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Abstract

We address the problem of uncertainty quantifica-
tion for graph-structured data, or, more specifically,
the problem to quantify the predictive uncertainty
in (semi-supervised) node classification. Key ques-
tions in this regard concern the distinction between
two different types of uncertainty, aleatoric and
epistemic, and how to support uncertainty quantifi-
cation by leveraging the structural information pro-
vided by the graph topology. Challenging assump-
tions and postulates of state-of-the-art methods,
we propose a novel approach that represents (epis-
temic) uncertainty in terms of mixtures of Dirichlet
distributions and refers to the established principle
of linear opinion pooling for propagating infor-
mation between neighbored nodes in the graph.
The effectiveness of this approach is demonstrated
in a series of experiments on a variety of graph-
structured datasets.

1 INTRODUCTION

Quantifying the uncertainty of predictions made by machine
learning models is critical for applications where safety is
important and mistakes can be costly. When assessing the
uncertainty of a model’s prediction, it is common and of-
ten useful to distinguish between two types of uncertainty:
Aleatoric uncertainty (AU) arises from the stochasticity in-
herent to the data-generating process, and cannot be reduced
by sampling additional data. For example, when tossing a
fair coin, the outcome is uncertain, and this uncertainty
is of purely aleatoric nature. Epistemic uncertainty (EU),
on the other hand, is due to a lack of knowledge about
the data-generating process; assuming that an appropriate
model class is chosen, EU can be reduced by collecting more
data and vanishes in the limit of infinite data [Hüllermeier
and Waegeman, 2021]. For example, the lack of knowledge

about the bias of a coin is of epistemic nature, and it in-
creases the (total) uncertainty about the outcome of a coin
toss. This uncertainty, however, can be reduced by tossing
the coin repeatedly and estimating the bias from the out-
comes.

In the context of graph-structured data, uncertainty quantifi-
cation (UQ) is particularly challenging due to the structural
information as an additional contributing factor to the un-
certainty. In this paper, we will focus specifically on the
problem of UQ for (semi-supervised) node classification.
Applications of this problem include, for example, the classi-
fication of documents in citation networks [Sen et al., 2008,
Bojchevski and Günnemann, 2018], or the classification of
users or posts in social networks [Shu et al., 2017].

Recently, Graph Posterior Networks (GPNs) have been pro-
posed as a principled approach to UQ on graphs [Stadler
et al., 2021]. The GPN model combines Posterior Networks
(PostNets) [Charpentier et al., 2020] with the approximate
personalized propagation of neural predictions (APPNP)
node classification model [Gasteiger et al., 2018]. This com-
bination is motivated by three axioms on how the structural
information in a graph should affect the uncertainty of a
model’s predictions. One of those axioms states that the
aleatoric entropy of nodes with conflicting neighbors should
be high.

In this paper, we discuss the validity of this assumption and
situations in which it does not hold. To address those situa-
tions, we propose a novel approach to uncertainty quantifi-
cation on graphs based on the idea of linear opinion pooling
(LOP) from the field of decision and risk analysis [Clemen
and Winkler, 2007, Stone, 1961]. Our approach, which we
refer to as linear opinion pooled graph posterior network
(LOP-GPN), uses a mixture of Dirichlet distributions to
model the uncertainty of a node’s label. We demonstrate
the effectiveness of our approach in a series of experiments
on a variety of graph-structured datasets, showing that it
outperforms existing methods in terms of both predictive
accuracy and uncertainty quantification.
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The remainder of this paper is organized as follows. In Sec-
tion 2 we give an overview of commonly used measures for
UQ. In Section 3, we review how GPNs use those measures
to quantify their predictive uncertainty and then discuss the
validity of this approach and describe its problems. Sec-
tion 4 presents the LOP-GPNs approach that addresses the
problems described in the previous section. In Section 5,
we compare our approach with the original GPN model
and other baseline models. Finally, Section 6 concludes the
paper and outlines directions for future work.

2 UNCERTAINTY MEASURES

In the literature on UQ, there are different notions of what
formally constitutes uncertainty. Depending on the desired
properties of the uncertainty measure, different notions may
be more or less suitable. We consider two ways to assess
the suitability of a measure of uncertainty:

1. Its adherence to a set of axioms [Pal et al., 1993,
Bronevich and Klir, 2008, Wimmer et al., 2023, Sale
et al., 2023].

2. Its performance on a predictive task, such as outlier
detection [Charpentier et al., 2020].

Since we focus on UQ in the node classification setting, we
provide a brief overview of the most common notions of
uncertainty in the context of classification tasks.

