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Abstract

The phenomenon of benign overfitting, where a trained neural network perfectly fits
noisy training data but still achieves near-optimal test performance, has been exten-
sively studied in recent years for linear models and fully-connected/convolutional
networks. In this work, we study benign overfitting in a single-head softmax
attention model, which is the fundamental building block of Transformers. We
prove that under appropriate conditions, the model exhibits benign overfitting in
a classification setting already after two steps of gradient descent. Moreover, we
show conditions where a minimum-norm/maximum-margin interpolator exhibits
benign overfitting. We study how the overfitting behavior depends on the signal-
to-noise ratio (SNR) of the data distribution, namely, the ratio between norms of
signal and noise tokens, and prove that a sufficiently large SNR is both necessary
and sufficient for benign overfitting.

1 Introduction

Neural networks often exhibit a remarkable phenomenon, known as benign overfitting, where they
achieve a perfect fit to noisy training examples and still generalize well to unseen data (Zhang et al.,
2021; Bartlett et al., 2020). This phenomenon contradicts classical wisdom in machine learning, and
has become a central research question in the theory of deep learning. Existing works on benign
overfitting study under what conditions the phenomenon occurs in different architectures. These
works focus on linear models, and on shallow fully-connected and convolutional neural networks.

In recent years, Transformers (Vaswani, 2017) have emerged as a leading neural network architecture,
with impactful applications across a wide range of domains such as natural language processing and
computer vision. The fundamental building block of Transformers is the attention mechanism, which
allows them to process sequences and focus different parts of the input. Despite the central role of
the attention mechanism, we currently do not understand their overfitting behavior and the conditions
under which they exhibit benign overfitting.

In this work, we show the first benign-overfitting results for the attention mechanism. We consider
classification with a single-head softmax attention model, and study the conditions that allow for
benign overfitting. In our results, the data distribution consists of two tokens: a signal token, which
can be used for correctly classifying clean test examples, and a noise token, which is independent of
the label but can be used for interpolating (i.e., perfectly fitting) noisy training examples. We study
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the singnal-to-noise ratio (SNR), namely, the expected ratio between the norms of signal and noise
tokens, that allows for benign overfitting.

Below we summarize our main contributions:

• In Theorem 4 (Section 3) we show that under appropriate conditions, gradient descent with
the logistic loss exhibits benign overfitting already after two iterations. This result holds
when the SNR is Θ(1/

√
n), where n is the number of training samples.

• We then turn to consider other natural learning rules, which allow for benign overfitting
under a weaker requirement on the SNR. In Theorems 6 and 8 (Section 4), we prove that
minimum-norm (i.e., maximum-margin) interpolators exhibit benign overfitting when the
SNR is Ω(1/

√
n) without requiring an upper bound on the SNR.

• In Theorem 10 (Section 4), we prove that the above requirement on the SNR is tight. Namely,
if the SNR is smaller than it, then the min-norm interpolator exhibits harmful overfitting,
where it fits the training data but has poor generalization performance.

• In Section A.3, we complement our theoretical results with an empirical study. We show that
a sufficiently large SNR and input dimension are necessary to achieve benign overfitting.

2 Preliminaries

Notations. We use bold-face letters to denote vectors and matrices, and let [m] be shorthand for
{1, 2, . . . ,m}. Given a vector x, we denote by xj its j-th coordinate. Let Id be the d× d identity
matrix, and let 0d (or just 0, if d is clear from the context) denote the zero vector in Rd. We let ∥·∥
denote the Euclidean norm. We denote a multivariate Gaussian distribution with mean vector µ and
covariance matrix Σ by N(µ,Σ). We use standard big-Oh notation, with Θ(·),Ω(·), O(·) hiding
universal constants and Θ̃(·), Ω̃(·), Õ(·) hiding constants and factors that are polylogarithmic in the
problem parameters. We use I(·) to denote the indicator variable of an event. For a finite set A,
denote the uniform distribution over A by Unif(A) and let |A| be its cardinality.

2.1 Data Generation Setting

In this work we focus on the following data distribution:
Definition 1. Let µ1,µ2 ∈ Rd such that ∥µ1∥ = ∥µ2∥ = ρ for some ρ > 0 and ⟨µ1,µ2⟩ = 0, be
two fixed orthogonal vectors representing the signal contained in each data point. Define Dclean as
the distribution over R2×d × {±1} of labelled data such that a data point (X, ỹ) is generated by the
following procedure:

1. Sample the label ỹ ∼ Unif{±1}.

2. Generate a vector u, which represents the signal, as follows: If ỹ = +1, set u = µ1; and if
ỹ = −1, set u = µ2.

3. Generate a vector ξ, which represents the noise, from the Gaussian distribution ξ ∼
N (0, Id − µ1µ

⊤
1 /ρ

2 − µ2µ
⊤
2 /ρ

2).

4. Denote X = (x(1),x(2))⊤. Select k ∼ Unif{1, 2} and set x(k) = u. Set the other token
x(3−k) = ξ.

To study the overfitting behavior we also need to introduce label-flipping noise:
Definition 2. Let η ∈ [0, 1/2) be the label flipping probability. We define D as the distribution over
R2×d × {±1} which is the η-label-flipped version of Dclean. Namely, to generate (X, y) ∼ D, first
generate (X, ỹ) ∼ Dclean, then let y = ỹ with probability 1− η and y = −ỹ with probability η.

Our data distribution is similar to the settings studied by Kou et al. (2023), Cao et al. (2022), and
Meng et al. (2023), which showed benign overfitting in two-layer convolutional networks. In their
case, each data point has two patches, x(1) and x(2) (rather than two tokens in our setting). Since our
single-head attention model is invariant to token order, we assume without loss of generality that x(1)

is the signal token and x(2) is the noise token in all data points. Note that the noise token x(2) = ξ is
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independent of the label and sampled from N (0, Id −µ1µ
⊤
1 /ρ

2 −µ2µ
⊤
2 /ρ

2), making it orthogonal
to the signal vector. For large dimension d, ∥ξ∥ ≈

√
d due to standard concentration bounds. We

define the signal-to-noise ratio (SNR) as SNR = ∥µ∥/
√
d = ρ/

√
d.

We consider a training set {(Xi, yi)}ni=1 of n samples drawn i.i.d. from distribution D. Let C =
{i : ỹi = yi} be the index set of clean examples and N = {i : ỹi = −yi} be the index set of noisy
examples. For clean examples, define the subsets:

C1 := C ∩ {i : x(1)
i = µ1}, C2 := C ∩ {i : x(1)

i = µ2},

with the noisy subsets N1 and N2 defined analogously.

2.2 Single-Head Attention Model

We consider the following single-head attention model:

f(X;W ,p) = v⊤X⊤S(XWq) ,

where S : Rd → Rd is the softmax function, the key-query matrix W ∈ Rd×d and the linear head
vector v ∈ Rd are the trainable parameters, and the query vector q ∈ Rd is an arbitrary fixed unit
vector. We follow Ataee Tarzanagh et al. (2023b) and assume that q = (1, 0, . . . , 0)⊤, obtaining the
following model:

f(X;p,v) = v⊤X⊤S(Xp), (1)

Here the trained parameters are p,v ∈ Rd. Thus, instead of the key-query matrix W we have a
vector p that controls the attention. Throughout this paper we will use the model (1). We denote
the output of the softmax layer S(Xip) by si = (si,1, si,2)

⊤, and denote the output of the attention
layer X⊤

i si by ri = si,1µi + si,2ξi, where 0 ≤ si,1, si,2 ≤ 1, si,1 + si,2 = 1 are the attention on
two tokens of the i-th sample.

3 Benign Overfitting with Gradient Descent

In this section, we study the joint optimization of the head v and attention weights p using the logistic
loss function. We show that the model exhibits benign overfitting after just two iterations of gradient
descent (GD).

Formally, for a training dataset {(Xi, yi)}ni=1 we define the empirical risk as

L(v,p) = 1

n

n∑
i=1

ℓ(yi · f(Xi;p,v)),

where ℓ(z) = log(1 + exp(−z)) is the logistic loss function, and f is the model from Eq. (1). We
consider GD optimization. Starting from p0 = 0 and v0 = 0, we have

vt+1 = vt − β∇vL(vt,pt) and pt+1 = pt − β∇pL(vt,pt),

where β is the step size. When we discuss some fixed t, we sometimes write in the subscript “t = ·”,
e.g., pt=2 instead of p2. We make the following assumptions:
Assumption 3 (Assumptions for GD with SNR = Θ(1/

√
n)). Let δ ∈ (0, 0.5) be a desired probability

of failure. For universal constants Cρ ≥ 6, Cβ ≥ 16, as well as a sufficiently large universal constant
C that may depend on Cρ and Cβ , the following conditions hold:

1. Number of samples n is sufficiently large: n ≥ C log(1/δ).

2. Dimension d is sufficiently large: d ≥ Cn2 log(n/δ).

3. Signal strength satisfies ρ = Cρ ·
√
d/n

4. Label flipping rate satisfies η ≤ 1/C.

5. Step size satisfies β = Cβ · (n/d).
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6. Initialization at zero: ∥v0∥ = ∥p0∥ = 0.

Item 1 is required to estimate the number of clean examples compared to noisy examples. The
assumption of high dimensionality (Item 2) is important for enabling benign overfitting (see empirical
results in Section A.3), and implies that noise tokens from different training samples are nearly-
orthogonal. This assumption appears in many prior works on benign overfitting in neural network
classification (e.g., Cao et al. (2022); Kou et al. (2023); Meng et al. (2023); Frei et al. (2022, 2023);
Xu et al. (2023); Kornowski et al. (2024); Xu & Gu (2023)). Item 3 states that the signal-to-noise
ratio (SNR) is ρ√

d
= Θ(1/

√
n). In Appendix A.2 we will discuss how the SNR affects the dynamics

of GD. Interestingly, SNR of Θ(1/
√
n) matches the lower bound of the required SNR that allows for

benign overfitting with the min-norm (i.e. max-margin) learning rule that we will study in Section 4.
Item 4 ensures the flipping rate is small enough to allow the model to learn the signal token. Item 5,
namely, using a step size of Θ(n/d), is required to achieve benign overfitting after two iterations;
with a smaller step size, the model will need more iterations to fit the noisy samples, which we will
demonstrate empirically in Section A.3.

We now state our main result on benign overfitting with GD:
Theorem 4. Suppose that Assumption 3 holds. Then, with probability at least 1− δ over the training
dataset, after two iterations of GD we have:

• Higher softmax probability for optimal tokens:

st=2
i,1 > 1/2, ∀i ∈ C and st=2

i,2 ≥ 1− 1/c2ρ, ∀i ∈ N

where sti,j is the softmax probability of the jth token in the ith sample at time t.

• The classifier X 7→ sign(f(X;vt=2,pt=2)) correctly classifies all training data points:

yi = sign(f(Xi;vt=2,pt=2)), ∀i ∈ [n].

• The classifier X 7→ sign(f(X;vt=2,pt=2) generalizes well:

P(X,y)∼D(y ̸= sign(f(X;vt=2,pt=2))) ≤ η + 6n2 exp(−d/C1n
2),

where C1 := C1(cρ, cβ) is a constant.

We can also conclude that for the clean-labeled distribution Dclean we have

P(X,y)∼Dclean(y ̸= sign(f(X;vt=2,pt=2))) ≤ 6n exp(−d/C1n
2),

which approaches zero as d grows (see Assumption 3, item 2).

Theorem 4 shows that after two iterations of GD, the attention focuses on the signal tokens for
clean examples, and on the noise tokens for noisy examples. The model uses the noise tokens for
interpolating noisy training examples, while still achieving good generalization performance using
the signal token.

In Figure 1, we consider a setting similar to Theorem 4, and demonstrate that benign overfitting
occurs after two iterations. We also plot how the softmax probabilities evolve during training, and see
after two iterations a behavior similar to the first item of Theorem 4.

4 Benign Overfitting of Max-Margin Solution

In the previous section we showed that GD exhibits benign overfitting in a setting where the SNR is
Θ(1/

√
n). We now turn to study the overfitting behavior of single-head attention models, when using

another learning rule, which returns solutions that interpolate the training data with large margin
while keeping the parameters norms small. As we will show, such a learning rule allows us to obtain
benign overfitting under a weaker requirement on the SNR, namely, the SNR is Ω(1/

√
n) without

requiring an upper bound on it.

We note that learning rules that return min-norm (or max-margin) solutions are considered natural,
and hence understanding properties of min-norm interpolators has attracted much interest in recent
years, even in settings where the implicit bias of GD does not necessarily lead to a min-norm
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Figure 1: The left panel shows the train and test accuracies during training. It shows that benign
overfitting occurs after 2 iterations. After the first iteration, the model correctly classifies the clean
training examples, but not the noisy ones. In the right panel, we show the softmax probability
of the signal token for clean and noisy samples (average of the softmax probabilities stj,1 over
C and N respectively). We see that after 2 iterations, the attention focuses on signal tokens for
clean examples, and on noise tokens for noisy examples. This aligns with Theorem 4. Parameters:
n = 200, d = 40000, β = 0.025, ρ = 30, η = 0.05, test sample size = 2000.

solution (see, e.g., Savarese et al. (2019); Ongie et al. (2019); Ergen & Pilanci (2021); Hanin (2021);
Debarre et al. (2022); Boursier & Flammarion (2023)). More directly related to our work, min-
norm interpolation with Transformers has been studied in Ataee Tarzanagh et al. (2023b,a), and
benign/tempered overfitting in min-norm univariate neural network interpolators has been studied in
Joshi et al. (2023).

We first consider the following learning rule:

(v(r,R),p(r,R)) = argmax
∥v∥≤r,∥p∥≤R

min
i∈[n]

yi · f(Xi;p,v) , (2)

where f is the model from (1). The learning rule returns a solution that maximizes the margin
mini∈[n] yi · f(Xi;p,v) under a restriction on the parameter norms. We make the following assump-
tion:
Assumption 5 (Assumptions for max-margin with SNR = Ω(1/

√
n)). Let δ ∈ (0, 0.5) be a desired

probability of failure. There exists a sufficiently large constant C such that the following hold:

1. Dimension d is sufficiently large: d ≥ Cn2 log(n/δ).

2. Number of samples n is sufficiently large: n ≥ C log(1/δ).

3. Signal strength: ρ ≥ C
√
d/n.

4. Label flipping rate: 0 ≤ η ≤ 1/C.

5. Norm constraint of p satisfies: R ≥ C
√
ηn/d+ 1/ρ2 log(ρn).

Items 1, 2 and 4 are similar to Assumption 3. Item 3 requires SNR ≥ Ω(1/
√
n), which is a weaker

requirement than the Θ(1/
√
n) requirement in Assumption 3. We will show later a lower bound on

the required SNR for benign overfitting, implying that the Ω(1/
√
n) bound is tight. Item 5 provides

the lower bound for the norm constraint of p so that the model can allocate enough attention on
signal token to achieve benign overfitting. Note that the norm constraint r for v can take any positive
value. Intuitively, since the model is linear in v, once p is properly learned, v can achieve accurate
classification even with a small norm.

With these assumptions in place, we give our result on benign overfitting with the learning rule (2).
Theorem 6. Suppose that Assumption 5 holds, and consider the classifier X →
sign(f(X;p(r,R),v(r,R))), where (v(r,R),p(r,R)) is the solution to Problem (2). Then, with proba-
bility at least 1− δ over the training dataset, we have:

• The classifier sign(f(X;p(r,R),v(r,R))) correctly classifies all training data points:

yi = sign(f(Xi;p(r,R),v(r,R))), ∀i ∈ [n].
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• The classifier sign(f(X;p(r,R),v(r,R))) generalizes well on test data:

P(X,y)∼D(y ̸= sign(f(X;p(r,R),v(r,R))))

≤ η + exp(−Ω(d/n2)) + exp
(
− Ω

( (1− ζ)√
ηn/d+ 1/ρ2

− log(d)

R

)2)
,

where ζ = Θ(
√
ηn/d+ 1/ρ2 log(ρn)/R).

Remark 7. To see why Theorem 6 implies benign overfitting, consider the limit R→ ∞. Then, the
upper bound for test error becomes η+exp(−Ω(d/n2)) + exp(−Θ((1/ρ2 + ηn/d)−1)), which can
be arbitrarily close to η if d is large (see Assumption 5, item 1).

Next, we consider the following learning rule, which explicitly requires to minimize the parameters
norms while allowing interpolation with margin at least γ:

(vγ ,pγ) = argmin
∥p∥2+∥v∥2

s.t. min
i∈[n]

yif(Xi;p,v) ≥ γ , (3)

where f is the model from Eq. (1). We show that under Assumption 5, the solution (vγ ,pγ) exhibits
benign overfitting for large enough γ and d:
Theorem 8. Suppose that Assumption 5 (items 1 through 4) holds, and consider the classifier
X → sign(f(X;pγ ,vγ)), where (vγ ,pγ) is a solution of Problem (3). Then there exists γ0 such
that for any γ ≥ γ0 , with probability at least 1− δ over the training dataset, we have:

• The classifier sign(f(X;pγ ,vγ)) correctly classifies all training data points:

yi = sign(f(Xi;pγ ,vγ)), ∀i ∈ [n].

• The classifier sign(f(X;pγ ,vγ)) generalizes well on test data:

P(X,y)∼D(y ̸= sign(f(X;pγ ,vγ))) ≤ η+exp(−Ω(d/n2))+exp(−Θ((1/ρ2+ηn/d)−1)).

Thus, for large enough γ, the theorem implies that the trained model interpolates the training data,
and the test error approaches η as d→ ∞.

Note that Theorems 6 and 8 hold only when SNR = Ω(1/
√
n). This raises the question: what is the

overfitting behavior of min-norm interpolators when the SNR is smaller? We now consider the case
where ρ ≤

√
1/Cn for some sufficiently large universal constant C. We will show that in this case,

although the model can correctly classify all training samples, the test error of learning rule (2) is at
least a universal constant, indicating that benign overfitting does not happen. Formally, we make the
following assumptions:
Assumption 9 (Assumptions for max-margin with SNR ≤ O(1/

√
n)). Let δ ∈ (0.0.5) be a desired

probability of failure. There exists a sufficiently large constant C such that the following hold:

1. Dimension d is sufficiently large: d ≥ Cn2 log(n/δ)

2. Number of samples n is sufficiently large: n ≥ C log(1/δ).

3. Signal strength: ρ ≤
√
d/Cn.

4. Label flipping rate is a constant η ∈ (0, 1/2).

5. The norm of p should be sufficiently large: R ≥ C
√

n
d log

(
nρ
d

)
.

Compared with Assumption 5, the main difference is in the second item that SNR ≤ O(1/
√
n).

Additionally, the condition on η is relaxed, as in our analysis clean and noisy samples can be treated
equivalently when the norm of the signal token is sufficiently small. With these assumptions in
place, we can state the following theorem which characterizes the training error and test error of the
single-head attention model when the SNR is small:
Theorem 10. Suppose that Assumption 9 holds, and consider the classifier X →
sign(f(X;p(r,R),v(r,R))), where (v(r,R),p(r,R)) is a solution of Problem (2). Then, with prob-
ability at least 1− δ over the training data, we have:

6



• The classifier sign(f(X;p(r,R),v(r,R))) correctly classifies all training data points:

yi = sign(f(Xi;p(r,R),v(r,R))), ∀i ∈ [n].

• The classifier sign(f(X;p(r,R),v(r,R))) does not generalize well on test data:

P(X,y)∼Dclean(y ̸= sign(f(X;p(r,R),v(r,R)))) ≥
1

16
.

5 Conclusion

This paper took an initial step in establishing the benign overfitting phenomenon in a single-head
softmax attention model. Our results open up several future directions, including analyzing gradient
descent for more than 2 steps, more complex data distributions containing more than 2 tokens and
varying sequence length, and the self-attention architecture.
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Remark 11. Throughout our proofs, we assume without loss of generality that µ1 = (ρ, 0, 0, ..., 0)⊤,
µ2 = (0, ρ, 0, ..., 0)⊤ and ξi = (0, 0, ξ⊤) for ξ ∼ N (0, Id−2). Indeed, since µ1 and µ2 are
orthogonal, we can find orthogonal matrix A ∈ Rd×d such that Aµ1 = (ρ, 0, 0, ..., 0)⊤,Aµ2 =
(0, ρ, 0, ..., 0)⊤ and Aξi ∼ N (A0,A(Id − µ1µ

⊤
1 /ρ

2 − µ2µ
⊤
2 /ρ

2)A⊤), which mean that Aξi =
(0, 0, ξ⊤) for ξ ∼ N (0, Id−2). We emphasize that an orthogonal transformation does not affect our
results.

