan, R. Tiwari, J. Freyberg, P. Shenoy, and K. Dvijotham. Interactive concept bottleneck
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
5948–5955, 2023.

M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S. Castro,
and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning environments
for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

K. M. Collins, M. Barker, M. Espinosa Zarlenga, N. Raman, U. Bhatt, M. Jamnik, I. Sucholutsky,
A. Weller, and K. Dvijotham. Human uncertainty in concept-based ai systems. In Proceedings of
the 2023 AAAI/ACM Conference on AI, Ethics, and Society, pages 869–889, 2023.

D. Das, S. Chernova, and B. Kim. State2explanation: Concept-based explanations to benefit agent
learning and user understanding. Advances in Neural Information Processing Systems, 36, 2023.

Q. Delfosse, H. Shindo, D. Dhami, and K. Kersting. Interpretable and explainable logical policies via
neurally guided symbolic abstraction. Advances in Neural Information Processing Systems, 36,
2024.

M. Espinosa Zarlenga, P. Barbiero, G. Ciravegna, G. Marra, F. Giannini, M. Diligenti, Z. Shams,
F. Precioso, S. Melacci, A. Weller, et al. Concept embedding models: Beyond the accuracy-
explainability trade-off. Advances in Neural Information Processing Systems, 35:21400–21413,
2022.

C. Glanois, P. Weng, M. Zimmer, D. Li, T. Yang, J. Hao, and W. Liu. A survey on interpretable
reinforcement learning. Machine Learning, pages 1–44, 2024.

N. Grupen, N. Jaques, B. Kim, and S. Omidshafiei. Concept-based understanding of emergent
multi-agent behavior. In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. Wortman Vaughan. Interpreting
interpretability: understanding data scientists’ use of interpretability tools for machine learning. In
Proceedings of the 2020 CHI conference on human factors in computing systems, pages 1–14, 2020.

P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang. Concept
bottleneck models. In International Conference on Machine Learning, pages 5338–5348. PMLR,
2020.

I. Lage and F. Doshi-Velez. Learning interpretable concept-based models with human feedback.
International Conference on Machine Learning: Workshop on Human Interpretability in Machine
Learning, 2020.

X.-Y. Liu, Z. Xia, J. Rui, J. Gao, H. Yang, M. Zhu, C. Wang, Z. Wang, and J. Guo. Finrl-meta:
Market environments and benchmarks for data-driven financial reinforcement learning. Advances
in Neural Information Processing Systems, 35:1835–1849, 2022.

C. C. Marshall and F. M. Shipman. Experiences surveying the crowd: Reflections on methods,
participation, and reliability. In Proceedings of the 5th Annual ACM Web Science Conference,
pages 234–243, 2013.

 https://openai.com/index/hello-gpt-4o/
https://api.semanticscholar.org/CorpusID:52838058

The Training Agents with Foundation Models Workshop at RLC 2024

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson,
O. Pathak, A. Nazi, et al. A graph placement methodology for fast chip design. Nature, 594(7862):
207–212, 2021.

S. Penkov and S. Ramamoorthy. Learning programmatically structured representations with perceptor
gradients. In Proceedings of the International Conference on Learning Representations, 2019.

E. Poeta, G. Ciravegna, E. Pastor, T. Cerquitelli, and E. Baralis. Concept-based explainable artificial
intelligence: A survey. arXiv preprint arXiv:2312.12936, 2023.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22(268):
1–8, 2021.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 287–294, 1992.

I. Sheth and S. Ebrahimi Kahou. Auxiliary losses for learning generalizable concept-based models.
Advances in Neural Information Processing Systems, 36, 2023.

A. Silva, M. Gombolay, T. Killian, I. Jimenez, and S.-H. Son. Optimization methods for interpretable
differentiable decision trees applied to reinforcement learning. In International conference on
artificial intelligence and statistics, pages 1855–1865. PMLR, 2020.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

A. Tharwat and W. Schenck. A survey on active learning: state-of-the-art, practical challenges and
research directions. Mathematics, 11(4):820, 2023.

N. Topin, S. Milani, F. Fang, and M. Veloso. Iterative bounding mdps: Learning interpretable policies
via non-interpretable methods. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 9923–9931, 2021.

A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically interpretable
reinforcement learning. In International Conference on Machine Learning, pages 5045–5054.
PMLR, 2018.