2.1 ENTROPY-BASED UNCERTAINTY
MEASURES

One of the most common ways to represent predictive un-
certainty of a K-class classifier is through the use of a
second-order probability distribution Q, i.e., a distribution
on the probability distributions θ = (θ1, . . . , θK) ∈ ∆K ,
where ∆K is the unit (K − 1)-simplex and θk denotes the
probability of the kth class. Thus, the true distribution on the
K classes is considered as a random variable Θ ∼ Q. Given
a second-order distribution Q, we denote its expectation by

θ̄ := EQ[Θ] =

∫
∆K

θ dQ(θ) . (1)

The total uncertainty (TU) (about the outcome Y , i.e., the
class eventually observed) can be quantified by the Shannon
entropy of θ̄, i.e.,

TU(Q) := H(EQ[θ]) = −
K∑

k=1

θ̄k log θ̄k. (2)

Further, a decomposition of this uncertainty into an aleatoric
and an epistemic part can be achieved on the basis of a
well-known result from information theory, stating that en-
tropy is the sum of conditional entropy and mutual informa-
tion [Kendall and Gal, 2017, Depeweg et al., 2018]. This
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Figure 1: TU, AU, and EU for three second-order distribu-
tions on ∆2, namely, Q1 = Beta(5, 5), Q2 = U [0, 1], and
Q3 = 1

2Beta(100, 10) +
1
2Beta(10, 100).

result suggests to quantify aleatoric uncertainty (AU) as
conditional entropy (of the outcome Y given the first-order
distribution Θ):

AU(Q) := EQ [H(Θ)] = −
∫

∆K

K∑
k=1

θk log θk dQ(θ) . (3)

Moreover, the epistemic uncertainty (EU) is then given by
the difference between TU and AU, i.e.,

EU(Q) := TU(Q)−AU(Q) (4)
= I(Y ; Θ) = EG[DKL(Θ∥θ̄)] ,

where I(·; ·) denotes mutual information and DKL(·∥·) the
Kullback-Leibler divergence.

Figure 1 gives an intuition for the behavior of this addi-
tive decomposition of uncertainty (for K = 2). It shows
how the AU goes down for second-order-distributions which
are more concentrated around degenerate categorical distri-
butions. As described by Wimmer et al. [2023], there are
however situations in which this decomposition is less plau-
sible. For example, Q2 and Q3 in Fig. 1 have the same TU,
despite the fact that Q3 arguably expresses more knowledge
about the true data-generating distribution θ∗ than Q2. This
raises the question, whether an additive decomposition of
TU into AU and EU is reasonable at all.

Instead of expressing EU in terms of the mutual information
between Y and Θ, Malinin and Gales [2018] and Kotelevskii
et al. [2023] propose to express EU via the differential en-
tropy of the second-order distribution Q, i.e.,

EUSO(Q) := H(Q) = −
∫
∆K

logQ(θ) dQ(θ). (5)

In the following, we will refer to this notion of EU as second-
order epistemic uncertainty. Note that this notion of EU is
not without controversy, as the differential entropy can be
negative, which is forbidden in some axiomatic characteri-
zations of uncertainty, which use 0 to represent a state of no
uncertainty [Wimmer et al., 2023]. Apart from the entropy-
based measures we just described, uncertainty is also often
quantified in terms of other concentration measures, such as
variance [Sale et al., 2023, Duan et al., 2024], confidence
or Dirichlet pseudo-counts. We will now briefly review the
latter two notions of uncertainty.



2.2 LEAST-CONFIDENCE- AND COUNT-BASED
UNCERTAINTY MEASURES

Given a second-order distribution Q, a different notion of
uncertainty is provided by the so-called least-confidence of
the expected distribution θ̄, defined as

LConf(Q) := 1−max
k

θ̄k . (6)

Note the similarity of this measure to the TU measure in
Eq. (2); LConf(Q) can therefore be seen as a measure of
total uncertainty. However, in the literature this measure is
also used as a proxy for aleatoric uncertainty [Charpentier
et al., 2020]; we will come back to this point in Section 3.

Finally, if Q is described by a Dirichlet distribution Dir(α),
where α = (α1, . . . , αK) is a vector of pseudo-counts,
the sum α0 =

∑K
k=1 αk describes how concentrated Q is

around the expected distribution θ̄. Note that the concentra-
tion of Q is similarly captured by its differential entropy, as
described in Eq. (5), i.e., EUSO(Dir(α)) goes down as α0

grows. The EU of a Dirichlet distribution Q can therefore be
quantified by EUPC(Q) = −α0. We will refer to this notion
of EU as pseudo-count-based epistemic uncertainty [Char-
pentier et al., 2020, Huseljic et al., 2021, Kopetzki et al.,
2021].

3 UNCERTAINTY QUANTIFICATION

As just described, there are different ways to formalize un-
certainty, and the choice of an uncertainty measure depends
on the properties it is supposed to fulfill. In the context
of graphs, there is an additional factor that contributes to
uncertainty and needs to be formalized, too, namely the
structural information. Stadler et al. [2021] propose an ax-
iomatic approach to account for this structure-induced un-
certainty, which they call Graph Posterior Network (GPN).
As mentioned in the introduction, GPNs are essentially a
combination of PostNets [Charpentier et al., 2020] and the
APPNP node classification model [Gasteiger et al., 2018].
We begin with a brief review of the PostNets and GPNs, and
then discuss the validity of the axioms on which the UQ
estimates of GPNs are essentially based.