A.1 Related Works

Optimization in Transformers. Li et al. (2023) provided a theoretical analysis of training a shallow
Vision Transformer (ViT) for a classification task. They showed that the sample complexity required
to achieve a zero generalization error is correlated with the inverse of the fraction of label-relevant
tokens, the token noise level, and the initial model error. Ataee Tarzanagh et al. (2023a) showed that
optimizing the attention layer via gradient descent leads to convergence to an SVM solution, where
the implicit bias of the attention mechanism depends on whether the parameters are represented as a
product of key-query matrices or directly as a combined matrix, with different norm-minimization
objectives in each case. Ataee Tarzanagh et al. (2023b) provided a regularization path analysis and
prove that the attention weights converge in a direction to a max-margin solution that separates locally
optimal tokens from non-optimal. They also showed that running gradient descent, with a specific
initialization direction and without optimizing the attention head, converges in a direction to the same
max-margin solution. Vasudeva et al. (2024) expanded on their findings by identifying non-trivial
data settings for which the convergence of GD is provably global, i.e., without requiring assumptions
about the initialization direction. They also provided convergence rate bounds and analysis for
optimizing both the attention weights and the attention head, although they did not consider the case
of noisy data labels, as we do in our work. Another line of work looks at the learning dynamics
of single-layer linear attention models trained on linear regression tasks (Zhang et al., 2024; Ahn
et al., 2023; Wu et al., 2023). Additional works that consider optimization dynamics in Transformers
include Jelassi et al. (2022); Oymak et al. (2023).

Benign overfitting. A significant body of research has explored why neural networks (NNs) that
perfectly interpolate the training data can still generalize well (Zhang et al., 2021; Bartlett et al.,
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2020). This has sparked substantial interest in studying overfitting and generalization in NNs trained
to fit datasets with noisy labels. The literature on benign overfitting is broad and cannot be reasonably
covered here. We refer the reader to the surveys Bartlett et al. (2021); Belkin (2021). Most relevant
to our work are Cao et al. (2022); Kou et al. (2023); Meng et al. (2023) that studied benign overfitting
in convolutional neural networks. Their data distribution resembles ours, as we discuss in Section 2.1.
Benign overffiting in fully-connected two-layer neural network classification was studied in Frei
et al. (2022, 2023); Xu et al. (2023); Xu & Gu (2023); Kornowski et al. (2024); George et al. (2024);
Karhadkar et al. (2024) for various activation functions, data distributions and loss functions (both
the logistic and the hinge losses).

A.2 Proof Ideas

In this section we briefly discuss the main proof ideas. The formal proofs are deferred to the appendix.

A.2.1 Proof ideas for Section 3

In this subsection we discuss the main proof idea of Theorem 4. Since the initialization is at
zero, vt is a linear combination of the training data tokens. Therefore, we can express vt=1 as
λt=1
1 µ1 + λt=1

2 µ2 +
∑n

i=1 yiθ
t=1
i ξi, where λt=1

1 > 0, λt=1
2 < 0. Note that λt1 > 0, λt2 < 0 holds

since |C| > |N |. We begin by analyzing the first step of GD. Specifically, we show that after one step,
the coefficients of vt=1 can be estimated as |λt=1

k | ≈ β
8 (1 − 2η), k ∈ [2] and θt=1

i = β
4n , i ∈ [n].

Moreover, we have pt=1 = 0, and hence for a training sample (Xj = (µk, ξj), yj), the margin is:

yjf(Xj ;vt=1,pt=1) =
1

2
yjv

⊤
t=1(x

(1)
j + x

(2)
j ) ≈ 1

2
yjλ

t=1
k ∥µk∥2 +

1

2
θt=1
j ∥ξj∥2 ,

where in the last approximate equality we use the high dimensional setting (i.e. by item 2 in our
assumption d ≫ n2 log(n)) to neglect the

∑
i∈[n]:i ̸=j yiyjθ

t=1
j ξ⊤i ξj term, since it is much smaller

(in absolute value) than the other terms. Indeed, we have w.h.p. that |ξ⊤i ξj | ≤
√
d log(n), ∥ξj∥2 ≈ d

and recall that ∥µk∥2 = C2
ρ(d/n) (item 3 in our assumption). Therefore, for a clean sample j ∈ C,

the margin is yjf(Xj ;vt=1,pt=1) ≈ β(1−2η)
16

dC2
ρ

n + β
8nd > 0, for large enough Cρ. On the other

hand, for a noisy sample j ∈ N , we have yjf(Xj ;vt=1,pt=1) ≈ −β(1−2η)
16

dC2
ρ

n + β
8nd < 0.

This implies that the classifier sign(f(X;vt=1,pt=1) does not correctly classify noisy training
samples, but still correctly classifies clean training samples. Together with pt=1 = 0, the classifier
sign(f(X;vt=1,pt=1) will also correctly classify, with high probability, a clean test sample.

Moreover, since the loss function ℓ is decreasing, the loss of noisy samples, denoted ℓt=1,j , j ∈ N ,
dominates the loss of clean samples ℓt=1,i, i ∈ C. This implies that after two iterations, the coefficients
|θt=2

j |, j ∈ N , of the second (noise) tokens in vt=2, corresponding to noisy samples, grow faster than
the coefficients |λt=2

i | of the first (signal) tokens. This property is important to allow for interpolation
of noisy examples. We also show that pt=2 focuses on optimal tokens, namely, on the noise token for
noisy samples (i.e. st=2

i,2 ≥ 1 − 1/c2ρ,∀i ∈ N ), and on the signal token for clean training and test
samples. Using this property we conclude that the model parameterized by (vt=2,pt=2) exhibits
benign overfitting.
Remark 12. Note that our proof implies the following behavior of GD. After the first iteration, the
model correctly classifies only the clean training samples, resulting in an expected training accuracy
of 1 − η. Additionally, the model successfully classifies a clean test sample w.h.p., leading to the
same expected test accuracy. After the second iteration, the model interpolates the training data,
achieving a training accuracy of 1. This is shown empirically in Figure 1. When using a smaller
step size, we empirically observe a similar trend: after the first iteration, the model learns the signal
tokens, and with more iterations, it captures the noisy tokens of the noisy samples and fits the entire
dataset. This behavior is shown in Figure 2.

A.2.2 Proof ideas for Section 4

Here we provide the proof sketch for Theorem 6. There are mainly two parts in our proof:

• First we determine the convergence behavior of p and v when the norm constraint R is
sufficiently large.
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• Using properties derived from this convergence, we can analyze the training and test errors.

The first part of the proof builds upon techniques from Ataee Tarzanagh et al. (2023b), which
shows that jointly solving for v and p leads to convergence to their respective max-margin solutions.
While their approach focuses on the asymptotic case where R, r → ∞ under specific conditions on
the training data, our work extends these techniques to the signal-noise data model and provides
non-asymptotic results.

To begin, consider the output of the attention layer ri = X⊤
i S(Xip) which is a combination of

signal and noise tokens. This can be considered as a “token selection” based on softmax probabilities.
Since {ri}i∈[n] determines the model’s output, we prove that only by selecting signal tokens for clean
samples and noise tokens for noisy samples can we reach the maximum margin when performing
SVM on (ri, yi)i∈[n] and we refer to this as optimal tokens.

Definition 13 (Optimal Token). We define the optimal token for sample (Xi, yi) as

r⋆i = x
(1)
i = µk, i ∈ Ck, k ∈ {1, 2} and r⋆i = x

(2)
i = ξi, i ∈ N (4)

Based on this optimal token selection, we define the corresponding max-margin solution for p and v,
denoted by pmm and vmm. We first define pmm as follows:
Definition 14 (p-SVM).

pmm = argmin
p∈Rd

∥p∥ subject to:

p⊤(µk−ξi) ≥ 1, i ∈ Ck and p⊤(ξi − µi) ≥ 1, i ∈ N
for all k ∈ {1, 2}, i ∈ [n]. Let Ξ := 1/∥pmm∥ be the margin induced by pmm.

Then for a given p, we define v(p) as the standard max-margin classifier on (ri, yi)i∈[n] and vmm as
the standard max-margin classifier on (r⋆i , yi)i∈[n] which represents the limiting case when p = pmm

and R→ +∞.
Definition 15 (v-SVM).

v(p) := argmin
v∈Rd

∥v∥ s.t. yi · v⊤ri ≥ 1, for all i ∈ [n]. (5)

Γ(p) := 1/∥v(p)∥ is the label margin induced by v(p). When ri = r⋆i , i ∈ [n], we define

vmm := argmin
v∈Rd

∥v∥ s.t. yi · v⊤r⋆i ≥ 1, for all i ∈ [n]. (6)

Γ := 1/∥vmm∥ is the label margin induced by vmm.

To show the optimality of this token selection, we prove that any other token selection that incorporates
other tokens in ri will strictly reduce the label margin. This is formalized in the following proposition:
Proposition 16 (optimal token condition). Suppose that Assumption 5 holds, with probability at least
1− δ over the training dataset, for all p, the token selection under p results in a label margin (Def.
15) of at most Γ− C

∥vmm∥3nρ2 ·max
i∈[n]

(1− siαi
) where αi = I(i ∈ C)+ 2I(i ∈ N ) and C > 0 is some

constant.

Then, it is natural to make a conjecture that when jointly optimizing p and v for (2), they will
converge to their respective max-margin solutions pmm and vmm as R, r → ∞. We verify and
formalize it in the following theorem.
Theorem 17. Suppose that Assumption 5 holds, with probability at least 1− δ on the training dataset,
we have

• The margin induced by p(r,R)/R in p-SVM is at least (1− ζ)Ξ, where

ζ =
log(4

√
ρ2 + (1 + κ)d∥vmm∥3dρ2)

RΞ
.

• The label margin induced by v(r,R)/r in v-SVM is at least (1 − γ)Γ, where γ =
2
√

ρ2+(1+κ)d

Γ exp((1−ζ)RΞ) .
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Here, (ζ, γ) quantify the difference between (p(r,R),v(r,R)) and (pmm,vmm). As R → ∞, both
ζ and γ converge to 0. Thus, for sufficiently large R, we conclude that p⊤

(r,R)(µk − ξi) becomes
large for i ∈ Ck. This ensures that p(r,R) captures sufficient information about signal tokens, which
enhances the accuracy of test sample predictions. Specifically, the attention weight on a signal token
is lower bounded by 0.5(1− ζ)RΞ ≤ ⟨p(r,R),µj⟩. Since the signal token remains invariant between
training and test data, we can estimate the attention layer’s output for a new test sample (X, y).
Lemma 18. Suppose that Assumption 5 holds, with probability at least 1− δ on the training dataset,
for a given test sample (X, y) with X = (µ⋆, ξ⋆), where the signal µ⋆ can be µ1 or µ2, we have
with probability at least 1− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
that ⟨p(r,R),µ

⋆⟩ − ⟨p(r,R), ξ
⋆⟩ ≥ K,

for K ≤ 1
2 (1− ζ)RΞ. Here ζ,Ξ follow the definitions in Theorem 17.

Therefore, if K is large, which is equivalent to R is large, the attention weight on the signal token is
much greater than the noise token. As a result, the signal token µ⋆ will dominate the attention layer’s
output, i.e. r⋆ → µ⋆.

Finally, from Theorem 17, v(r,R) converges to vmm, ensuring that it can make accurate predictions on
(µk, y) if (µk, y) comes from the clean set. Thus, w.h.p. the learning of signal token y · ⟨v(r,R),µ

⋆⟩
is large enough to eliminate the randomness introduced by the noise token (denoted by ∆(ξ⋆) here)
and the model will make accurate prediction with high probability: y · f(p(r,R),v(r,R);X) ≈
y · v⊤

(r,R)µ
⋆ −∆(ξ⋆) ≥ 0.

A.3 Experiments

We complement our theoretical results with an empirical study on benign overfitting in single-head
softmax attention. We trained single-head softmax attention models (Eq. (1)) on data generated as
specified in Section 2.1 using GD with a fixed step size and the logistic loss function. In all figures,
the x-axis corresponds to the time and has a log scale. We add 1 to the time so that the initialization
t = 0 can be shown in the log scale (i.e. iteration 100 is the initialization).

In Figure 2, we consider a similar setting to Theorem 4, but with a smaller step size. Here, benign
overfitting occurs after about 150 iterations.
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Figure 2: The left panel shows train and test accuracies during training with a small step size. The
clean training samples are correctly classified already after one iteration, but in contrast to Theorem 4
and Figure 1, benign overfitting occurs after about 150 iterations. In the right panel we see that the
attention starts separating signal and noise tokens shortly before benign overfitting occurs. Parameters:
n = 200, d = 40000, β = 0.0001, ρ = 30, η = 0.05, test sample size = 2000.

In Figure 3a, we explore the behavior of GD with different SNR levels. When the SNR is too small the
model exhibits catastrophic overfitting, namely, it fits the training data but has trivial generalization
performance. When the SNR is sufficiently large we observe benign overfitting. In Figure 3b, we
investigate the overfitting behavior with different dimensions d. If d is sufficiently large we observe
benign overfitting. If it is very small we are not able to overfit, namely, the training accuracy does
not reach 1. For intermediate values of d we observe harmful overfitting. Thus, we see that high
dimensionality is crucial for benign overfitting. Interestingly, we can see that achieving benign
overfitting is possible even when d ≪ n2, suggesting that our assumption on d in the theoretical
results might not be tight.
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Figure 3: Comparing train (solid lines) and test (dashed lines) accuracies, with different SNR (left
panel) and different dimensions (right panel). In the left panel, we observe that for small SNR
(purple line), the model exhibits catastrophic overfitting, similar to Theorem 10. For larger SNR
values, the model demonstrates benign overfitting. In the right panel, we see that for small d (purple
line), the model is unable to fit the data (at least in the first 105 first iterations), and both the train
and test accuracies are at the noise-rate level. For intermediate values of d (green and blue lines),
the model exhibits harmful overfitting, and for larger d (yellow line) the model exhibits benign
overfitting. We note that benign overfitting occurs here for d = 2n ≪ n2, which suggests that the
assumptions on d in our theorems are loose. Parameters (left panel): n = 400, d = 40000, β =
0.00015, η = 0.1, test sample size = 2000. Parameters (right panel): n = 500, β = 0.02, ρ =
30, η = 0.1, test sample size = 10000.

A.4 Proofs for Sec. 3

A.4.1 Notations for Sec. 3.

Given a, b, c ∈ R, we denote by c(a± b) the close segment [c(a− b), c(a+ b)]. Given vector x, we
denote by x[i] the ith coordinate of x, and x[i : j] denotes the subvector containing the elements
from the ith to the jth, inclusive. We also list some key notations used in this section for convenience.

Table 1: Usefull notation.

xi,j jth token in the ith sample
γt
i,j yiv

⊤
t xi,j i.e. jth token score in time t

αt
i,j softmax probability of the jth token in the ith sample in time t
ℓt,i ℓ(Xi;vt,pt)

We remind that C,N ⊆ [n] denotes the indices of clean and noisy training examples, and Ck,Nk

denotes the clean and noisy examples from cluster k ∈ {1, 2}. For example if i ∈ C1, then xi,1 = µ1

and y1 = 1, and for j ∈ N1 we have that xj,1 = µ1 and y1 = −1. Let S′(v) := ∇S(v) =
diag(S(v))− S(v)S(v)⊤ denote the Jacobian of the softmax function S(v) at v ∈ Rd.

A.4.2 Additional Lemmas & Definitions for Sec 3.

The following equations will be useful throughout the proof:

∇vL(v,p) =
1

n

n∑
i=1

ℓ′i · yiX⊤
i S(Xip) (7)

∇pL(v,p) =
1

n

n∑
i=1

ℓ′i ·X⊤
i S′(Xip)γi, where γi = yiv

⊤Xi (8)

ℓ′(x) = −1/(1 + exp(x)) (9)

S′(v) = diag(S(v))− S(v)S(v)⊤ (10)

Definition 19 (Good Training Set). We say that a training set (X1, . . . ,Xn) is good if
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• ∥ξi∥22 ∈ (1± on(1))d, for all i ∈ [n].

• |⟨ξi, ξj⟩| ≤
√
d log(12n2/δ), for any i, j ∈ [n].

• |Nk| ∈ n
2 (η ± on(1)) and |Ck| = n

2 (1− η ± on(1)), for k ∈ {1, 2}.
Definition 20 (Good Test Sample). We say that a test sample (X = (x1,x2), y) is good w.r.t. a
training set (X1, . . . ,Xn) and constant C1 if

|⟨xi,2,x2⟩| ≤
d

C1n
, ∀i ∈ [n]

Next we write Lemma 59 slightly different, and also add a formal proof for completeness:
Lemma 21. Let δ > 0 and C > 0. Suppose that Assumption 23 (item 1) holds with constant C, then
with probability at least 1− δ/2 we have that

|Ck| ∈
n

2
(1− η ±

√
2/C), |Nk| ∈

n

2
(η ±

√
2/C), ∀k ∈ {1, 2}.

Moreover, we have

|Ck| ∈
n

2
(1− η ± on(1)), |Nk| ∈

n

2
(η ± on(1)), ∀k ∈ {1, 2} .

Proof. By Hoeffding’s inequality,

P
(∣∣∣|Cj | − n

2
(1− η)

∣∣∣ ≥√n log(16/δ)/2) ≤ δ/8,

which means that with probability at least 1 − δ/8 we have that |Cj | ∈ n
2 (1 − η ± cn), where

cn =
√
2n log(16/δ)/n. Hence, if n ≥ C log(16/δ), then cn =

√
2 log(16/δ)/

√
n ≤

√
2/C.

Similarly, we can estimate |Nk| for k ∈ {1, 2}, and by union bound, the result follows.

Lemma 22. Let z,γ,p ∈ R2 and let α = S(p), then

zTS′(p)γ = (γ1 − γ2)(1− α1)α1(z1 − z2)

Proof. Observe that α1 + α2 = 1. Therefore,

zTS′(p)γ = zTdiag(α)γ − zTαα⊤γ =

2∑
i=1

ziαiγi −
2∑

i=1

αizi

2∑
i=1

αiγi

= z1α1γ1 + z2α2γ2 − (α1z1 + α2z2)(α1γ1 + α2γ2)

= (γ2 − (α1γ1 + α2γ2))α2z2 + (γ1 − (α1γ1 + α2γ2))α1z1
= (α1γ2 − α1γ1)α2z2 + (α2γ1 − α2γ2)α1z1
= −α1 (γ1 − γ2)α2z2 + α2 (γ1 − γ2)α1z1
= α1 (γ1 − γ2)α2(z1 − z2)

Lemma 22 allows us to analyze ∇pL as a function of the score gap.

A.4.3 Proof of Thm. 4

Proof of Thm. 4. To simplify the proof, we will use the following assumption, which is slightly
weaker than Assumption 3:

Assumption 23 (Assumptions for GD with SNR = Θ(1/
√
n)). Let δ > 0 be a desired probability

of failure. For constants cρ ≥ 6, cβ ≥ 16cρ log(c
2
ρ), there exists some large enough constant

C = C(cβ), such that the following hold:

1. Number of samples n should be sufficiently large: n ≥ C log(16/δ)

2. Dimension d should be sufficiently large: d ≥ Cn2 log(12n2/δ).
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3. Signal strength is: ρ = cρ
√
d/n

4. Label flipping rate η: η ≤ 1/C.

5. The step size β satisfies: β = (cβ · n)/(c2ρ · d).

6. Initialization at zero: ∥v0∥ = ∥p0∥ = 0.

Apart from slight adjustments to the constants within the logarithm at items 1 and 2 (which can
be absorbed into C), the only changes are cβ ≥ 16cρ log(c

2
ρ) (instead of Cβ ≥ 16) and β =

(cβ · n)/(c2ρ · d) (instead of β = Cβ · (n/d)). Indeed, given Cβ ≥ 16, Cρ ≥ 6 and β = Cβ · (n/d)
which satisfy Assumption 3, define cρ := Cρ ≥ 6, cβ := Cβc

2
ρ ≥ 16cρ log(c

2
ρ), which holds for any

cρ ≥ 6. We also have that β = Cβ · (n/d) = (cβ/c
2
ρ) · (n/d) , i.e., β, cρ, cβ satisfy Assumption 23.

Next, under Assumption 23, we argue that with probability at least 1− δ the training set is good (Def.
19) i.e.:

• |Ck| ∈ n
2 (η ± on(1)) and Nk ∈ n

2 (1− η ± on(1)), for k ∈ {1, 2}.

• ∥ξi∥22 ∈ (1± on(1))d, for any i ∈ [n].

• |⟨ξi, ξj⟩| ≤
√
d log(12n2/δ), for any i, j ∈ [n].

Indeed, this holds by Lemma 57, Lemma 21, and the union bound. We emphasize that the notation
on(1) represents a term that becomes arbitrarily small as n increases, and thus it can be bounded by a
small constant if C from Assumption 1 is large enough.

Next, we show that under a good training set, the model exhibits benign overfitting, already after two
iterations. See Remark 11 for the data setting used throughout the proof.

GD after 1 iteration. We start by analyzing the first coordinate of v1 (i.e. v after one iteration of
GD). By assumption 23 ( item6), we have that p0 = v0 = 0, which implies that ℓ′0,i = −1/2, for
any i ∈ [n]. Hence

−β∇vL(v0,p0)[1] = − β

2n

n∑
i=1

ℓ′0,i · yixi,1[1] =
β

4n

∑
i∈C1

yiρ+
β

4n

∑
i∈N1

yiρ

=
β

4n
(|C1| − |N1|)ρ

∈ β

8
(1− 2η ± on(1))ρ “good” training set

In the same way, we can estimate the second coordinate of vt=1:

vt=1[2] =
β

4n

∑
i∈C2

yiρ+
β

4n

∑
i∈N2

yiρ ∈ −β
8
(1− 2η ± on(1))ρ,

where we remind that yi = −1, when i ∈ C2, hence vt=1[2] has the same bounds as vt=1[1], just
with opposite sign. We move to analyze the rest of the coordinates of vt=1:

vt[3 : d] =
β

4n

n∑
i=1

yiξi.

