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Abstract

This paper presents a new paradigm to cluster incomplete vectors using sub-
spaces as proxies to exploit the geometry of the Grassmannian. We leverage
this new perspective to develop an algorithm to cluster and complete data
in a union of subspaces via a fusion penalty formulation. Our approach
does not require prior knowledge of the number of subspaces, is naturally
suited to handle noise, and only requires an upper bound on the subspaces’
dimensions. In developing our model, we present local convergence guar-
antees. We describe clustering, completion, model selection, and sketching
techniques that can be used in practice, and complement our analysis with
synthetic and real-data experiments.

1 Introduction

Suppose we observe a subset of entries in a data matrix X whose columns lie near a union of
subspaces, for example:

1 −4 6 9 16 ∗ 8 ∗ ∗
∗ 5 4 ∗ 16 5 ∗ ∗ ∗
∗ 7 6 −12 2 18 −1 ∗ ∗
2 ∗ 5 ∗ ∗ ∗ 1 0 −1
5 ∗ ∗ 6 19 9 5 2 −3
8 1 ∗ 7 ∗ 14 ∗ −13 8

 ,

where the unobserved entries are marked with ∗. Our goals are (i) to complete the unobserved
entries, (ii) to cluster the columns according to the subspaces, and (iii) to learn the
underlying subspaces. In the example above, we should (i) obtain the following (ground
truth) completion:

X =


1 −4 6 9 16 −1 8 −7 3
1 5 4 14 16 5 −7 −18 10
8 7 6 −12 2 18 −1 28 −18
2 1 5 4 11 4 1 0 −1
5 1 9 6 19 9 5 2 −3
8 1 −1 7 3 14 9 −13 8

 ,

we should also (ii) cluster the columns of X into two groups, {x1,x2,x6,x7} and
{x3,x4,x5,x8,x9}, and (iii) obtain bases for two 2-dimensional subspaces (given by any
subset of linearly independent columns from each group).

This problem is often known as high-rank matrix completion (HRMC) [24, 21] or as subspace
clustering with missing data, and it has a wide range of applications, including tracking
moving objects in computer vision [13, 14, 30, 31, 33, 35, 42], predicting target interactions
for drug discovery [28, 44, 45, 49], and identifying groups in recommender systems [37, 66,
77]. While there exists theory detailing conditions under which the HRMC goals above are
feasible (e.g., sufficient sampling and subspaces genericity) [51], existing algorithms present
a variety of shortcomings (more details in Section 2 below).

The fundamental difficulty that all HRMC approaches face lies in assessing distances
(e.g., euclidean, or in the form of inner products) between partially observed vectors, for
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the simple reason that this requires overlapping observations which become increasingly
unlikely in low-sampling regimes [24]. To circumvent this problem, we introduce a new
paradigm to cluster incomplete vectors, using subspaces as proxies, thus avoiding the need
to calculate distances or inner products or other notions of similarity between incomplete
vectors, as other methods require. To this end we assign each (incomplete-data) point its
own (full-data) subspace, and simultaneously minimize over the Grassmann manifold: (a)
the chordal distance between each point and its assigned subspace, to guarantee that the
subspace stays near the observed entries, and (b) the geodesics between subspaces of all
data, to encourage the subspaces from points that belong together to fuse (i.e, represent the
same space). At the end of this minimization, clustering the proxy subspaces using standard
procedures like k-means or spectral clustering [9, 23, 56, 61, 67, 71, 73] can be done as
a proxy for clustering the incomplete-data (goal ii). The ability to cluster the subspaces
rather than the incomplete-data is the key strength we gain by moving to the Grassmannian.
After clustering, the missing entries can be filled (goal i) using low-rank matrix completion.
Once the data is clustered and completed, the underlying subspaces can be trivially inferred
(goal iii) with a singular value decomposition. Local convergence guarantees follow easily
from known manifold optimization results. We complement our theoretical results with
experiments on both synthetic and real data that show the potential of the foundational
fusion-over-the-Grassmann formulation.

2 Related Work
Number of Subspaces

1 K

Full-Data

Missing 
Data

PCA SC

LRMC HRMC 
(This paper)

Figure 1: HRMC is a generaliza-
tion of principal component anal-
ysis (PCA), LRMC, and SC.

Due to its broad applicability, HRMC has attracted consid-
erable attention in recent years. Existing approaches can be
divided in three main groups: generalizations from low-rank
matrix completion (LRMC), generalizations from subspace
clustering (SC), and methods specifically tailored for HRMC
(see [38] for a recent survey).

HRMC vs LRMC. LRMC seeks to exactly recover the missing entries of a data matrix
X whose columns lie in a single low-dimensional subspace [11]. One can view HRMC as a
generalization of LRMC, where the columns of X are known to lie in a union of subspaces
(UoS), each of low dimension, but it is not known to which subspace each column belongs (see
Figure 1). Research in LRMC over the last decades has resulted in theory and algorithms
that guarantee perfect recovery under reasonable assumptions (e.g., random sampling and
bounded-coherence of the data) [10, 11, 15, 16, 29, 53]. Hence, given a HRMC problem, if the
number of underlying subspaces, say K, and the maximum of their dimension, say r, are low,
one could be tempted to cast HRMC as a LRMC problem. In such case, the single subspace
containing all the columns of X would have dimension no larger than r′ := r ·K. This would,
however, completely ignore the union structure present in the data, and therefore require
more observed entries in order to complete X. We can see this by noting that each column
must have more observed entries than the subspace containing it [51]. This means that
even in the fortunate case where r′ is low enough, using LRMC would require K times more
observations than HRMC. This is especially prohibitive in applications such as Metagenomics
or Drug Discovery, where data is extremely sparse and costly to acquire. In general, r′ may
be too large to even allow the use of LRMC.

