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ABSTRACT

Previous studies have found that PLM-based retrieval models exhibit a preference
for LLM-generated content, assigning higher relevance scores to these documents
even when their semantic quality is comparable to human-written ones. This
phenomenon, known as source bias, threatens the sustainable development of the
information access ecosystem. However, the underlying causes of source bias
remain unexplored. In this paper, we explain the process of information retrieval
with a causal graph and discover that PLM-based retrievers learn perplexity features
for relevance estimation, causing source bias by ranking the documents with low
perplexity higher. Theoretical analysis further reveals that the phenomenon stems
from the positive correlation between the gradients of the loss functions in language
modeling task and retrieval task. Based on the analysis, a causal-inspired inference-
time debiasing method is proposed, called Causal Diagnosis and Correction (CDC).
CDC first diagnoses the bias effect of the perplexity and then separates the bias
effect from the overall estimated relevance score. Experimental results across three
domains demonstrate the superior debiasing effectiveness of CDC, emphasizing
the validity of our proposed explanatory framework. Source codes are available at
https://anonymous.4open.science/r/Perplexity-Trap-D6FE.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has driven a significant increase in AI-
generated content (AIGC), leading to information retrieval systems that now index both human-
written and LLM-generated contents (Cao et al., 2023; Dai et al., 2024b; Wu et al., 2023). However,
recent studies (Dai et al., 2024a;c; Xu et al., 2024) have uncovered that Pretrained Language Model
(PLM)-based retrievers (Guo et al., 2022; Zhao et al., 2024) exhibit preferences for LLM-generated
documents, ranking them higher even when their semantic quality is comparable to human-written
content. This phenomenon is referred to as source bias and prevalent among various popular PLM-
based retrievers across different domains (Dai et al., 2024a). If the problem is not resolved promptly,
human authors’ creative willingness will be severely reduced, and the existing content production
ecosystem may collapse. Considering the increasing amount of generated content online (Burtch
et al., 2024; Liu et al., 2024), it is urgent to fully understand the mechanism behind source bias.

Existing studies identify perplexity (PPL) as a key indicator for distinguishing between LLM-
generated and human-written contents (Mitchell et al., 2023; Bao et al., 2023; Vasilatos et al., 2023).
Dai et al. (2024c) find that although the semantics of the text remain unchanged, LLM-rewritten
documents possess much lower perplexity than their human-written counterparts. However, it’s
still unclear whether document perplexity has a causal impact on the relevance score estimation of
PLM-based retrievers (which may lead to source bias), and why such causal impact exists.

In this paper, we delve deeper into the cause of source bias by examining the role of perplexity in
PLM-based retrievers. By manipulating the sampling temperature coefficient when generating content
with LLMs, we observe a negative correlation between estimated relevance scores and perplexity.
To further elucidate this relationship, we construct a causal graph where document perplexity plays
as a treatment to estimated relevance scores and document true semantic plays as a confounder
(Figure 2). Source bias, therefore, is a consequence of the perplexity effect on the estimated relevance
scores. To eliminate the influence of confounders when estimating this biased effect, we adopt a
two-stage least squares (2SLS) regression procedure (Angrist and Pischke, 2009; Hartford et al.,

1

https://anonymous.4open.science/r/Perplexity-Trap-D6FE


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2017), the experimental results indicate the effect is significantly negative. For semantically identical
documents, the documents with low perplexity causally get higher estimated relevance scores from
PLM-based retrievers. Since LLM-generated documents typically have lower perplexity than human-
written ones (Dai et al., 2024c), they receive higher estimated relevance scores and are ranked higher,
leading to the presence of source bias.

To further understand why the estimated relevance scores of PLM-based retrievers are influenced by
perplexity, we provide a theoretical analysis from objective functions of masked language modeling
task and mean-pooling retrieval task. Our analysis shows that the retrieval objective’s gradients
are positively correlated to the language modeling gradients. This correlation causes the retrievers
to consider not only the document semantics required for retrieval but also the bias introduced by
perplexity. Moreover, this correlation further leads to that the stronger the ranking performance of
the PLM-based retrievers, the greater the impact of perplexity, which further explains the trade-off
between retrieval performance and source bias observed in previous studies (Dai et al., 2024a).

Based on the analysis, we propose an inference-time debiasing method called CDC (Causal Diagnosis
and Correction). With our constructed causal graph, we can separate the causal effect of document
perplexity from the overall estimated relevance scores at the inference stage, achieving calibrated
relevances score without bias. Specifically, CDC first estimates the biased causal effect of perplexity
through conducting 2SLS on a small set of training samples. This estimated effect is then applied
to de-bias the test samples during the inference stage. This debiasing process is training-free and
can be seamlessly integrated into existing trained PLM-based retrieval models. We demonstrate the
debiasing effectiveness of CDC with experiments across six popular PLM-based retrievers. The
experimental results show that the estimated biased causal effect for perplexity can be generalized to
other data domains and LLMs, highlighting its practical potential in eliminating source bias.

We summarize the major contributions of this paper as follows:

• We construct a causal graph and estimate the causal effects through experiments, demonstrating
that PLM-based retrievers causally assign higher relevance scores to documents with lower
perplexity, which is the cause of source bias.

• We provide a theoretical analysis explaining that the effect of perplexity in PLM-based retrievers
is due to the positive correlation between gradients of retrieval loss and language modeling loss.

• We propose CDC for PLM-based retrievers to counteract the biased effect of perplexity, with
experiments demonstrating its effectiveness and generalizability in eliminating source bias.

2 RELATED WORK

With the rapid development of LLMs (Zhao et al., 2023), the internet has quickly integrated a huge
amount of AIGC (Cao et al., 2023; Dai et al., 2024b; Wu et al., 2023). Potential bias may occur when
these generated contents are judged by neural networks as a competitor together with human works.
For example, Dai et al. (2024c) are the first to highlight a paradigm shift in information retrieval
(IR): the content indexed by IR systems is transitioning from exclusively human-written corpora
to a coexistence of human-written and LLM-generated corpora. They then uncover an important
finding that mainstream neural retrievers based on pretrained language models (PLMs) prefer LLM-
generated content, a phenomenon termed source bias (Dai et al., 2024c). Xu et al. (2024) further
discover that this bias extends to text-image retrieval, and similarly, other works further observe the
existence of source bias in other IR scenarios, such as recommender systems (RS) (Zhou et al., 2024),
retrieval-augmented generation (RAG) (Chen et al., 2024) and question answering (QA) (Tan et al.,
2024). In the context of LLMs-as-judges, similar bias is discovered as self-enhancement bias (Zheng
et al., 2024), likelihood bias (Ohi et al., 2024), and familiarity bias (Stureborg et al., 2024), where
LLM overates AIGC when serving as a judge.

Existing works provide intuitive explanations suggesting that this kind of bias may stem from coupling
between neural judges and LLMs (Dai et al., 2024c; Xu et al., 2024), such as similarities in model
architectures and training objectives. However, the specific nature of this coupling, how it operates to
cause source bias, and why it exists remains unclear. Ohi et al. (2024) find the correlation between
perplexity and bias, while our work is the first to systematically analyze the effect of perplexity for
neural models’ preference. Given that both PLMs and LLMs are highly complex neural network
models, investigating this question is particularly challenging and difficult.
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Figure 1: Perplexity and estimated relevance scores of ANCE on positive query-document pairs in
three dataset, where documents are generated by LLM rewriting with different sampling temperatures.
The Pearson coefficients highlight the significant negative correlation between the two variables.

3 UNCOVERING SOURCE BIAS WITH CAUSAL GRAPH

This section first conducts a set of intervention experiments to illustrate the motivation. Subsequently,
we construct a causal graph to explain source bias and demonstrate the rationality of the causal graph.