Overall, we can write vt=1 as λt=1
1 µ1 + λt=1

2 µ2 +
∑n

i=1 yiθ
t=1
i ξi with

λt=1
1 ∈ β

8
(1− 2η ± on(1)), λ

t=1
2 ∈ −β

8
(1− 2η ± on(1)), θ

t=1
i =

β

4n
. (11)

Moreover, since γt=0
i = 0 for every i ∈ [n], we have that p1 = 0 (see Eq. 8).

Preparation for next iteration. To estimate (vt=2,pt=2), we first need to estimate the loss for
clean/noisy samples and the score difference, i.e. γ1i,1 − γ1i,2, i ∈ C and γ1j,2 − γ1j,1, j ∈ N .

15



We remind that ∥µj∥2 = ρ2 = c2ρd/n (Assumption 23 (item 3)). For j ∈ Ck, where k ∈ {1, 2} we
have that

yjf(Xj ;vt=1,pt=1) =
1

2
yjv

⊤
t=1(xj,1 + xj,2) since p1 = 0

=
1

2
|λt=1

k | ∥µk∥2 +
1

2
θt=1
j ∥ξj∥2 +

1

2

∑
i∈[n]:i̸=j

yiyjθ
t=1
j ξ⊤i ξj yjλ

t=1
k > 0

(12)

Since the training set is “good” then by Eq. 11, we can bound yjf(Xj ;vt=1,pt=1) as follows:

yjf(Xj ;vt=1,pt=1) ≤
β

16
(1− 2η + on(1)) · c2ρ ·

d

n
+

β

8n
d(1 + on(1)) +

β

8n
n
√
d log(12n2/δ)

≤

(
c2ρ(1− 2η) + 2 + on(1)

16

)
· βd
n

Assumption 23 (item 2)

= cβ ·

(
(1− 2η) + 2/c2ρ + on(1)

16

)
Assumption 23 (item 5)

≤ 1.1cβ
16

, (13)

where the last inequality holds since cρ ≥ 5, which implies that 2/c2ρ + on(1) ≤ 0.1. Similarly, we
have that

yjf(Xj ;vt=1,pt=1) ≥
β

16
(1− 2η − on(1)) · c2ρ ·

d

n
+

β

8n
d(1− on(1))−

β

8n
n
√
d log(12n2/δ)

≥

(
c2ρ(1− 2η) + 2− on(1)

16

)
· βd
n

= cβ ·

(
(1− 2η) + 2/c2ρ − on(1)

16

)

≥ 0.9cβ
16

(14)

For j ∈ Nk we have:

yjf(Xj ;vt=1,pt=1) =
1

2
yjv

⊤
t=1(xj,1 + xj,2) since p1 = 0

= −1

2
|λt=1

k | ∥µk∥2 +
1

2
θt=1
j ∥ξj∥2 +

β

8n

∑
i∈[n]:i ̸=j

yiyjξ
⊤
i ξj yjλ

t=1
k < 0

Since the training set is good then by Eq. 11, we can bound yjf(Xj ;vt=1,pt=1) as follows:

yjf(Xj ;vt=1,pt=1) ≤ − β

16
(1− 2η − on(1)) · c2ρ ·

d

n
+

β

8n
d(1 + on(1)) +

β

8n
n
√
d log(12n2/δ)

≤

(
−c2ρ(1− 2η) + 2 + on(1)

16

)
· βd
n

= cβ ·

(
−(1− 2η) + 2/c2ρ + on(1)

16

)

≤ −0.9cβ
16

, (15)
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where the last inequality holds for small enough η and since cρ ≥ 5, which implies that 2/c2ρ + 2η +
on(1) ≤ 0.1. Similarly, we have that

yjf(Xj ;vt=1,pt=1) ≥ − β

16
(1− 2η + on(1)) · c2ρ ·

d

n
+

β

8n
d(1− on(1))−

β

8n
n
√
d log(12n2/δ)

≥

(
−c2ρ(1− 2η) + 2− on(1)

16

)
· βd
n

≥ cβ

(
−(1− 2η) + 2/c2ρ − on(1)

16

)

≥ −1.1cβ
16

. (16)

We remind that −ℓ′1,j = 1/(1 + exp(yif(Xi;vt=1,pt=1))) and that β = cβ · n/(dc2ρ) for some
constant cβ ≥ 16cρ. Combine with Eqs. 13 and 14, we have that

i ∈ C, −ℓ′t=1,i ≥ 1/(1 + exp(1.1cβ/16)) := mt=1
C > 0 (17)

i ∈ C, −ℓ′t=1,i ≤ 1/(1 + exp(0.9cβ/16)) :=M t=1
C ≤ 1/(4c2ρ), (18)

where the last inequality holds since cβ ≥ 16cρ and since 1 + exp(0.9cρ) ≥ 4c2ρ for any cρ ≥ 6.

Moreover, by Eqs. 15 and 16, we have that

j ∈ N , −ℓ′t=1,j ≥ 1/(1 + exp(−0.9cβ/16)) := mt=1
N ≥ 0.99 (19)

j ∈ N , −ℓ′t=1,j ≤ 1/(1 + exp(−1.1cβ/16)) :=M t=1
N ≤ 1 (20)

The notations M t
C and mt

C (M t
N and mt

N ) denote the upper and lower bounds, respectively, on the
derivative of the loss for clean (noisy) samples at time t, and we use them throughout the proof. We
remind that γti,j = yiv

⊤
t xi,j . Then by Eq. 11, for i ∈ Ck we have that

γt=1
i,1 ∈ β

8
(1− 2η ± on(1))ρ

2 =
cβ
8
(1− 2η ± on(1))

γt=1
i,2 ∈ βd

4n
(1± on(1)) =

cβ
4
(1/c2ρ ± on(1))

γt=1
i,1 − γt=2

i,2 ∈ cβ
8
(1− 2/c2ρ − 2η ± on(1)) . (21)

where in the calculation of γt=1
i,2 we use

∑
i∈[n]:i ̸=j yiyjθ

t=1
j ξ⊤i ξj = on(1) · d, since the training set

is good. For i ∈ Nk, we have that

γt=1
i,1 ∈ −β

8
(1− 2η ± on(1))ρ

2 = −cβ
8
(1− 2η ± on(1))

γt=1
i,2 ∈ βd

4n
(1± on(1)) =

cβ
4
(1/c2ρ ± on(1))

γt=1
i,2 − γt=2

i,1 ∈ cβ
8
(1 + 2/c2ρ − 2η ± on(1)) . (22)

GD after 2 iterations.
Analysis of vt=2.
Observe that

−β∇vL(v1,p1) = −β
n

n∑
i=1

ℓ′1,i · yiX⊤
i S(Xip1) = − β

2n

n∑
i=1

ℓ′1,i · yi(xi,1 + xi,2).

17



We start by analyzing the first coordinate of ∇vL(v1,p1).

−β∇vL(v1,p1)[1] =
β

2n

∑
i∈C1

−ℓ′1,i · yixi,1[1] +
β

2n

∑
i∈N1

−ℓ′1,i · yixi,1[1]

=
β

2n

∑
i∈C1

−ℓ′1,i · ρ−
β

2n

∑
i∈N1

−ℓ′1,i · ρ

=
β

2n

∑
i∈C1

−ℓ′1,i −
∑
j∈N1

−ℓ′1,j

 · ρ . (23)

Observe that∑
i∈Ck

−ℓ′1,i −
∑
j∈Nk

−ℓ′1,j ≥
n

2
(1− η − on(1)) ·mC − n

2
(η + on(1)) ·MN good training set

> 0 Eqs. 17 and 20,

where the last inequality holds for small enough η ≤ 1/C, where C := C(cρ, cβ) (see Assumption
4). Substituting it into Eq. 23, we obtain that

−β∇vL(v1,p1)[1] > 0.

On the other hand, by Eq. 23, we can upper bound the first coordinate of the gradient of v by

−β∇vL(v1,p1)[1] ≤
β

2n

(∑
i∈C1

−ℓ′1,i

)
· ρ

≤ β

17
· ρ − ℓ′1,i < 1/16,Eq. 18.

Similarly, we can estimate the second coordinate of ∇vL(v1,p1):

0 ≥ −β∇vL(v1,p1)[2] ≥ − β

17
· ρ.

Write vt=2 = λt=2
1 µ1 + λt=2

2 µ2 +
∑n

i=1 yiθ
t=2
i ξi. Together with Eq. 11, we get that

λt=2
1 = λt=1

1 − β∇vL(v1,p1)[1]/ρ ≤ β

8
(1 + on(1)) +

β

17
≤ 3β

16
(24)

λt=2
1 ≥ λt=1

1 ≥ β

8
(1− 2η − on(1)) (25)

λt=2
2 = λt=1

2 − β∇vL(v1,p1)[2] ≥ −β
8
(1 + on(1))−

β

17
≥ −3β

16
(26)

λt=2
2 ≤ λt=1

2 ≤ −β
8
(1− 2η − on(1)) . (27)

Next, we analyze the rest of the coordinates of ∇vL(v1,p1).

−β∇vL(v1,p1)[3 : d] =
β

2n

∑
i∈C

−ℓ′1,i · yiξi +
β

2n

∑
j∈N

−ℓ′1,j · yjξj ,

and use it to analyze the coefficients of the noise (second) tokens in vt=2, i.e., θt=2
i . Indeed, for i ∈ C

we have that

θt=2
i = θt=1

i − β

2n
ℓ′1,i =

β

2n
(−ℓ′1,i + 0.5) Eq. 11

∈
[
β

2n
(mC + 0.5),

β

2n
(MC + 0.5)

]
. (28)

For j ∈ N we have that

θt=2
j = θt=1

j − β

2n
ℓ′1,j =

β

2n
(−ℓ′1,j + 0.5) Eq. 11

∈
[
β

2n
(mN + 0.5),

β

2n
(MN + 0.5)

]
. (29)

18



Now we move to analyze pt=2 and show that pt=2 focuses on optimal tokens for training samples.

pt=2 focuses on optimal tokens. Observe that p2 = −β∇pL(v1,p1). Therefore, for j ∈ Ck
p⊤
2 (xj,1 − xj,2)

= −(xj,1 − xj,2)
⊤β∇pL(vt,pt) = (xj,1 − xj,2)

⊤ β

n

n∑
i=1

−ℓ′1,i ·X⊤
i S′(Xipt)γ

t=1
i

=
β

n

n∑
i=1

−ℓ′1,i · x⊤
j,1X

⊤
i S′(Xipt)γ

t=1
i − β

n

n∑
i=1

−ℓ′1,i · x⊤
j,2X

⊤
i S′(Xipt)γ

t=1
i

=
β

n

∑
i∈[n]

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,1xi,1 + x⊤

j,2xi,2) Lemma 22

=
β

n
(−ℓ′1,j)(γt=1

j,1 − γt=1
j,2 )(1− αj,1)αj,1(∥xj,1∥2 + ∥xj,2∥2)

+
β

n

∑
i∈Ck:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,1xi,1)

− β

n

∑
i∈Nk:i ̸=j

−ℓ′1,i · (γt=1
i,2 − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,1xi,1)

+
β

n

∑
i∈[n]:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,2xi,2) .

Observe that αt=1
i,1 = αt=1

i,2 = 1/2. In Eqs. 21 and 22 we calculate the score differences (e.g.
γt=1
i,1 − γt=1

i,2 ). Overall, we can lower bound the above equation by:

≥ β

4n

(
mC · cβ

8
(1− 2/c2ρ − 2η − on(1)) · d(1− on(1))

)
+

β

4n

(
(1− η − on(1)) ·

n

2
·mC

cβ
8
(1− 2/c2ρ − 2η − on(1))

d

n
c2ρ

)
− β

4n

(
(η + on(1)) ·

n

2
·MN

cβ
8
(1 + 2/c2ρ − 2η + on(1))

d

n
c2ρ

)
− β

4n

(
n ·MN

cβ
8
(1 + 2/c2ρ − 2η + on(1))

√
d log(12n2/δ)

)
.

The first term dominates the last term since d ≫ n
√
d log(12n2/δ) (see Assumption 23 (item 2)).

The second term dominates the third term for small enough η (see Assumption 4). Overall, we obtain
that

p⊤
2 (xj,1 − xj,2) > 0, (30)

which means that for any i ∈ C we have:

αt=2
i,1 =

1

1 + exp(−p⊤
2 (xj,1 − xj,2))

>
1

2
. (31)

For j ∈ Nk,

p⊤
2 (xj,2 − xj,1) =

β

n
(−ℓ′1,j)(γt=1

j,2 − γt=1
j,1 )(1− αj,1)αj,1(∥xj,1∥2 + ∥xj,2∥2)

− β

n

∑
i∈Ck:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,1xi,1)

+
β

n

∑
i∈Nk:i ̸=j

−ℓ′1,i · (γt=1
i,2 − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,1xi,1)

− β

n

∑
i∈[n]:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
j,2xi,2) Lemma 22
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Observe that αt=1
i,1 = αt=1

i,2 = 1/2. In Eq. 21 and Eq. 22 we calculate the score differences (e.g.
γt=1
i,1 − γt=1

i,2 ). Overall, we can lower bound the above equation by:

≥ β

4n

(
mN · cβ

8
(1 + 2/c2ρ − 2η − on(1)) · d(1− on(1))

)
− β

4n

(
(1− η + on(1)) ·

n

2
·MC

cβ
8
(1− 2/c2ρ − 2η + on(1))

d

n
c2ρ

)
+

β

4n

(
|Nk| ·mN

cβ
8
(1 + 2/c2ρ − 2η − on(1))

d

n
c2ρ

)
− β

4n

(
n ·MN

cβ
8
(1 + 2/c2ρ − 2η + on(1))

√
d log(12n2/δ)

)
.

Observe that the third term is non-negative. Moreover, we argue that the first term is at least twice the
sum of the second and last terms. Indeed, enough to show that(

mN · (1 + 2/c2ρ − 2η − on(1)) · d(1− on(1))
)
≥

2

(
(1 + on(1)) ·

1

2
·MC · dc2ρ

)
+ 2

(
n ·MN (1 + 2/c2ρ + on(1))

√
d log(12n2/δ)

)
,

which indeed holds since n
√
d log(12n2/δ) = d · on(1), and MC · c2ρ ≤ 0.25 while mN ≥ 0.99 (see

Eqs. 19 and 18). Overall, for any i ∈ N we have that:

p⊤
2 (xj,2 − xj,1) ≥

β

8n

(
mN · cβ

8
(1 + 2/c2ρ − 2η − on(1)) · d(1− on(1))

)
=

cβ
8c2ρ

(
mN · cβ

8
(1 + 2/c2ρ − 2η − on(1)) · (1− on(1))

)
≥ 2 log(cρ),

where that last inequality holds since cβ ≥ 16cρ log(cρ), which implies that 0.9c2β/64c
2
ρ ≥

2 log(cρ) = log(c2ρ). We conclude that,

αt=2
i,2 =

1

1 + exp(−p⊤
2 (xj,2 − xj,1))

≥ 1

1 + exp(− log(c2ρ))
=

1

1 + 1/c2ρ

=
c2ρ

c2ρ + 1
≥
c2ρ − 1

c2ρ
= 1− 1/c2ρ. (32)

We conclude that for any j ∈ N we have that

αt=2
j,2 ≥ 1− 1/c2ρ, α

t=2
j,1 ≤ 1/c2ρ. (33)

Together with Eq. 31, this proves the third part of the Thm.

The classifier sign(f(X;vt=2,pt=2)) classifies correctly clean training samples. Let (Xj =
(xj,1,xj,2), yj) for j ∈ C. We remind that xj,1 = µk for k ∈ {1, 2} and x2,j = ξj . we have that,

f(Xj ;vt=2,pt=2) = αt=2
j,1 v⊤

2 xj,1 + αt=2
j,2 v⊤

2 xj,2,

and it suffices to prove that

yj(f(Xj ;v2,p2)) > 0.
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Indeed,
yjf(Xj ;v,p) = αt=2

j,1 yjv
⊤
2 xj,1 + αt=2

j,2 yjv
⊤
2 xj,2

= αt=2
j,1 |λk| ∥µk∥2 + αt=2

j,2 θ
2
j ∥ξj∥

2
+ αt=2

j,2 yj
∑

i∈[n]:i ̸=j

yiθ
t=2
i ξ⊤i ξj yjλk > 0

≥ αt=2
j,1 |λk| ∥µk∥2 − αt=2

j,2 nmax
i

|θi|
√
d log(12n2/δ)

≥ αt=2
j,1

(
β

9

)
d

n
c2ρ − αt=2

j,2 n
β

2n
(MN + 1)

√
d log(12n2/δ) Eqs. 29, 25 and 27

≥ 1

2

(
β

9

)
d

n
c2ρ −

1

2
n
β

2n
(MN + 1)

√
d log(12n2/δ) Eq. 31

> 0, d≫ n
√
d log(12n2/δ)

as required.
The classifier sign(f(X;vt=2,pt=2)) classifies correctly noisy training samples. Let (Xj =
(xj,1,xj,2), yj) for j ∈ N . We remind that xj,1 = µk for k ∈ {1, 2} and x2,j = ξj . we have that,

f(Xj ;vt=2,pt=2) = αt=2
j,1 v⊤

2 xj,1 + αt=2
j,2 v⊤

2 xj,2,

and it suffices to prove that
yj(f(Xj ;v2,p2)) > 0.

Indeed,
yjf(Xj ;v,p) = αt=2

j,1 yjv
⊤
2 xj,1 + αt=2

j,2 yjv
⊤
2 xj,2

= −αt=2
j,1 |λk| ∥µk∥2 + αt=2

j,2 θ
2
j ∥ξj∥

2
+ αt=2

j,2 yj
∑

i∈[n]:i ̸=j

yiθ
t=2
i ξ⊤i ξj yjλk < 0

≥ −αt=2
j,1

(
3β

16

)
d

n
c2ρ + αt=2

j,1

β

2n
mNd(1− on(1))− αt=2

j,2

β

n
d · on(1) Eqs. 29, 24 and 26

≥ − 1

c2ρ

(
3β

16

)
d

n
c2ρ +

(
1− 1

c2ρ

)
β

2n
0.99d(1− on(1))−

β

n
d · on(1) Eqs. 33 and 19

> 0,

as required.
The classifier sign(f(X;vt=2,pt=2)) classifies correctly clean test samples.

Let (X = (x1,x2), y) be a fresh clean sample i.e. (X, y) ∼ Dclean. Observe that x1 = µk for some
k ∈ {1, 2} and y = 1 iff k = 1. By Remark 58, with probability at least 1 − 6n exp(−d/4C1n

2)
for some constant C1 = C1(cρ, cβ) that will be chosen later, we have that (X = (x1,x2), y) is a
good test sample w.r.t. C1 (Def. 20). We work under the event that (X = (x1,x2), y) is a good test
sample and show that y = sign(f(X;vt=2,pt=2). Recall that p2 = −β∇pL(v1,p1) and therefore:
p⊤
2 (x1 − x2)

= −(x1 − x2)
⊤β∇pL(vt=1,pt=1) = (x1 − x2)

⊤ β

n

n∑
i=1

−ℓ′1,i ·X⊤
i S′(Xipt)γ

t=1
i

=
β

n

n∑
i=1

−ℓ′1,i · x⊤
1 X

⊤
i S′(Xipt)γ

t=1
i − β

n

n∑
i=1

−ℓ′1,i · x⊤
2 X

⊤
i S′(Xipt)γ

t=1
i

=
β

n

∑
i∈[n]

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
1 xi,1 + x⊤

2 xi,2) Lemma 22

=
β

n

∑
i∈Ck

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
1 xi,1)

− β

n

∑
i∈Nk

−ℓ′1,i · (γt=1
i,2 − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
1 xi,1)

+
β

n

∑
i∈[n]:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i,2 )(1− αt=1
i,1 )αt=1

i,1 (x⊤
2 xi,2)
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Observe that αt=1
i,1 = αt=1

i,2 = 1/2. In Eq. 21 and Eq. 22 we calculate the score γt=1
i . Overall, we

can lower bound the above equation by:

+
β

4n

(
(1− η − on(1)) ·

n

2
·mC

cβ
8
(1− 2/c2ρ − 2η − on(1))

d

n
c2ρ

)
− β

4n

(
(η + on(1)) ·

n

2
·MN

cβ
8
(1 + 2/c2ρ − 2η + on(1))

d

n
c2ρ

)
− β

4n

(
n ·MN

cβ
8
(1 + 2/c2ρ − 2η + on(1))

d

C1n

)
.

Once again, the first term dominates the last two terms when C1 is large enough and when η is small
enough (Assumption 4). This means that the softmax probability of the first token is:

1

1 + exp(−p⊤
2 (x1 − x2))

>
1

2
. (34)

Let x1 = µk for k ∈ {1, 2} and x2 = ξ. Then,

f(X;v,p) = α1v
⊤
2 x1 + α2v

⊤
2 x2,

where α1, α2 are the softmax probabilities of p2 for X . It suffices to prove that

y(f(X;v2,p2)) > 0.