HRMC vs SC. SC aims to cluster the columns of a full-data matrix X according to a UoS
that is not known a priori [22]. One can thus view HRMC as the generalization of SC to
the case where data is missing (see Figure 1). There exists a vast repertoire of theory and
algorithms that guarantee perfect clustering under reasonable assumptions (e.g., sufficient
sampling and subspace separation) [68, 43, 65, 2, 59, 19]. Hence, a natural approach to
HRMC is thus to fill missing entries naively (with zeros, means, or LRMC) prior to clustering
with a full-data method, like sparse subspace clustering [22, 40, 75]. Unfortunately, this
approach may work if data is missing at a rate inversely proportional to the dimension of
the subspaces [64], but fails with moderate volumes of missing data, as data filled naively no
longer lies in a union of subspaces [21].
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Tailored HRMC algorithms. Algorithms specifically designed to solve the HRMC prob-
lem can be further divided in the following subgroups: (1) neighborhood methods that cluster
points according to their overlapping coordinates [24], (2) alternating methods, like EM [50],
k-subspaces [7], group-lasso [52, 54], S3LR [39], or MCOS [41] (3) liftings, which exploit
the second-order algebraic structure of unions of subspaces [68, 70, 48, 26, 27], and (4)
integer programming [57]. Neighborhood methods require either abundant observations
or a super-polynomial number of samples (to produce enough overlaps). Liftings require
squaring the dimension of an already high-dimensional problem, which severely limits their
applicability. Integer programming approaches are similarly restricted to small data.

To summarize, while much research has been devoted to HRMC, current algorithms have
shortcomings, and little is known regarding their theoretical guarantees.

Our work in context. Among the methods discussed above, the approach of this paper is
perhaps closer in principle to [47], which uses a similar Grassmannian optimization model
to study the single-subspace problem of LRMC. This paper generalizes these ideas to the
much harder multiple-subspace problem of HRMC, while maintaining the local convergence
guarantees of Proposition 5.1 in [47]. The main difference between [47] and our formulation
is that the former only considers a predefined subset of geodesic distances (see equations
(17)-(19) in [47]), which determine the Grassmannian points that must be matched. In
[47], these subsets of geodesics can be chosen somewhat arbitrarily, because in LRMC all
points belong to the same subspace. A so-called gossip protocol is therefore suitable in
the easier problem of LRMC. In contrast, HRMC requires that only certain subsets of the
Grassmannian be matched (the points corresponding to the unknown clustering to be learnt).
Without knowing a priori the correct clusters, one cannot utilize the gossip method and
must therefore use all pairwise geodesics so as to not introduce bias.

Note: Appendices A-E contain a review on the mathematical background involved in our
formulation.

3 Model and Main Results

Let x1, . . . ,xn ∈ Rm lie near a union of subspaces with dimension upper bounded by r.
Let xΩ

i ∈ R|Ωi| denote the observed entries of xi, indexed by Ωi ⊂ {1, . . . ,m}. We propose
assigning to each observed vector xΩ

i a proxy subspace Ui := span(Ui). Our goal is to
estimate the true subspace U⋆

i to which xi belongs by (a) enforcing that the proxy space Ui
contains a possible completion of xΩ

i and (b) minimizing the distance between individual
proxy spaces Ui and Uj to build consensus. This is done via the following optimization
problem, where the first term achieves goal (a) and the second term achieves goal (b):

min
U1,...,Un∈S(m,r)

n∑
i=1

d2c(x
Ω
i ,Ui) +

λ

2

n∑
i,j=1

d2g(Ui,Uj), (1)

where

dc(x
Ω
i ,Ui) :=

√
1− σ2

1(X
0T
i Ui) and dg(Ui,Uj) :=

√√√√ r∑
ℓ=1

arccos2 σℓ(U
T
i Uj).

Here S(m, r) denotes the Stiefel manifold of m× r orthonormal matrices, λ ≥ 0 is a regular-
ization parameter, σℓ(·) denotes the ℓth largest singular value, and X0

i is the orthonormal
matrix spanning all the possible completions of a non-zero xΩ

i . The space of all possible
completions of xΩ

i is therefore X 0
i := span(X0

i ), which clearly contains the true data xi. The
matrix X0

i can be easily constructed as follows. If xΩ
i = 0, then X0

i = I, the identity matrix.
Otherwise, X0

i is the m× (m− |Ωi|+ 1) matrix formed with xΩ
i normalized and filled with

zeros in the unobserved rows, concatenated with the (m− |Ωi|) canonical vectors indicating
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Figure 2: The semi-spheres represent the Grassmannian G(m, r), where each point Ui represents a
subspace (in the particular case of G(3, 1), the line going from the origin to Ui). Left: Intuitively,
the chordal distance dc(x

Ω
i ,Ui) is an informal measure of distance between the subspace Ui and an

incomplete point xΩ
i . The left image should only be taken as intuition since X 0

i may not live on
the same Grassmannian and the chordal distance should not be thought of as a geodesic distance.
Center: The geodesic distance dg(Ui,Uj) measures the distance over the Grassmannian between Ui

and Uj. Right: The Euclidean gradient vector ∇i falls out of the Grassmann manifold; to account
for the Grassmannian curvature, each geodesic step needs to be adjusted according to (4).

the unobserved rows of xΩ
i . For example, if xΩ

i ̸= 0 is observed in the first |Ωi| rows, then

X0
i =


xΩ
i

∥xΩ
i ∥ 0

0 I︸ ︷︷ ︸
m−|Ωi|+1


}
|Ωi|m− |Ωi|.