3.1 INTERVENTION EXPERIMENTS ON TEMPERATURE

Previous studies have revealed a significant difference in the perplexity (PPL) distribution between
LLM-generated content and human-written content (Mitchell et al., 2023; Bao et al., 2023; Vasilatos
et al., 2023), suggesting that PPL might be a key indicator for analyzing the cause of source bias (Dai
et al., 2024c). To verify whether perplexity causally affects estimated relevance scores, we use
LLMs (in following chapters the LLMs we use are Llama2-7B-chat (Touvron et al., 2023) unless
emphasized) to generate documents with almost identical semantics but varying perplexity, where
semantics are expected as the only associated variable when retrieval.

Specifically, we manipulate the sampling temperatures during generation to obtain LLM-generated
documents with different PPLs but similar semantic content. Following the method of Dai et al.
(2024c), we use the following simple prompt: “Please rewrite the following text: {human-written
text}”. We also recruit human annotators to conduct evaluations to ensure the quality of the generated
LLM content. The results, shown in Appendix E.2.1, indicate that there are fewer quality discrepancies
between documents generated at different sampling temperatures compared to the original human-
written documents. This ensures the reliability of the subsequent experiments.

We then explore the relationship between perplexity and estimated relevance scores on the corpora
generated with different temperatures, where perplexity is calculated by BERT masked language
modelling following previous work (Dai et al., 2024c). Figure 1 presents the average perplexity and
estimated relevance scores by ANCE across three datasets from different domains. As expected,
lower sampling temperatures result in less randomness in LLM-generated content and thus lower
PPL. Meanwhile, we find that documents generated with lower temperatures were also more likely to
be assigned higher estimated relevance scores. The Pearson coefficients for the three datasets are all
below -0.65, emphasizing the strong negative linear correlation between document perplexity and
relevance score. Similar results for other PLM-based retrievers are provided in Appendix E.2.2.

Since document semantics remain unchanged during rewriting, the synchronous variation between
document perplexity and estimated relevance scores reflects a causal effect. These findings offer an
intuitive explanation for source bias: LLM-generated content typically has lower PPL, and since
documents with lower perplexity are more likely to receive higher relevance scores, LLM-generated
content is more likely to be ranked highly, leading to source bias.

3.2 CAUSAL GRAPH FOR SOURCE BIAS

Inspired by the findings above, we propose a causal graph to elucidate source bias (Fan et al., 2022),
as illustrated in Figure 2. Let Q denotes the query set and C denote the corpus. During the inference
stage for a certain PLM-based retriever, given a query q ∈ Q and a document d ∈ C, the estimated
relevance score R̂q,d ∈ R is simultaneously determined by both the golden relevance score Rq,d ∈ R
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and document perplexity Pd ∈ R+. Note that the fundamental goal of IR is to calculate the similarity
between document semantics Md and query semantics Mq for document ranking, Rq,d → R̂q,d is
considered an unbiased effect, while the influence of Pd → R̂q,d is considered as a biased effect.
Subsequently, we explain the rationale behind each edge in the causal graph as follows:
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Figure 2: The proposed
causal graph for explain-
ing source bias.

First, let the document source Sd is a binary variable where Sd = 1
denotes the document is generated by LLM and Sd = 0 denotes the
document is written by human. As suggested in (Dai et al., 2024c), LLM-
generated documents through rewriting possess lower perplexity than
their original documents, even though there is no significant difference in
their semantic content. Thus, an edge Sd → Pd exists. This phenomenon
can be attributed to two main reasons: (1) Sampling strategies aimed at
probability maximization, such as greedy algorithms, discard long-tailed
documents during LLM inference. More detailed analysis and verification
can be found in (Dai et al., 2024c). (2) Approximation error during LLM
training causes the tails of the document distribution to be lost (Shumailov
et al., 2023).

Next, the document semantics Md reflect the topics of the document
d, including domain, events, sentiment information, and so on. Since
documents with different semantic meanings convey different amounts of
information, their difficulties in masked token prediction vary. This means
that different document semantics lead to different document perplexities.
For example, colloquial conversations are more predictable than research
papers due to their less specialized vocabulary. Thus, the content directly
affects the perplexity, establishing the edge Md → Pd.

Finally, as retrieval models are trained to estimate ground-truth relevance, their outputs are valid
approximations of the golden relevance scores, making Md → Rq,d ← Mq a natural unbiased
effect. However, retrieval models may also learn non-causal features unrelated to semantic matching,
especially high-dimensional features in deep learning. According to findings in Section 3.1, document
perplexity Pd has emerged as a potential non-causal feature learned by PLM-based retrievers, where
higher relevance estimations coincide with lower document perplexity. Moreover, Since document
perplexity is determined at the time of document generation, which temporally predates the existence
of estimated relevance scores, document perplexity should be a cause rather than a consequence of
changes in relevance. Hence, a biased effect of Pd → R̂q,d exists.

3.3 EXPLAINING SOURCE BIAS VIA THE PROPOSED CAUSAL GRAPH

Based on the causal graph constructed above, source bias can be explained as follows: Although the
content generated by LLMs retains similar semantics to the human-written content, LLM-generated
content typically exhibits lower perplexity. Coincidentally, retrievers learn and incorporate perplexity
features into their relevance estimation processes, consequently assigning higher relevance scores to
LLM-generated documents. This leads to the lower ranking of human-written documents.

It is worth noting that source bias is an inherent issue in PLM-based retrievers. Before the advent of
LLMs, these retrievers had already learned non-causal perplexity features from purely human-written
corpora. However, because the document ranking was predominantly conducted on human-written
corpora, the relationship between PLM-based retrievers and perplexity was not evident. As powerful
LLMs have become more accessible, the emergence of LLM-generated content has accentuated
the perplexity effect. The content generated by LLMs exhibits a perceptibly different perplexity
distribution compared to human-written content. This disparity in perplexity distribution causes
documents from different sources to receive significantly different relevance rankings.

4 EMPIRICAL AND THEORETICAL ANALYSIS ON THE EFFECT OF PERPLEXITY

In this section, we conduct empirical experiments and theoretical analysis to substantiate that PLM-
based retrievers assign higher relevance scores to documents with lower perplexity.

4
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Table 1: Quantified causal effects (and corresponding p-value) for document perplexity on estimated
relevance scores via two-stage regression. Bold indicates that the estimate can pass a significance
test with p-value< 0.05. Significant negative causal effects are prevalent across various PLM-based
retrievers in different domain datasets.

Dataset BERT RoBERTa ANCE TAS-B Contriever coCondenser
DL19 -9.32 (1e-4) -28.15 (2e-12) -0.52 (9e-3) -0.96 (1e-2) -0.02 (0.33) -0.69 (3e-2)

TREC-COVID -1.69 (2e-2) 2.42 (8e-2) 0.09 (0.21) -0.48 (6e-3) -0.05 (7e-7) -0.32 (8e-3)
SCIDOCS -2.44 (6e-2) -6.42 (2e-3) -0.23 (0.15) -0.39 (0.10) -0.02 (0.24) -0.26 (0.41)

4.1 EXPLORING THE BIASED EFFECT CAUSED BY PERPLEXITY

4.1.1 ESTIMATION METHODS

From the temperature intervention experiments in Section 3.1, we observe a clear negative correlation
between document perplexity and estimated relevance scores. Despite human evaluation allows us
to largely confirm that document semantics Md generated from different temperatures are almost
the same, estimating the biased effect of Pd → R̂q,d directly is problematic due to inevitable minor
variations in document semantics, which, though subtle, are significant in causal effect estimation.
From the causal view, to robustly estimate the causal effect of Pd → R̂q,d, the document semantics
Md, query semantics Mq and golden relevance scores Rq,d are considered as confounders. Therefore,
directly estimating this biased causal effect is not feasible without addressing this confounding factor.