Since the test sample is "good", we have that ∀i : ξ⊤i ξ ≤ d
C1n

, which implies that

yf(X;v2,p2) = α1yv
⊤
2 x1 + α2yv

⊤
2 x2

= α1|λk| ∥µk∥2 + α2y

n∑
i=1

yiθiξ
⊤
i ξ yλk > 0

≥ α1|λk| ∥µk∥2 − α2nmax
i

|θi|
d

C1n

≥ α1

(
β

9

)
d

n
c2ρ − α2n

β

2n
(MN + 1)

d

C1n
Eqs. 29, 25 and 27

≥ 1

2

(
β

9

)
d

n
c2ρ −

1

2
n
β

2n
(MN + 1)

d

C1n
Eq. 34

> 0,

where the last inequality holds for large enough C1. Overall,

P(X,y)∼D(y ̸= sign(f(X;vt=2,pt=2)))

≤ η + P(X,y)∼Dclean(y ̸= sign(f(X;vt=2,pt=2)))

≤ η + 6n2 exp(−d/4C1n
2).

This proves the last part of the theorem.

A.5 Proofs for Sec. 4

A.5.1 Additional Notation

We first introduce some additional notations. Denote

n1 = |C|, n2 = |N |; n1i = |Ci|, n2i = |Ni| for i = 1, 2.

Denote the output of the softmax layer S(Xip) by

si = (1− βi, βi)
⊤.

Denote the output of the attention layer X⊤
i si by ri = (1− βi)µi + βiξi, where 0 ≤ βi ≤ 1 is the

attention on the noise token of each sample. Then f(Xi;p,v) = ⟨v, ri⟩ can be treated as a linear
classifier on (yi, ri)i∈[n]. Additionally, from the property of log function, item 1 in Assumption 5
can be understood as d ≥ Cn2 log(poly(n)/δ) and the same is for item 5.
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A.5.2 Proof of Thm. 6

Proof Sketch
There are two main parts in our proof. In the first part, we prove that only by selecting signal tokens
for clean samples and noise tokens for non-clean samples can we reach the maximum margin when
doing SVM on (yi, ri)i∈[n].

Definition 24 (Optimal Token). We define the “optimal token" for sample (Xi, yi) as

r⋆i = µi, i ∈ C
r⋆i = ξi, i ∈ N (35)

Next we define the respective max-margin solution for p and v. We will show that when jointly
optimizing parameters p and v for (2), they will converge to their respective max-margin solutions as
R, r → ∞, which are pmm and vmm defined as follows.
Definition 25. (p-SVM)

pmm = argmin
p

∥p∥

subjected to

p⊤(µi − ξi) ≥ 1, i ∈ C
p⊤(ξi − µi) ≥ 1, i ∈ N (36)

for all i ∈ [n]. Ξ = 1/∥pmm∥ is the margin induced by pmm.

Then for a given p, we define v(p) as the standard max-margin classifier on (yi, ri)i∈[n] and vmm

as the standard max-margin classifier on (yi, r
⋆
i )i∈[n] which can be understood as the limit scenario

when p = pmm and R→ +∞ .
Definition 26. (v-SVM)

v(p) = argmin
v∈Rd

∥v∥ s.t. yi · v⊤ri ≥ 1, for all i ∈ [n]. (37)

Γ(p) = 1/∥v(p)∥ is the label margin induced by v and p. When ri = r⋆i , i ∈ [n],

vmm = argmin
v∈Rd

∥v∥ s.t. yi · v⊤r⋆i ≥ 1, for all i ∈ [n]. (38)

Γ = 1/∥vmm∥ is the label margin induced by vmm.

After proving the converfnece direction of pR and vr, we can utilize their properties similar to pmm

and vmm to proceed the training and test error analysis. Therefore proving that the model exhibits
benign-overfitting.

It is worth noting that in the first part, we show the optimality of the token selection in (35) is strict
in the sense that mixing other tokens in ri will shrink the label margin. We formalize this into the
following proposition:
Proposition 16 (optimal token condition). Suppose that Assumption 5 holds, with probability at least
1− δ over the training dataset, for all p, the token selection under p results in a label margin (Def.
15) of at most Γ− C

∥vmm∥3nρ2 ·max
i∈[n]

(1− siαi) where αi = I(i ∈ C)+ 2I(i ∈ N ) and C > 0 is some

constant.

We will give detailed proof in the following.

Optimal Token Condition
Since vmm satisfies the KKT conditions of the max-margin problem (37), by the stationarity condition,
we can represent vmm as

vmm = λ1µ1 + λ2µ2 +
∑
i∈[n]

yiθiξi. (39)

Note that the conditions in (37) can be written as:
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Condition 1 (Optimal tokens). 
v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

Plugging (39) in the condition 1, we can rewrite these conditions as:
λ1 · ∥µ1∥2 ≥ 1

−λ2 · ∥µ2∥2 ≥ 1

θi · ∥ξi∥2 + yiyi′
∑
i′ ̸=i

θi′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

Then we introduce a lemma to estimate the coefficients θi of vmm under this condition:

Lemma 27 (balanced noise factor for KKT points). Suppose that Assumption 5 holds, under
Condition 1, we have that for vmm,

θi = 0, i ∈ C; (40)

θi ∈
[ (1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2
√
d log(6n2/δ))

,
1

(1− κ)d− 2n2
√
d log(6n2/δ)

]
, i ∈ N .

(41)

Proof of Lemma 27. Note that Condition 1 does not have any constraint for samples with i ∈ C. Thus
we have θi = 0 for any i ∈ C in the representation (39). For θi with i ∈ N , we first prove the upper
bound by contradiction. Denote j = argmax

i∈N
θi. Then we have

yjv
⊤ξj =

∑
i∈N

yiyjθi⟨ξi, ξj⟩ = θj∥ξj∥22 +
∑

i ̸=j,i∈N

yiyjθi⟨ξi, ξj⟩

≥ θj · (1− κ)d− n2θj · 2
√
d log(6n2/δ),

where the inequality is from Lemma 57 and the definition of j. Consider the contrary case when
θj >

1

(1−κ)d−2n2

√
d log(6n2/δ)

, we have

yjv
⊤ξj >

1

(1− κ)d− 2n2
√
d log(6n2/δ)

·
(
(1− κ)d− n2 · 2

√
d log(6n2/δ)

)
= 1.

By the complementary slackness, if yjv⊤ξj > 1, then we must have θj = 0, and thus we reach a
contradiction.

Then we prove for the lower bound. For ∀j ∈ N we have

1 ≤ θj∥ξj∥22 +
∑

i ̸=j,i∈N

yiyjθi⟨ξi, ξj⟩

≤ θj · (1 + κ)d+ n2 max
i∈N

θi · 2
√
d log(6n2/δ)

≤ θj · (1 + κ)d+
n2

(1− κ)d− 2n2
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).

The second inequality is due to Lemma 57 and the last inequality is from the upper bound we just get.
Therefore, we have

θj ≥
(1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2
√
d log(6n2/δ))

.

This completes the proof.

Then we introduce a lemma to estimate ∥vmm∥:
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Lemma 28 (Norm of vmm). Suppose that Assumption 5 holds, for the solution vmm of (37) under
the token selection (35), we have

2

ρ2
+
ηn

2d
≤ ∥vmm∥2 ≤ 2

ρ2
+

5ηn

d
.

This implies

∥vmm∥ = Θ

(√
1

ρ2
+
ηn

d

)
.

Proof of Lemma 28. As vmm is the max-margin solution and satisfies KKT condition, it can be
represented as

vmm = λ1µ1 + λ2µ2 +
∑
i∈C

yiθiξi +
∑
i∈N

yiθiξi. (42)

As vmm satisfies Condition 1, we have λ1 ≥ 1/ρ2 and λ2 ≤ −1/ρ2. So we could lower bound
∥vmm∥ as

∥vmm∥2 ≥ λ21∥µ1∥2 + λ22∥µ2∥2 +
∑
i∈N

θ2i ∥ξi∥2 +
∑
i∈N

∑
j∈N

yiyjθiθj⟨ξi, ξj⟩

≥ 2

ρ2
+
n2(1− κ)

d
+O

(
η2n2

d3/2

)
≥ 2

ρ2
+
ηn

2d
.

The second inequality is from Lemma 27 that θi = Θ(1/d) for i ∈ N and the last inequality is from
Assumption 5.

Then to upper bound ∥vmm∥, consider the following possible solution ṽ

ṽ = ρ−2µ1 − ρ−2µ2 +
∑
i∈N

2yiξi/d.

For i ∈ C, we have

yiṽ
⊤ri = yiṽ

⊤µi ≥ 1.

And for i ∈ N , we have

yiṽ
⊤ri = yiṽ

⊤ξi = 2∥ξi∥2/d+
∑

j∈N ,j ̸=i

2yiyj⟨ξi, ξj⟩/d

≥ 2(1− κ)− 2n2
√
log(6n2/δ)/d ≥ 1.

The first inequality is from Lemma 57 and the second inequality is from Assumption 5. Therefore, ṽ
is a possible solution of SVM problem 26 when p converges to pmm. So we have

∥vmm∥2 ≤ ∥ṽ∥2 = 2/ρ2 +
∑
i∈N

4∥ξi∥2/d2 +
∑
i∈N

∑
j∈N

4yiyj⟨ξi, ξj⟩/d2 ≤ 2

ρ2
+

5ηn

d
.

The last inequality is from Lemma 57, Lemma 59 and Assumption 5. Combine the results above, we
have ∥vmm∥2 = Θ( 1

ρ2 + ηn
d ).

Based on the lemmas above, we introduce our main proposition in this section:

Proposition 16 (optimal token condition). Suppose that Assumption 5 holds, with probability at least
1− δ over the training dataset, for all p, the token selection under p results in a label margin (Def.
15) of at most Γ− C

∥vmm∥3nρ2 ·max
i∈[n]

(1− siαi) where αi = I(i ∈ C)+ 2I(i ∈ N ) and C > 0 is some

constant.

Proof of Proposition 16. The main idea is to show the optimality of the token selection rule in the
sense that mixing any other tokens will shrink the label margin. For a given p, we say a sample xi is
a “mixed sample” if ri ̸= r⋆i . We say ri is a mixture of optimal token and non-optimal token in this
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case. Note that for any p with finite norm, ri ̸= r⋆i . This notation is introduced for the clearness of
the proof.

We use contradiction to prove Proposition 16 by showing that any token selection different from (35)
can only result in a strictly smaller label margin than that for the max-margin problem (37). Since v
satisfies the KKT conditions of the max-margin problem, we can write v as

v = λ1µ1 + λ2µ2 +
∑
i∈C

yiθiξi +
∑
i∈N

yiθiξi. (43)

For a given p, denote v′ as the max-margin solution in (37), and Γ′ = 1/∥v′∥ as the new label margin.
According to Lemma 28, we have

∥vmm∥2 = Θ

(
1

ρ2
+
ηn

d

)
= Ω(1/ρ2).

Then we have

Γ− C

∥vmm∥3nρ2
·max
i∈[n]

(1− siαi
) ≥ Γ− C

∥vmm∥3nρ2
≥ Γ

2

for sufficiently large d. Here the last inequality uses ∥vmm∥2 = Ω(1/ρ2). Thus we only need
consider the case when the new label margin Γ′ ≥ Γ/2, or equivalently,

∥v′∥ ≤ 2∥vmm∥. (44)

Assume that there are k samples (0 < k ≤ n) that violdate the token selection rule (35) and among
them, p samples are from clean set C and k − p samples are from label-flipped set N . Denote the
indices of the k samples as Iv . Then we consider the following three scenarios:

1. p ̸= 0, k − p = 0. (All mixed samples come from C)

2. p = 0, k − p ̸= 0. (All mixed samples come from N )

3. p ̸= 0, k − p ̸= 0. (Mixed samples are from both sets)

We will separately discuss each scenario and show that Proposition 16 holds in all cases.
Case 1: p ̸= 0, k − p = 0

Under this scenario, we have:
Iv ∩ C = Iv; Iv ∩N = ∅.

We proceed to analyze this scenario by dividing it into three distinct subcases.

• p < n1, Iv ∩ C1 ̸= ∅, Iv ∩ C2 ̸= ∅

• p < n1, Iv ∩ Ci ̸= ∅, Iv ∩ Ci′ = ∅, (i, i′ ∈ [2], i ̸= i′)

• p = n1

Case 1.1 p < n1, Iv ∩ C1 ̸= ∅, Iv ∩ C2 ̸= ∅
In this case, both clusters exist clean samples that are not mixed. Denote the index of mixed samples
Iv as {k1, k2, ..., kp}. For every mixed sample ki, we have rki

= βki
µki

+ (1− βki
)ξki

. Then the
conditions under Case 1.1 become

Condition 2 (p clean samples violating optimal token selection).
v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

yiv
⊤ri ≥ 1, i ∈ Iv
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From the condition above, we could see that in this case, mixing one more clean sample is equal to
adding one more constraint. Therefore, mixing p samples will not result in a better solution than only
mixing one sample, i.e. larger max-margin in our setting. So we can reduce this case to mixing only
one clean sample with index k⋆ = argmin

i∈Iv

βi. Denote rk⋆ = βµk⋆ +(1−β)ξk⋆ for some β ∈ [0, 1).

Without loss of generality, we assume µk⋆ = µ1, yk⋆ = +1. Then the conditions become:

Condition 3 (one clean sample violating optimal token selection).
v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

yk⋆v⊤rk⋆ ≥ 1

Denote v′ as the optimal solution under this condition. v′ can also be written in the form of (43) with
coefficients denoted as λ′1, λ

′
2 and θ′i, i ∈ [n]. Plugging this representation into the condition 3, we

have: 

λ′1 · ∥µ1∥2 ≥ 1

−λ′2 · ∥µ2∥2 ≥ 1

θ′i · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

βλ′1 · ∥µ1∥2 + (1− β)(θ′k⋆∥ξk⋆∥2 +
∑

i̸=k⋆

yk⋆yiθ
′
i⟨ξi, ξk⋆⟩) ≥ 1

First, we introduce another lemma similar to Lemma 27 to characterize the scale of θ′i, i ∈ [n] in this
case.

Lemma 29. Suppose that Assumption 5 holds, under Condition 3, we have

θ′i = 0, i ∈ C\{k⋆};

θi ∈
[ (1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2
√
d log(6n2/δ))

,
1

(1− κ)d− 2n2
√
d log(6n2/δ)

]
, i ∈ N .

Proof of Lemma 29. Same as Condition 1, Condition 3 does not have any constraint for samples with
i ∈ C\{k⋆}. Thus we have θ′i = 0 for any i ∈ C\{k⋆}.

Meanwhile, Condition 3 introduces an additional constraint compared to Condition 1. Consequently,
the feasible region for {θ′i}i∈N under Condition 3 is a subset of the feasible region for {θi}i∈N under
Condition 1. Therefore, the bounds established in Lemma 27 remain applicable to {θ′i}i∈N .

From this lemma, We can see that θ′i = Θ(1/d) for i ∈ N . To proceed, we introduce a crucial lemma:

Lemma 30. Suppose that Assumption 5 holds, denote v and v′ as the optimal solutions under
condition 1 and condition 3 respectively. We have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− βλ′1ρ
2)2

(1− β)2(1 + κ)d
+ Õ

( ηn

d3/2

)
.

where 0 < C1 ≤ 1 is a constant.

Proof of Lemma 30. We consider two cases under this scenario:

• θ′k = 0 in v′

In this case, from Lemma 29 we have βλ′1 ≥ (1 + o(1))/ρ2 and all other conditions are
the same as the optimal selection. In order to get min ∥v∥, we have λ′1 = (1 + o(1))/βρ2.
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Consider another solution v0 which has parameters λ01 = 1/ρ2, λ02 = λ′2, θ0i = θ′i(i ∈
[n]). As v0 satisfies all the inequities under Condition 1, we have Γ0 ≤ Γ So we have

Γ2 − Γ′2 ≥ Γ2
0 − Γ′2 =

1

∥v0∥2
− 1

∥v′∥2
=

(λ201 − λ′21 ) · ∥µ1∥2

∥v0∥2 · ∥v′∥2

=
(1 + o(1))/β2 − 1

∥v0∥2 · ∥v′∥2
=

(1 + β)(1− β) + o(1)

β2∥v0∥2 · ∥v′∥2
≥ 1− β

∥v0∥2 · ∥v′∥2
.

Therefore,

Γ− Γ′ ≥ 1− β

(Γ0 + Γ′)∥v0∥2 · ∥v′∥2
≥ 1− β

2Γ0∥v0∥2 · ∥v′∥2
.

Set c = 1
2Γ0∥v0∥2·∥v′∥2 = 1

2∥v0∥∥v′∥2 . we have Γ′ ≤ Γ − c(1 − β). Moreover, we could
upper bound c as

c =
1

2∥v0∥∥v′∥2
≤ 1

2r3mm

.

The last inequality is from ∥v′∥ ≥ ∥v0∥ ≥ rmm.

• θ′k ̸= 0 in v′

From KKT condition, we have

θ′k∗ ·
[
βλ′1 · ∥µ1∥2 + (1− β)(θ′k⋆∥ξk⋆∥2 +

∑
i̸=k⋆

yk⋆yiθ
′
i⟨ξi, ξk⋆⟩)− 1

]
= 0.

As θ′k⋆ > 0, we have

βλ′1 · ∥µ1∥2 + (1− β)(θ′k⋆∥ξk⋆∥2 +
∑
i∈N

yk⋆yiθ
′
iθ

′
i⟨ξi, ξk⋆⟩) = 1.

So we can estimate θ′k∗ as

θ′k∗∥ξk∗∥2 =
1− βλ′1ρ

2

1− β
−
∑
i∈N

yk⋆yiθ
′
iθ

′
i⟨ξi, ξk⋆⟩ ≤ 1− βλ′1ρ

2

1− β
+ 2n2 max

i∈N
θ′i
√
d log(6n2/δ)

=
1− βλ′1ρ

2

1− β
+

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

. (45)

The first inequality is from Lemma 57 and the last equality is from Lemma 29. We can also
lower bound it as

θ′k∗∥ξk∗∥2 =
1− βλ′1ρ

2

1− β
−
∑
i∈N

yk⋆yiθ
′
iθ

′
i⟨ξi, ξk⋆⟩ ≥ 1− βλ′1ρ

2

1− β
− 2n2 max

i∈N
θ′i
√
d log(6n2/δ)

=
1− βλ′1ρ

2

1− β
−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

. (46)

The first inequality is from Lemma 57 and the last equality is from Lemma 29. Therefore,
we have θ′k∗ = Θ(

1−βλ′
1ρ

2

(1−β)d )±O( ηn
d3/2 ).

Then from the third inequality in Condition 3, we have

θ′i · ∥ξi∥2 +
∑

i′∈N ,i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1− yiyk∗θ′k∗⟨ξi, ξk∗⟩

≥ 1−
[

1− βλ′1ρ
2

(1− β)(1 + κ)d
+O

( ηn

d3/2

)]
· |⟨ξi, ξk∗⟩|

≥ 1−
2(1− βλ′1ρ

2)
√

log(6n2/δ)

(1− β)(1 + κ)
√
d

− Õ
(ηn
d

)
≥ 1−

2
√

log(6n2/δ)√
d

− Õ
(ηn
d

)
= 1−

3
√

log(6n2/δ)√
d

. (47)

28



The second inequality is from (45); The third inequality is from Lemma 57 and the last
inequality is from the first inequality in Condition 3 that λ′1ρ

2 ≥ 1.

Consider ṽ = λ̃1µ1 + λ̃2µ2 +
∑

i∈[n]

yiθ̃iξi, which has λ̃1 = λ′1, λ̃2 = λ′2, θ̃i = θ′i/(1 −

3
√

log(6n2/δ)√
d

) for i ∈ N and θ̃′i = 0 for i ∈ C. We can verify that ṽ satisfies all conditions
for vmm. For ∀i ∈ N , we have

θ̃i · ∥ξi∥2 +
∑

i′∈N ,i′ ̸=i

yiyi′ θ̃i′⟨ξi, ξi′⟩

=
[
θ′i · ∥ξi∥2 +

∑
i′∈N ,i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩

]
/

(
1−

3
√
log(6n2/δ)√

d

)
≥ 1.

The last inequality is from (47). Meanwhile, we have λ̃1∥µ1∥2 = λ′1∥µ1∥2 ≥ 1,
−λ̃2∥µ2∥2 = −λ′2∥µ2∥2 ≥ 1. So ṽ is a possible solution for Condition 3, which im-
plies ∥vmm∥ ≤ ∥ṽ∥.

Next we estimate the difference between ∥v′∥2 and ∥ṽ∥2. We write the expansion of ∥ṽ∥2
and ∥v′∥2:

∥ṽ∥2 = λ̃21∥µ1∥2 + λ̃22∥µ2∥2 +
∑
i∈N

θ̃2i ∥ξi∥2 +
∑

i,j∈N ;i ̸=j

yiyj θ̃iθ̃j⟨ξi, ξj⟩,

∥v′∥2 = λ′21 ∥µ1∥2 + λ′22 ∥µ2∥2 +
∑

i∈N∪{k⋆}

θ′2i ∥ξi∥2 +
∑

i,j∈N∪{k⋆};i̸=j

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩.

From the construction of ṽ, we have λ′1 = λ1, λ′2 = λ2. So we have

∥v′∥2 − ∥ṽ∥2 ≥θ′2k⋆∥ξk⋆∥2 +
∑
i∈N

(θ′2i − θ̃2i )∥ξi∥2︸ ︷︷ ︸
I1

+
∑

i∈N∪{k⋆}

∑
j∈N∪{k⋆}\{i}

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩︸ ︷︷ ︸

I2

−
∑
i∈N

∑
j∈N\{i}

yiyj θ̃iθ̃j⟨ξi, ξj⟩︸ ︷︷ ︸
I3

.