When xΩ
i is fully observed, X0

i simplifies to xi normalized. Recall that Grassmannians
G(m, r) are quotient spaces of Stiefel manifolds S(m, r) by action of the orthogonal group
of r × r orthonormal matrices. Since both terms dc(x

Ω
i ,Ui) and dg(Ui,Uj) are invariant

under this quotient, the objective function in (1) does not depend on the choice of basis, and
descends to a function on the Grassmannian.

Why should this work? The chordal distance dc(x
Ω
i ,Ui), as defined in [72], is not a formal

distance on the Grassmannian, but rather measures how far Ui is from containing a possible
completion of xΩ

i . More precisely, dc(xΩ
i ,Ui) is the cosine of the angle between the nearest

completion of xΩ
i and the r-plane Ui. If the top singular value σ1(X

0T
i Ui) is 1, then X 0

i and
Ui intersect on at least a line, meaning that the proxy space Ui contains a possible completion
of xΩ

i . While merely forcing Ui to contain a possible completion offers no way to distinguish
one possible completion to another, consensus among data is built as different proxies Ui
and Uj are forced towards one another by the geodesic term. In other words, Ui and Uj are
allowed to be near each other, and hence form clusters, only if they both contain possible
completions of both xΩ

i and xΩ
j . The term chordal distance used in this way is adopted from

[72] and should not be confused with the more common chordal distance between points on
the Grassmannian [18]. See Figure 2 to build some intuition.

Solving (1) The gradients of (1) with respect to Ui over the Grassmannian are given by:

∇d2c(x
Ω
i ,Ui) = −2σ1(X

0T
i Ui)(I−UiU

T
i )viw

T
i , (2)

∇d2g(Ui,Uj) = −
r∑

ℓ=1

2 arccosσℓ(U
T
i Uj)√

1− σ2
ℓ (U

T
i Uj)

· (I−UiU
T
i )v

ℓ
ijw

ℓT
ij , (3)

where vi and wi are the leading left and right singular vectors of X0
i X

0T
i Ui, and vℓ

ij, w
ℓ
ij are

the ℓth left and right singular vectors of UjU
T
j Ui. The key behind these expressions is that

tangent vectors on the Grassmannian can be computed as projections of gradient vectors in
Euclidean space [1, 20]. In fact, that is exactly what the gradient expressions in (2) and (3)
are: −2σ1(X

0T
i Ui)viw

T
i in (2) is the gradient of d2c(xΩ

i ,Ui) with respect to the entries of Ui

in Euclidean space. The multiplication by I−UiU
T
i takes the horizontal direction of the
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tangent vector with respect to the quotient, thus mapping the gradient from Euclidean space
to the Grassmannian. The same is true for the term I−UiU

T
i in (3). To summarize, (2)

and (3) are gradient directions in the manifold of subspaces, rather than matrices: (2) is the
steepest direction along which the subspace Ui can be descended to a potential subspace that
contains xΩ

i , and (3) is the steepest direction along which the subspace Ui can be descended
to the subspace Uj. The derivations of these gradients are in Appendix E. Putting together
the chordal and geodesic gradients, our overall descent direction for Ui is given by

∇i := ∇d2c(x
Ω
i ,Ui) +

λ

2

n∑
j=1

∇d2g(Ui,Uj).

Observe that Ui− η∇i falls out of the Grassmannian for every step size η ≠ 0 (see Figure 2).
To adjust for the curvature of the manifold, the update after taking a geodesic step of size η
over the Grassmannian in the direction of −∇i is given by equation (2.65) in [20], which in
our context reduces to:

Ui ←
[
UiEi Γi

] [
diag cos(ηΥi)
diag sin(ηΥi)

]
ET

i , (4)

where ΓiΥiE
T
i is the compact singular value decomposition of −∇i. In our implementation,

we use Armijo step sizes, given by η = βνη0, where η0 > 0, and β, γ ∈ (0, 1) are the Armijo
tuning parameters related to the initial step size and step search granularity [1], and ν is the
smallest non-negative integer such that

n∑
i=1

fi(Ui)− fi(RUi(β
νη0∇i)) ≥ −γ

n∑
i=1

⟨∇i, β
νη0(−∇i)⟩,

where fi(Ui) is the component of the objective function (1) holding i fixed and ranging over
j, and RUi

(∆) performs the geodesic step described by (4) in the direction of ∆.

Convergence guarantees. One advantage of our approach is that we can use standard
techniques as in [47] to obtain local convergence guarantees like the following:

Proposition 1. Let {(U1,U2, . . . ,Un)} be a sequence of iterates generated by the
geodesic steps given by equation (4) with Armijo steps sizes η as defined above. Then
the sequence will converge to a critical point of (1).