We use a 2SLS analysis based on instrumental variable (IV) methods (Angrist and Pischke, 2009;
Hartford et al., 2017) to more accurately evaluate the causal effect of document perplexity on
estimated relevance scores, more details about the method can be found in Appendix D. According
to the causal graph, document source Sd serves as an IV for estimating the effect of Pd → R̂q,d.
The IV is independent of confounders: query semantics Mq, document semantics Md, and golden
relevance scores Rq,d.

In the first stage of the regression, we use linear regression to predict document perplexity Pd based
on document source Sd.

Pd = β1Sd + P̃d, (1)

where P̃d is independent with document source Sd and therefore depends solely on document
semantics Md. As a result, we obtain coefficient β̂1 and the predicted document perplexity P̂d. In the
second stage, we substitute Pd with P̂d = β̂1Sd to estimate the predicted relevance score R̂q,d from
the certain PLM-based retrievers:

R̂q,d = β2P̂d + R̃q,d, . (2)

where residual term R̃q,d represents the part of the estimated relevance scores that can’t be explained
by document perplexity. Since P̂d is independent of document semantics Md, the estimated coefficient
β̂2 can accurately reflect the causal effect of perplexity on estimated relevance scores.

4.1.2 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we apply the causal effect estimation method described previously to assess the impact
of document perplexity Pd on the estimated relevance score R̂q,d.

Models. To comprehensively evaluate this causal effect, we select several representative state-of-
the-art PLM-based retrieval models from the Cocktail benchmark (Dai et al., 2024a), including: (1)
BERT (Devlin et al., 2019); (2) RoBERTa (Liu et al., 2019); (3) ANCE (Xiong et al., 2020); (4)
TAS-B (Hofstätter et al., 2021); (5) Contriever (Izacard et al., 2022); (6) coCondenser (Gao and
Callan, 2022). We employ the officially released checkpoints. For more details, please refer to
Appendix E.1.

Datasets. We select three widely-used IR datasets from different domains to ensure the broad
applicability of our findings: (1) DL19 dataset (Craswell et al., 2020) for exploring retrieval across
miscellaneous domains. (2) TREC-COVID dataset (Voorhees et al., 2021) focused on biomedical
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information retrieval. (3) SCIDOCS (Cohan et al., 2020) dedicated to the retrieval of scientific
scholarly articles. Given that source bias arises from the ranking orders of positive samples from
different sources, we only compare the estimated relevance scores of human-written and LLM-
generated relevant documents against their corresponding queries.

Results and Analysis. The results across different datasets and different PLM-based retrievers
are shown in Table 1. As we can see, in most cases, perplexity exhibits a consistently negative
causal effect on relevance estimation, with documents of lower perplexity more likely to receive
higher relevance scores. Although this causal effect is relatively weak, it is statistically significant,
with p-values < 0.05 in most instances. We also explore whether this causal effect changes with
different sampling temperature. Results in Appendix Table 5 indicate that β̂2 is robust for temperature
changes, that is, this causal effect is independent with generation temperature. This finding is
crucial as retrieval tasks emphasize the relative ranking of relevance scores rather than their absolute
values. Even a slight preferential increase in estimated relevance scores for LLM-generated content
over human-written content will lead to a consistent trend of higher rankings for LLM-generated
documents by PLM-based retrievers, further confirming the observations in Figure 1.

Finding 1: For PLM-based retrievers, document perplexity has a causal effect on estimated
relevance scores. Lower perplexity can lead to higher relevance scores.

4.2 ANALYZING MECHANISM BEHIND THE BIASED EFFECT

4.2.1 WHY PERPLEXITY AFFECTS PLM-BASED RETRIEVERS?

In Section 4.1, our empirical experiments have confirmed that PLM-based retrievers take perplexity
features into account for document retrieval. However, the reason why perplexity-related features
play a role, particularly when these models are primarily designed for document ranking, remains
unclear. Considering that PLM-based retrievers are generally fine-tuned from PLMs on retrieval
tasks, we delve into the relationship between the mask language modeling task in the pre-training
stage and the mean-pooling document retrieval task in the fine-tuning stage. Our formulation are as
follows and explanations can be found in Appendix C.1.

Model Architecture. To simplify our analysis, we assume a common architecture for PLM-based
retrievers, consisting of an encoder f(t;θ) : T L×D 7→ RL×N and a one-layer decoder g(z;W ) =
σ(zW ), where T denotes the set composed of one-hot vectors, L is the length of query or document,
D is the dictionary size, N is the dimension of embedding vector, and σ(·) maps real vectors to
simplexes. For the ease of qualitative analysis, we replace softmax operation with a linear operation,
and zW is assumed positive to ensure the well-definition of the probability distribution.

Masked Language Modeling (MLM) Task. The PLM is initially pre-trained on the MLM task with
CrossEntropy loss: L1(d) = − 1

L1
T
L[d⊙ log g(f(d))]1D, where ⊙ denotes the Hadamard product,

1
L1L means averages over the length of the documents, [d ⊙ log g(f(d))]1D is the expression of
CrossEntropy using one-hot vectors.

Document Retrieval Task. In the fine-tuning stage for the document retrieval task, the retrieval model
estimates the relevance for given query-document pairs by computing the dot product of the document
embedding vectors demb = f(d,θ) and query embedding vectors qemb = f(q,θ). Without loss of
generality, we assume ∥demb

l ∥2 = 1, l = 1, . . . , L, which means the embeddings of each token is
normalized. The loss function can be written as L2(d, q) = −tr[( 1

L1Ld
emb)T ( 1

L1Lq
emb)], where

1
L1L[·] is the mean pooling operation of the embeddings over the document length L.

With the formulation above, we further explore the theoretical underpinnings of why perplexity
influences retrieval performance by examining the gradients of the loss functions for both the MLM
task and the document retrieval task, as shown in the following Theorem 1:

Theorem 1. Given the following three conditions:

• Representation Collinearity: the embedding vectors of relevant query-document pairs are collinear
after mean pooling, i.e.,

1L×Lf(q) = λ1L×Lf(d), λ > 0.

6
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• Semi-Orthogonal Weight Matrix: the weight matrix of the decoder is orthogonal, i.e.,

WW T = IN .

• Encoder-decoder Cooperation: fine-tuning does not disrupt the corresponding function between
encoder and decoder, i.e.,

f(d) = g−1(d).

Then there exists a matrix K =
[

λkl

L(1−kl)

]
ln
∈ RL×N

+ , kl =
∑D

d (dembW )ld which satisfies

∂L2

∂demb
= K ⊙ ∂L1

∂demb
.

The three conditions made are explained in Appendix C.1 and the proof of Theorem 1 can be found
in Appendix C.2. From Theorem 1, we observe that the gradients of the two losses of MLM task and
the retrieval task have a positive linear relationship.