From (46), we have

θ′k⋆∥ξk⋆∥ ≥ 1− βλ′1ρ
2

(1− β)
√
(1 + κ)d

− Õ

(
ηn

d

)
.

We then bound the last three terms respectively. First we have

|I1| =
∑
i∈N

(θ̃2i − θ′2i )∥ξi∥2 ≤
(

1

(1− Õ(1/
√
d))2

− 1

)
·
∑
i∈N

θ′2i ∥ξi∥2

≤ Õ(1/
√
d)

(1− Õ(1/
√
d))2

· n2(1 + κ)d

(
(
1− κ)d− 2n2

√
d log(6n2/δ)

)2
= Õ

( ηn

d3/2

)
.

The first inequality is from the definition of θ̃i; The second inequality is from Lemma 27
and Lemma 57.
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Then we bound |I2 − I3| as:

|I2 − I3| =
∑
i∈N

∑
j∈N\{i}

(θ̃iθ̃j − θ′iθ
′
j) · |⟨ξi, ξj⟩|+ θ′k

∑
i∈N

θ′i|⟨ξk∗ , ξi⟩|

≤
(

1

(1− Õ(1/
√
d))2

− 1

)∑
i∈N

∑
j∈N\{i}

θ′iθ
′
j · |⟨ξi, ξj⟩|+ n2θ

′
k∗ ·max

i∈N
θ′i · |⟨ξk∗ , ξi⟩|

≤ Õ(1/
√
d)

(1− Õ(1/
√
d))2

·
(n2)

22
√
d log(6n2/δ)

(
(
1− κ)d− 2ηn

√
d log(6n2/δ)

)2 + θ′k∗ ·Θ
(
ηn√
d

)
= Õ

(
η2n2

d2

)
+Θ

(
ηn

d3/2

)
= Õ

( ηn

d3/2

)
.

The first inequality is from the definition of θ̃i; The second inequality is from Lemma 27
and Lemma 57. Combining the above results, we finally have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− βλ′1ρ
2)2

(1− β)2(1 + κ)d
+ Õ

( ηn

d3/2

)
.

Now we can prove the main proposition in this case.

Proof of Proposition 16 in Case 1.1. From Lemma 30 we have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− βλ′1ρ
2)2

(1− β)2(1 + κ)d
+ o

(
1

d

)
≥ C1(1− βλ′1ρ

2)2

(1 + κ)d
(1− β) = T (1− β).

In the last equation we substitute T =
C1(1−βλ′

1ρ
2)2

(1+κ)d ≥ 0. Then we have

Γ2 − Γ′2 =
1

∥vmm∥2
− 1

∥v′∥2
=

∥v′∥2 − ∥vmm∥2

∥vmm∥2 · ∥v′∥2
≥ T (1− β)

∥vmm∥2 · ∥v′∥2
.

Therefore,

Γ− Γ′ ≥ T (1− β)

(Γ + Γ′)∥vmm∥2 · ∥v′∥2
≥ T (1− β)

2Γ∥vmm∥2 · ∥v′∥2
=

T (1− β)

2∥vmm∥∥v′∥2
≥ T (1− β)

2∥v′∥3
.

The last inequality is from ∥v′∥ ≥ ∥vmm∥. This implies

Γ′ ≤ Γ− T (1− β)

2∥v′∥3
≤ Γ− C1

∥vmm∥3nρ2
(1− β).

The last inequality is from our assumption that ∥v′∥ ≤ 2∥vmm∥ and ρ2 = Ω(d/n).

Next we consider the other case.

Case 1.2 p = n1

Next we consider the case when all clean samples are mixed. In this case, all samples in clean set are
mixed, so the first two inequalities in Condition 3 do not hold, which means that λ′1 may be smaller
than λ1. But we could still prove that Lemma 30 holds. We first write down the condition in this case:

Condition 4 (All clean samples violate optimal token selection rule).{
yiv

⊤ξi ≥ 1, i ∈ N
yiv

⊤ri ≥ 1, i ∈ C
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Plugging the representation (43) into the condition, we have:
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

βiλ
′
i · ∥µi∥2 + (1− βi)(θ

′
i · ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′
i⟨ξi, ξj⟩) ≥ 1, i ∈ C

Proof of Lemma 30. First we assume that max{λ′1 · ∥µ1∥2,−λ′2 · ∥µ2∥2} = q in optimal v′. If
q ≥ 1, this is the same as Case 1.3. So we assume that q ≤ 1. Denote k⋆ = argmin

i∈C

1−βiq
1−βi

and

β = βk⋆ , consider the following condition

Condition 5 (Relaxed version of Condition 4).
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥

1−βq
1−β , i ∈ C

Compared with Condition 4, the second inequality is relaxed for i ∈ C. Therefore, denote the max-
margin solution as v̂ under Condition 5, we must have ∥v̂∥ ≤ ∥v′∥. Then we will prove that Lemma
30 still holds between ∥vmm∥ and ∥v̂∥, which indicates ∥v′∥22 − ∥vmm∥22 ≥ ∥v̂∥22 − ∥vmm∥22 ≥
C1(1−βλ′

1ρ
2)2

(1−β)2(1+κ)d + o
(
1
d

)
. Denote the parameters in v̂ are λ̂1, λ̂2 and θ̂i, we first introduce the following

lemma to estimate θ̂i. Here we denote α = 1−βq
1−β for convenience.

Lemma 31. Suppose that Assumption 5 holds, under Condition 5, we have

θ̂i ∈
[

α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
,

α

((1− κ)d− 2n
√
d log(6n2/δ)

]
, i ∈ C,

θ̂i ∈
[

1

(1 + κ)d

(
1−

2αn
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
,

α

((1− κ)d− 2n
√
d log(6n2/δ)

]
, i ∈ N .

Proof of Lemma 31. Denote j = argmax
i∈[n]

θ̂i, we have

θ̂i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̂i⟨ξi, ξj⟩ ≥ θ̂j∥ξj∥2 − nθ̂j
√
d log(6n2/δ)

≥ θ̂j((1− κ)d− 2n
√
d log(6n2/δ)).

The two inequalities are from Lemma 57 and our definition of j. Consider the contrary case when
θ̂j >

α

((1−κ)d−2n
√

d log(6n2/δ)
, we have

yj v̂
⊤ξj > α.

By the complementary slackness condition, if yj v̂⊤ξj > α ≥ 1, then we must have θ̂j = 0, and thus
we reach a contradiction.

Then we lower bound θ̂i, for i ∈ C we have

α ≤ θ̂i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̂i⟨ξi, ξj⟩ ≤ θ̂i(1 + κ)d+ 2nmax
i∈[n]

θ̂i
√
d log(6n2/δ)

≤ θ̂i(1 + κ)d+
2αn

√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

.

The second inequality is from Lemma 57 and the last inequality is from the upper bound of θ̂i we just
derived. Therefore, we have

θ̂i ≥
α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.
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Similarly, for i ∈ N , we have

θ̂i ≥
1

(1 + κ)d

(
1−

2αn
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Note that we only consider the case when ∥v̂∥ ≤ ∥v′∥ ≤ 2∥vmm∥. And from Lemma 31 we have
θ̂i = Θ(α/d) for i ∈ C. So we must have α = O(log n) is some constant. Otherwise, for i ∈ C we
have

θ̂i∥ξi∥2 ≥ α−
∑
i′ ̸=i

yiyi′ θ̂i⟨ξi, ξi′⟩ = Ω(α).

It further yields that

∥v̂∥2 = Ω(
1

ρ2
) + Ω(

ηn

d
) +

∑
i∈C

θ̂2i ∥ξi∥2 = Ω(
1

ρ2
+
ηn

d
+
nα2

d
) = Ω(

n log2 n

d
), (48)

which contradicts with ∥v′′∥ = Θ(
√

1/ρ2 + ηn/d).

Then the difference between ∥vmm∥22 and ∥v̂∥22 becomes

∥v̂∥2 − ∥vmm∥2 ≥
∑
i∈C

θ̂2i ∥ξi∥2 − 2/ρ2 +
∑
i∈N

(θ̂2i − θ2i )∥ξi∥2︸ ︷︷ ︸
I1

+
∑
i∈[n]

∑
j∈[n]\{i}

yiyj θ̂iθ̂j⟨ξi, ξj⟩︸ ︷︷ ︸
I2

−
∑
i∈N

∑
j∈N\{i}

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

.

We will bound every term sequentially. For i ∈ C, we have

θ̂i∥ξi∥2 ≥ α−
∑

i′∈[n],i′ ̸=i

yiθ̂i′⟨ξi, ξi′⟩ ≥ α− nmax
i∈[n]

θ̂i · 2
√
d log(6n2/δ)

= α−
2αn

√
log(6n2/δ)

(1− κ)
√
d− 2n

√
log(6n2/δ)

= α− Õ

(
n√
d

)
.

The second inequality is from Lemma 57; The first equality is from Lemma 29 and the last equality
is from Assumption 5. This implies∑

i∈C
θ̂2i ∥ξi∥2 − 2/ρ2 ≥ n1α

2

(1 + κ)d
− 2

ρ2
− Õ

(
n

d3/2

)
≥ C2n1α

2

(1 + κ)d
− Õ

(
n

d3/2

)
.

The second inequality is due to the SNR condition ρ/
√
d = Ω(1/

√
n) so there exists a constant C2

that 2
ρ2 ≤ (1−C2)n1α

2

(1+κ)d .

Then for |I1| we have

|I1| ≤ (max
i∈N

θ2i −min
i∈N

θ̂2i )
∑
i∈N

∥ξi∥2

≤
((

1

(1− κ)d− 2ηn
√
d log(6n2/δ)

)2

−
(

1

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

))2)
· n2(1 + κ)d

≤
( √

(1 + κ)d

(1− κ)d− 2ηn
√
d log(6n2/δ)

)2(
1−

(
(1− κ)d− 4ηn

√
d log(6n2/δ)

(1 + κ)d

)2)
· n2

= Θ

(
1

d

)
·Θ
(
ηn
√
log(6n2/δ)√

d

)
· n2

= Õ

(
η2n2

d3/2

)
.
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The second inequality is from Lemma 27 and Lemma 31; The third inequality is from the fact that
η < 1.

As for the last two terms, we bound them respectively, for I2 we have

|I2| ≤
∑
i∈[n]

∑
j∈[n]\{i}

|yiyj θ̂iθ̂j⟨ξi, ξj⟩| ≤ n2 max
i∈[n]

θ̂2i · 2
√
d log(6n2/δ)

≤ n2
α2

((1− κ)d− 2n
√
d log(6n2/δ))2

· 2
√
d log(6n2/δ)

= Õ

(
n2

d3/2

)
.

The first inequality is from triangle inequality; The second inequality is from Lemma 57; The third
inequality is from Lemma 29. Last for I3, we have

|I3| ≤
∑
i∈N

∑
j∈N\{i}

|yiyjθiθj⟨ξi, ξj⟩| ≤ (n2)
2 max

i∈N
θ2i · 2

√
d log(6n2/δ)

≤ (n2)
2 1

((1− κ)d− 2ηn
√
d log(6n2/δ))2

· 2
√
d log(6n2/δ)

= Õ

(
η2n2

d3/2

)
.

The first inequality is from triangle inequality; The second inequality is from Lemma 57; The third
inequality is from Lemma 27. Combining the results above, we have

∥v′∥2 − ∥vmm∥2 ≥ C2n1(1− βq)2

(1− β)2(1 + κ)d
+ Õ

(
n2

d3/2

)
≥ C1(1− βq)2

(1− β)2(1 + κ)d
.

Therefore, we could then use the same method as above to prove that Proposition 16 also holds in
this case.

Case 1.3 p < n1, Iv ∩ Ci ̸= ∅, Iv ∩ Ci′ = ∅
For the case when only one of the clusters in clean sets are all mixed, we can follow similar method in
Case 1.2 to prove that Lemma 30 still holds. Without losing generality, assume all clean samples with
label yi = +1 violate optimal token selection while only part of clean samples with label yi = −1
violate. we have

Condition 6 (One cluster and a clean sample in the opposite cluster violating optimal token selection).
−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

yiv
⊤ri ≥ 1, i ∈ C+1

yiv
⊤ri ≥ 1, i ∈ C−1 ∩ Iv

Similar to previous analysis, mixing multiple samples with label −1 will not result in a better solution
than only mixing one sample with label −1. Thus we can reduce this case to mixing only one clean
sample and denote this mixed sample as k−1. Therefore, we have

−λ′2 · ∥µ2∥2 ≥ 1

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

yk−1
βλ′2 · ∥µ2∥2 + (1− β)(θ′k−1

· ∥ξk−1
∥2 +

∑
i ̸=k−1

yk−1
yiθ

′
i⟨ξi, ξk−1

⟩) ≥ 1

βλ′1 · ∥µ1∥2 + (1− β)(θ′ki
· ∥ξki

∥2 +
∑
i̸=ki

yki
yiθ

′
i⟨ξi, ξki

⟩) ≥ 1, i ∈ C+1

Denote q = λ′1 · ∥µ1∥2 and q ≤ 1. Denote k⋆ = argmin
i∈C+1

1−βiq
1−βi

and β = βk⋆ , we can further reduce

the condition to
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Condition 7 (Relaxed version of Condition 6).
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥

1−βq
1−β , i ∈ C+1

Condition 7 relax the constraints in Condition 6. Meanwhile, it differs from Condition 4 only in that
the last inequality holds for clean samples with label +1. Therefore, we can follow the proof above
to show that Lemma 30 still holds in this case.

Then we consider the second scenario.

Case 2: p = 0, k − p ̸= 0

Similar to the previous part, there are two cases we need to consider under this scenario:

1. k − p < n2.

2. k − p = n2.

We will go over every case sequentially.

Case 2.1 k − p < n2

In this case, part of noisy samples are mixed. Denote the mixed samples as k1, k2, ..., kk−p. And
for every mixed sample ki, we have ri = βiξki

+ (1− βi)µki
. Then the conditions under Case 2.1

become:

Condition 8 (k − p noisy samples violating optimal token selection rule).
v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N , i /∈ [k − p]

ykiv
⊤rki ≥ 1, i ∈ [k − p]

We could also write the last inequality as

ykiβiv
⊤ξki + yki(1− βi)v

⊤µki ≥ 1, i ∈ [k − p].

Therefore,
ykiv

⊤ξki ≥ (1− yki(1− βi)v
⊤µki)/βi, i ∈ [k − p].

For noisy samples, we have yi = −1 when µi = µ1 and yi = 1 when µi = µ2, so yki
v⊤µki

≤ 0
and thus (1−yki

(1−βi)v⊤µki
)/βi ≥ 1. Compared to the constraint in Condition 1 that yki

v⊤µki
≥

1, i ∈ N , the new condition is strengthened. So mixing 1 more noisy samples is equal to strengthening
1 constraint in the original setting. Therefore, mixing k− p samples will not result in a better solution
than only mixing 1 noisy sample. Similarly, we can simplify this case to mixing only 1 noisy sample
and denote this sample as k∗. We have rk∗ = βξk∗ + (1− β)µk∗ and assume that ξk∗ = µ1.

Denote v′′ is the optimal solution under this condition, and the parameters in v′′ are λ′′1 , λ
′′
2 and θ′′i .

Then the conditions become:

Condition 9 (1 noisy sample violating optimal token selection rule).
v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N , i ̸= k⋆

yk⋆v⊤rk⋆ ≥ 1
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Plugging the representation (43) into the condition, we have:

λ′′1 · ∥µ1∥2 ≥ 1

−λ′′2 · ∥µ2∥2 ≥ 1

θ′′i · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θ
′′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N , i ̸= k⋆

−(1− β)λ′′1 · ∥µ1∥2 + β(θ′′k⋆ · ∥ξk⋆∥2 +
∑

i ̸=k⋆

yk⋆yiθ
′′
i ⟨ξi, ξk⋆⟩) ≥ 1

We first introduce the following lemma which estimates the parameters of the noises. We define

α =
1 + (1− β)λ′′1∥µ1∥2

β

for the convenience of the following proof.

Lemma 32. Suppose that Assumption 5 holds, under Condition 9, we have

θ′′k⋆ ≤ α

(1− κ)d− 2n2
√
d log(6n2/δ)

θ′′k⋆ ≥ α

(1 + κ)d

(
1−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

)
max

i∈N ,i̸=k⋆
θ′′i ≤

(1− κ)d+ 2(α− n2)
√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

min
i∈N ,i̸=k⋆

θ′′i ≥ 1

(1 + κ)d
·
(
1−

2αn2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

)
.

Proof of Lemma 31. From the last inequality in Condition 9 we have

θ′′k∗
∥ξk∗∥2 +

∑
i∈N ,i̸=k∗

yiyk∗θ
′′
i ⟨ξi, ξk∗⟩ ≥ α > 1.

The last inequality is because λ′′1∥µ1∥2 ≥ 1 and 0 < β < 1. Denote j = argmax
i∈[n]

θ′′i , we have

yjv
′′⊤ξj = θ′′j ∥ξj∥2 +

∑
i∈N ,i̸=j

yiyjθ
′′
i ⟨ξi, ξj⟩

≥ θ′′j (1− κ)d− n2 max
i∈[n]

θ′′i · 2
√
d log(6n2/δ)

= θ′′j ((1− κ)d− n2 · 2
√
d log(6n2/δ))

The first inequality is due to Lemma 57 and the last equation is from our definition of j. Consider the
contrary case when θ′′j >

α

(1−κ)d−2n2

√
d log(6n2/δ)

, we have

yjv
′′⊤ξj > α.

By the complementary slackness condition, if yjv′′⊤ξj >
1+λ′′

1 (1−β)∥µ1∥2

β then we must have
θ′′j = 0, and thus we reach a contradiction. Therefore, we have θ′′k⋆ ≤ θ′′j ≤ α

(1−κ)d−2n2

√
d log(6n2/δ)

.

Then denote j′ = argmax
i∈[n],i̸=k⋆

θ′′i , we have

yj′v
′′⊤ξj′ = θ′′j′∥ξj′∥2 +

∑
i∈N ,i̸=j′

yiyj′θ
′′
i ⟨ξi, ξj′⟩

≥ θ′′j′(1− κ)d− n2 max
i∈[n],i̸=j′

θ′′i · 2
√
d log(6n2/δ)− θ′′k⋆

√
d log(6n2/δ)

≥ θ′′j ((1− κ)d− n2 · 2
√
d log(6n2/δ))−

2α
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

.
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The first inequality is from Lemma 57 and the second inequality is from the upper bound of θ′′k⋆ we

just get. Consider the case when θ′′j′ >
(1−κ)d+2(α−n2)

√
d log(6n2/δ)

((1−κ)d−2n2

√
d log(6n2/δ))2

, we have

yj′v
′′⊤ξj′ > 1.

By the complementary slackness condition, if yj′v′′⊤ξj′ > 1 then we must have θ′′j′ = 0, and thus
we reach a contradiction.

Then we estimate the lower bound of θ′′j when j ̸= k∗. We have

1 ≤ yjv
′′⊤ξj = θ′′j ∥ξj∥2 +

∑
i∈[n],i̸=j

yiyjθ
′′
i ⟨ξi, ξj⟩ ≤ θ′′j (1 + κ)d+ n2 max

i∈[n]
θ′′i · 2

√
d log(6n2/δ)

≤ θ′′j (1 + κ)d+
1 + λ′′1(1− β)∥µ1∥2

β((1− κ)d− 2n2
√
d log(6n2/δ)

· 2n2
√
d log(6n2/δ),

where the last inequality is from the upper bound we just get. Therefore, we have

θ′′j ≥ 1

(1 + κ)d
·
(
1−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

· 1 + λ′′1(1− β)∥µ1∥2

β

)
for all j ∈ N and j ̸= k∗.
Lastly we lower bound θ′′k∗

. We have

1 + (1− β)λ′′1∥µ1∥2

β
≤ yk∗v

′′⊤ξk∗ = θ′′k∗
(1 + κ)d+ n2 max

i∈[n]
θ′′i · 2

√
d log(6n2/δ).

Similarly, we have

θ′′k∗
≥ 1

(1 + κ)d
· 1 + (1− β)λ′′1∥µ1∥2

β

(
1−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

)
.

After getting the bound of parameters, we could derive the norm difference as above

Lemma 33. Suppose that Assumption 5 holds, denote v and v′′ as the optimal solutions under
condition 1 and condition 9 respectively. We have

∥v′′∥22 − ∥vmm∥22 ≥ C3(1− β)

d
,

where C3 = Θ(1).

Proof of Lemma 33. From the third inequality in Condition 9, for i ∈ N , i ̸= k⋆ we have

θ′′i · ∥ξi∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′′
i′⟨ξi, ξi′⟩ ≥ 1− yiyk⋆θ′′k⋆⟨ξi, ξk⋆⟩.

Then we add yiyk⋆w⟨ξi, ξk⋆⟩ on both sides, where we set w = θ′′k⋆ − α−1

(1+κ)d−2
√

d log(6n2/δ)
≤ θ′′k⋆ .