3.1 POSTERIOR NETWORKS

A PostNet is a so-called evidential deep learning classifi-
cation model [Sensoy et al., 2018], i.e., it quantifies predic-
tive uncertainty via a second-order distribution Q, which
is learned via a second-order loss function L2. A standard
(first-order) loss function L1 : ∆K × Y → R takes a pre-
dicted first-order distribution θ̂ ∈ ∆K and an observed
ground-truth label y ∈ Y as input (where Y denotes the
set of classes); the cross-entropy (CE) loss is a common
example of such a first-order loss function. Similarly, a

second-order loss L2 takes a second-order distribution Q,
i.e., a distribution over ∆K , as input, to which it again as-
signs a loss in light of an observed label y ∈ Y . PostNet
uses the so-called uncertain cross-entropy (UCE) loss [Biloš
et al., 2019], which is defined as

L2(Q, y) := EQ [CE(Θ, y)] (7)

= −
∫
∆K

logP (y | θ) dQ(θ) .

As shown by Bengs et al. [2022], directly minimizing a
second order loss, like the UCE loss, is problematic, since
the minimum is reached if Q is a Dirac measure that puts
all probability mass on θ∗ = argminθ∈∆K

CE(θ, y). For
all notions of EU we discussed in Section 2, the optimal
Q∗ will therefore have no EU, i.e., EU = 0 (Eq. (4)) and
EUSO = EUPC = −∞ (Eq. (5)). This problem is com-
monly addressed by adding a regularization term, typically
the differential entropy of Q, in the second-order loss func-
tion, which encourages Q to be more spread out. Whether
one can obtain a faithful representation of epistemic uncer-
tainty has been generally questioned by Bengs et al. [2023].
One should therefore be cautious when interpreting the EU
estimates of evidential deep learning models, such as Post-
Net. We will not attempt to interpret uncertainty estimates
in a quantitative manner, but rather focus on the question of
whether they are qualitatively meaningful, e.g., by consider-
ing whether anomalous or noisy instances can be identified
via their uncertainty.

PostNet models the second-order distribution Q as a Dirich-
let distribution Dir(α), where α = (α1, . . . , αK) is a vector
of pseudo-counts. The predicted pseudo-counts αk for a
given instance x(i) ∈ X are defined as

αk = 1 +N · P
(
z(i) | y(i) = k

)
· P

(
y(i) = k

)
, (8)

where z(i) = f(x(i)) ∈ RH is a latent neural network
embedding of x(i) and N ∈ R a so-called certainty bud-
get, determining the highest attainable pseudo-count for a
given instance. The class-conditional probability P (z(i) | k)
by a normalizing flow model for the class k estimates the
density of the instance. Overall, the PostNet model there-
fore consists of a neural network encoder model f and K
normalizing flow models, one for each class.

3.2 GRAPH POSTERIOR NETWORKS

Next, we describe how the Graph Posterior Network (GPN)
approach extends PostNet to the node classification setting
for graphs. We denote a graph as G := (V, E), where V
is a set of N := |V| nodes and E ⊆ V2 the set of edges.
The adjacency matrix of G is denoted by A = (Ai,j) ∈
{0, 1}N×N , where Ai,j = 1 iff (vi, vj) ∈ E . For simplicity
we also assume that G is undirected, i.e., that A is symmetric.
For each node v(i) ∈ V we have a feature vector x(i) ∈ RD



and a label y(i) ∈ Y . The goal of the node classification task
is to predict the label of each node in V , given the graph
structure and the node features.

GPNs classify the nodes of a given graph by first making a
prediction for each node v(i) solely based on its features x(i)

using a standard PostNet model, i.e., without considering the
graph structure. The predicted feature-based pseudo-count
vectors αft,(i) for each vertex v(i) are then dispersed through
the graph via a personalized page-rank matrix ΠPPR ∈
RN×N as follows:

αagg,(i) :=
∑

v(j)∈V

ΠPPR
i,j αft,(j) (9)

where ΠPPR :=
(
εI+ (1− ε)Â

)L

(10)

Here, I is the identity matrix, ε ∈ (0, 1] the so-called tele-
port probability, and Â := AD−1 the normalized (random-
walk) adjacency matrix, with D := diag(A1) being the
degree matrix of G. For large L, ΠPPR approximates the
personalized page-rank matrix of the graph via power itera-
tion. Gasteiger et al. [2018] proposed this page-rank inspired
information dispersion scheme for the node classification
task, which they refer to as APPNP. The main difference
between APPNP and GPN is that APPNP disperses (first-
order) class probability vectors θft,(i) for each node v(i),
whereas GPN disperses pseudo-count vectors αft,(i). The
latter correspond to second-order parameters, but are also in
direct correspondence to zero-order (pseudo-)data. Broadly
speaking, APPNP disperses first-order information, whereas
GPN disperses zero-order information.

To justify this pseudo-count dispersion scheme, Stadler et al.
[2021] propose three axioms on how the structural informa-
tion in a graph should affect the uncertainty of a model’s
predictions:

A1 A node’s prediction should only depend on its own
features in the absence of network effects. A node with
features more different from training features should
have a higher uncertainty.

A2 All else being equal, if a node v(i) has a lower epis-
temic uncertainty than its neighbors in the absence of
network effects, the neighbors’ predictions should be-
come less epistemically uncertain in the presence of
network effects.

A3 All else being equal, if a node v(i) has a higher aleatoric
uncertainty than its neighbors in the absence of network
effects, the neighbors’ predictions should become more
aleatorically uncertain in the presence of network ef-
fects. Further, the aleatoric uncertainty of a node in
the presence of network effects should be higher if the
predictions of its neighbors in the absence of network
effects are more conflicting.