Note that L1(d) actually represent the document perplexity Pd and L2(d, q) actually represent the
negative estimated relevance score −R̂q,d. Then we can easily derive the following Corollary, which
illustrates how the key conclusion ∂L2/∂d

emb = K ⊙ ∂L1/∂d
emb in Theorem 1 leads to the biased

effect of document perplexity Pd on estimated relevance score R̂q,d:
Corollary 1. Consider a human-written document d1 and its LLM-rewritten document d2, they are
both relevant with query q. Assume LLM-rewritten documents possess lower perplexity at token
level (Mitchell et al., 2023). Let rvec/vec be matrix-to-row/column-vector operator, Ll

1(d) denote
the perplexity of the l-th token in the document, (demb

2 )l denote the embedding of the l-th token,

Ll
1(d1)− Ll

1(d2) =
∂L1(d2)

∂(demb
2 )l

· ∂(d
emb
2 )l

∂d2
· vec(d1 − d2) > 0, l = 1, . . . , L,

where 1st-order approximation of Chain rule is taken as the surrogate function (Grabocka et al., 2019;
Nguyen et al., 2009) for Ll

1(d). According to Theorem 1 and 1st-order approximation of L2(d),

R̂q,d1
− R̂q,d2

= −[L2(d1)− L2(d2)] = −rvec(K ⊙
∂L1(d

emb
2 )

∂demb
2

) · ∂d
emb
2

∂d2
· vec(d1 − d2)

=−
L∑

l=1

λkl
L(1− kl)

∂L1(d2)

∂(demb
2 )l

· ∂(d
emb
2 )l

∂d2
· vec(d1 − d2) = −

L∑
l=1

λkl
L(1− kl)

(
Ll
1(d1)− Ll

1(d2)
)
< 0.

Corollay 1 indicates that human-written document will receive lower relevance estimation than its
LLM-written document, resulting in source bias. It is important to note that our theoretical analysis
does not cover all situations in reality, we will discuss these limitations in Appendix B.

Finding 2: For PLM-based retrievers, the gradients of MLM and IR loss functions (metrics)
possess linear overlap, leading to the biased effect of perplexity on estimated relevance scores.

4.2.2 FURTHER VERIFICATION OF THEOREM 1

Theorem 1 reveals the linear relationship between language modeling gradients and retrieval gradients
w.r.t. document embedding vectors demb. For a more comprehensive verification for its reliability,
we derive Corollay 2 from Theorem 1 and provide supporting experiments about the corollay. The
derivation is similar with that in Corollary 1.
Corollary 2. For two retrievers f(t;θ1), f(t;θ2) which share the same PLM, such as BERT. If
retriever f(t;θ1) possesses more powerful language modeling ability than f(t;θ2), i.e.,

Ed∈D[Ll
1(d;θ1)]− Ed∈D[Ll

1(d;θ2)] < 0, l = 1, . . . , L,

then similar to the Corollary 1, we have

Ed∈D[L2(d;θ1)]− Ed∈D[L2(d;θ2)] = Ed∈D

[
rvec

(
∂L2(d

emb;θ2)

∂demb

)
· ∂d

emb

∂θ2
· vec(θ1 − θ2)

]
=Ed∈D

[
rvec(K ⊙ ∂L1(d

emb;θ2)

∂demb
)
∂demb

∂θ2
vec(θ1 − θ2)

]
= Ed∈D

[
L∑

l=1

λkl
L(1− kl)

(
Ll
1(d;θ1)− Ll

1(d;θ2)
)]

< 0.
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Note that Ed∈D[L1(d;θ)] is a typical measure of language modeling ability and Ed∈D[L2(d;θ)]
reflects the ranking performance, Corollary 2 indicates that if a retriever possesses more powerful
language modeling ability, its ranking performance will be better.

To offer empirical support for the corollary, we evaluate the language modeling ability of PLM-based
retrieval models with different ranking performances. By taking the retrieval model directly as a PLM
encoder to do MLM task, we calculate the average text perplexity of the retrieval corpus to evaluate
their language modeling ability, which offers support for the encoder-decoder corporation assumption
at the same time. As illustrated in Figure 3, there is a clear correlation between text perplexity
and retrieval accuracy (except Contriever). These results, demonstrating that language modeling
capabilities are indeed correlated with retrieval performance, strengthen the practical reliability of
our assumptions and conclusions as the deductive verification of the above hypothesis we used. This
finding also explains why PLM dramatically improve the performance of retrievers over past years.
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Figure 3: Model perplexity and ranking per-
formance (NDCG@3) on averaged results
of DL19, TREC-COVID, and SCIDOCS.

Combining the previous findings, we can further under-
stand the relationship between model retrieval perfor-
mance and the degree of source bias. On one hand, if
the PLM-based retriever demonstrates a better MLM
capability, it tends to be more sensitive to document
perplexity, which leads to more severe source bias
(Corollary 1). On the other hand, a retriever with bet-
ter MLM capabilities can also achieve more accurate
relevance estimations, leading to better ranking per-
formance (Corollary 2). Consequently, PLM-based
retrievers encounter a trade-off between accuracy in
retrieval and the severity of source bias. Specifically,
higher ranking performance is associated with more sig-
nificant source bias. This relationship has been noted
in previous research (Dai et al., 2024a), and we are the
first to offer a plausible explanation for this phenomenon.

Finding 3: Better language modeling improves PLM-based retriever’s ranking performance,
but also heightens its sensitivity to perplexity, thus increasing source bias severity.

5 CAUSAL-INSPIRED SOURCE BIAS MITIGATION

In this section, we further propose a causal-inspired debiasing method to eliminate the source bias,
which can be naturally derived from our above causal analysis. We then conduct experiments to
evaluate the effectiveness of the proposed debiasing method.

5.1 PROPOSED DEBIASING METHOD: CAUSAL DIAGNOSIS AND CORRECTION

In Section 3 and 4, we have constructed a causal graph and estimated the biased effect of perplexity
on the final predicted relevance score. Based on these insights, we propose an inference-time debiased
method via Causal Diagnosis Correction (CDC). The main procedure of CDC lies on two stage:
(i) Bias Diagnosis: Employing the Instrumental Variable method for estimating the bias effect β̂2 of
perplexity Pd to estimated relevance score R̂q,d. (ii) Bias Correction: Separating the biased effect of
document perplexity from the overall estimated relevance scores R̂q,d.

Specifically, the final calibrated score R̃q,d for document ranking can be formulated as follows:

R̃q,d = R̂q,d − β̂2Pd, (3)

which can be derived by rearranging Eq. equation 2. In this formula, R̃q,d is independent to document
source and perplexity, and thus depends only on document content. Therefore, it serves as a good
proxy for semantic relevance ranking.

Specifically, we first take M samples from the training set D to construct the estimation set De

for estimating the biased effect β̂2 (lines 2-8), where M is the estimation budget. To construct

8
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Algorithm 1: The Proposed CDC: Debiasing with Causal Diagnosis and Correction
Input: training set D, test query setQ, test corpus C, estimation budget M
Output: unbiased estimated relevance scores R̃

1 // Bias Diagnosis
2 Initialize the estimation set for estimating biased effect De ← ∅
3 for training pairs (qi, dHi ) ∈ D and |De| < M do
4 Instruct LLM to generate doc dGi via rewriting the original human-written doc dHi
5 Predict the estimated relevance scores r̂Hi , r̂Gi for pairs (qi, dHi ) and (qi, d

G
i )

6 Calculate perplexity pHi , pGi for doc dHi and doc dGi , respectively
7 Updating the estimation set De ← De ∪ (r̂Hi , r̂Gi , p

H
i , pGi )

8 end
9 Estimate the biased effect coefficient β̂2 with 2-stage regression using Eq. equation 2 on De

10 // Bias Correction
11 for test query qt ∈ Q do
12 Predict the estimated relevance scores r̂t for each pair (qt, dt) with dt ∈ C
13 Calculate document perplexity pt for each doc dt ∈ C
14 Debias the original model prediction r̂t using Eq. equation 3, add the calibrated score r̃t to R̃
15 end
16 return R̃

Table 2: Performance (NDCG@3) and bias (Relative ∆ (Dai et al., 2024c) on NDCG@3) of different
PLM-based retrievers with and without our proposed CDC debiased method on three datasets. Note
that a more negative bias metric value indicates a greater bias towards LLM-generated documents,
while a more positive value indicates a greater bias towards human-written documents.