C.-H. H. Yang, I. Danny, T. Hung, Y. Ouyang, and P.-Y. Chen. Causal inference q-network: Toward
resilient reinforcement learning. In Self-Supervision for Reinforcement Learning Workshop-ICLR
2021, 2021.

C. Yu, J. Liu, S. Nemati, and G. Yin. Reinforcement learning in healthcare: A survey. ACM
Computing Surveys (CSUR), 55(1):1–36, 2021.

R. Zabounidis, J. Campbell, S. Stepputtis, D. Hughes, and K. P. Sycara. Concept learning for
interpretable multi-agent reinforcement learning. In Conference on Robot Learning, pages 1828–1837.
PMLR, 2023.

M. E. Zarlenga, K. M. Collins, K. Dvijotham, A. Weller, Z. Shams, and M. Jamnik. Learning to
receive help: Intervention-aware concept embedding models. Advances in Neural Information
Processing Systems, 2023.

The Training Agents with Foundation Models Workshop at RLC 2024

Environment Concept Name Type Value Ranges GPT-4o Error

PixelCartPole-v1

Cart Position Continuous (−2.4, 2.4) 0.04
Cart Velocity Continuous R 0.50

Pole Angle Continuous (−.2095, .2095) 0.04
Pole Angular Velocity Continuous R 0.86

DoorKey-7x7

Agent Position x Discrete 5 0.23
Agent Position y Discrete 5 0.43
Agent Direction Discrete 4 0.30
Key Position x Discrete 6 0.14
Key Position y Discrete 6 0.34
Door Position x Discrete 5 0.35
Door Position y Discrete 5 0.24

Door Open Discrete 2 0.41
Direction Movable Right Discrete 2 0.40
Direction Movable Down Discrete 2 0.26
Direction Movable Left Discrete 2 0.31
Direction Movable Up Discrete 2 0.45

DynamicObstacles-5x5

Agent Position x Discrete 3 0.07
Agent Position y Discrete 3 0.11
Agent Direction Discrete 4 0.34

Obstacle 1 Position x Discrete 3 0.08
Obstacle 1 Position y Discrete 3 0.26
Obstacle 2 Position x Discrete 3 0.19
Obstacle 2 Position y Discrete 3 0.21

Direction Movable Right Discrete 2 0.19
Direction Movable Down Discrete 2 0.17
Direction Movable Left Discrete 2 0.13
Direction Movable Up Discrete 2 0.15

Table 4: Concepts and their possible values for all environments. For discrete concepts, we report
the number of categories. We also provide the mean GPT-4o labeling error (MSELoss for continuous
values and 1 - accuracy for discrete ones) for each concept over observations with a budget of 300
and 1 iteration, averaged across 3 runs. The mean concept errors over concepts are 0.64, 0.32, and
0.17 respectively for the three environments.

A Experimental Result Reproducibility

In this section, we provided detailed descriptions to achieve reproducibility.

A.1 Concepts Definitions

Table 4 provides more details on the concepts used in each environment, categorizing them by their
names, types, and value ranges. For the PixelCartPole-v1 environment, all concepts such as Cart
Position, Cart Velocity, Pole Angle, and Pole Angular Velocity are continuous. In contrast, the
DoorKey-7x7 environment features discrete concepts like Agent Position (x and y), Key Position (x
and y), and Door Open status, each with specific value ranges. Similarly, the DynamicObstacles-5x5
environment lists discrete concepts, including Agent and Obstacle positions, with corresponding
value ranges

We also visualize the start configurations for DoorKey-7x7 in Figure 1 to illustrate the importance of
concept definitions. As shown, the concepts must be defined in such a way to allow the agent to
generalize to all possible environment configurations.

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 1: Example start configurations of the DoorKey-7x7 environment. This shows that concepts
must general enough to apply to many different configurations. As a result, the agent cannot
memorize the exact position of the door and key.

A.2 LICORICE Details

In this section, we provide additional implementation details for LICORICE. Specifically, after passing
the image through the feature extractor, which consists of 3 CNN layers, we add a linear layer to map
to the concept layer and obtain concept values. This portion of the network corresponds to g. Finally,
for f , we use an MLP extractor with 2 fully connected layers, each with 64 neurons and a Tanh
activation function. The number of neurons in the concept layer is exactly the number of concepts.
For continuous concept values, we directly use a linear layer to map from features to concept values.
For discrete concept values, since different concepts have different numbers of categories, we create
one linear classification head for each single concept, and to predict the final action, we calculate the
class with the largest predicted probability for each concept.