To show the validity of those axioms, Stadler et al. [2021]
define AU to be the least-confidence (Eq. (6)) and EU as
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Figure 2: Illustration of how GPN aggregates the two con-
flicting predictions for A and B with low AU and low EU
into predictions with high AU and low EU.

the sum of the pseudo-counts. Using those definitions, the
validity of the axioms follows from the fact that αagg,(i)

is effectively a weighted average of the pseudo-counts of
the (indirect) neighbors of v(i), with high weights for close
neighbors and low weights for more distant ones.

3.3 VALIDITY OF THE GPN AXIOMS

The axioms that motivate the aggregation of pseudo-counts
in GPNs are based on two assumptions which may not al-
ways hold, namely, network homophily and the irreducibility
of conflicts.

First, network homophily refers to the assumption that an
edge implies that the connected nodes are similar in some
way; more specifically, in the context of GPNs that con-
nected nodes should have similar second-order distributions,
and thereby similar predictive uncertainties. This is a com-
mon assumption which is shared by many graph neural net-
work (GNN) architectures, based on the idea of repeatedly
summing or averaging the features of each node’s neigh-
bors [Kipf and Welling, 2017, Xu et al., 2018]. As already
remarked by Stadler et al. [2021], non-homophilic graphs
are not properly dealt with by GPNs, nor by other GNN ar-
chitectures in general [Zhu et al., 2020]. Nonetheless, since
edges are typically used to represent some form of similarity,
the homophily assumption is often reasonable.

Second, we define the irreducibility of conflicts as the as-
sumption that conflicting predictions cannot be resolved by
aggregating the predictions of the conflicting nodes. Fig-
ure 2 illustrates the implications of this assumption for the
binary node classification; there, without network effects,
node A is very confident that its probability of belonging to
the positive class is high, whereas node B is very confident
that its probability of belonging to that class is low. Thus,
both nodes make conflicting predictions, while both having
a low AU and a low EU. Due to the homophily assumption,
a consensus has to be found between the two conflicting
predictions. As described in axiom A3, a GPN will do this
by increasing the AU of the aggregated prediction, while
keeping the EU low. Stadler et al. [2021] argue that this is
reasonable, because such a conflict is inherently irreducible



and should therefore be reflected in the aleatoric uncertainty
of the aggregated prediction.

To assess whether the irreducibility assumption is indeed
reasonable, one has to clarify what irreducibility is actually
supposed to mean. As mentioned in the introduction, irre-
ducibility in the context of UQ refers to uncertainty that
cannot be reduced by additional information, which, in a
machine learning context, essentially means by sampling
additional data [Hüllermeier and Waegeman, 2021]. In the
context of node classification, the data points are nodes; thus
given a sample graph GN = (VN , EN ) with N vertices, in-
creasing the sample size corresponds to sampling a graph
GM = (VM , EM ) with M > N nodes from an assumed
underlying data-generating distribution PG over all graphs
G, such that GN is a subgraph of GM . The question of
whether a conflict between a node v(i) and its neighbor v(j)

is irreducible then becomes the question of whether the con-
flict persists in the limit of M → ∞. Let NM (v(i)) be the
set of neighbors of v(i) in GM . Assuming homophily, each
node v(ℓ) that is added to NM (v(i)) should be similar to
v(i) with high probability. Depending on the data-generating
distribution PG , there are two possible scenarios:

1. The neighborhood of v(i) does not grow with the sam-
ple size, i.e., E[|NM (v(i))|] ∈ O(1) as M → ∞.

2. The neighborhood of v(i) grows with the sample size,
i.e., E[|NM (v(i))|] → ∞ as M → ∞.

In the first case, the conflict between v(i) and v(j) is indeed
irreducible, as no additional data can be sampled to resolve
the conflict. In this situation, axiom A3 of GPN is reason-
able, the irreducible uncertainty, i.e., AU, should increase
with conflicting predictions. However, in the second case,
the conflict is reducible, as the conflict will eventually be
resolved by the addition of more similar nodes to the neigh-
borhood of v(i), which will outweigh the conflicting node
v(j). In this situation, the conflict resolution approach of
GPN is not reasonable; AU should not go up, instead the
reducible uncertainty, i.e., EU, should increase.

We argue that the second case is more common in
practical node classification tasks. The Barabási-Albert
model [Barabási and Albert, 1999] is a popular scale-free
model, which describes the growth behavior of many real-
world graphs, such as the World Wide Web, social networks,
or citation networks [Albert and Barabási, 2002, Redner,
1998, Wang et al., 2008]. In this model, the expected degree
of the N -th sampled node v(i) after M−N additional nodes

have been sampled is equal to |NN (v(i))| ·
√

M
N . Thus, for

M → ∞, the expected neighborhood size of a node goes to
infinity.

Examples for domains in which the neighborhood sizes do
not grow with the size of a graph are molecular graphs or
lattice graphs, such as 3D models or images, which can
be interpreted as grids of pixels. In those domains, node-
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Figure 3: Illustration of how LOP-GPN preserves the AU of
conflicting predictions.

level classification tasks are however less common, as one
is typically interested in the classification of entire graphs,
e.g., whether a given molecule is toxic or not.