Proof. It suffices to show the (rather technical) fact that the gradient steps in (4) are an
instance of Accelerated Line Search (ALS) given in [1] and outlined in Algorithm 1, where the
product manifold Gn will serve as the Riemmannian manifoldM, the tangent space of which
is the cartesian product of tangent spaces of each constituent G. To see this, let TM denote
the tangent bundle of (set of all tangent vectors to)M, and let TUM denote the tangent space
ofM at U ∈ M. In our case, U is the tuple (U1, . . . ,Un), and equation (4) serves as the
retraction1 RUi on each component, so that RU = (RU1 , . . . , RUn). One can verify that this
is indeed a retraction by recognizing (4) as the exponential map Exp : TUG→ G and noting
that, on a Riemannian manifold, the exponential map is a retraction, and that the product
of exponential maps is again an exponential map [1]. For our sequence of gradient-related2

tangent vectors, we use the negative gradient, which is clearly always gradient-related. The
1A mapping R from TM to M such that its restriction to TUM, denoted RU , satisfies a local

rigidity condition which preserves gradients at U ; see the rightmost illustration in Figure 2 to build
some intuition, or Chapters 3 and 4 of [1] for a more careful treatment of these definitions.

2Given a cost function f on a Riemannian manifold M, a sequence of tangent vectors {∆t},
∆t ∈ TUtM, is gradient-related if, for any sequence {Ut}t∈K that converges to a non-critical point of f ,
the corresponding subsequence {∆t}t∈K is bounded and satisfies lim supt→∞, t∈K⟨∇f(Ut),∆t⟩ < 0.
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Algorithm 1: Accelerated Line Search (ALS)
Require: Riemannian manifold M; continuously differentiable scalar field f on M;
retraction R from TM to M; scalars η0 > 0, c, β, γ ∈ (0, 1).

Input: Initial iterate U ∈ M
Output: Sequence of iterates {Ut}.
for t = 0, 1, 2, . . . do

Pick ∆t ∈ TUt
M such that the sequence of tangent vectors {∆t} is gradient related.

Select Ut+1 such that

f(Ut)− f(Ut+1) ≥ c(f(Ut)− f(RUt(ηt∆t))), (5)

where ηt is the Armijo step size for the given η0, β, γ,∆t.
end

Figure 3: λ ≥ 0 in (1) regulates how clusters fuse together. If λ = 0, each point is assigned to a
subspace that exactly contains it (overfitting). The larger λ, the more we penalize subspaces being
apart, which results in subspaces getting closer to form fewer clusters. The extreme case λ = ∞ is
the special case of PCA and LRMC, where only one subspace is allowed to explain all data.

gradient on the product manifold is the cartesian product of the gradients on each constituent
manifold, i.e., ∇(f) = (∇(f1), . . . ,∇(fn)). Moreover, the inner product on the tangent
space is the sum of the inner products on the constituent tangent spaces. Therefore, if {∆i,t},
∆i,t ∈ TUt

Mi is gradient-related for eachMi, then {(∆1,t, . . . ,∆n,t)} is gradient-related on
the product manifold. Furthermore, setting Ut+1 = RUt

(ηt∆t) satisfies the bound in (5)
with c = 1. Thus Proposition 1 follows as consequence of Theorem 4.3.1 and Corollary 4.3.2
in [1].

4 Fusion in Practice

Clustering, completion, and subspace inference. Recall that the solution to (1) pro-
vides an estimator Ui of U⋆

i , the true subspace from which xi is drawn. After solving (1), one
may form the matrix D whose (i, j)th entry is given by dg(Ui,Uj) and use it as input to any
distance-based clustering method, such as k-means [9, 23, 56], spectral clustering [61, 67, 71,
73], or DBSCAN [25, 32, 55]. While prior knowledge of the number of subspaces K may be
required for some clustering methods (e.g., k-means, or spectral clustering), it is not required
at all to solve (1). Hence, by choosing a clustering method that doesn’t require knowing
K (e.g., DBSCAN), our approach can be applied to situations where K is unknown. After
clustering, one can agglomerate all the data points corresponding to the kth cluster in the
same matrix X̂Ω

k , and run any low-rank matrix completion (LRMC) algorithm (e.g., [6, 8, 10,
11, 12, 36, 53, 69]) to estimate its completion X̂k. Finally, one can run principal component
analysis (PCA) [46, 74] on X̂k to recover an estimate basis Ûk of the kth underlying subspace
U⋆
k .

Penalty parameter and model selection. Intuitively, the chordal term in (1) forces each
subspace to be close to its assigned data point, and the geodesic term forces subspaces from
different data points to be close to one another. The tradeoff between these two quantities is
determined by the penalty parameter λ ≥ 0. If λ = 0, then the geodesic term is ignored and
there is a trivial solution where each subspace exactly contains its assigned data point (thus
attaining the minimum, zero, for the chordal distance). If λ > 0, the geodesic term forces
subspaces from different data points to get closer, even if they no longer contain exactly
their assigned data points. As λ grows, subspaces get closer and closer (see Figure 3). The
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extreme case (λ = ∞) forces all subspaces to fuse into one (to attain zero in the second
term), allowing only one subspace to explain all data, which is the equivalent of PCA in the
complete-data case, and LRMC if data is missing. In other words, PCA and LRMC are the
special cases of our formulation with λ =∞.