Value-Based Methods If we were to use a value-based method as the RL backbone, we would
need to make the following changes. First, we would need to modify V (s, a) or Q(s, a) to include
a concept bottleneck, such that Q(s, a) = f(g(s)). Then, we can conduct interleaved training in a
similar way to LICORICE.

Feature Extractor If we use the actor-critic paradigm, we propose to share a feature extrac-
tor between the policy and value networks, shown in Figure 2. Intuitively, this choice can offer
several advantages compared with using image or predicted concepts as input for both networks.

Figure 2: Architecture of our concept-
bottleneck actor-critic method.

Sharing a feature extractor enables both networks to ben-
efit from a common, rich representation of the input data,
reducing the number of parameters to be trained. More
importantly, it balances the updates of the policy and value
networks. In experiments, we observed that directly us-
ing the raw image as input for both networks complicated
policy learning. Conversely, relying solely on predicted con-
cepts for the value network may limit its accuracy in value
estimation, particularly if the concepts do not capture all
the nuances relevant to the value predictions.

The Training Agents with Foundation Models Workshop at RLC 2024

A.3 VLM Details

We detail our prompts for each environment here.

PixelCartPole-v1

Prompt: Here are the past 4 rendered frames from the CartPole environment. Please use these
images to estimate the following values in the latest frame (the last one):

• Cart Position, within the range (-2.4, 2.4)
• Cart Velocity
• Pole Angle, within the range (-0.2095, 0.2095)
• Pole Angular Velocity

Additionally, please note that the last action taken was [last action].

Please carefully determine the following values and give concise answers one by one. Make sure
to return an estimated value for each parameter, even if the task may look challenging.

Follow the reporting format:

• Cart Position: estimated_value
• Cart Velocity: estimated_value
• Pole Angle: estimated_value
• Pole Angular Velocity: estimated_value

The Training Agents with Foundation Models Workshop at RLC 2024

DoorKey-7x7

Prompt: Here is an image of a 4x4 grid composed of black cells, with each cell either empty or
containing an object. Each cell is defined by an integer-valued coordinate system starting at
(1, 1) for the top-left cell. The coordinates increase rightward along the x-axis and downward
along the y-axis. Within this grid, there is a red isosceles triangle representing the agent, a
yellow cell representing the door (which may visually disappear if the door is open), a yellow
key icon representing the key (which may disappear), and one green square representing the
goal. Carefully analyze the grid and report on the following attributes, focusing only on the
black cells as the gray cells are excluded from the active black area.

Detailed Instructions:

1. Agent Position: Identify and report the coordinates (x, y) of the red triangle (agent). Ensure
the accuracy by double-checking the agent’s exact location within the grid.

2. Agent Direction: Specify the direction the red triangle is facing, which is the orientation of
the vertex (pointy corner) of the isosceles triangle. Choose from ’right’, ’down’, ’left’, or
’up’. Clarify that this direction is independent of movement options.

3. Key Position: Provide the coordinates (x, y) where the key is located. If the key is absent,
report as (0, 0). Verify visually that the key is present or not before reporting.

4. Door Position:
• Position: Determine and report the coordinates (x, y) of the door.
• Status: Assess whether the door is open or closed (closed means the door is visible as a

whole yellow cell, while open means the door disappears visually). Report as ’true’ for
open and ’false’ for closed. Double-check the door’s appearance to confirm if it is open
or closed.

5. Direction Movable: Evaluate and report whether the agent can move one cell in each
specified direction, namely, the neighboring cell in that direction is active and empty (not
key, closed door, or grey inactive cell):
• Right (x + 1): Check the cell to the right.
• Down (y + 1): Check the cell below.
• Left (x - 1): Check the cell to the left.
• Up (y - 1): Check the cell above.
Each direction’s feasibility should be reported as ’true’ if clear and within the grid, and
’false’ otherwise.

Reporting Format: Carefully report each piece of information sequentially, following the format
’name: answer’. Ensure each response is precise and reflects careful verification of the grid details
as viewed.