Model
DL19 (In-Domain) TREC-COVID (Out-of-Domain) SCIDOCS (Out-of-Domain)

Performance Bias Performance Bias Performance Bias

Raw +CDC Raw +CDC Raw +CDC Raw +CDC Raw +CDC Raw +CDC
BERT 75.92 77.65 -23.68 5.90 53.72 45.88 -39.58 -18.40 10.80 10.44 -2.85 29.19

Roberta 72.79 71.33 -36.32 4.45 46.31 45.86 -48.14 -10.51 8.85 8.24 -30.90 32.13
ANCE 69.41 67.73 -21.03 34.95 71.01 69.94 -33.59 -1.94 12.73 12.31 -1.57 26.26
TAS-B 74.97 75.63 -49.17 -9.97 63.95 62.84 -73.36 -37.42 15.04 14.15 -1.90 23.48

Contriever 72.61 73.83 -21.93 -5.33 63.17 61.35 -62.26 -31.33 15.45 15.09 -6.96 1.63
coCondenser 75.50 75.36 -18.99 9.60 70.94 71.07 -67.95 -45.39 13.93 13.79 -5.95 1.06

the estimation set De, we instruct an LLM to generate the copy document dGi by rewriting the
original human-written document dHi , thereby obtaining two semantically similar documents but
from different sources. For these two types of samples, we use the trained retrieval model to predict
the corresponding relevance scores r̂Hi and r̂Gi for the given query and calculate the corresponding
document perplexities pHi and pGi . Further, following the practice in Section 4.1, we use two-stage IV
regression on the estimation set De to estimate the biased coefficient β̂2 (line 9). During testing, we
use Eq. equation 3 to correct the original model prediction r̂t, obtaining the calibrated score r̃t for
final document ranking (line 11-15). We summarize the overall procedure of CDC in Algorithm 1.

5.2 EXPERIMENTS AND ANALYSIS

To evaluate the effectiveness of the proposed CDC, we implement it across various PLM-based
retrievers in simulated-realistic debiasing scenarios, where generated documents are from different
domains and LLMs. In this case, we investigate the generalizability of the CDC method at both LLM
level and Domain level. More detailed settings can be found in Appendix E.1.

At domain-level, we employ bias diagnosis on the training set of DL19 to estimate the biased effect
β̂2 for each retrieval model, and then conduct in-domain and cross-domain evaluation on the test sets
of DL19, TREC-COVID, SCIDOCS. Note that only 128 samples (i.e., estimation budget M = 128)
are used for bias diagnosis, this sample size is sufficient for effective results. The averaged results
over five different seeds are reported in Table 2.

As we can see, using the estimated biased coefficient of in-domain retrieval data, our debiasing
CDC successfully mitigates or even reverses the retrieval models’ preference towards human-written

9
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Table 3: Performance (NDCG@3) and bias (Relative ∆ (Dai et al., 2024c) on NDCG@3) of the
retrievers on mixed SciFact corpus from different LLMs. Bias Diagnosis is conducted on DL19
corpus from Llama-2, where CDC performs generalization at both LLM and data-domain levels.

Model
Llama-2 (In-Domain) GPT-4 (Out-of-Domain) GPT-3.5 (Out-of-Domain) Mistral (Out-of-Domain)

Performance Bias Performance Bias Performance Bias Performance Bias

Raw +CDC Raw +CDC Raw +CDC Raw +CDC Raw +CDC Raw +CDC Raw +CDC Raw +CDC
BERT 35.67 35.08 -12.37 6.75 36.47 35.75 -3.69 6.04 35.97 35.27 -5.03 18.08 35.13 35.08 0.73 13.07

RoBERTa 38.09 36.76 -29.54 -0.88 38.53 37.70 -11.98 4.52 39.17 38.00 -35.39 14.09 38.29 37.28 -17.95 16.78
ANCE 42.13 42.13 -8.81 4.59 42.67 42.99 -5.53 3.28 42.76 42.96 -13.59 6.09 42.62 42.71 -8.59 1.82
TAS-B 52.95 53.94 -15.04 -7.96 52.12 52.44 -4.94 -0.05 52.83 52.90 -5.65 5.57 52.18 52.69 -8.71 -2.00

Contriever 55.19 55.37 -2.87 1.07 55.78 55.70 -5.32 -4.44 56.11 56.17 -7.43 -2.81 56.13 56.28 -4.13 -2.39
coCondenser 49.53 49.40 -12.98 -9.26 48.57 48.91 5.04 6.04 48.59 48.81 -1.00 5.30 49.57 49.92 -5.90 -0.76

documents. Meanwhile, this estimated biased coefficient demonstrates generalizability across out-of-
domain datasets. The majority of the retrieval performance degradation was generally less than 2
percentage points, revealing that our debiasing CDC has acceptable impact on ranking performance,
see detailed significance test in Appendix Table 7. In addition, the mean and standard deviation of
performance and bias after CDC debiasing for the five sampling sessions is provided in Appendix
Table 6, indicating the robustness of CDC to training samples. Appendix Table 8 provides a
comparison with tuning-based debiasing methods (Dai et al., 2024c), showing CDC is able to achieve
comparable debias results without fine-tuning retrievers.

We also find that the debiasing results may vary across different retrievers. Specifically, CDC has
more significant effects on vanilla models like BERT while exhabits lower impacts on stronger
retrievers such as Contriever. We offer the following analysis to explain these observations: (1)
Stronger retrievers are developed using more sophisticated contrastive learning algorithms, which
enhance their abilities to differentiate between highly relevant documents and the others. In this way,
it may be more challenging for CDC corrections to alter the initial rankings. (2) The perplexity values
used for CDC are computed using a BERT model. Because stronger models like Contriever and
coCondenser have different internal representations compared to BERT, the computed perplexity may
not align perfectly with their evaluation processes. This misalignment makes the CDC less effective
at modifying their rankings. These insights suggest that the method of perplexity computation can
significantly influence the effectiveness of CDC corrections. A more aligned or model-specific
approach to computing perplexity could potentially enhance the debiasing process.

Considering that the web content may be generated by diverse LLMs, we expand our evaluations to
assess the generalizability of the CDC method across corpora generated by different LLMs, including
Llama (Touvron et al., 2023), GPT-4 (Achiam et al., 2023), GPT-3.5, and Mistral (Jiang et al., 2023).
Due to the cost of computing resources, we conducted experiments on a smaller dataset SciFact,
which is also used in previous works (Dai et al., 2024c;a). In this setup, CDC used Llama’s rewritten
DL19 documents to estimate β2 and subsequently correct retrieval results on SciFact corpora mixed
with each LLM separately. The results displayed in Table 3 confirm that CDC is capable to generalize
across various LLMs and maintain high retrieval performance while effectively mitigating bias.

In summary, these empirical results validate the feasibility of our proposed debiasing method by
effectively reducing the biased impact of document perplexity on model outputs. And this method can
be integrated efficiently into dual-encoder architerctures used in ANN search by pre-computing and
indexing query-independent document perplexity with embeddings. Moreover, β̂2 can be adjusted
according to specific requirements, where a larger absolute value of β̂2 leads to further preference for
human-written texts albeit at the potential cost of ranking performance degradation. More discussion
about the open question that “Should we debias toward human-written contents?” is in Appendix A.1.