To conclude, we argue that the axiomatic motivation for
GPNs is oftentimes inappropriate. Therefore, we propose a
different approach to UQ for node classification which does
not assume the irreducibility of conflicts from axiom A3.

4 LOP-GPN

A linear opinion pooled graph posterior network (LOP-
GPN) is a variant of the standard GPN model, which uses a
mixture of Dirichlet distributions instead of a single Dirich-
let distribution to model the uncertainty of a node’s class in
the presence of network effects. This choice is motivated
by the idea that each node v(i) in a given node classifica-
tion task can be interpreted as a decision maker, which has
to assign a label y(i) to itself based on its own features
x(i) and the features of its neighbors. Using this interpreta-
tion, in the GPN architecture, each decision maker v(i) first
makes a prediction based on its own features, producing a
Dirichlet distribution Dir(αft,(i)), and then aggregates this
distribution with those produced by its direct and indirect
neighbors. In the standard GPNs model this aggregate is
again a Dirichlet distribution Dir(αagg,(i)) (see Eq. (9)).

The question of how to aggregate the decisions or opinions
of a set of experts is a well-known problem in the field of
decision and risk analysis [Clemen and Winkler, 2007]. One
of the most common aggregation approaches in this field is
the called linear opinion pooling (LOP) [Stone, 1961]. LOP
simply aggregates distributions by taking a weighted aver-
age of their densities, resulting in a mixture of the original
distributions. Combining LOP with APPNP, the aggregated
probability density of a node v(i) is given by

Qagg,(i) :=
∑

v(j)∈V

ΠPPR
i,j Qft,(j), (11)

where Qft,(j) is the density of the Dirichlet distribution
Dir(αft,(j)) and ΠPPR as in Eq. (10). Using such mixtures,
LOP-GPN does not assume the irreducibility of conflicts,
i.e., unlike GPN, AU is not increased in the presence of



conflicts. This follows trivially from the fact that the AU of
a LOP distribution is just the weighted linear combination
of the AUs of the original distributions, i.e.,

AU(Qagg,(i)) =

∫
∆K

H(θ) dQagg,(i)

=
∑
v(j)

ΠPPR
i,j

∫
∆K

H(θ) dQft,(j)

=
∑
v(j)

ΠPPR
i,j AU(Qft,(j)). (12)

Figure 3 illustrates the implications of this approach for the
binary node classification. Next, we will describe how LOP-
GPN is trained and how it can be implemented efficiently.

4.1 SECOND-ORDER LOSS

Analogous to Eq. (7), the loss of LOP-GPN is given by

L :=

N∑
i=1

EQagg,(i)

[
CE(Θ(i), y(i))

]
−H(Qagg,(i))︸ ︷︷ ︸

L(i)

. (13)

Due to the use of Dirichlet mixtures, this loss is not di-
rectly minimizable, as there is no closed-form expression
for the regularization term H(Qagg,(i)). We therefore use
the following bounds on the entropy of a mixture distribu-
tion instead (see Melbourne et al. [2022]):

H(Qagg,(i)) ≥
∑

v(j)∈V

ΠPPR
i,j H(Qft,(j)), (14)

H(Qagg,(i)) ≤ H(Cat(ΠPPR
i )) +

∑
v(j)∈V

ΠPPR
i,j H(Qft,(j)),

where Cat(ΠPPR
i ) is the categorical distribution described

by the ith row vector of ΠPPR. We use the upper bound on
H(Qagg,(i)) as a surrogate for EUSO. Similarly, the lower
entropy bound implies the following upper bound on the
loss for each vertex v(i):

L(i) ≤
N∑
j=1

ΠPPR
i,j

(
EQft,(i)

[
CE(Θ(i), y(i))

]
−H(Qft,(j))

)
This bound on the loss is differentiable and can therefore
be minimized using standard gradient-based optimization
algorithms.

4.2 SPARSE APPNP

Despite the similarities between GPN and LOP-GPN, the
computational complexity of the APPNP-based aggregation
step is significantly higher for LOP-GPN. We can express
Eq. (9) as a matrix-vector multiplication, i.e.,

αagg = ΠPPRαft = ÂL
ε α

ft, (15)

where αagg,αft ∈ RN×K
+ are pseudo-count matrices and

Âε = εI+ (1− ε)Â. Since typically K ≪ N , it is best to
evaluate this product from right to left. Then, assuming that
A is sparse, the complexity of this operation is O(L·|E|·K).

LOP-GPN on the other hand uses the values of ΠPPR di-
rectly as mixture weights, i.e., the L-th power of Âε has to
be computed explicitly. For large graphs, this is computation-
ally infeasible. To address this issue, a sparse approximation
of APPNP is used to compute ΠPPR. Between each of the
L sparse matrix multiplications, all probability mass below
a certain threshold δ is moved back to the diagonal of the
matrix. This limits the percentage of non-zero entries to
(Nδ)

−1 and makes it possible to apply LOP-GPN even to
large graphs. In the experimental evaluation, sparsification
was used for all datasets except CoraML and CiteSeer.