The Training Agents with Foundation Models Workshop at RLC 2024

DynamicObstacles-5x5

Prompt: Here is an image of a 3x3 grid composed of black cells, with each cell either empty
or containing an object. Each cell is defined by an integer-valued coordinate system starting at
(1, 1) for the top-left cell. The coordinates increase rightward along the x-axis and downward
along the y-axis. Within this grid, there is a red isosceles triangle representing the agent, two
blue balls representing obstacles, and one green square representing the goal. Please carefully
determine the following values and give concise answers one by one:

1. Agent Position: Identify and report the coordinates (x, y) of the red triangle (agent). Ensure
the accuracy by double-checking the agent’s exact location within the grid.

2. Agent Direction: Specify the direction the red triangle is facing, which is the orientation of
the vertex (pointy corner) of the isosceles triangle. Choose from ’right’, ’down’, ’left’, or
’up’. Clarify that this direction is independent of movement options.

3. Obstacle Position: Identify and report the coordinates of the two obstacles in ascending
order. Compare the coordinates by their x-values first. If the x-values are equal, compare
by their y-values.
(a) First Obstacle: Provide the coordinates (x, y) of the first blue ball.
(b) Second Obstacle: Provide the coordinates (x, y) of the second blue ball.

4. Direction Movable: Evaluate and report whether the agent can move one cell in each
specified direction, namely, the neighboring cell in that direction is active and empty (not
obstacle or out of bounds):
• Right (x + 1): Check the cell to the right.
• Down (y + 1): Check the cell below.
• Left (x - 1): Check the cell to the left.
• Up (y - 1): Check the cell above.
Each direction’s feasibility should be reported as ’true’ if clear and within the grid, and
’false’ otherwise.

Reporting Format: Carefully report each piece of information sequentially, following the format
’name: answer’. Ensure each response is precise and reflects careful verification of the grid details
as viewed.

A.4 Experimental Details

For the PPO hyperparameters, we set 4 · 106 total timesteps for PixelCartPole-v1and DoorKey-
7x7, and 106 for DynamicObstacles-5x5. Besides that, for all environments, we use 8 vectorized
environments, horizon T = 4096, 10 epochs for training, batch size of 512, learning rate 3 · 10−4,
entropy coefficient 0.01, and value function coefficient 1. All other hyperparameters are using the
default choices.

For the concept training, we set 100 epochs with Adam optimizer with the learning rate lin-
early decaying from 3 · 10−4 to 0 for each iteration in PixelCartPole-v1. In DoorKey-7x7 and
DynamicObstacles-5x5, we use the same optimizer and initial learning rate, yet set 50 epochs instead
and set early stopping with threshold linearly increasing from 10 to 20, to incentivize the concept
network not to overfit in earlier iterations. The batch size is 32.

For GPU, we use NVIDIA A6000 and NVIDIA RTX 6000 Ada Generation. Each of our programs
uses less than 2GB GPU memory. For PixelCartPole-v1 and DoorKey-7x7, each run takes less than
9 hours to finish. For DynamicObstacles-5x5, each run takes less than 2 hours to finish.

The Training Agents with Foundation Models Workshop at RLC 2024

Algorithm R ↑ c Error ↓

PixelCartPole-v1

Sequential-Q 0.24 ±0.08 0.10 ±0.04
Disagreement-Q 0.32 ±0.10 0.10 ±0.04

Random-Q 0.31 ±0.07 0.08 ±0.07
LICORICE 0.99 ±0.00 0.03 ±0.00

CPM 0.98 ±0.01 0.01 ±0.00

DoorKey-7x7

Sequential-Q 0.51 ±0.00 0.47 ±0.04
Disagreement-Q 0.82 ±0.05 0.37 ±0.09

Random-Q 0.89 ±0.05 0.26 ±0.11
LICORICE 0.99 ±0.01 0.05 ±0.01

CPM 1.00 ±0.00 0.00 ±0.00

DynamicObstacles-5x5

Sequential-Q 0.64 ±0.56 0.01 ±0.01
Disagreement-Q 1.00 ±0.00 0.00 ±0.00

Random-Q 0.95 ±0.02 0.03 ±0.02
LICORICE 0.98 ±0.01 0.00 ±0.00

CPM 0.99 ±0.01 0.00 ±0.00

Table 5: Evaluation of the reward R and concept error achieved by all methods in all environments.
This is a extended table from Table 1. The reward is reported as the fraction of the reward upper
bound. For PixelCartPole-v1, the c error is the MSE. For the other two environments, the c error is 1
- accuracy. The first four algorithms are given a budget of B = [500, 300, 300] for each environment,
from top to bottom; CPM is given an unlimited budget (in practice, it uses 4M, 4M, 1M concept
labels respectively). The ± [value] part shows the standard deviation. This shows a more complete
version of the results in Table 1.