Then we have

θ′′i · ∥ξi′∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′′
i′⟨ξi, ξi′⟩+ yiyk⋆w⟨ξi, ξk⋆⟩ ≥ 1− yiyk⋆(θ′′k⋆ − w)⟨ξi, ξk⋆⟩

≥ 1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

=
(1 + κ)d− 2α

√
d log(6n2/δ)

(1 + κ)d− 2
√
d log(6n2/δ)

. (49)

The second inequality is from Lemma 57. Now consider a new v = λ1µ1 +λ2µ2 +
∑

i∈[n]

yiθiξi with

λ1 = λ′′1 ; λ2 = λ′′2 ;
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θi = θ′′i /(1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)) for i ∈ [n], i ̸= k⋆

and
θk⋆ =

w

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

.

We can prove that v satisfies all constraints for vmm.

From the first two inequalities in Condition 9, we have λ1∥µ1∥2 = λ′′1∥µ1∥2 ≥ 1, −λ2∥µ2∥2 =

−λ′′2∥µ2∥2 ≥ 1. Then by dividing 1 − 2(θ′′k⋆ − w)
√
d log(6n2/δ) on both sides of (49), for

∀i ∈ N , i ̸= k⋆ we have

θi · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θi⟨ξi, ξi′⟩ ≥ 1.

Lastly we prove that θk⋆∥ξk⋆∥2 +
∑

i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ 1. From the last inequality in Condition 9

we have

θ′′k⋆ · ∥ξk⋆∥2 +
∑
i ̸=k⋆

yk⋆yiθ
′′
i ⟨ξi, ξk⋆⟩ ≥ α.

Dividing 1− 2(θ′′k⋆ − w)
√
d log(6n2/δ) on both sides, we get

θ′′k⋆∥ξk⋆∥2

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

+
∑
i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ α

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

.

Therefore we have

θk⋆∥ξk⋆∥2 +
∑
i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ α− (θ′′k⋆ − w)∥ξk⋆∥2

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

≥ α− (θ′′k⋆ − w)(1 + κ)d

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

= 1.

The second inequality is from Lemma 57 and the last equality is by our definition θ′′k⋆ − w =
α−1

(1+κ)d−2
√

d log(6n2/δ)
. Thus, v is a possible solution under Condition 1 and ∥v∥ ≥ ∥vmm∥.

Next we estimate the difference between ∥v′′∥2 and ∥v∥2. The expansion of ∥v′′∥2 and ∥v∥2 are:

∥v′′∥2 = λ′′21 ∥µ1∥2 + λ′′22 ∥µ2∥2 +
∑
i∈N

θ′′2i ∥ξi∥2 +
∑
i∈N

∑
j∈N

yiyjθ
′′
i θ

′′
j ⟨ξi, ξj⟩,

∥v∥2 = λ
2

1∥µ1∥2 + λ
2

2∥µ2∥2 +
∑
i∈N

θ
2

i ∥ξi∥2 +
∑
i∈N

∑
j∈N

yiyjθiθj⟨ξi, ξj⟩.

According to the condition (44), we have ∥v′′∥ ≤ 2∥vmm∥ = Θ(
√

1/ρ2 + ηn/d), which implies
that α = O(

√
n log n). Otherwise, we have

θ′′k⋆∥ξk⋆∥2 ≥ α−
∑
i̸=k⋆

yk⋆yiθ
′′
i ⟨ξi, ξk⋆⟩ = Ω(α).

It further yields that

∥v′′∥2 = Ω(
1

ρ2
) + Ω(

ηn

d
) + θ′′2k⋆∥ξk⋆∥2 = Ω(

1

ρ2
+
ηn

d
+
α2

d
) = Ω(

n log2 n

d
),

which contradicts with ∥v′′∥ = Θ(
√
1/ρ2 + ηn/d). We decompose the difference between ∥v′′∥2

and ∥v∥2 into four terms:

∥v′′∥2 − ∥v∥2 =(θ′′2k⋆ − θ
2

k⋆)∥ξk⋆∥2︸ ︷︷ ︸
I1

+
∑

i∈N ,i̸=k⋆

(θ′′2i − θ
2

i )∥ξi∥2︸ ︷︷ ︸
I2

−
∑
i∈N

∑
j∈N

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

+
∑
i∈N

∑
j∈N

yiyjθ
′′
i θ

′′
j ⟨ξi, ξj⟩︸ ︷︷ ︸

I4

.
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We now estimate I1 to I4 sequentially. For the first term,

I1 ≥ (θ′′2k⋆ − θ
2

k⋆)(1− κ)d = (θ′′k⋆ − θk⋆)(θ′′k⋆ + θk⋆)(1− κ)d

=
(α− 1)(1− 2θ′′k⋆

√
d log(6n2/δ))

(1 + κ)d− 2
√
d log(6n2/δ)

· Ω
(
1

d

)
· (1− κ)d

= Ω

(
α− 1

d

)
,

where the first inequality is from Lemma 57; the second equality is from Lemma 31; and the last
equality uses the fact that α = O(

√
n log n). Then we can further upper bound max

i∈N ,i̸=k⋆
θ′′i as

max
i∈N ,i̸=k⋆

θ′′i ≤
(1− κ)d+ 2(α− n2)

√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

= O(
1

d
). (50)

For the second term I2, we have

|I2| ≤
∑

i∈N ,i̸=k⋆

(θ
2

i − θ′′2i )(1 + κ)d

≤
(

1

(1− (θ′′k⋆ − w)
√
d log(6n2/δ))2

− 1

)
max

i∈N ,i̸=k⋆
θ′′2i · ηn(1 + κ)d

=
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
ηn

d
) = Õ

(
(α− 1)ηn

d3/2

)
.

The second inequality is from Lemma 31. The first equality is from (50) and the last equality is from
Assumption 5.

Then we bound | − I3 + I4| as:

| − I3 + I4| ≤
∑
i∈N

∑
j∈N\{i}

|θiθj − θ′′i θ
′′
j | · |⟨ξi, ξj⟩|

≤
∑

i∈N\{k⋆}

∑
j∈N\{k⋆,i}

|θiθj − θ′′i θ
′′
j | · |⟨ξi, ξj⟩|+ 2

∑
t∈N\{k⋆}

|θk⋆θt − θ′′k⋆θ′′t | · |⟨ξk⋆ , ξt⟩|

≤(ηn)2
(

1

(1− (θ′′k⋆ − w)
√
d log(6n2/δ))2

− 1

)
max

i∈N ,i̸=k⋆
θ′′2i · 2

√
d log(6n2/δ)

+ ηn

(
θ′′k⋆ − θk⋆

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

)
max

i∈N ,i̸=k⋆
θ′′i 4
√
d log(6n2/δ)

≤
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
(ηn)2(1 + κ)

d3/2
) +

α− 1

d
·O(ηn

c1
d
) · 2

√
d log(6n2/δ)

=O

(
(α− 1)η2n2

d2
+

(α− 1)ηn

d3/2

)
.

The third inequality is from Lemma 27 and Lemma 31; The fourth inequality is from the fact that

θ′′k⋆ − θk⋆

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

=
θ′′k⋆ − θk⋆ − 2θ′′k⋆(θ′′k⋆ − w)

√
d log(6n2/δ)

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

=
Ω(α−1

d )−O(α(α−1)
d3/2 )

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

> 0

So we have θ′′k⋆ − θk⋆

1−2(θ′′
k⋆−w)

√
d log(6n2/δ)

≤ θ′′k⋆ − θk⋆ ; The last equality is from Assumption 5.

Combining the above results, we have

∥v′′∥22 − ∥vmm∥22 ≥ Θ

(
α− 1

d

)
+O

(
(α− 1)ηn

d3/2

)
≥ C3(1− β)

d
.

Here C3 = Θ(1) is a constant.
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Now we can prove the main proposition in this case.

Proof of Proposition 16 under Case 2.1. From Lemma 33 we have

∥v′′∥22 − ∥vmm∥22 ≥ C3(1− β)

d
= T ′(1− β).

Here we substitute T ′ = C3

d ≥ 0. Then we have

Γ2 − Γ′′2 =
1

∥vmm∥2
− 1

∥v′′∥2
=

∥v′′∥2 − ∥vmm∥2

∥v′′∥2 · ∥vmm∥2
≥ T ′(1− β)

∥v′′∥2 · ∥vmm∥2
.

Therefore,

Γ− Γ′′ ≥ T ′(1− β)

(Γ + Γ′′)∥vmm∥2 · ∥v′∥2
≥ T ′(1− β)

2Γ∥vmm∥2 · ∥v′′∥2
=

T ′(1− β)

2∥vmm∥∥v′′∥2
≥ T ′(1− β)

2∥v′′∥3
.

The last inequality is from ∥v′′∥ ≥ ∥vmm∥. This implies

Γ′′ ≤ Γ− T ′(1− β)

2∥v′′∥3
≤ Γ− C1

∥vmm∥3nρ2
(1− β).

The last inequality is from our assumption that ∥v′′∥ ≤ 2∥vmm∥ and ρ2 = Ω(d/n).

Then we consider the other case.

Case 2.2 k − p = n2

In this case, all noisy samples are mixed. From previous analysis, this is equivalent to strengthening
all conditions yiv⊤ξi ≥ 1 while other conditions remain the same. As mixing k− p samples will not
result in a better solution than only mixing 1 noisy sample, the proof is the same as Case 2.1 and we
omit it for convenience.

Finally, we consider the last scenario.

Case 3: p ̸= 0, k − p ̸= 0

This scenario is more complex as both clean and noisy sets are mixed. There are four cases to consider

1. p < n1, k − p < n2. (Both clean and noisy sets are partially mixed)

2. p < n1, k − p = n2 (Clean set is partially mixed, noisy set is all mixed)

3. p = n1, k − p < n2 (Clean set is all mixed, noisy set is partially mixed)

4. p = n1, k − p = n2 (Both clean and noisy sets are all mixed)

We will go over every case to prove Proposition 16 holds.

Case 3.1 p < n1, k − p < n2

This case is simple because from the analysis above, mixing 1 more clean sample is equivalent to
adding 1 more constraint and mixing 1 more noisy sample is equivalent to strengthening 1 original
constraint. So mixing both sets will not result in a better solution than only mixing 1 clean sample.
Therefore, the proof is the same as Case 1.1 and we omit is for convenience.

Case 3.2 p < n1, k − p = n2

In this case, all noisy samples and part of clean samples are mixed. We can consider this case as an
extension of Case 2.2 by mixing some clean samples. From previous analysis, mixing 1 more clean
sample is equivalent to adding 1 more constraint. So this case will not result in a better solution than
Case 2.2. The following proof is the same as Case 2.2 and we omit it for convenience.

Case 3.3 p = n1, k − p < n2
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In this case, all clean samples and part of noisy samples are mixed. We can consider this case as an
extension of Case 1.2 by mixing some noisy samples. From previous analysis, mixing 1 more noisy
sample is equivalent to strengthening 1 original constraint. So this case will not result in a better
solution than Case 1.2. The following proof is the same as Case 1.2 and we omit it for convenience.

Case 3.4 p = n1, k − p = n2

This case is more complex. We cannot simply consider it as an extension of Case 2.2 because the
analysis of Case 2.2 is based on the condition that there exist clean samples that follow optimal token
selection rule. Denote ri = βiµi + (1− βi)ξi for i ∈ C and ri = (1− βi)µi + βiξi for i ∈ N . The
condition in this case becomes

Condition 10 (All samples are mixed).

yiv
′′⊤ri ≥ 1.

This indicates
βiyiλ

′′
i ∥µi∥2 + (1− βi)(θ

′′
i ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩) ≥ 1, i ∈ C,

(1− βi)yiλ
′′
i ∥µi∥2 + βi(θ

′′
i ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩) ≥ 1, i ∈ N .

Assume that min{λ′′1 · ∥µ1∥2,−λ′′2 · ∥µ2∥2} = q in optimal v′′. If q ≥ 1, we can directly follow the
proof in Case 2.2. Otherwise, denote α = 1−βiq

1−βi
. We have α > 1 due to q < 1 and 0 ≤ βi < 1.

Without losing generality, we assume λ′′1 · ∥µ1∥2 = q < 1. Then consider the following relaxed
condition

Condition 11 (Relaxed version of constraints in Condition 10).

θ′′i ∥ξi∥2 +
∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩ ≥ α, i ∈ C1.

Denote the optimal solution under Condition 11 as v̆ and the corresponding coefficients in v̆ as λ̆1, λ̆2
and θ̆i, i.e.

v̆ = λ̆1µ1 + λ̆2µ2 +
∑
i∈[n]

θ̆iξi.

Since the constraints in Condition 11 is a subset of the constraints in Condition 10, we have ∥v̆∥ ≤
∥v′′∥. Meanwhile, we have the following lemma to estimate θ̆i:

Lemma 34. Suppose that Assumption 5 holds, under Condition 11, we have

θ̆i = 0, i ∈ [n]\C1;

θ̆i ∈
[

α

(1 + κ)d

(
1−

n
√
d log(6n2/δ)

(1− κ)d− n
√
d log(6n2/δ)

)
,

α

((1− κ)d− 2n11
√
d log(6n2/δ)

]
, i ∈ C1.

Proof of Lemma 34. Note that Condition 11 does not have any constraint for samples with i ∈ [n]\C1.
Thus we have θ̆i = 0 for any i ∈ [n]\C1 in the representation (39). Denote j = argmax

i∈C1

θ̆i, then we

have

θ̆j · ∥ξj∥2 +
∑
k ̸=j

ykyj θ̆k⟨ξi, ξj⟩ ≥ θ̆j∥ξj∥2 − 2θ̆jn11
√
d log(6n2/δ) ≥ θ̆j((1− κ)d− 2n11

√
d log(6n2/δ)).

The two inequalities are from Lemma 57 and our definition of j. Consider the contrary case when
θ̆j >

α

((1−κ)d−2n11

√
d log(6n2/δ)

, we have

yj v̆
⊤ξj > α.
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By the complementary slackness condition, if yj v̆⊤ξj > α, then we must have θ̆j = 0, and thus we
reach a contradiction.
Then we lower bound θ̆i. For ∀i ∈ C1 we have

α ≤ θ̆i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̆i⟨ξi, ξj⟩ ≤ θ̆i(1 + κ)d+ 2n11 max
i∈[n]

θ̆i
√
d log(6n2/δ)

≤ θ̆i(1 + κ)d+
2αn11

√
d log(6n2/δ)

(1− κ)d− 2n11
√
d log(6n2/δ)

.

The second inequality is from Lemma 57 and the last inequality is from the upper bound of θ̆i we just
derived. Therefore, we have

θ̆i ≥
α

(1 + κ)d

(
1−

2n11
√
d log(6n2/δ)

(1− κ)d− 2n11
√
d log(6n2/δ)

)
.

From this Lemma we have θ̆i = Θ(α/d) for i ∈ C1. Similar as (48), under our assumption
∥v̆∥ ≤ 2∥vmm∥, we have α = O(log(n)). Next we estimate the difference between ∥v̆∥2 and
∥vmm∥2. We can prove that Lemma 33 still holds in this case.

Proof of Lemma 33. Under this case, the difference between ∥v̆∥22 and ∥vmm∥22 becomes

∥v̆∥2 − ∥vmm∥2 ≥
∑
i∈[n]

(θ̆2i − θ2i )∥ξi∥2 − (λ21 − λ̆21)∥µ1∥2 − (λ22 − λ̆22)∥µ2∥2︸ ︷︷ ︸
I1

−
∑
i∈N

∑
j∈N\{i}

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I2

+
∑
i∈C1

∑
j∈C1\{i}

yiyj θ̆iθ̆j⟨ξi, ξj⟩︸ ︷︷ ︸
I3

We then bound I1 ∼ I3 respectively. For I1 we have

|I1| ≥
∑
i∈C1

θ̆2i ∥ξi∥2 −
∑
i∈N

θ2i ∥ξi∥2 − 2/ρ2 ≥ n11 min
i∈[n]

θ̆i
2
(1− κ)d− n2 max

i∈N
θ2i (1 + κ)d− 2/ρ2

≥ α2n11(1− κ)

(1 + κ)2d

(
1−

2
√
d log(6n2/δ)

(1− κ)d− 2n11
√
d log(6n2/δ)

)
− n2(1 + κ)d

((1− κ)d− 2n2
√
d log(6n2/δ))2

− 2

ρ2

= Ω

(
n

d

)
.

The second inequality is from Lemma 57; The third inequality is from Lemma 27 and 34; The last
equality is due to the SNR condition ρ/

√
d = Ω(1/

√
n) so that 1

ρ2 ≤ n
4d . For I2, we have

|I2| ≤
∑
i∈N

max
i∈N

θ2i · 2
√
d log(6n2/δ) ≤

2n2
√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

= Õ

(
n

d3/2

)
.

The first inequality is from Lemma 57; The second inequality is from Lemma 27. Similarly, for |I3|
we have

|I3| ≤
∑
i∈C1

max
i∈C1

θ̆2i · 2
√
d log(6n2/δ) ≤

2n11α
2
√
d log(6n2/δ)

((1− κ)d− 2n11
√
d log(6n2/δ))2

= Õ

(
n

d3/2

)
.

The second inequality is from Lemma 34. Combining the above results, we have

∥v′′∥22 − ∥v∥22 ≥ Θ

(
n11
d

)
− Õ

(
n

d3/2

)
≥ C3n(1− β)

d
.

The remaining proof is the same as Case 2.1 and we omit it for convenience.

Therefore, we complete the proof for all possible scenarios.
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Training and Test Error Analysis
From Proposition 16 we can analyze the properties of both parameters to estimate the training and
test error.

In this section, we first get the convergence direction of parameters p and v. The main difference
between our setting with Ataee Tarzanagh et al. (2023b) is that they only consider the infinite case and
their results hold only when R, r → ∞. We extend their results to the finite case. Specifically, given
fixed upper bound R and r for ∥p∥ and ∥v∥ respectively, we denote the solution of the constrained
optimization (2) as (vr,pR) in this section for brevity.

Our main theorem in this section estimates the corresponding deviation of pR/R and vr/r from
their convergence direction pmm/∥pmm∥ and vmm/∥vmm∥. For a given p, it is elementary that the
margin induced by p is mini,ti ̸=αi(xiαi − xiti)

⊤p/∥p∥, thus when ∥p∥ = 1, the margin becomes
mini,ti ̸=αi(xiαi − xiti)

⊤p. And for a given v, the label margin induced by v is mini yiv
⊤ri/∥v∥.

Recall that the label margin induced by vmm is Γ and the margin of p-SVM induced by pmm is Ξ.

First we introduce a lemma to estimate the norm of ∥pmm∥. This will benefit our proof of the main
theorem.
Lemma 35 (Norm of pmm). Suppose that Assumption 5 holds, recall that the solution of (p-SVM) is
pmm. With probability at least 1− δ on the training dataset we have

1

ρ2
+
ηn

d
≤ ∥pmm∥2 ≤ 8

ρ2
+

17ηn

d
.

This implies

∥pmm∥ = Θ

(√
1

ρ2
+
ηn

d

)
.

Proof of Lemma 35. First we prove the upper bound. Consider the following possible solution p̃:

p̃ =
2(µ1 + µ2)

ρ2
+
∑
i∈N

4
ξi
d
. (51)

We then proved that p̃ satisfies (36). For k ∈ C we have

p̃⊤(µk − ξk) = 2−
∑
i∈N

4
⟨ξi, ξk⟩
d

≥ 2−
4n2
√
d log(6n2/δ)

d
≥ 1.

The first inequality is from the definition of d in Lemma 57 and the second inequality is from
Assumption 5. And for k ∈ N , we have

p̃⊤(ξk − µk) = −2 +
∑
i∈N

4
⟨ξi, ξk⟩
d

≥ −2 + 4(1− κ) +
∑

i∈N ,i̸=k

4
⟨ξi, ξk⟩
d

≥ −2 + 4(1− κ) +
4n2
√
d log(6n2/δ)

d
≥ 1.

The first and second inequalities are from Lemma 57; The last inequality is from Assumption 5.

Therefore, the max-margin solution pmm must have no greater norm than p̃. So we can upper bound
pmm as

∥pmm∥2 ≤ ∥p̃∥2 =
8

ρ2
+

16

d2

(∑
i∈N

∥ξi∥2 +
∑

i,j∈N ,i̸=j

⟨ξi, ξj⟩
)

≤ 8

ρ2
+

16

d2
(
(1 + κ)n2d+ 2n22

√
d log(6n2/δ)

)
≤ 8

ρ2
+

17ηn

d
.

The second inequality is from Lemma 57; The last inequality is from the definition of d in Assumption
5.

Then we prove for the lower bound. As pmm is the max-margin solution and satisfies KKT condition,
it can be expressed as the sum of signal and noise tokens. Then we decompose pmm = pmm

µ + pmm
ξ
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where pmm
µ = fmm

1 µ1 + fmm
2 µ2 and pmm

ξ =
∑

i∈[n] g
mm
i ξi. Note that µj ⊥ ξi for all j ∈

{±1}, i ∈ [n]. From Lemma 39, we have fmm
j ≥ 0.9/ρ2, so we can lower bound ∥pmm

µ ∥22 as

∥pmm
µ ∥22 = fmm2

1 ∥µ1∥2 + fmm2
2 ∥µ2∥2 ≥ 2 · 0.92

ρ2
≥ 1

ρ2
.