5 EVALUATION

We evaluate LOP-GPN in two ways: First, we use accuracy-
rejection curves (ARCs) to compare the quality of different
predictive uncertainty measures of LOP-GPN to those of
GPN on a set of standard node classification benchmarks.
Second, we compare the out-of-distribution (OOD) detec-
tion performance of our model against a set of node classifi-
cation models.

5.1 EXPERIMENTAL SETUP

Due to the similarity between LOP-GPN and GPN, we base
our experiments on those of Stadler et al. [2021], i.e., we
use the same dataset splits and hyperparameters and build
upon their reference implementation.1

Datasets We use the following node classification bench-
marks: Three citation network datasets, namely, CoraML,
CiteSeer and PubMed [McCallum et al., 2000, Giles et al.,
1998, Getoor, 2005, Sen et al., 2008, Namata et al., 2012],
two co-purchase datasets, namely, Amazon Photos and
Amazon Computers [McAuley et al., 2015] and the large-
scale OGBN Arxiv dataset with about 170k nodes and over
2.3 million edges [Hu et al., 2020]. Since OGBN Arxiv is
presplit into train, validation and test sets, we use the pro-
vided splits. The results of the other datasets are obtained
by averaging over 10 dataset splits with train/val/test sizes
of 5%/15%/80%. Note that all six datasets represent either
citation networks or co-purchase networks; the assumptions
of unbounded growth of neighborhood sizes and network
homophily (see Section 3.3) are therefore reasonable and
the use of LOP-GPN well-motivated.

1Implementation available at https://github.com/
Cortys/gpn-extensions

https://github.com/Cortys/gpn-extensions
https://github.com/Cortys/gpn-extensions


Models We compare LOP-GPN against the following
baseline models: Two variants of GPN [Stadler et al., 2021],
APPNP [Gasteiger et al., 2018], Matern-GGP [Borovitskiy
et al., 2021] and GKDE [Zhao et al., 2020].

As described in Section 3.2, APPNP directly disperses class
probabilities, i.e., it is a first-order method that cannot (mean-
ingfully) distinguish between AU and EU; the entropy of
its first-order predictions is therefore used as an estimate of
total uncertainty.

Matern-GGP [Bojchevski and Günnemann, 2018] is a
Gaussian process model using the so-called graph Matérn
kernel. For each vertex, it predicts a posterior second-order
multivariate Gaussian Θ ∼ N (θ̄,Σ) with θ̄ ∈ ∆K and
Σ a diagonal covariance matrix. This implies that some
probability mass will lie outside of ∆K ; thus, the addi-
tive entropy-based uncertainty decomposition described in
Section 2.1 is not well-defined for this distribution. We
therefore do not use the additive entropy decomposition
for Matern-GGP and instead use H(θ̄) as a proxy for AU
and the trace Tr(Σ) as a proxy for EU. Note that this def-
inition of AU coincides with the definition of TU in the
additive decomposition (Eq. (2)). Second, note that Tr(Σ)
is a monotonic transformation of the differential entropy
of the second-order Gaussian N (θ̄,Σ) and thereby closely
related to EUSO (Eq. (5)).2 Last, we note that the Matern-
GGP model was not applied to the large-scale OGBN Arxiv
dataset due to memory constraints.

The Graph-based Kernel Dirichlet distribution Estimation
GKDE model [Zhao et al., 2020], is a parameter-free
method that estimates a Dirichlet distribution for each node
based on the features of its neighbors.

The two evaluated variants of GPN are GPN (rw) and GPN
(sym). GPN (rw) uses APPNP with random-walk normal-
ization, i.e., with Â = AD−1. GPN (sym) uses symmetric
normalization, i.e., with Â = D−1/2AD−1/2 (see Kipf and
Welling [2017]). We evaluate both types of normalization
because Stadler et al. [2021] used symmetric normalization
in their experiments, while LOP-GPN requires random-walk
normalization to ensure that valid mixture densities are pro-
duced. To show that any observed differences between LOP-
GPN and GPN are due to the use of LOP and not due to the
use of random-walk normalization, we compare LOP-GPN
against both variants.

5.2 ACCURACY-REJECTION CURVES

Accuracy-rejection curves (ARCs) are produced by discard-
ing the predictions for instances where the predictor exhibits
the highest uncertainty, and then calculating the accuracy
for the remaining subset. For an uncertainty measure which

2The differential entropy of the multinomial Gaussian N (θ̄,Σ)
is 1

2
ln

(
(2πe)k detΣ

)
= 1

2
Tr(lnΣ) + c ≥ 1

2
lnTr(Σ) + c with

the constant c = k
2
ln(2πe).

captures predictive uncertainty well, the accuracy should
monotonically increase with the rejection rate. We use the
following uncertainty measures to produce ARCs: Entropy-
based TU, AU and EU (Eqs. (2) to (4)), second-order epis-
temic uncertainty (Eq. (5)), and pseudo-count-based epis-
temic uncertainty. Figure 4 show the ARCs for the dif-
ferent uncertainty measures for the six evaluated datasets.
First, note that LOP-GPN consistently outperforms or at
least matches GPN for almost all rejection rates and all
datasets. This indicates that dropping the assumption of
the irreducibility of conflicts made by GPN is beneficial in
practice. The only exception to this are the curves for the
mutual information-based EU on the CiteSeer, Amazon Pho-
tos and Amazon Computers datasets; here, the accuracies of
LOP-GPN drop-off at high rejection rates. As previously il-
lustrated in Fig. 1, the mutual information-based EU can be
smaller for the uninformed uniform second-order distribu-
tion than for a (more-informed) bimodal Dirichlet mixture
distribution. Analogous to that example, we hypothesize
that some of the uninformed mixture distributions produced
by LOP-GPN are incorrectly assigned low EU values, lead-
ing to the observed drop-off in accuracy for the nodes with
the lowest EU estimates. The (arguably) more reasonable
pseudo-count- and differential entropy-based EU measures
do not exhibit this behavior. There, the accuracies go up for
increasing rejection rates; this is a sign that these measures
capture predictive uncertainty in a meaningful way.