B R ↑ c Error ↓

PixelCartPole-v1
300 0.29 ±0.01 0.11 ±0.04
400 0.69 ±0.16 0.06 ±0.01
500 0.99 ±0.00 0.03 ±0.00

DoorKey-7x7
100 0.72 ±0.04 0.29 ±0.06
200 0.92 ±0.03 0.10 ±0.02
300 0.99 ±0.01 0.05 ±0.01

DynamicObstacles-5x5
100 0.96 ±0.02 0.05 ±0.01
200 0.97 ±0.03 0.01 ±0.00
300 1.00 ±0.01 0.00 ±0.00

Table 6: Performance of LICORICE on all environments for varying budgets. The reward is reported
as the fraction of the reward upper bound. For PixelCartPole-v1, c error is MSE; for the other
environments, c error is 1 - accuracy. The ± [value] part shows the standard deviation. This shows a
more complete version of the results in Table 2.

B Additional Results

B.1 Balancing Concept Performance and Environment Reward

In Table 5, we present an extension of the results in Table 1, including standard deviation. Our
method enjoys low variance across all environments in terms of both concept error and reward.

The Training Agents with Foundation Models Workshop at RLC 2024

Environment Algorithm B R ↑ c Error ↓

PixelCartPole-v1

300 0.06 ±0.01 0.18 ±0.11
LICORICE+ GPT-4o 400 0.06 ±0.02 0.24 ±0.10

500 0.06 ±0.01 0.17 ±0.05
PPO w/o labels – 0.35 ±0.53 –

DoorKey-7x7

100 0.69 ±0.08 0.44 ±0.04
LICORICE+ GPT-4o 200 0.72 ±0.06 0.35 ±0.02

300 0.84 ±0.02 0.31 ±0.02
PPO w/o labels – 1.00 ±0.00 –

DynamicObstacles-5x5

100 0.23 ±0.39 0.18 ±0.01
LICORICE+ GPT-4o 200 0.95 ±0.01 0.12 ±0.01

300 0.87 ±0.10 0.12 ±0.01
PPO w/o labels – 1.00 ±0.00 –

Table 7: Performance of LICORICE with GPT-4o integrated into the loop for all environments across
different budgets, along with PPO without labels. We compare against PPO without concept labels
to inspect the reward performance difference. This shows a more complete version of the results
in Table 3.

B.2 Budget Allocation Effectiveness

In Table 6, we present an extension of the results in Table 2, including the standard deviation. As
expected, as the budget increases, the standard deviation for both the reward and concept error
tends to decrease. The one exception is the reward for PixelCartPole-v1. Interestingly, the standard
deviation is highest for B = 400. We suspect this is because the concept errors may be more critical
here, leading to higher variance in the reward performance.

B.3 Integration with Vision-Language Models

In Table 7, we present an extension of the results in Table 3 in the main paper, including the standard
deviation. Interestingly, the standard deviation for the reward obtained by using LICORICE with
GPT-4o as the annotator does not always follow the same trend as shown in Table 6 (when we
assume access to a more accurate human annotator). Instead, the standard deviation is relatively
consistent for PixelCartPole-v1, regardless of the budget. It steadily decreases for DoorKey-7x7, as
expected. However, in DynamicObstacles-5x5, we see an increase when B = 300. We are not sure of
the cause of this. Perhaps at this point the algorithm begins overfitting to the errors in the labels
from GPT-4o (the concept error rate is the same for 200 and 300 labels). Further investigation is
required to understand the underlying factors contributing to this anomaly.

GPT-4o Concept Labeling Errors Table 4 list detailed concept errors for concepts in all
environments. In PixelCartPole-v1, cart position and pole angle have smaller errors, while velocities
require understanding multiple frames and thus are harder to predict accurately. For DoorKey-7x7
and DynamicObstacles-5x5, different concepts have slightly varying concept errors, indicating visual
tasks have different difficulties for GPT-4o. Agent direction has as high as around 0.3 prediction error
for both DoorKey-7x7 and DynamicObstacles-5x5. Direction movable is also hard for DoorKey-7x7,
with a high concept error even if it is a binary concept. We posit it requires the correct understanding
of more than one particular object to ensure correctness. The concept accuracies in DoorKey-7x7 are
generally higher than DynamicObstacles-5x5, suggesting GPT-4o more struggles with a larger grid.