As for ∥pmm
ξ ∥2, from p-SVM condition, for every noisy sample we have

p⊤
mm(ξi − µi) ≥ 1,

which indicates

pmm⊤
ξ ξi = p⊤

mmξi ≥ 1 + p⊤
mmµi ≥ 1.9.

The last inequality is from Lemma 39. Sum up the inequality for all noisy sample, we have∑
i∈N

pmm⊤
ξ ξi ≥ 1.9n2.

Thus,

∥pmm
ξ ∥ ≥ 1.9n2

∥
∑
i∈N

ξi∥
=

1.9n2√∑
i∈N

∥ξi∥2 +
∑

i,j∈N
⟨ξi, ξj⟩

≥ 1.9n2√
2 · n2 · (1 + κ)d

≥
√
ηn

d
.

The second inequality is from Lemma 57 and the last inequality is from Assumption 5. Therefore,

∥pmm∥2 = |pmm
µ ∥22 + ∥pmm

ξ ∥22 ≥ 1

ρ2
+
ηn

d
.

Combining the results above, we have

∥pmm∥2 = Θ

(
1

ρ2
+
ηn

d

)
.

Definition 36. Let f : R2 → Rd. We say that

lim
x,y→∞

f(x, y) = L

iff ∀ϵ > 0 ∃M such that ∀x, y > M we have that ∥f(x, y)− L∥ < ϵ.

Remark 37. Let g : R → R be a function with limx→∞ g(x) = ∞. Assume that
limx,y→∞ f(x, y) = L, then limx→∞ f(x, g(x)) = L and limx→∞ f(g(x), x) = L

Now we introduce our key theorem:

Theorem 17. Suppose that Assumption 5 holds, with probability at least 1− δ on the training dataset,
we have

• The margin induced by p(r,R)/R in p-SVM is at least (1− ζ)Ξ, where

ζ =
log(4

√
ρ2 + (1 + κ)d∥vmm∥3dρ2)

RΞ
.

• The label margin induced by v(r,R)/r in v-SVM is at least (1 − γ)Γ, where γ =
2
√

ρ2+(1+κ)d

Γ exp((1−ζ)RΞ) .

Proof of Theorem 17. From Proposition 16, we have that for any ∥p∥, the label margin 1/∥v(p)∥ is
at most

Γ−
Cmaxi∈[n](1− siαi

)

∥vmm∥3nρ2
,
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where αi = 1 for i ∈ C and αi = 2 for i ∈ N . Recall that si = S(Xip) is the softmax probability
vector. We define qpi = 1− siαi to measure the amount of non-optimality (attention on non-optimal
token).

We first consider the convergence of pR and use contradiction to prove the first statement. Denote
pmm
R = Rpmm/∥pmm∥ which has the same norm as pR and the direction of pmm. Suppose the

margin induced by pR/R is at most (1−ζ)Ξ, i.e. mini,ti ̸=αi
(xiαi

−xiti)
⊤pR ≤ (1−ζ)RΞ,∀i ∈ [n].

Note that here each sequence only has two tokens, thus ti, αi ∈ [2], and ti = 3− αi.

According to Lemma 35, we have

Ξ = ∥pmm∥−1
2 = Θ((ηn/d+ 1/ρ2)−1/2).

Following the definition of qpi above, we set q̂max = supi∈[n] q
pR

i and q∗max = supi∈[n] q
pmm
R

i to be
the worst non-optimality in pR and pmm

R . Then we have

q
pmm
R

i =
exp(x⊤

iti
pmm
R )∑

t∈[2] exp(x
⊤
itp

mm
R )

≤
exp(x⊤

iti
pmm
R )

exp(x⊤
iαi

pmm
R )

≤ exp(−RΞ).

The last inequality is from the definition of pmm that p⊤
mm(xiαi

−xit) ≥ 1, so pmm⊤
R (xiαi

−xit) ≥
R/∥pmm∥ = RΞ. Thus, q∗max = supi∈[n] q

pmm

i ≤ exp(−RΞ). Then denote the output of attention
layer ri = X⊤

i S(Xip
mm
R ). Define ϵi = ∥ri − xiαi

∥, we have yi · r⊤i vmm ≥ yi · x⊤
iαi

vmm −
∥ri − xiαi

∥ · ∥vmm∥ ≥ 1− ϵi/Γ. So if we set ϵmax = supi∈[n] ϵi, vmm achieves a label margin of
at least Γ − ϵmax on (yi, ri)i∈[n]. To better estimate ϵmax, we define M = supi∈[n] ∥µi − ξi∥ ≤√
ρ2 + (1 + κ)d, then we have

ϵmax =M · q∗max ≤M exp(−RΞ). (52)
This implies the max-margin achieved by (pmm

R ,vmm
r ) is at least

yif(p
mm
R ,vmm

r ;xi) = yiv
mm⊤
r ri ≥ rΓ− rϵmax ≥ rΓ− rM exp(−RΞ). (53)

The first inequality is from yi · r⊤i vmm
r ≥ r(Γ− ϵi) and the last inequality is from (52).

Then we consider the case when mini,ti ̸=αi(xiαi − xiti)
⊤pR ≤ (1 − ζ)RΞ the minimal margin

constraint is ζ-violated by pR. Without losing generality we assume that 1 = argmin
i∈[n]

[(xiαi −

xit)
⊤pR]t ̸=αi

. Then we have

q̂max ≥
exp(x⊤

1t1pR)∑
t∈[2] exp(x

⊤
1tpR)

≥ 1

2

exp(x⊤
1t1pR)

exp(x⊤
1α1

pR)
≥ 1

2 exp((1− ζ)RΞ)
.

From Proposition 16, optimizing v-SVM on (yi, r̂i)i∈[n] can achieve the max-margin at most

min
i∈[n]

yif(pR,vr;xi) ≤ Γ− C

2∥vmm∥3nρ2
· e−(1−ζ)RΞ. (54)

And from the definition ζ = 1
RΞ log(2M∥vmm∥3nρ2/C), we have

C

2∥vmm∥3nρ2
exp(−(1− ζ)RΞ) > M exp(−RΞ)

for sufficiently large R, which implies
min
i∈[n]

yi · f(pR,vr;xi) < min
i∈[n]

yi · f(pmm
R ,vmm

r ;xi).

This contradicts with the problem definition (2) to maximize the margin.

Then we prove for the second statement. When the margin induced by pR/R in p-SVM is less than
(1− ζ)Ξ, we can use the proof above to derive a contradiction, so (xiα1

− xit)
⊤pR ≥ (1− ζ)RΞ

must hold. Then set r̂i = X⊤
i S(XipR), we have that

min
i∈[n]

yiv
⊤
r r̂i ≤ min

i∈[n]
yiv

⊤
r xiαi

+ sup
i∈[n]

|v⊤
r (r̂i − xiαi

)|

≤ (1− γ)Γr +M exp(−(1− ζ)RΞ)r

≤ (1− γ/2)Γr.
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The second inequality is from previous analysis that (xiαi −xit)
⊤pR ≥ (1− ζ)RΞ, so |r̂i −xi1| ≤

M exp(−(1− ζ)RΞ); The last inequality is from our definition γ = 2M
Γ exp((1−ζ)RΞ) .

Therefore, combining with (53), we have

γΓr/2 > rM exp(−RΞ),
which implies

min
i∈[n]

yi · f(pR,vr;xi) < min
i∈[n]

yi · f(pmm
R ,vmm

r ;xi).

Again this contradicts with the problem definition (2).

Then we have the following lemma to bound the derivation ζ and γ:
Lemma 38. Suppose that Assumption 5 holds, consider the same setting in Theorem 17, we have
ζ < 0.2 and γ < 1.

Proof of Lemma 38. From the definition of ζ in Theorem 17, we have

ζ =
log(2M∥vmm∥3nρ2/C)

RΞ
= C1

1

R
√
ηn/d+ 1/ρ2

log(M∥vmm∥3nρ2)

≤ C2
1

R
√
ηn/d+ 1/ρ2

log

(
n2(ρ2 + d)(ρ2ηn+ d)3

ρ2d3

)
=

C3

R
√
ηn/d+ 1/ρ2

log(ρn) < 0.2.

Here C1, C2, C3 = Θ(1). The first inequality is from the upper bound of ∥vmm∥ in Lemma 28 and
the last inequality is from the definition of R in Assumption 5. And for γ, we have

γ =
2M

Γ exp((1− ζ)RΞ)
= C ′

1

M∥vmm∥
exp(R/∥vmm∥)

≤ C ′
2

√
(ρ2 + d)(ηn/d+ 1/ρ2)

exp(R/
√
ηn/d+ 1/ρ2)

< 1.

Here C ′
1, C

′
2 = Θ(1). The first inequality is from the lower and upper bound of ∥vmm∥ in Lemma

28 and the last inequality is from the definition of R in Assumption 5.

Then we can estimate ⟨pR,µ⟩ with the following lemma:
Lemma 39. Suppose that Assumption 5 holds, with probability at least 1− δ on the training dataset,
pR should satisfy

0.5(1− ζ)RΞ ≤ ⟨pR,µj⟩ ≤ Rρ

for j ∈ {1, 2}.

Proof of Lemma 39. The upper bound is given by

⟨pR,µj⟩ ≤ ∥pR∥∥µj∥ = Rρ.

Then we use contradiction to prove for the lower bound. From Theorem 17, pR satisfies

p⊤
R(µi − ξi) ≥ (1− ζ)RΞ, i ∈ C

p⊤
R(ξi − µi) ≥ (1− ζ)RΞ, i ∈ N (55)

If ⟨pR,µj⟩ ≤ 0.5(1− ζ)RΞ, then for every clean sample from cluster j we must have ⟨pR, ξi⟩ ≤
−0.5(1− ζ)RΞ and thus

⟨pR,
∑
i∈Cj

ξi⟩ =
∑
i∈Cj

⟨pR, ξi⟩ ≤ −0.5(1− ζ)RΞn1j .

So we could estimate ∥pR∥ as follows

∥pR∥ ≥ 0.5(1− ζ)RΞ · n1j
1

∥
∑
i∈Cj

ξi∥
= 0.5(1− ζ)RΞ · n1j

1√∑
i∈Cj

∥ξi∥2 +
∑

i,j∈Cj

⟨ξi, ξj⟩

≥ 0.5(1− ζ)RΞ · n1j
1√

2 · n1j · (1 + κ)d
≥ 0.4RΞ ·

√
n1j√

2(1 + κ)d
.
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The first inequality is from the property of innerproduct; The second inequality is from Lemma 57
and the definition of d in Assumption 5; The last inequality is from Lemma 38. Meanwhile, from
Lemma 35 we have ∥pmm∥ ≤

√
8/ρ2 + 17ηn/d. Recall that Ξ = ∥pmm∥−1. Therefore, we further

have

∥pR∥ ≥ 0.4RΞ ·
√
n1j√

2(1 + κ)d
≥

√
0.42n1j

(8/ρ2 + 17ηn/d) · 2(1 + κ)d
·R

≥

√
0.04(n− ηn−O(

√
n))

(8/ρ2 + 17ηn/d) · (1 + κ)d
·R > R.

The second inequality is from Lemma 35; The third inequality is from Lemma 59 and the last
inequality is from Assumption 5 about SNR and η. This leads to a contradiction.

Now we can estimate the output of attention layer for some test sample (X, y).

Lemma 40. Suppose that Assumption 5 holds, with probability at least 1− δ on the training dataset,
for a given a test sample X, y, where X = (µ⋆, ξ⋆), µ⋆ can be µ1 or µ2, we have with probability
at least 1− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
that

⟨pR,µ
⋆⟩ − ⟨pR, ξ

⋆⟩ ≥ K,

where K ≤ 1
2 (1− ζ)RΞ and ζ,Ξ are defined in Theorem 17.

Proof of Lemma 40. Note that p⊤ξ⋆ follows Gaussian distribution N (0, R2), we have

P(⟨pR,µ
⋆⟩ − ⟨pR, ξ

⋆⟩ < K) = P(⟨pR, ξ
⋆⟩ > ⟨pR,µ

⋆⟩ −K) ≤ P(p⊤
Rξ

⋆ >
1

2
(1− ζ)RΞ−K)

≤ exp
(
− 1

2
(
1

2
(1− ζ)Ξ−K/R)2

)
.

The first inequality is from Lemma 39 and the second inequality comes from the property of Gaussian
tail probability.

We also have the following lemma to estimate vr. We first prove that vr can be expressed as the sum
of signal and noise tokens.

Lemma 41. The solution of constrained optimization problem (2) vr can be expressed in the form
that

vr = λ1µ1 + λ2µ2 +

n∑
i=1

θiξi.

Proof of Lemma 41. Similar to Theorem 17, define r̂i = X⊤
i S(XipR) as the output of attention

layer, we have

vr = argmax
∥v∥≤r

min
i∈[n]

yiv
⊤ri. (56)

Then denote s = min
i∈[n]

yiv
⊤ri and sr = min

i∈[n]
yiv

⊤
r ri. Then (56) can be written as

(vr, sr) = argmax
v,s

s, s.t. yiv⊤ri ≥ s, 1 ≤ i ≤ n

∥v∥ ≤ r.

The corresponding Lagrangian function is

L(s, ψ) = −s+
n∑

i=1

ψiyi(s− yiv
⊤ri) + ψ0(∥v∥2 − r2).
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Take derivative of this function on (s,v), we have

−
n∑

i=1

ψiyiri + 2ψ0v = 0.

Therefore from the last equation we can get

v =
1

2ψ0

n∑
i=1

ψiyiri.

As ri = βiµi + (1− βi)ξi for every i ∈ [n], v can be expressed as the combination of signal and
noise token of every sample:

vr = λ1µ1 + λ2µ2 +

n∑
i=1

θiξi.

Based on this representation, we can then bound the parameters in vr:
Lemma 42. Suppose that Assumption 5 holds, denote vr = λ1µ1 + λ2µ2 +

∑
i∈[n]

θiξi. Then with

probability at least 1− δ on the training dataset, we have

λ1 ≥ (1− γ)Γr/ρ2,

λ2 ≤ −(1− γ)Γr/ρ2,

|θi| ≤ 2
√
1/ρ2 + 5ηn/d · Γr/

√
d.

Proof of Lemma 42. The first two statements are obvious because from Theorem 17 we have

yiv
⊤
r µi ≥ (1− γ)Γr,

for ∀i ∈ C. This implies |λj | ≥ (1 − γ)Γr/ρ2 for j ∈ {1, 2}. Meanwhile, we decompose
vr = vµ + vξ where vµ = λ1µ1 + λ2µ2 and vξ =

∑
i∈[n]

θiξi. And we can upper bound ∥vξ∥ as

∥vξ∥2 = ∥vr∥2 − ∥vµ∥2 ≤ r2 − λ21ρ
2 − λ22ρ

2 ≤ r2(1− 2(1− γ)2Γ2/ρ2).

The first inequality is from ∥v∥ ≤ r and the second inequality is from the first two statements we just
proved. Therefore, denote j = argmax

i∈[n]

θi, we have

θ2j∥ξj∥2 ≤ ∥vξ∥2 ≤ r2(1− 2(1− γ)2Γ2/ρ2).

Then we can upper bound |θj | as

θ2j ≤ r2(1− 2(1− γ)2Γ2/ρ2)/∥ξj∥2 ≤ r2(1− 2(1− γ)2Γ2/ρ2)/(1− κ)d

= r2
(
1− 2(1− γ)2

∥vmm∥2ρ2

)
/(1− κ)d ≤ r2

(
1− 1

(2/ρ2 + 5ηn/d)ρ2

)
/(1− κ)d

=
1 + 5ηnρ2/d

2 + 5ηnρ2/d
· r2

(1− κ)d
≤
(

1

ρ2
+

5ηn

d

)
· Γ

2r2

2d
.

The second inequality is from Lemma 57; The third inequality is from Lemma 28 that ∥vmm∥ ≤√
2/ρ2 + 5ηn/d and our definition of γ =

2
√

ρ2+(1+κ)d

Γ exp((1−ζ)RΞ) ; The last inequality is from Γ =

∥vmm∥−1 ≥ (2/ρ2 + 5ηn/d)−1. Thus, we can bound |θj | as

|θj | ≤ 2
√

1/ρ2 + 5ηn/d · Γr/
√
d.

Therefore, we can prove the main theorem.
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Proof of Theorem 6. First we show that the model can perfectly classify all training samples. From
Theorem 17, we have

yiv
⊤
r ri ≥ (1− γ)Γr > 0

for ∀i ∈ [n]. The last inequality is from Lemma 38. Thus yi = sign(f(Xi;pR,vr)) for all i ∈ [n].
Then we bound the test error. Given a test sample X, y, where X = (µ⋆, ξ⋆), µ⋆ can be µ1 or µ2.
From Remark58, with probability at least 1− 6n exp(−d/4C1n

2),

|⟨ξ⋆, ξi⟩| ≤
d

C1n
. (57)

According to Lemma 40, with probability at least 1− exp
(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
, we have

y · f(pR,vr;X) ≥ ⟨yvr, e
Kµ⋆ + ξ⋆⟩
eK + 1

≥ eK(1− γ)Γr∥µ⋆∥2

ρ2(eK + 1)
− 1

eK + 1

∑
i∈[n]

|θi| · |⟨ξi, ξ⋆⟩|.

(58)

Let K = log(
√
d
√

1/ρ2 + ηn/d) + C < 1
2 (1 − ζ)RΞ. By uniform bound, we have that with

probability at least 1− 6n exp(−d/4C1n
2)− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
,

y · f(pR,vr;X) ≥
eK(1− γ)Γr − n · d/(C1n) · 2

√
1/ρ2 + ηn/d · Γr/

√
d

1 + eK

≥
0.8eKΓr −

√
d/C1 · 2

√
1/ρ2 + ηn/d · Γr

1 + eK

> 0,

where the first inequality uses (57), (58) and Lemma 42; The second inequality is from Lemma 38
and the last inequality is from Assumption 5 and our selection of K. Therefore,

P(y ̸= f(pR,vr;X)) ≤ exp
(
− 1

2
(
1

2
(1− ζ)Ξ− K

R
)2
)
+ δ,

where ζ = log(2M∥vmm∥3nρ2)
RΞ = Θ

(√
ηn/d+1/ρ2

R log(ρn)
)

, K = log(
√
d
√
1/ρ2 + ηn/d) + C =

Θ(log(
√
d/ρ2 + ηn) and Ξ = ∥pmm∥−1

2 = Θ((ηn/d+1/ρ2)−1/2). Plugging in the order of Ξ and
K, we have

P(X,y)∼D(y ̸= sign(f(X;pR,vr)))

= P(X,y)∼D(y ̸= sign(f(X;pR,vr)), y = −ỹ)
+ P(X,y)∼D(y ̸= sign(f(X;pR,vr)), y = ỹ)

= η + P(X,y)∼D(y ̸= sign(f(X;pR,vr)), y = ỹ)

≤ η + exp(−d/C1n
2) + exp

(
−Θ

( (1− ζ)√
ηn/d+ 1/ρ2

−
log(nd

√
1/ρ2 + ηn/d)

R

)2)
= η + exp(−Ω(

d

n2
)) + exp

(
− Ω

( (1− ζ)√
ηn/d+ 1/ρ2

− log(d)

R

)2)
,

where ζ = Θ
(√

ηn/d+1/ρ2

R log(ρn)
)

. This completes the proof.

A.5.3 Proof of Thm. 8

Lemma 43. Consider the next joint-constrained max margin solution:

(vt,pt) = argmax
∥v∥2+∥p∥2≤t

min
i
yif(Xi;p,v). (59)

Let rt := ∥vt∥ and Rt := ∥vt∥, then (vt,pt) =
(
v(rt,Rt),p(rt,Rt)

)
, where

(
v(rt,Rt),p(rt,Rt)

)
is a

solution to Problem 2. Moreover, under Assumption 5 (items 1-3), with probability at least 1− δ over
the random data generation, we have that rt → ∞, Rt → ∞ as t→ ∞.
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Proof. By Proposition 16, with probability at least 1− δ, for all p ∈ Rd, the token selection under
p results in a label margin of at most Γ− c ·max

i∈[n]
(1− spiαi

) in 26 (with ri = X⊤
i S(Xip)), where

αi = I(i ∈ C) + 2I(i ∈ N ), spi = S(Xip) is the softmax probabilities, and c := C/|vmm∥3nρ2 is
some constant (which may depends on n and d, but not in t).