5.3 OUT-OF-DISTRIBUTION DETECTION

Next, we evaluate the performance of LOP-GPN and the
other models on out-of-distribution (OOD) detection tasks.
Similar to Stadler et al. [2021], we use three different OOD
detection tasks. First, we evaluate the models’ ability to
detect nodes belonging to classes that were not present in
the training set. Second, we randomly drop features from
some nodes with probability 0.5 and evaluate the models’
ability to detect those nodes as outliers. Third, we add Gaus-
sian noise to the features of some nodes, which should then
be detected as outliers. For all detection tasks, we use the
entropy-based TU, AU and EU measures, as well as EUPC

and EUSO, as criteria. We use the Area Under Receiving
Operator Characteristics Curve (AUC-ROC) to measure the
performance of the models on the OOD nodes; the perfor-
mance on the in-distribution (ID) training data is measured
via the accuracy.

Table 1 shows the OOD detection performance and ID accu-
racies. Overall, LOP-GPN performs very well on the feature
dropout and Gaussian noise tasks, outperforming the other
models most often. Looking at the ID accuracies in the Gaus-
sian noise setting, LOP-GPN is uniquely able to achieve
high accuracies on all but the OGBN Arxiv dataset. On
the leave-out-classes detection task, LOP-GPN performs
slightly worse but overall still similarly to the other models.
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Figure 4: Accuracy-rejection curve for different uncertainty measures. The x-axis represents the fraction of rejected test
instances; the y-axis represents the test accuracy for a given rejection rate. The (small) shaded areas behind the curves
represent the estimate’s standard error.

Table 1: OOD detection performance of OOD vs ID vertices and ID accuracies for three OOD scenarios.

Leave-out Classes x(v) ∼ Ber(0.5) x(v) ∼ N(0, 1)
ID OOD-AUC-ROC ID OOD-AUC-ROC ID OOD-AUC-ROC
Acc TU AU EU EUPC EUSO Acc TU AU EU EUPC EUSO Acc TU AU EU EUPC EUSO

CoraML

APPNP 90.44 87.45 - - - - 84.14 65.02 - - - - 43.62 13.26 - - - -
Matern-GGP 85.49 82.31 82.31 - - 82.18 77.15 49.71 49.71 - - 49.81 77.15 49.71 49.71 - - 49.81

GKDE 83.01 77.21 35.35 69.16 74.00 76.46 71.96 48.71 50.76 49.19 48.45 48.68 71.96 48.71 50.76 49.19 48.45 48.68
GPN (sym) 89.36 85.51 85.49 86.23 87.11 89.15 80.36 54.44 54.44 51.56 54.17 87.19 17.86 96.59 96.80 70.89 70.62 75.66

GPN (rw) 89.30 85.19 85.17 82.52 83.11 87.60 80.51 55.09 55.09 51.88 54.32 87.67 17.86 92.65 93.22 63.40 63.21 66.91
LOP-GPN 89.34 85.67 88.51 45.18 84.72 79.26 81.29 62.20 59.69 64.31 54.40 56.74 81.74 69.50 61.06 82.08 60.15 83.69

CiteSeer

APPNP 87.75 85.80 - - - - 85.65 70.25 - - - - 72.72 23.76 - - - -
Matern-GGP 49.05 78.56 78.56 - - 78.59 50.02 50.56 50.56 - - 50.55 50.02 50.56 50.56 - - 50.55

GKDE 73.73 77.89 37.03 65.08 81.30 79.44 65.79 50.14 51.33 48.80 50.17 50.04 65.79 50.14 51.33 48.80 50.17 50.04
GPN (sym) 87.23 81.53 81.52 76.78 76.76 80.62 84.82 62.58 62.58 53.65 60.16 91.73 17.45 93.00 93.22 80.32 79.91 86.34

GPN (rw) 87.12 81.23 81.23 74.29 74.26 79.61 84.78 63.16 63.16 53.78 60.15 91.59 17.45 91.28 91.68 72.38 72.00 78.25
LOP-GPN 87.16 82.19 80.57 73.09 75.48 73.12 84.31 78.74 78.43 68.54 58.12 68.98 84.41 81.65 76.92 81.26 59.20 86.81

Amazon
Photos

APPNP 94.99 75.12 - - - - 91.83 63.55 - - - - 40.44 13.17 - - - -
Matern-GGP 88.57 82.12 82.12 - - 82.68 86.04 49.62 49.62 - - 49.62 86.04 49.62 49.62 - - 49.62