Example Behavior of Agent with GPT-4o-labeled concepts In Figure 3, we show an example
of a GPT-4o-trained RL agent on DynamicObstacles-5x5, in which the agent appears to wait until
it is safe to move towards the goal: the green square. The image sequence shows the agent (red
triangle) starting from its initial position and moving to the right. It then is cornered by an obstacle

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 3: Concept policy model trained with concept labels provided by GPT-4o waits until the
coast is clear to move to the goal. It appears to make a small mistake in the bottom left, requiring it
to wait slightly longer than necessary to navigate to the goal.

PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5
Algorithm R ↑ c MSE ↓ R ↑ c Error ↓ R ↑ c Error ↓

LICORICE-IT 0.46 0.08 0.98 0.09 1.00 0.00
LICORICE-DE 0.90 0.03 0.82 0.20 0.98 0.00
LICORICE-AC 0.79 0.03 0.89 0.13 0.94 0.02

LICORICE 0.99 0.03 0.99 0.05 0.98 0.00
Table 8: Ablation study results for LICORICE in all environments. All of our components generally
help achieve a better reward and lower concept loss.

(blue circle), then both obstacles. In the bottom left corner frame, it appears to make a mistake by
turning to the right, meaning it missed a window to escape. Finally, it moves to the goal when the
path is clear in the second-to-last and last frames (bottom right). This behavior highlights that the
agent may still learn reasonable behavior even if the concept labels may be incorrect (causing it to
make a mistake, as in the bottom left frame).

B.4 Ablation

As mentioned in Section 4, we provide detailed ablation study results in this section. We now
conduct ablations to confirm the effectiveness of our three main contributions: iterative training,
decorrelation, and active learning. LICORICE-IT corresponds to LICORICE with only one iteration,
LICORICE-DE corresponds to LICORICE without decorrelation, and LICORICE-AC corresponds
to LICORICE without active learning (instead, it uses the entire unlabeled dataset for querying).

Table 8 depicts the results of our ablation study on all environments. The bottom row corresponds to
the upper bound on performance by LICORICE, with all components included. We find that all of our
contributions are critical to the final performance in terms of both reward and concept performance.
Interestingly, we find that the component that contributes the most to reward or concept performance
is different depending on the environment. For example, compared with LICORICE, LICORICE-IT
exhibits the largest reward gap for PixelCartPole-v1; however, LICORICE-AC yields the largest
reward gap for DynamicObstacles-5x5, and LICORICE-DE yields the largest gap for DoorKey-7x7.
We suspect that this is because the concepts in DynamicObstacles-5x5 are simple enough such that

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 4: Learning curves for all ablations. Shaded region shows 95% CI, calculated using 1000
bootstrap samples.

Figure 5: Performance of all ablations at the final training iteration, with black bars representing the
95% confidence interval, calculated using 1000 bootstrap samples.

one iteration is sufficient for learning, so the largest gains can be made with active learning. In
contrast, PixelCartPole-v1 requires further refinement of the policy to better estimate on-distribution
concept values, so the largest gains can be made with multiple iterations.

Figure 4 shows all learning curves for ablations in all environments. In PixelCartPole-v1, we clearly
see the benefit of iterative strategies on reward: LICORICE, LICORICE-DE and LICORICE-AC
consistently increase in reward and converge at high levels, but LICORICE-IT converges at less
than 50% of the optimal reward. We also see that LICORICE-IT also achieves higher concept error,
indicating that it struggles to learn the larger distribution of concepts induced by a non-optimal policy.
In DoorKey-7x7, all algorithms steadily increase in reward. However, we can see a dip at around
106 environment steps where we begin the second iteration for LICORICE, LICORICE-AC, and
LICORICE-DE. Although LICORICE-IT achieves similar reward to LICORICE, LICORICE achieves
lower concept error, which is beneficial for the goal of interpretability. Finally, in DynamicObstacles-
5x5, LICORICE-AC lags behind the most in terms of both reward and concept error. This result
indicates that the active learning component is most important for this environment.