6 CONCLUSION

This paper aims to explain the phenomenon of source bias where PLM-based retrievers overrate low-
perplexity documents. Our core conclusion is that PLM-based retrievers use perplexity features for
relevance estimation, leading to source bias. To verify this, we conducted a two-stage IV regression
and found a negative causal effect from perplexity to relevance estimation. Theoretic analysis reveals
that the gradient correlation between language modeling and retrieval tasks contributes to this causal
effect. Based on the analysis, a causal-inspired inference-time debiasing method called CDC is
proposed. Experimental results verified its effectiveness in terms of debiasing the source bias.
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A DISCUSSION

A.1 SHOULD WE DEBIAS TOWARD HUMAN-WRITTEN CONTENTS?

While we refer to the retrievers’ preference for LLM-rewritten content as a “bias”, it’s crucial to
recognize that not all biases are harmful. As illustrated in previous works (Dai et al., 2024c; Zhou
et al., 2024), from content creators’ perspective, reducing preference toward LLM-rewritten content
helps guarantee sufficient incentives for authors to encourage creativity, and thus sustain a healthier
content ecosystem. From users’ perspective, LLM-rewritten documents might possess enhanced
quality, such as better coherence, and improved reading experience.

In this work, our debiasing approach is primarily a methodological application derived from our
causal graph analysis, serving to validate the “perplexity-trap” hypothesis further. At the same time,
our framework allows for adjustable preference levels between human-written and LLM-generated
documents, catering to specific practical requirements. This flexibility ensures that our approach
can be tailored to balance between enhancing information quality and maintaining content provider
fairness.

A.2 SHOULD PERPLEXITY BE A CAUSAL FACTOR TO QUERY-DOCUMENT RELEVANCE?

It’s one of the assumptions of this work that perplexity should not be a causal factor to query-
document relevance. It is true that there may be a correlation between perplexity and query-document
relevance, e.g., the coherence of a document may also have an impact on relevance. However, there
is an insurmountable gap between the perplexity of LLM-rewritten documents and human work,
because people do not intentionally take PPL into account when writing, but LLMs do generation
with perplexity as a goal. We are currently faced with a situation where this perplexity gap has
breached the range of human perception of relevance, leading to serious source bias even when the
rewritten documents share nearly the same semantics with human works, as verified and discussed in
previous literature (Dai et al., 2024c). It’s just like what Goodhart’s Law (Goodhart, 1975) states:
“When a measure becomes a target, it ceases to be a good measure.” So perhaps a threshold should be
set, and when perplexity is less than the threshold, it should be made independent with relevance.

B LIMITATIONS

This study has several limitations that are important to acknowledge.

Data and Experiments. Firstly, while our analysis was conducted on three representative datasets,
it is recognized that there are numerous other IR datasets that could have been included. Our selection,
although limited in scope, was strategic to ensure a broad representation across different domains,
and we believe that our findings can be generalized to other domains. Secondly, due to the cost
associated with human evaluation, we were constrained to perform only 6× 20 evaluations for each
dataset, corresponding to six different sampling temperatures. This decision, while pragmatic, may
limit the extent to which we can generalize our results to other conditions.

Theoretical Analysis In our theoretical proofs, we made certain assumptions and simplifications.
Specifically, we narrow our analysis in PLM-based dual-encoder and mean-pooling scenario. These
are necessary to achieve mathematical tractability and are grounded in practical considerations, which
have been discussed in the previous sections. We believe these assumptions are reasonable and have
validated the reliability of our conclusions through experimental verification. For the other scenarios,
such as auto-regressive embedding models and CLS-based retrievers, we will explore and discuss
them in the future work.

Despite these limitations, we maintain that our work provides valuable insights into the subject matter
and serves as a foundation for future research.

C NOTES ON THEORETICAL ANALYSIS

In this section, we provide detailed reasons to our assumptions and proof to our proposed theorem in
Section 4.2.
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C.1 EXPLANATION ON ASSUMPTIONS

Our theoretical analysis are based on a set of assumptions, to which we’re going to offer the reasons.
• Encoder-Only Retrievers Encoder-only architectures are generally considered more suitable
for textual representation tasks, while encoder-decoder and decoder-only models are typically used
for generative tasks. Thus, encoder-only models have been widely employed for retrieval tasks and
have demonstrated effective results. In fact, most of the mainstream dense retrievers listed on the
MTEB (Muennighoff et al., 2022) leaderboard are based on encoder-only architectures.
• Mean-Pooling Strategy. We use of mean pooling for query/doc embeddings in the derivation
of Theorem 1, while a simplification, differs from the practice of using CLS token embeddings in
BERT-like models. From a practical perspective, (weighted) mean pooling embedding outperform
CLS token embedding when ranking, which has been widely confirmed in previous works (Dai et al.,
2024b; Reimers, 2019). From a theoretical perspective, (weighted) mean pooling is able to retain
more local information about documents, which is important for retrieval tasks, as a query is regarded
related to a document when the query is related to a particular sentence in the document. Furthermore,
there is literature indicating that CLS token embeddings may not always effectively capture sentence
representations, which can be a limitation in retrieval contexts (Li et al., 2020).
• Representation Collinearity Hypothesis Representation Collinearity Hypothesis is a funda-
mental assumption long implemented in information retrieval systems (Salton et al., 1975). When
measuring relevance scores by calculating dot or cosine similarity, we assume that the best relevant
document owns an embedding that is collinear with the query embedding (given that the norm of
the document embedding is held constant). In practice, dense retrievers are trained on contrastive
learning to maximize the similarity between query and its relevant documents while minimize the
similarity of irrelevant documents (Gao et al., 2021; Zhao et al., 2024).
• Semi-Orthogonal Weight Matrix Hypothesis W ∈ RN×D satisfies the Semi-Orthogonal
Weight Matrix assumption WW T = IN , which is necessary to achieve mathematical tractability.
Since practical PLMs uses 2-layer MLPs rather than the weight matrix W , this can’t be verified
directly. If we ignore the activation function in the MLPs of BERT, let W = W1W2, then
1

N2 ∥WW T ∥F ≈ 50 · 1
N2 ∥diag(WW T )∥F , which suggests that the diagonal elements are much

larger than the others. One reasonable intuition is a conclusion in high-dimension probabilities which
states "for any ϵ > 0, there are m = Ω(eN ) vectors in RN such that any pair of them are nearly
orthogonal."(Mitzenmacher and Upfal, 2017) Since N ≥ 768 for commonly-used retrievers, the
hypothesis holds with high probability.
• Encoder-decoder Cooperation Hypothesis This assumption has a certain practical background.
The experiment in Section4 can be viewed as a verification of this assumption, where finetuned
encoder is used with unfinetuned MLPs to do MLM task. In this setting, the hybrid model recieve
relatively low perplexity as PLMs. In practice, the beginning learning rate of finetuning retrievers is
usually set at 1 · e−5, which makes retrievers more likely to the conserve of inversion property.

C.2 PROOF OF THEOREM 1

In this section, we provide the proof of Theorem 1. Note that the three conditions made are
naturally satisfied: (1) Representation collinearity is a fundamental assumption long implemented
in information retrieval systems. (2) Matrix orthogonality is a common and intuitive property of
the decoder’s weight matrix. (3) Encoder-decoder adheres to the original design principles of
auto-encoder networks. Then we give the proof as follows:

Proof. Given the following three conditions:

• Representation Collinearity: the embedding vectors of relevant query-document pairs are collinear
after mean pooling, i.e.,

1L×Lf(q) = λ1L×Lf(d).

• Orthogonal Weight Matrix: the weight matrix of the decoder is orthogonal, i.e.,

WW T = I.

• Encoder-decoder cooperation: fine-tuning does not disrupt the corresponding function between
encoder and decoder, i.e.,

f(d) = g−1(d).
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Our goal is to prove ∂L2/∂d
emb = K ⊙ ∂L1/∂d

emb.