Ultimately, the effect of λ will be reflected in the distance matrix D, which in turn determines
the number of clusters. The smaller λ, the more clusters, up to the extreme where each data
point is in its own cluster. Conversely, the larger λ, the fewer clusters, up to the extreme
point where all points are clustered together. The more subspaces, the more accuracy, but
the more degrees of freedom (overfitting). To determine the best λ, one can compute a
goodness of fit test, like the minimum effective dimension [33, 68], that quantifies the tradeoff
between accuracy and degrees of freedom. Similarly, we can iteratively increase r in (1) to
find all the data points that lie in 1-dimensional subspaces, then all the data points that lie
in 2-dimensional subspaces, and so on (pruning the data at each iteration). This will result
in an estimate of the number of subspaces K, and their dimensions.

Initialization. In our implementation we initialize (1) with a solution to the problem when
λ = 0, i.e., when each subspace perfectly contains the observed entries of its assigned data
point. To this end, for each i we first construct an m× r matrix whose first column is equal
to xΩ

i in its observed entries, and whose remaining entries are filled with standard normal
entries, known to produce incoherent and uniformly distributed subspaces [24]. This matrix
is then orthonormalized to produce the initial estimate Ui, which, by construction, contains
xΩ
i , thus producing dc(x

Ω
i ,Ui) = 0.

Computational complexity. We point out that the main caveat of our approach is its
quadratic complexity in the number of samples. Fortunately, subspace clustering allows
a simple approach to sketching both samples and features [62]. That is, one may solve
(1) with a subset of n′ ≤ n columns, and a subset of m′ ≤ m rows (e.g., those with most
observations), resulting in an improved complexity, quadratic in n′ as opposed to n. With the
solution of (1), one can use a clustering method, a LRMC algorithm, and PCA, as described
above, to produce subspace estimates Û1, . . . , ÛK′ , with K′ ≤ K. Each of the remaining
n− n′ incomplete data points xΩ

i that were not used to solve (1) and that have more than r
observations (a fundamental requirement of subspace clustering [51]) can be trivially assigned
to the subspace estimate producing the largest projection coefficient θk

i = (ÛΩT
k ÛΩ

k )
−1xΩ

i ,
where ÛΩ

k ∈ R|Ωi|×r denotes the restriction of Ûk to the observed rows of xΩ
i (notice that

ÛΩT
k ÛΩ

k is invertible for almost every rank-r Ûk whenever |Ωi| > r [51]). If xΩ
i is assigned to

Ûk, its completion can be trivially estimated as x̂i = Ûkθ
k
i . All the data points xΩ

i that are
too far from all of the subspace estimates (equivalently, the data points whose coefficients
are smaller than a pre-determined parameter) can be used to solve (1) again for a refined
clustering.

5 Experiments

In this section we present a series of experiments on real and synthetic data, in particular
the Hopkins155 dataset [63], and the Smartphone dataset for Human Activity Recognition
in Ambient Assisted Living (AAL) [4]. Rather than establishing a new state-of-the-art, these
experiments have the intention to serve as proof of concept, showing the potential of our
approach, which in this first introduction and basic formulation performs comparable to
prominent methods [75]. In our experiments we initialize (1) as described in Section 4, with
r fixed, as is known a priori in both, the simulations, and the real datasets. We do not
specify K, and we make no special adjustments to handle noise, as is not required by our
approach. The attained solution to (1) is used as input to spectral clustering [61, 67, 71,
73] (though, as described in Section 4, other clustering algorithms, such as k-means [9, 23,
56] or DBSCAN [25, 32, 55] could be used). We measure accuracy in terms of clustering
error, given by minM

1
n

∑n
i=1 1{M(ŷ)̸=y}, where 1 denotes the indicator function, and M is

a function that maps the estimated cluster labels ŷ ∈ {1, . . . , K̂}n assigned to xΩ
1 , . . . ,x

Ω
n , to

the true labels y ∈ {1, . . . ,K}n.
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Figure 4: Clustering error (average over 10 trials) as a function of sampling rate for different
synthetic settings.

Baseline comparisons and full-data sub-optimality. A recent survey [38] shows that
most state-of-the-art algorithms for HRMC (including MC+SSC [75], EM [50], GSSC [52], k-
subspaces [7], and more) have similar performance, with varying winners on specific scenarios
depending on subspace vs ambient dimension gap, fraction of missing data, and number
of subspaces. Based on this recent survey [38], and others [52], we chose ZF+SSC and
SSC-EWZF as baselines, which has been seen in [38] to have nearly identical performance
as MC+SSC, EM, GSSC, k-subspaces and k-GROUSE [7] in the scenarios discussed in our
paper.

Synthetic data. In all our simulations we first generate K matrices U⋆
k ∈ Rm×r with

i.i.d. N(0, 1) entries, to use as bases of the true subspaces. For each k we generate a matrix
Θ⋆

k ∈ Rr×nk , also with i.i.d. N(0, 1) entries, to use as coefficients of the columns in the kth

subspace. We then form X as the concatenation [U⋆
1Θ

⋆
1, U⋆

2Θ
⋆
2, . . . , U⋆

KΘ
⋆
K]. To induce

missing data we sample each entry independently with probability p. Figure 4 shows the
clustering results as a function of the sampling rate for a variety of settings, tuning the
parameter λ manually. Notice that, even with this first formulation, we perform comparable
to existing methods, and even better in some cases, especially in low-sampling regimes.