The Training Agents with Foundation Models Workshop at RLC 2024

We now inspect the performance at the last training iteration in Figure 5. Overall, we find that
LICORICE performs better than or equal to the ablations on all environments. It enjoys the
best reward performance on PixelCartPole-v1, while performing similarly to LICORICE-IT on
DoorKey-7x7and to LICORICE-IT and LICORICE-DE on DynamicObstacles-5x5. It exhibits the
lowest concept error on PixelCartPole-v1 and DoorKey-7x7, and achieves similarly low error to
LICORICE-DE and LICORICE-IT on DynamicObstacles-5x5.

In PixelCartPole-v1, LICORICE achieves the highest reward, indicating the benefits of multiple
iterations, active learning, and decorrelation, which are absent in LICORICE-IT, LICORICE-AC,
and LICORICE-DE, respectively. LICORICE also enjoys the lowest concept error, showcasing its
ability to learn and apply concepts accurately. LICORICE-AC and LICORICE-DE perform well in
minimizing concept error, while LICORICE-IT shows a relatively higher error rate, underscoring the
importance of multiple iterations in some environments.

The Training Agents with Foundation Models Workshop at RLC 2024

C Additional Discussion

C.1 Limitations and Future Work

While our approach has demonstrated promising results, there are several limitations to be addressed
in future work. One significant challenge is the difficulty VLMs face with certain types of concepts,
especially continuous variables. This limitation can impact the overall performance of concept-based
models, especially in domains where continuous data is prevalent. Addressing this issue could involve
developing specialized techniques or using existing tools and libraries to better complement VLM
capabilities.

Another area for future improvement is the refinement of our active learning and sampling schemes.
Our current method employs an disagreement-based acquisition function to select the most informative
data points for labeling. While this approach is effective, there is potential for exploring more
sophisticated active learning strategies, such as incorporating advanced exploration-exploitation
trade-offs or leveraging recent advancements in active learning algorithms (Tharwat and Schenck,
2023).

Finally, designing a concept-based representation for RL remains an open challenge. Our work
provides a few illustrative examples, but the exact design of these representations can significantly
impact performance, often for reasons that are not entirely clear — especially when using VLMs as
annotators. Prior work (Das et al., 2023) proposed some desiderata for concepts in RL, but future
work could refine these principles, especially in the face of VLM annotators. Future work could also
include systematically investigating the factors that influence the effectiveness of different concept-
based representations in RL. This could involve extensive empirical studies, theoretical analyses, and
the development of new design principles that guide the creation of effective concept representations.
Understanding these factors better will help in creating more reliable and interpretable RL models,
ultimately advancing the field and broadening the applicability of concept-based approaches in various
RL tasks.

C.2 Broader Impacts

Interpretability in RL Incorporating concept learning with RL presents both positive and
negative societal impacts. On the positive side, promoting interpretability and transparency in
decision-making fosters trust and accountability. However, in cases where it yields incorrect results,
stakeholders might be misled into trusting flawed decisions due to the perceived transparency of the
model (Kaur et al., 2020). Unintended misuse could also occur if stakeholders lack the technical
expertise to accurately interpret the models, leading to erroneous conclusions and potentially harmful
outcomes. To mitigate these risks, an avenue for future work is developing clear guidelines for
interpreting these models and tools to scaffold non-experts’ understanding of the model outputs.

Using VLMs for Concept Labeling On one hand, VLMs have the potential to significantly
improve the efficiency and scalability of labeling processes, which can accelerate advancements in
various fields. By automating the labeling of large datasets, VLMs can help reduce the time and cost
associated with manual labeling. However, there are important ethical and social considerations to
address. One major concern is the potential for bias in the concept labels generated by VLMs. If these
models are trained on biased or unrepresentative data, they may perpetuate or even amplify existing
biases, leading to unfair or discriminatory outcomes. This is particularly problematic in sensitive
applications like hiring, lending, or law enforcement, where biased decisions can have significant
negative impacts on individuals and communities. Furthermore, there are privacy concerns related
to the data used to train VLMs. Large-scale data collection often involves personal information, and
improper handling of this data can lead to privacy violations. To mitigate these risks, future work
could include developing robust data governance frameworks to protect individuals’ privacy and
comply with relevant regulations.