Note that the two losses are both involved with demb,

∂L1

∂demb
= − 1

L
1L×L[g(d

emb)− d]W T = − 1

L
1L×L[σ(d

embW )− d]W T .

∂L2

∂demb
= − 1

L2
1L×Lq

emb.

Replacing the softmax operation with linear normalization, let ·
· denote element-wise division,

[σ(x)]l =
1∑N

n xln

xl, l = 1, . . . , L.

Considering the following matrix identity,

(AM×N ·BN×K)⊙ (cM · 1T
K) = (AM×N ⊙ (cM · 1T

N )) ·BN×K ,

it reveals that the gradient of L1 can be rearranged as

[σ(dembW )− d]W T = (
dembW

kL1T
D

− d)W T = (
demb

kL1T
N

W − d)W T ,

where column vector kL ∈ RL satisfies kl =
∑D

d (dembW )ld > 0 because σ(dembW )l is a com-
plex. Meanwhile, using mean inequality (also called QM-AM inequality), we can find that

kl ≤

√√√√ 1

N

D∑
d

(dembW )2ld =

√
1

N
(dembW )l(dembW )Tl =

1√
N
∥demb

l ∥2 =
1√
N

< 1.

According to the orthogonal weight matrix assumption,

(
demb

kL1T
N

W − d)W T =
demb

kL1T
N

− dW T =
demb

kL1T
N

− σ−1(d)W T =
demb

kL1T
N

− g−1(d).

From the encoder-decoder cooperation condition, we obtain

∂L1

∂demb
= − 1

L
1L×L[

demb

kL1T
N

−f(d)] = − 1

L
1L×L[d

emb ⊙ (
1L − kL

kL
1T
N )] = − 1

L
1L×Ldiag(

1L − kL

kL
)demb.

Considering the positive query-document pair q, d, assume their embedding vectors are collinear,

∂L2

∂demb
= − 1

L2
1L×Lq

emb = − λ

L2
1L×Ld

emb.

we can observe that
∂L2

∂demb
=

λ

L
diag(

kL

1L − kL
)
∂L1

∂demb
.

Let K = λ
L

kL

1L−kL
1T
N , then it holds that

∂L2

∂demb
= K ⊙ ∂L1

∂demb
.

D INSTRUMENTAL VARIABLE REGRESSION

In statistics, instrumental variable (IV) is used to estimate causal effects. The changes of IV induces
changes of explanatory variable but keeps error term constant. The basic method to estimate causal
effect is 2SLS. In the first stage, 2SLS regress explanatory variable on instrumental variable and
obtain the predicted values of explanatory variable. In the second stage, 2SLS regress output variable
on predicted explanatory variable. Then, the coefficient corresponding to the predicted explanatory
variable can be viewed as a measure of causal effects.
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Figure 4: By leveraging IV regression on Sd, Pd is decomposed into causal and non-causal parts. A
precise causal effect can be obtained from the coefficient of the second-stage regression, i.e., β̂2.

According to our proposed causal graph, the document source Sd has three properties: (1) It is
correlated to the document perplexity Pd. (2) It is independent with Document semantics Md because
we can instruct LLMs to rewrite human documents for any document semantics. (3) It only affect the
estimated relevance score R̂q,d through document perplexity Pd. Thus, document source Sd can be
considered a instrumental variable to evaluate the causal effect of document perplexity on estimated
relevance scores.

As depicted in Figure 4, we estimate document perplexity Pd based on document source Sd in the
first stage. The results, coefficient β̂1 and predicted document perplexity P̂d = β̂1Sd, are used in
the second stage to estimated the predicted relevance score R̂q,d via linear regression, where the
estimated coefficient β̂2 is a valid measure for the magnitude of the causal effect.

E MORE EXPERIMENTS

E.1 EXPERIMENTAL DETAILS

Our experiments are all conducted on machines equipped with NVIDIA A6000 GPUs and 52-core
Intel(R) Xeon(R) Gold 6230R CPUs at 2.10GHz. For better reproducibility, we employ the following
officially released checkpoints:

BERT (Devlin et al., 2018; 2019) and RoBERTa (Liu et al., 2019) are used in dense retrieval
as PLM encoders. We employ the trained models from the Cocktail benchmark (Dai et al.,
2024a). The models are available at https://huggingface.co/IR-Cocktail/
bert-base-uncased-mean-v3-msmarco and https://huggingface.co/
IR-Cocktail/roberta-base-mean-v3-msmarco, respectively.

ANCE (Xiong et al., 2020) improves dense retrieval by sampling hard negatives via the Approxi-
mate Nearest Neighbor (ANN) index. The model is available at https://huggingface.co/
sentence-transformers/msmarco-roberta-base-ance-firstp.

TAS-B (Hofstätter et al., 2021), leverages balanced margin sampling for efficient query selec-
tion. The model is available at https://huggingface.co/sentence-transformers/
msmarco-distilbert-base-tas-b.

Contriever (Izacard et al., 2022) employs contrastive learning with positive samples generated
through cropping and token sampling. The model is available at https://huggingface.co/
facebook/contriever-msmarco.

coCondenser (Gao and Callan, 2022) is a retriever that conducts both pre-training
and supervised fine-tuning. The model is available at https://huggingface.co/
sentence-transformers/msmarco-bert-co-condensor.
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Table 4: Human evaluation on which document is more relevant to the given query semantically?
The numbers in parentheses are the proportion agreed upon by all three human annotators.

Temperature DL19
Human LLM Equal

0.00 0.0% (0.0%) 5% (0.0%) 95% (83.8%)
0.20 0.0%(0.0%) 5% (0.0%) 95% (94.2%)
0.40 0.0% (0.0%) 0.0% (0.0%) 100% (79.6%)
0.60 0.0% (0.0%) 0.0% (0.0%) 100% (84.6%)
0.80 0.0% (0.0%) 0.0% (0.0%) 100% (94.5%)
1.00 0.0%(0.0%) 0.0% (0.0%) 100% (94.5%)

Temperature TREC-COVID
Human LLM Equal

0.00 0.0% (0.0%) 0.0% (0.0%) 100% (84.6%)
0.20 0.0% (0.0%) 0.0% (0.0%) 100% (94.5%)
0.40 0.0% (0.0%) 0.0% (0.0%) 100% (74.6%)
0.60 0.0% (0.0%) 0.0% (0.0%) 100% (94.5%)
0.80 0.0% (0.0%) 0.0% (0.0%) 100% (79.6%)
1.00 0.0% (0.0%) 0.0% (0.0%) 100% (84.6%)

Temperature SCIDOCS
Human LLM Equal

0.00 0.0% (0.0%) 0.0% (0.0%) 100% (84.6%)
0.20 0.0% (0.0%) 0.0% (0.0%) 100% (84.6%)
0.40 0.0% (0.0%) 0.0% (0.0%) 100% (79.6%)
0.60 0.0% (0.0%) 5.0% (0.0%) 95% (83.8%)
0.80 0.0% (0.0%) 0.0% (0.0%) 100% (79.6%)
1.00 0.0% (0.0%) 5% (0.0%) 95% (89.0%)

We follow the metrics proposed by previous work when measuring ranking performance and source
bias. For ranking performance, we use NDCG@k (Järvelin and Kekäläinen, 2002). For source bias,
we use Relative ∆ NDCG@k (Dai et al., 2024a;c; Xu et al., 2024; Zhou et al., 2024), which is
formulated as

Relative∆ =
MetricHuman −MetricLLM

1
2 (MetricHuman +MetricLLM )

× 100%.

In CDC debiasing, considering the sample size we conduct bias correction for the top 10 candidates
in retrival. Rising up the candidates number leads to less preference for LLM-generated documents
while ranking performance may drop a little.