Object tracking in Hopkins 155. This dataset contains 155 videos of K = 2 or K = 3
moving objects, such as checkerboards, vehicles, and pedestrians. In each video, a collection
of n mark points are tracked through all frames. The locations over time of the ith point are
stacked to produce xi ∈ Rm, so that the points corresponding to the same object lie near a
low-dimensional subspace [60, 35] (r varies from video to video, from 1 to 3). In all cases we
fixed the penalty parameter λ to 1. To induce missing data (e.g., produced by occlusions) we
sample each entry independently with probability p. Figure 5 shows the clustering results.

Human activity recognition in Smartphone AAL Dataset. This dataset contains
n = 5744 instances, each with m = 561 features related to pre-processed accelerome-
ter and gyroscope time series and summary statistics [3], related to K = 2 activities: walking,
and other movements, each approximated by a subspace of dimension r = 4. Recall that the
complexity of (1) is quadratic in n, so if solved directly, this dataset that would produce an
unmanageable computational complexity. However, using the sketching techniques described
in Section 4, it can be solved quite efficiently. In particular, we only used m′ = 158 features
(related to the accelerometer’s and gyroscope’s minimum, maximum, standard deviation, and
mean parameters over time), and n′ = 100 samples selected at random, evenly distributed
among classes. In all cases we fixed the penalty parameter λ to 10−5. The results are
summarized in Figure 5. Notice that our approach outperforms existing methods in the
low-sampling regime.

Lastly, we note the disparity in performance between our model and existing algorithms
when the missing data rate is low. The main motivation for our approach is incomplete data.
While our formulation can certainly be used with full data, we acknowledge that it would
be an over-kill, and consequently suboptimal in that scenario, which has been extensively
studied. Hence, it is not surprising that methods tailored for full-data outperform ours in
such setting. However, no full-data method outperforms ours when data is missing.
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Figure 5: Clustering error as a function of sampling rate for real datasets. Left: average over 120
videos with K = 2 objects, and 35 videos with K = 3 objects. Right: average over 20 trials.

6 Future Directions and Challenges

The main formulation presented in this paper is a non-convex optimization that relies on
the simultaneous interactions of many terms. A proper analysis of the model is therefore
challenging. One difficulty confronted is the complex geometry of the zero-set of the chordal
distance term, or more precisely, the intersections of many of these zero-sets, one for each
column of data. While intuition suggests that the model is encouraged by the geodesic
term to find regions of “dense” intersection, and therefore build consensus, a more precise
formulation of this intuition has evaded us. This is further highlighted in Figures 4 and 5
by the fact that the performance of our model decreases as K grows, indicating that it is
not currently understood how the combination of the chordal and geodesic terms encourage
consensus amongst so many cross-cluster terms. It is our belief that a well-designed weighted
version of (1), such as

min
U1,...,Un∈Sm×r

n∑
i=1

d2c(x
Ω
i ,Ui) +

λ

2

n∑
i,j=1

wijd
2
g(Ui,Uj), (6)

where the weights wij ≥ 0 quantify how much attention is given to each penalty, is key
to unlocking better performance and understanding of the model. Our immediate future
work will focus on investigating options for these weights, such as inverse distance functions,
or k-nearest neighbors, known to dramatically improve the performance, computational
complexity, and tolerance to K of fusion formulations in Euclidean space [5, 17, 58, 76].

7 Conclusions

This paper presents a new paradigm for clustering incomplete datapoints using subspaces
as proxies to leverage the geometry of the Grassmannian. This new perspective enables
clustering and completion of data in a union of subspaces. This work should be understood
as the first introduction to the idea of fusion penalties in the Grassmann manifold, for
the problem of high-rank matrix completion. Rather than establishing our approach as the
state-of-the-art, our experiments have the intention to serve as proof of concept, showing that
there is potential in our approach, in the hopes to ignite future work on several directions,
such as the study of weighted versions described in (6), the choice of penalty parameters,
and variants robust to outliers.
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A Stiefel and Grassmann Manifolds

The primary mathematical object involved in this work is the Grassmannian G(m, r). This
is a smooth compact manifold of dimension r(m− r). A full expository on the Stiefel and
Grassmann manifolds is given [20]. Here, we record the most basic necessary ideas needed in
order to have a working understanding of the tools used in the above. To describe this, it is
necessary to define precursor objects; the orthogonal group O(m) and the Stiefel manifold
S(m, r). The objects of interest are thus:

1. The orthogonal group O(m) consisting of m×m orthogonal matrices;

2. The Stiefel manifold S(m, r) consisting of m× r orthonormal matrices;

3. The Grassmann manifold G(m, r) obtained by identifying those matrices in S(m, r)
whose columns span the same subspace (a quotient manifold).

In this setting, the Stiefel manifold is defined as a quotient space of the orthogonal group.
Here, two orthogonal matrices U and V are identified if their first r columns are identical or,
equivalently, if U =

(
I 0
0 Q

)
V, where Q is an orthogonal (m− r)× (m− r) block. Therefore

S(m, r) = O(m)/O(m− r). Going further, the Grassmannian is defined a quotient space of
the Stiefel manifold where two Stiefel elements are identified if their columns span the same
r-dimensional subspace. Therefore G(m, r) = S(m, r)/O(r).