GKDE 85.45 70.20 55.45 61.23 60.80 66.83 76.19 49.07 50.74 48.76 48.87 48.95 76.19 49.07 50.74 48.76 48.87 48.95
GPN (sym) 91.49 76.29 76.29 86.54 87.50 86.05 84.79 54.55 54.55 49.87 54.29 80.17 12.63 89.43 91.07 60.06 59.86 63.56

GPN (rw) 91.76 76.22 76.22 77.93 78.71 81.72 85.35 55.38 55.38 49.92 53.33 74.95 12.63 79.70 81.36 56.12 55.99 58.16
LOP-GPN 94.00 86.50 83.88 80.02 76.63 83.87 91.10 79.21 70.67 78.59 53.39 61.00 91.18 91.76 87.29 89.36 61.15 95.74

Amazon
Computers

APPNP 87.99 79.32 - - - - 81.11 64.62 - - - - 42.81 15.58 - - - -
Matern-GGP 86.74 82.20 82.20 - - 81.94 81.00 50.02 50.02 - - 50.00 81.00 50.02 50.02 - - 50.00

GKDE 71.26 76.38 70.52 74.46 74.37 76.20 64.01 49.92 49.81 50.03 50.09 49.99 64.01 49.92 49.81 50.03 50.09 49.99
GPN (sym) 82.17 79.17 79.17 76.65 81.01 83.77 75.71 54.67 54.67 51.14 56.46 85.57 16.39 88.69 89.62 62.32 62.12 65.90

GPN (rw) 84.45 79.45 79.45 72.80 76.01 81.79 76.47 55.44 55.45 51.15 55.25 86.11 16.39 79.77 80.82 58.38 58.25 60.57
LOP-GPN 90.28 85.00 88.08 68.40 77.98 83.80 84.35 79.78 72.26 75.86 51.59 61.91 84.49 94.76 90.93 88.33 65.30 98.15

PubMed

APPNP 94.59 69.38 - - - - 86.73 66.90 - - - - 59.59 10.95 - - - -
Matern-GGP 90.05 63.72 63.72 - - 63.72 78.62 50.14 50.14 - - 50.13 78.62 50.14 50.14 - - 50.13

GKDE 87.93 71.51 39.69 65.30 69.74 71.00 76.96 49.94 50.16 49.79 49.87 49.93 76.96 49.94 50.16 49.79 49.87 49.93
GPN (sym) 93.76 69.87 69.85 72.95 72.93 73.62 83.89 58.49 58.49 51.12 60.66 81.42 30.29 95.74 96.41 70.52 70.29 76.44

GPN (rw) 94.06 69.52 69.50 67.69 67.66 72.20 83.94 60.36 60.36 51.56 59.66 81.13 30.29 91.19 92.56 66.13 65.92 70.80
LOP-GPN 93.23 68.96 69.10 66.28 64.87 64.30 83.52 70.46 67.93 65.49 55.83 60.86 83.99 82.71 75.93 80.37 67.74 91.84

OGBN
Arxiv

APPNP 73.33 64.47 - - - - 68.22 66.97 - - - - 66.53 42.63 - - - -
GKDE 60.04 68.69 66.97 66.70 67.46 68.14 56.91 49.52 49.55 49.48 49.47 49.46 56.91 49.52 49.55 49.48 49.47 49.46

GPN (sym) 55.36 67.08 67.08 66.92 66.91 68.79 50.35 51.15 51.15 50.95 53.41 97.12 4.35 77.08 77.45 67.14 66.92 69.93
GPN (rw) 56.87 67.99 67.99 63.37 63.36 66.72 50.93 51.56 51.56 51.26 52.94 97.25 4.35 72.27 72.76 60.50 60.35 62.39

LOP-GPN 63.37 66.77 68.12 54.58 66.28 67.44 57.85 70.58 68.03 64.08 63.98 72.86 57.49 82.46 73.03 87.08 68.39 92.39



To summarize our experimental results, LOP-GPN was able
to achieve strong classification accuracies and meaningful
uncertainty estimates, as shown in Fig. 4 and Table 1. This
supports our hypothesis that the irreducibility of conflicts
assumption made by GPN is not always justified in real-
world node classification tasks.

6 CONCLUSION

In this paper, we proposed a new approach to uncer-
tainty quantification in (semi-supervised) node classifica-
tion, which is able to represent both aleatoric and epistemic
uncertainty. Broadly speaking, while existing methods re-
alize information dispersion on the level of the data (or
pseudo-counts) or the level of aleatoric uncertainty (aver-
aging first-order distributions), our approach makes use of
the graph structure to combine information directly on the
epistemic level. To this end, we refer to the established
principle of linear opinion pooling and represent epistemic
uncertainty in terms of mixtures of Dirichlet distributions.
First experiments on a variety of graph-structured datasets
are promising and show the effectiveness of our approach,
also compared to state-of-the-art methods used as baselines.

In future work, we plan to study the problem of uncertainty
propagation on graphs in more depths and to compare dif-
ferent approaches in a more systematic way. Intuitively, an
optimal approach should find a good compromise between
combining information on the aleatoric and the epistemic
level, respectively. However, for now, it is not at all clear
how such an approach could be realized.
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