E.2 MORE RESULTS OF GENERATED CORPUS WITH VARYING SAMPLING TEMPERATURE

E.2.1 HUMAN EVALUATION

Although LLM-generated documents are solely based on their corresponding human documents, it is
still necessary to verify that the generated document has the same relevance scores with given query
as the original documents. To provide empirical support on the fact that LLM-generated documents
are not injected with extraneous information about queries, we conduct a human evaluation.

We randomly select 20 (query, human-written document, LLM-generated document) triples for each
dataset and each sampling temperature. The human annotators who have at least Bachelor’s degrees
are asked to evaluate which document is more relevant without knowing document sources. Their
results are transferred into the “Human”, “LLM”, or “Equal” options later. The final labels of each
triple are determined by the votes of three different annotators. The results in Table 4 illustrate that
documents from different sources possess the same relevance to the corresponding queries, which
guarantees the correctness of our controlled variables experiments.

E.2.2 RESULTS WITH MORE PLM-BASED RETRIEVERS

In Section 3.1 we discover the negative correlation between document perplexity and estimated
relevance scores by Contriever. In this section, we demonstrate the replicability of the discovery by
providing similar results on TAS-B and Contriever. As depicted in Figure 6 and Figure 5, there is
a significant negative correlation between document perplexity and estimated relevance scores as
sampling temperature changes. Documents with lower perplexity obtain prevalent higher estimated
relevance scores across different PLM-based retrievers, further affirming the universality of the
phenomenon.
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(c) SCIDOCS

Figure 5: Perplexity and estimated relevance scores of TAS-B on positive query-document pairs in
three datasets, where documents are generated by LLM with different sampling temperatures.
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Figure 6: Perplexity and estimated relevance scores of Contriever on positive query-document pairs
in three datasets, where documents are generated by LLM with different sampling temperatures.

E.2.3 MORE RESULTS OF β2 ESTIMATION

In Section 4.1, we estimated the causal effect of perplexity on estimated relevance scores through
2SLS. Since the estimation needs LLM generation, it’s natural to explore the hyperparameters related
to the generation.

According to the causal graph we proposed, the sampling temperature does affect β̂1 in the first stage
of the regression, but is independent with β̂2. We explore whether β̂1 changes in turn affects the value
of β̂2 by using documents generated with different sampling temperature. The β̂1 and β̂2 obtained
from our estimation on the set of rewritten texts with different sampling temperatures are shown in
Table 5. It can be found that under the maximum sampling temperature difference, the variation of
β̂1 is within 15% and the variation of β̂2 is within 20%, and such variations are similar to the errors
brought by random sampling, so the variation of the sampling temperature is acceptable in the CDC
algorithm.
Table 5: The influence of generation temperatures on the magnitude of the causal coefficients β1, β2.
The coefficients are estimated from all positive query-document pairs.

DL19 TREC-COVID SCIDOCS

Temperature 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
β̂2(BERT) -7.80 -7.78 -7.77 -7.94 -1.21 -1.20 -1.24 -1.26 -2.29 -2.29 -2.33 -2.46

β̂2(RoBERTa) -23.57 -23.50 -23.45 -23.97 1.73 1.73 1.77 1.80 -6.02 -6.04 -6.13 -6.47
β̂2(ANCE) -0.44 -0.44 -0.44 -0.45 0.07 0.07 0.07 0.07 -0.22 -0.22 -0.22 -0.23
β̂2(TAS-B) -0.81 -0.80 -0.80 -0.82 -0.34 -0.34 -0.35 -0.35 -0.37 -0.37 -0.37 -0.39

β̂2(Contriever) -0.01 -0.01 -0.01 -0.01 -0.03 -0.03 -0.04 -0.04 -0.02 -0.02 -0.02 -0.02
β̂2(coCondenser) -0.58 -0.58 -0.58 -0.59 -0.23 -0.23 -0.24 -0.24 -0.25 -0.25 -0.25 -0.26

β̂1 -0.44 -0.44 -0.44 -0.43 -0.41 -0.41 -0.40 -0.39 -0.41 -0.40 -0.40 -0.38

E.3 MORE RESULTS OF CDC DEBIASING

In this section, we provide more experimental results of our proposed CDC debiased method to
provide a more comprehensive and in-depth analysis of CDC, including robustness analysis, and
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significance test and comparation with other existing debiasing method for source bias. These results
are detailed in Table 6 for error bar, Tabel 7 for significance test.
Table 6: Mean and standard deviation of Performance (NDCG@3) and bias (Relative ∆ (Dai et al.,
2024c) on NDCG@3) of different PLM-based retrievers with our proposed CDC debiased method on
three datasets in five repetitions.

Model
DL19 (In-Domain) TREC-COVID (Out-of-Domain) SCIDOCS (Out-of-Domain)

Performance Bias Performance Bias Performance Bias

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
BERT 77.65 0.89 5.90 4.40 45.88 1.14 -18.40 6.72 10.44 0.19 29.19 9.35

RoBERTa 71.33 0.48 4.45 0.80 45.86 0.78 -10.51 3.58 8.24 0.18 32.13 7.28
ANCE 67.73 0.15 34.95 11.51 69.94 0.77 -1.94 4.63 12.31 0.33 26.26 10.61
TAS-B 75.63 0.24 -9.97 5.25 62.84 0.48 -37.42 3.99 14.15 0.16 23.48 5.84

Contriever 73.83 0.27 -5.33 1.93 61.35 0.73 -31.33 3.22 15.09 0.10 1.63 1.89
coCondenser 75.36 0.47 9.60 8.49 71.07 0.45 -45.39 8.55 13.79 0.21 1.06 2.79

Table 7: The p-value of significance test conducted on the NDCG@3 and Relative ∆ (Dai et al., 2024c)
on NDCG@3 with and without CDC debias method, with bold fonts indicating the Performance or
Bias can pass a significance test with p-value< 0.05. As expected, most Performance DOES NOT
pass the significance test while all the Bias DOES pass the significance test.

Model DL19 TREC-COVID SCIDOCS

Performance Bias Performance Bias Performance Bias
BERT 4.56e-03 5.33e-04 1.87e-03 3.97e-05 1.37e-01 1.47e-03

RoBERTa 7.26e-02 2.33e-04 1.22e-01 5.46e-05 8.48e-01 9.45e-07
ANCE 1.74e-01 4.48e-03 4.61e-01 3.09e-04 1.62e-01 2.25e-05
TAS-B 6.16e-01 3.19e-04 8.58e-01 1.27e-03 6.67e-04 2.16e-04

Contriever 2.77e-01 3.94e-02 2.98e-01 5.03e-04 4.44e-02 7.65e-03
coCondenser 8.82e-01 1.16e-02 5.95e-01 3.81e-04 2.71e-01 1.58e-03

Table 8: Performance (NDCG@3) and bias (Relative ∆ on NDCG@3) of the retrievers with CDC
and Fine-tuning debiased constraint method (Dai et al., 2024b). Con(α) means the value of the
coefficient α corresponding to the debiased constraint.

DL19 TREC-COVID SCIDOCS

Performance Bias Performance Bias Performance Bias
Con(0.0001) 62.66 6.25 52.63 46.68 12.76 -8.23
Con(0.0005) 62.69 118.83 51.35 39.10 12.45 26.91
Con(0.001) 62.66 127.25 45.43 85.54 12.41 56.31
Con(0.005) 61.17 175.47 54.00 163.41 10.70 118.87
Con(0.01) 57.62 175.86 39.69 179.84 11.30 111.51

CDC 67.73 34.95 67.94 -1.94 12.31 26.26
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