Given the above, it is clear that we may describe elements of the Stiefel and Grassmann
manifolds using concrete representatives that can be stored on a computer. A point on the
Stiefel manifold may be stored as an m× r orthonormal matrix. A point on the Grassmann
manifold, however, being a linear subspace, does not have a unique representative and can
be stored as an arbitrary m× r orthonormal matrix so long as it spans the correct subspace.
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B Principal Angles and Singular Values

Recall the notion of principal angles between subspaces: let U ∈ S(m, p) and V ∈ S(m, q)
be orthonormal bases for two arbitrary subspaces of Rm. Assume, without loss of generality,
that 1 ≤ p ≤ q ≤ m. The principal angles between span(U) and span(V) are defined via
the following construction. Let u1 ∈ span(U) and v1 ∈ span(V) be unit vectors such that
|uT

1 v1| is maximal. Inductively, let uk ∈ span(U) and vk ∈ span(V) be unit vectors such
that uT

k uj = 0 and vT
k vj = 0 for all 1 ≤ j < k and |uT

k vk| is maximal. The principal angles
are defined as αk = arccosuT

k vk for all k = 1, 2, . . . , p.

This constructive definition is too cumbersome to use in practice. We opt for the following
alternative computation via the singular value decomposition. Let u1, . . . ,up and v1, . . . ,vq

be the columns of U and V respectively. Compute the singular value decomposition
UTV = Ūdiag[. . . , σi, . . . ]V̄

T . Set U′ = UŪ and V′ = VV̄ and denote their columns
by u′

i and v′
j respectively. Observe that span(U) = span(Ū) and span(V) = span(V̄) and

furthermore that U′TV′ = diag[. . . , σi, . . . ], that is

u′T
i v′

j =

{
σi i = j

0 i ̸= j.

The vectors u′
i and v′

j correspond to those in the constructive definition. We therefore have
that the i-th principal angle αi relates to the i-th singular value via σi = cosαi.

C Chordal Distance

The chordal distance between points on the Grassmannian G(m, r), introduced and studied
in [18], is defined via √√√√ r∑

i=1

sin2 αi,

where the αi are the principal angles between the points described above. The authors of [72]
introduce a notion of distance between a partially observed vector xΩ ∈ Rm and a subspace
U ∈ G(m, r) via a formulation closely related to the chordal distance, which they give the
same name.

Let X0 denoted the orthonormal matrix spanning all possible completions of xΩ: If xΩ = 0,
then X0 = I, the identity matrix. Otherwise, X0 is the m× (m− |Ω|+ 1) matrix formed
with xΩ normalized and filled with zeros in the unobserved rows, concatenated with the
(m− |Ω|) canonical vectors indicating the unobserved rows of xΩ. Let σ1(X

0TU) denote the
largest singular value of X0TU. Then

dc(x
Ω,U) = sinα1 =

√
1− σ2

1(X
0TU).

This metric is studied in [72]. Of particular importance is the following fact stated as
Theorem 2 in [72]: the preimage of 0 under d2c(xΩ, ·) is the closure of the preimage of 0 under
fF (x

Ω, ·), where
fF (x

Ω,U) = min
w∈Rr

∥xΩ − PΩ(Uw)∥2F ,

and PΩ denotes projection onto the entries indexed by Ω. That is, fF is the Frobenious
norm, which is often used to search for subspaces U consistent with data. The Frobenius
norm may not be continuous, whereas the chordal distance is continuous and differentiable.

D Geodesic Distance on the Grassmannian

The geodesic distance dg(Ui,Uj) is derived from the intrinsic geometry of the Grassmann
manifold and depends on the metric which defines the manifold structure. Let γ : [a, b]→M
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be a curve on a general Riemannian manifold (M, g) with metric g. Then the length of γ is
defined as [34]

L(γ) =

∫ b

a

√
g(γ̇(t), γ̇(t))dt.

The canonical metric for the Grassmann manifold coincides with the Euclidean metric
inherited from O(m): gc(U̇i, U̇j) = ge(U̇i, U̇j) = tr(U̇i

T
U̇j) [20]. To compute the geodesic

distance, we therefore require knowledge of the geodesic segment connecting Ui and Uj with
respect to the metric gc. This is described in Lemma 1 of [72]: Let ViΣVT

j be the singular
value decomposition of the matrix UT

i Uj, and denote the ℓ-th singular value by σℓ = cosαℓ.
Set Ūi = UiVi and Ūj = UjVj and note that Ū

T
i Ūj = Σ. Then the geodesic with respect

to gc from Ui to Uj is given by U(t), 0 ≤ t ≤ 1, where the path U(t) is given by

[Ūi,G]

[
diag ([. . . , cosαℓt, . . . ])
diag ([. . . , sinαℓt, . . . ])

]
VT

i ,

where the columns of G = [. . . , gℓ, . . . ] ∈ S(r,m) are defined as

gℓ =

{
Ū2,:ℓ−σiŪ1,:ℓ

∥Ū2,:ℓ−σℓŪ1,:ℓ∥
if λℓ ̸= 1

0 if λℓ = 1.

Here, the subscript : ℓ denotes the ℓ-th column of the corresponding matrix.

We therefore have

U̇(t) = [Ūi,G]

[
diag ([. . . ,−αℓ sinαℓt, . . . ])
diag ([. . . , αℓ cosαℓt, . . . ])

]
VT

i .

Denote S = diag ([. . . ,−αℓ sinαℓt, . . . ]) and C = diag ([. . . , αℓ cosαℓt, . . . ]). Then

U̇
T
U̇ = Vi[S,C]

[
Ū

T
i

GT

]
[Ūi,G]

[
S
C

]
VT

i

= Vi[S,C]

[
Ū

T
i Ūi Ū

T
i G

GTŪi GTG

] [
S
C

]
VT

i

= Vi(S
2 +C2)VT

i

= Vidiag([. . . , α2
ℓ , . . . ])V

T
i ,

where we use the fact that Ūi,G ∈ S(m, r), and that Ū
T
i G = 0 [72]. Recall that tr(AB) =

tr(BA), hence tr(U̇
T
U̇) = tr(diag([. . . , α2

ℓ , . . . ])) =
∑

ℓ α
2
ℓ . We therefore have L(U(t)) =∫ 1

0

√∑
i α

2
ℓdt =

√∑
ℓ α

2
ℓ . Recalling that σℓ = cosαℓ, we finally have

dg(Ui,Uj) =

√√√√ r∑
ℓ=1

arccos2 σℓ(U
T
i Uj).

E Gradients on the Grassmannian

In this section, we derive the expressions in (2) and (3) that govern the fusion steps of our
formulation. For a function F (U) defined on the Grassmannian, the graduate of F at U is
given by equation (2.70) in [20], which we record here:

∇F = FU −UUTFU,

where FU is the matrix whose entries are given by [FU]ij =
∂F
∂Uij

.

Chordal gradient. To obtain the gradient of the chordal distance d2c(x
Ω
i ,Ui) presented in

(2), consider the partial derivative with respect to the (a,b)th element of Ui:[
∂d2c(x

Ω
i ,Ui)

∂Ui

]
ab

=
∂

∂[Ui]ab
d2c(x

Ω
i ,Ui) = −2σ1(X

0T
i Ui)

∂σ1(X
0T
i Ui)

∂[Ui]ab
.
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To obtain the partial derivative of the leading singular value σ1, observe that X0
i X

0T
i Ui

and X0T
i Ui share singular values: if X0T

i Ui = VΣWT, then X0
i X

0T
i Ui = (X0

i V)ΣWT with
X0

i V ∈ S(m, r), so the result is a compact singular value decomposition. Recall that vi and
wi denote the leading left and right singular vectors of X0

i X
0T
i Ui. Since vT

i X
0
i X

0T
i Uiwi = σ1,

we have that

∂σ1

∂[Ui]ab
=

∂vT
i

∂[Ui]ab
X0

i X
0T
i Uiwi + vT

i X
0
i X

0T
i

∂Ui

∂[Ui]ab
wi + vTi X

0
i X

0T
i Ui

∂wi

∂[Ui]ab
.

The first and third terms are zero, because wi is the leading right singular vector of X0
i X

0T
i Ui,

so (X0
i X

0T
i Ui)wi = σ1vi, which implies

∂vT
i

∂[Ui]ab
(X0

i X
0T
i Ui)wi = σ1

∂vT
i

∂[Ui]ab
vi,

and because ∂vT
i

∂[Ui]ab
vi = 0, as seen by differentiating both sides of vT

i vi = 1 (and similarly
for the third term). To compute the second term, note that vi ∈ span(X0

i ) since it is a
column of X0

i V, and the space spanned by X0
i is invariant under multiplication by V. Now,

(vT
i X

0
i X

0T
i )T = X0

i X
0T
i vi = vi, since X0

i X
0T
i acts on vectors as the projection onto span(X0

i ).
Hence vT

i X
0
i X

0T
i = vT

i . The second term then becomes vT
i

∂Ui

∂[Ui]ab
wi = [vi]a[wi]b. It follows

that
∂σ1

∂[Ui]ab
= [vi]a[wi]b. (7)

From this, we have ∇d2c(x
Ω
i ,Ui) = −2(I−UiU

T
i )σ1viw

T
i , where multiplication by I−UiU

T
i

projects onto the tangent space of the Grassmannian at Ui, as described before [1, 20].

Geodesic gradient. For the gradient of the geodesic distance d2g(Ui,Uj) in (3) let us use σℓ

as shorthand for σℓ(U
T
i Uj), and recall that vℓ

ij and wℓ
ij denote the ℓth left and right singular

vectors of UjU
T
j Ui. Then the partial derivative with respect to the (a, b)th element of Ui is[

∂d2g(Ui,Uj)

∂Ui

]
ab

=

r∑
ℓ=1

−2 arccosσℓ√
1− σ2

ℓ

∂σℓ

∂[Ui]ab
=

r∑
ℓ=1

−2 arccosσℓ√
1− σ2

ℓ

vℓ
ijw

ℓT
ij ,

where the first equality follows because σℓ(U
T
i Uj) = σℓ(U

T
j Ui) = σℓ(UjU

T
j Ui), and the

second equality follows by parallel arguments as the derivation of (7) for the leading singular
value. The last equation is the Euclidean gradient. Projecting onto the tangent space at Ui,
as described before [1, 20], we obtain the following gradient on the Grassmannian

∇d2g(Ui,Uj) =

r∑
ℓ=1

−2 arccosσℓ√
1− σ2

ℓ

(I−UiU
T
i )v

ℓ
ijw

ℓT
ij .
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