Observe that as the norm of v increases, the margin increases; thus, it’s easy to verify that ∥vt∥ → ∞
as t → ∞. We argue that also ∥pt∥ → ∞ as t → ∞. To see that, assume by contradiction that
∥pt∥ ≤ R0 for some arbitrary large t that will be determined later. Set Γ = 1/ ∥vmm∥ , ∥vt∥ = rt,
ṽmm = (rt − 1)Γvmm. Hence t = r2t +R2

0 and ∥ṽmm∥2 = (r− 1)2. The idea is that by decreasing
∥vt∥ by 1, we can choose p with ∥p∥2+(rt− 1)2 = t = r2t +R

2
0, i.e., ∥p∥2 = 2rt− 1+R2

0, which
can be arbitrary large for large enough t. Set Π := 1/ ∥pmm∥ and p̃mm :=

√
2rt − 1 +R2

0Πpmm.
The proof strategy is obtaining a contradiction by proving that (ṽmm, p̃mm) is a strictly better
solution compared to (vt,pt). Define qpi = 1− spiαi

to be the amount of non-optimality sopftmax
probability where spi = S(Xip) is the softmax probabilities and αi = 1 iff i ∈ C and 2 otherwise.
Then we have that

max
i
qpt

i ≥ κ

where κ > 0 is a constant that depends just on R0 and data parameters (e.g. n, d, ρ, δ). On the other
hand, for every ϵ > 0, we have that

q∗ = max
i
qp̃mm

i ≤ ϵ,

for large enough rt i.e. large enough t. Therefore, By Proposition 16 (see the first paragraph in the
proof), we can upper bound the margin induced by vt on (Yi, ri) for ri = X⊤

i S(Xipt) by

min
i∈[n]

yiv
⊤
t ri ≤ rt(Γ− cκ),

for some constant c > 0. On the other hand, the margin induced by ṽmm on (Yi, ri) for ri = xiαi

is (rt − 1)Γ. This means that we margin induced by ṽmm on (yi, ri) for ri = X⊤
i S(Xip̃mm) is at

least

min
i
yir

⊤
i ṽmm ≥ min

i
yix

⊤
iαi

ṽmm − q∗
∥∥∥x(1)

i − x
(2)
i

∥∥∥ ∥ṽmm∥

≥ (rt − 1)(Γ−Mϵ),

where M = supi∈n

∥∥∥x(1)
i − x

(2)
i

∥∥∥. Observe that this lower bound is bigger than the previous upper
bound when

(rt − 1)(Γ−Mϵ) > rt(Γ− cκ)

Mϵ < −(Γ−Mϵ)/rt + cκ.

Choose large enough t such that (Γ − Mϵ)/rt < cκ/2 and Mϵ < cκ/2, gives us the desired
contradiction. Recall that Rt := ∥pt∥ and rt := ∥vt∥. Since r2t +R2

t ≤ t, we have that (vt,pt is a
solution to Problem 2 with r = rt, R = Rt, and (v(rt,Rt),p(rt,Rt)) is a solution to Problem 59.

Proof of Thm. 8. By Thm. 6, with probability at least 1 − δ, the training set is feasible, i.e. exists
(v,p) such that mini∈[n] yif(Xi;v,p) > 0. Therefore, for any γ > 0, with probability at least
1− δ, we have that mini∈[n] yif(Xi;vγ ,pγ) ≥ γ, which proves the first part of the Thm. Next, we
show that the classifier sign(f(X;pγ ,vγ)) generalizes well, for large enough γ. Recall the next
joint-constrained max margin solution:

(vt, pt) = argmax
∥v∥2+∥p∥2≤t

min
i
yif(Xi;p,v), (60)

which was introduced in Lemma 43. Fix γ > 0, and let (vγ ,pγ) be the solution of Problem 3. Define
t(γ) := ∥vγ∥2 + ∥pγ∥2. We argue that (vγ ,pγ) is a solution to Problem 60 for t = t(γ). Indeed, let

m := max
∥v∥2+∥p∥2≤t(γ)

min
i∈[n]

yif(Xi;p,v)
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be the maximum margin for Problem 60 with t = t(γ). Assume by contradiction that

min
i∈[n]

yif(Xi;pγ ,vγ) < m,

which implies that

γ ≤ min
i∈[n]

yif(Xi;pγ ,vγ) < m.

Let (v∗,p∗) be a solution to Problem 60 with t = t(γ) i.e. ∥v∗∥2 + ∥p∗∥2 = t(γ) and
mini∈[n] yif(Xi;p

∗,v∗) = m > γ. Write v′ := (γ/m) · v∗. We remind that f(X;p,v) =

v⊤X⊤S(Xp) and overall we get that

• ∥v′∥2 + ∥p∗∥2 = (γ/m)2 ∥v∗∥2 + ∥p∗∥2 < ∥v∗∥2 + ∥p∗∥2 = t(γ)

• mini∈[n] yif(Xi;p
∗,v′) = γ

m mini∈[n] yif(Xi;p
∗,v∗) = γ

m ·m = γ,

which contradicts the optimality of (vγ ,pγ) to Problem 3. We conclude that (vγ ,pγ) is a solution
to Problem 60 for t = t(γ), i.e. (vγ ,pγ) =

(
vt(γ),pt(γ)

)
, where

(
vt(γ),pt(γ)

)
is a solution for

Problem 60 with t = t(γ). Let rt(γ) :=
∥∥vt(γ)

∥∥ and Rt(γ) :=
∥∥pt(γ)

∥∥. By Lemma 43 we have

(vγ ,pγ) =
(
vt(γ),pt(γ)

)
=
(
v(rt(γ),Rt(γ)),p(rt(γ),Rt(γ))

)
, (61)

and that rt(γ) → ∞, Rt(γ) → ∞ as t(γ) → ∞. Clearly t(γ) → ∞ as γ → ∞. By Thm. 6, The
classifier sign(f(X;pR,vr)) generalizes well on test data:

P(X,y)∼D(y ̸= sign(f(X;p(r,R),v(r,R))))

= η + exp(−Ω(d/n2)) + exp
(
−Θ

( (1− ζ)√
ηn
d + 1

ρ2

− log(d)

R

)2)

In particular, there exists r0, R0 such that for any r ≥ r0, R ≥ R0, the above probability can be
upper bound by η + exp(−Ω(d/n2)) + exp(−Θ((1/ρ2 + ηn/d)−1)) (see Remark 7). Choose large
enough γ0 such that for any γ ≥ γ0 we have that rt(γ) ≥ r0 and Rt(γ) ≥ R0. Then we conclude

P(X,y)∼D (y ̸= sign(f(X;pγ ,vγ)))

= P(X,y)∼D

(
y ̸= sign

(
f(X;p(rt(γ),Rt(γ)),v(rt(γ),Rt(γ)))

))
≤ η + exp(−Ω(d/n2)) + exp(−Θ((1/ρ2 + ηn/d)−1)),

where the first equality is from Eq. 61, as required.

A.5.4 Proof of Thm. 10

Proof Sketch
First we prove that in this case, only by selecting the noise token for every sample can we achieve the
largest margin in the downstream task,

r∗i = ξi,∀i ∈ [n] (62)

Similarly, we define the respective max-margin solution for p and v in this case.
Definition 44 (p-SVM, negative case). p should satisfy

pmm(α) = argmin
p

∥p∥

subjected to

p⊤(ξi − µi) ≥ 1, (63)

for all 1 ≤ i ≤ n. Ξ = 1/∥pmm∥ is the margin induced by pmm.
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Definition 45 (v-SVM, negative case).

v(p) = argmin
v∈Rd

∥v∥ s.t. yi · v⊤ri ≥ 1, for all i ∈ [n]. (64)

Γ(p) = 1/∥v(p)∥ is the label margin induced by v and p. When ri = ξi, i ∈ [n],

vmm = argmin
v∈Rd

∥v∥ s.t. yi · v⊤ξi ≥ 1, for all i ∈ [n]. (65)

Γ = 1/∥vmm∥ is the label margin induced by vmm.

To prove this token selection is optimal, we need to explain that the optimality of the token choice is
strict in the sense that mixing other tokens will shrink the label margin. We formalize this into the
following proposition:
Proposition 46 (Optimal Token Condition). Suppose that Assumption 9 holds, with probability at
least 1− δ on the training dataset, for all p, the token selection under p results in a label margin of
at most Γ− c ·max

i∈[n]
(1− si2).

Then we derive the convergence direction of p and v by Theorem 17. Note that as ∥p∥ → ∞, the
attention is more focused on the noise token for every training sample. Therefore, the output of signal
token is upper bounded by a small value.

Consider a test sample (X, y),X = (µ′, ξ′). As ∥p∥ increasing, the noise token ξ′ will will
dominate the overall output if p⊤

Rξ
′ ≥ 0, which indicates the output of attention layer will close to

the noise token, r′ → ξ′. Meanwhile, we can prove that pR and vr are near orthogonal, so p⊤
Rξ

′ and
v⊤
r ξ

′ are nearly independent variables subjected to Gaussian distribution. Therefore, the probability
that yiv⊤

r ξ
′ < 0 is at least constant order.

Optimal Token Condition
First we find the optimal token selection in this case.
Proposition 46 (Optimal Token Condition). Suppose that Assumption 9 holds, with probability at
least 1− δ on the training dataset, for all p, the token selection under p results in a label margin of
at most Γ− c ·max

i∈[n]
(1− si2).

Proof of Proposition 46. Similar as above, we consider the following three situations:

1. p ̸= 0, k − p = 0. (All wrong token selections come from clean set)

2. p = 0, k − p ̸= 0. (All wrong token selections come from noisy set)

3. p ̸= 0, k − p ̸= 0. (Wrong token selections are from both sets)

We will discuss each situation specifically and prove that Proposition 16 holds in every possible case.

Situation 1: p ̸= 0, k − p = 0

First, let’s see the condition under the optimal choice of tokens:

Condition 12 (Original Condition).

yiv
⊤ξi ≥ 1, i ∈ [n]

Similarly, vmm also satisfies the KKT conditions of the max-margin problem (37) in this case, so we
could write v as

v = λ1µ1 + λ2µ2 +
∑
i∈[n]

yiθiξi. (66)

Plugging (66) in the condition 12, we can rewrite these conditions as:

θi · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θi′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n].

Then we introduce a lemma to estimate the parameters of optimal solution under this condition:
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Lemma 47 (Balanceing noise factor for KKT point). Suppose that Assumption 9 holds, under
Condition 12, we have

max
i∈[n]

θi ≤
1

(1− κ)d− 2n
√
d log(6n2/δ)

,

min
i∈[n]

θi ≥
(1− κ)d− 4n

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

.

Proof of Lemma 47. First we prove the upper bound. Denote j = argmax
i∈[n]

θi, we have

yjv
⊤ξj =

∑
i∈[n]

yiyjθi⟨ξi, ξj⟩ = θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩

≥ θj · (1− κ)d− nθj · 2
√
d log(6n2/δ)

The last inequality is because Lemma 57 and the definition of j. Consider the contrary case when
θj >

1

(1−κ)d−2n
√

d log(6n2/δ)
, we have

yjv
⊤ξj >

1

(1− κ)d− 2n
√
d log(6n2/δ)

· ((1− κ)d− n · 2
√
d log(6n2/δ)) = 1.

By the KKT conditions, if yjv⊤ξj > 1 then we must have θj = 0, and thus we reach a contradiction.

Then we prove the lower bound. For ∀j ∈ [n] we have

1 ≤ θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩ ≤ θj · (1 + κ)d+ nmax
i∈[n]

θi · 2
√
d log(6n2/δ)

≤ θj · (1 + κ)d+
n

(1− κ)d− 2n
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).

The second inequality is due to Lemma 57 and the last inequality is from the upper bound we just get.
Therefore, we have

θj ≥
(1− κ)d− 4n

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

This completes the proof.

As for the signal parameters λ1 and λ2, to achieve the minimal norm for v, it is obvious that
λ1 = λ2 = 0. Then we can estimate ∥vmm∥ in this case:

Lemma 48 (Norm of vmm). Suppose that Assumption 9 holds, with probability at least 1− δ on the
training dataset, for the solution vmm of (37) under the token selection (62), we have

n

2d
≤ ∥vmm∥2 ≤ 5n

d
.

This implies

∥vmm∥ = Θ

(√
n

d

)
.

Proof of Lemma 48. As vmm is the max-margin solution and satisfies KKT condition, it can be
represented as

vmm = λ1µ1 + λ2µ2 +
∑
i∈C

yiθiξi +
∑
i∈[n]

yiθiξi. (67)
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As there is no constraint on λ1, λ2, both of them can take 0 to achieve max-margin. So we could
lower bound ∥vmm∥ as

∥vmm∥2 ≥
∑
i∈[n]

θ2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩ ≥ O

(
n2

d3/2

)
≥ n

2d
.

The second inequality is from Lemma 47 that θi = Θ(1/d) for i ∈ [n] and the last inequality is from
Assumption 9.

Then to upper bound ∥vmm∥, consider the following possible solution ṽ

ṽ =
∑
i∈[n]

2yiξi/d.

For i ∈ [n], we have

yiṽ
⊤ri = yiṽ

⊤ξi = 2∥ξi∥2/d+
∑

j∈[n],j ̸=i

2yiyj⟨ξi, ξj⟩/d

≥ 2(1− κ)− 2n
√

log(6n2/δ)/d ≥ 1.

The first inequality is from Lemma 57 and the second inequality is from Assumption 9. Therefore, ṽ
is a possible solution of SVM problem 26 when p converges to pmm. So we have

∥vmm∥2 ≤ ∥ṽ∥2 =
∑
i∈[n]

4∥ξi∥2/d2 +
∑
i∈[n]

∑
j∈[n]

4yiyj⟨ξi, ξj⟩/d2 ≤ 5n

d
.

The last inequality is from Lemma 57, Lemma 59 and Assumption 9. Combine the results above, we
have ∥vmm∥2 = Θ(nd ).

Denote the mixed samples as k1, k2, ..., kp. And for every mixed sample ki, we have rki
= (1 −

βi)µki
+ βiξki

. Without losing generality, we assume that yki
= +1 for all i ∈ [p]. Then the

conditions under Situation 1 become

Condition 13 (p clean samples violating optimal token selection).{
yiv

⊤ξi ≥ 1, i ∈ [n]\[p]
v⊤rki

≥ 1, i ∈ [p]

Denote the max-margin solution under this condition as v′ with parameters λ′1, λ
′
2, θ

′
i. Plugging this

representation into the condition 13, we have:
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n]\[p]

(1− βi)λ
′
1 · ∥µ1∥2 + βi(θ

′
ki

· ∥ξki∥2 +
∑

i′ ̸=ki

yi′θ
′
i′⟨ξki , ξi′⟩) ≥ 1, i ∈ [p]

We consider two cases: λ′1∥µ1∥2 < 1 and λ′1∥µ1∥2 ≥ 1. First when λ′1∥µ1∥2 < 1, the condition for
mixed clean sample becomes:

θ′ki
· ∥ξki

∥2 +
∑
i′ ̸=ki

yi′θ
′
i′⟨ξki

, ξi′⟩ ≥
1− (1− βi)λ

′
1∥µ1∥2

βi
> 1,

which indicates that the condition for θ′ki
is strengthened. So mixing 1 more clean sample is equal to

strengthening 1 constraint in the original setting. Therefore, mixing p samples will not result in a
better solution than only mixing 1 clean sample. Then we can simplify this case to mixing only 1
clean sample and denote this sample as k∗, rk∗ = (1− β)µ1 + βξk∗ . Now the condition becomes:

Condition 14 (1 clean sample violating optimal token selection).
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n]\{k∗}

(1− β)λ′1 · ∥µ1∥2 + β(θ′k∗
· ∥ξki

∥2 +
∑

i′ ̸=k∗

yi′θ
′
i′⟨ξk∗ , ξi′⟩) ≥ 1
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Similarly, we introduce the following lemma which estimates the parameters in v′. We define

α =
1− (1− β)λ′1∥µ1∥2

β

for the convenience of the following proof.

Lemma 49. Suppose that Assumption 9 holds, under condition 14, with probability at least 1− δ on
the training dataset, we have

θ′k∗
≤ α

(1− κ)d− 2n
√
d log(6n2/δ)

,

θ′k∗
≥ α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
,

max
i∈[n]\{k∗}

θ′i ≤
(1− κ)d+ 2(α− n)

√
d log(6n2/δ)

((1− κ)d− 2n
√
d log(6n2/δ))2

,

min
i∈[n]\{k∗}

θ′i ≥
1

(1 + κ)d
·
(
1−

2nα
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Proof of Lemma 49. Denote j = argmax
i∈[n]

θ′i, we have

yjv
′⊤ξj = θ′j∥ξj∥2 +

∑
i∈[n],i̸=j

yiyjθ
′
i⟨ξi, ξj⟩

≥ θ′j(1− κ)d− nmax
i∈[n]

θ′i · 2
√
d log(6n2/δ)

= θ′j((1− κ)d− n · 2
√
d log(6n2/δ)).

The first inequality is due to Lemma 57 and the last equation is from our definition of j. Consider the
contrary case when θ′j >

α

(1−κ)d−2n
√

d log(6n2/δ)
, we have

yjv
′⊤ξj > α.

By the KKT conditions, if yjv′⊤ξj >
1+λ′

1(1−β)∥µ1∥2

β then we must have θ′j = 0, and thus we reach
a contradiction. Therefore, θ′k⋆

≤ θ′j ≤ α

(1−κ)d−2n
√

d log(6n2/δ)
. Then denote j′ = argmax

i∈[n],i̸=k⋆

θ′′i , we

have

yj′v
′⊤ξj′ = θ′j′∥ξj′∥2 +

∑
i∈[n],i̸=j′

yiyj′θ
′
i⟨ξi, ξj′⟩

≥ θ′j′(1− κ)d− n max
i∈[n],i̸=j′

θ′i · 2
√
d log(6n2/δ)− θ′k⋆

√
d log(6n2/δ)

≥ θ′j((1− κ)d− n · 2
√
d log(6n2/δ))−

2α
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

.

The first inequality is from Lemma 57 and the second inequality is from the upper bound of θ′k⋆
we

just get. Consider the case when θ′j′ >
(1−κ)d+2(α−n)

√
d log(6n2/δ)

((1−κ)d−2n
√

d log(6n2/δ))2
, we have

yj′v
′⊤ξj′ > 1.

By the complementary slackness condition, if yj′v′′⊤ξj′ > 1 then we must have θ′j′ = 0, and thus
we reach a contradiction.
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Next we estimate the lower bound of θ′j when j ̸= k∗. We have

1 ≤ yjv
′⊤ξj

= θ′j∥ξj∥2 +
∑

i∈[n],i̸=j

yiyjθ
′
i⟨ξi, ξj⟩

≤ θ′j(1 + κ)d+ nmax
i∈[n]

θ′i · 2
√
d log(6n2/δ)

≤ θ′j(1 + κ)d+
α

(1− κ)d− 2n
√
d log(6n2/δ)

· 2n
√
d log(6n2/δ)

The last inequality is from the upper bound of θ′k∗
we just get. Therefore, we have

θ′j ≥
1

(1 + κ)d
·
(
1−

2nα
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
for all j ∈ [n] and j ̸= k∗.

Last we lower bound θ′k∗
. We have

α ≤ ykv
′′⊤ξk∗

= θ′k∗
(1 + κ)d+ nmax

i∈[n]
θ′i · 2

√
d log(6n2/δ)

Similarly, we have

θ′k∗
≥ α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Therefore, we could estimate the difference between ∥v′∥2 and ∥vmm∥2.

Lemma 50. Suppose that Assumption 9 holds, with probability at least 1− δ on the training dataset,
denote v and v′ as the optimal solutions under condition 12 and condition 14 respectively. We have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− β)

d
.

where C1 = Θ(1) is a constant.

Proof of Lemma 50. From the first inequality in Condition 14, for i[n], i ̸= k⋆ we have

θ′i · ∥ξi∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1− yiyk⋆

θ′k⋆
⟨ξi, ξk⋆

⟩.

Then we add yiyk⋆
w⟨ξi, ξk⋆

⟩ on both sides, where we set w = θ′k⋆
− α−1

(1+κ)d−2
√

d log(6n2/δ)
≤ θ′k⋆ .

Then we have

θ′i · ∥ξi′∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′
i′⟨ξi, ξi′⟩+ yiyk⋆

w⟨ξi, ξk⋆
⟩ ≥ 1− yiyk⋆

(θ′k⋆ − w)⟨ξi, ξk⋆
⟩

≥ 1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

=
(1 + κ)d− 2α

√
d log(6n2/δ)

(1 + κ)d− 2
√
d log(6n2/δ)

. (68)

The second inequality is from Lemma 57. Now consider a new v = λ1µ1 +λ2µ2 +
∑

i∈[n]

yiθiξi with

λ1 = λ′1; λ2 = λ′2;

θi = θ′i/(1− 2(θ′k⋆
− w)

√
d log(6n2/δ)) for i ∈ [n], i ̸= k⋆
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and
θk⋆

=
w

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

.

We can prove that v satisfies all constraints for vmm.

By dividing 1− 2(θ′k⋆
− w)

√
d log(6n2/δ) on both sides of (68), for ∀i ∈ [n], i ̸= k⋆ we have

θi · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θi⟨ξi, ξi′⟩ ≥ 1.

Then we prove that θk⋆∥ξk⋆∥2 +
∑

i ̸=k⋆

yiyk⋆
θi⟨ξi, ξk⋆

⟩ ≥ 1. From the last inequality in Condition 14

we have

θ′k⋆
· ∥ξk⋆

∥2 +
∑
i̸=k⋆

yk⋆
yiθ

′
i⟨ξi, ξk⋆

⟩ ≥ α.

Dividing 1− 2(θ′k⋆
− w)

√
d log(6n2/δ) on both sides, we get

θ′k⋆
∥ξk⋆

∥2

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

+
∑
i̸=k⋆

yiyk⋆
θi⟨ξi, ξk⋆

⟩ ≥ α

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

.

Therefore we have

θk⋆
∥ξk⋆∥2 +

∑
i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥
α− (θ′k⋆

− w)∥ξk⋆
∥2

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

≥
α− (θ′k⋆

− w)(1 + κ)d

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

= 1.

The second inequality is from Lemma 57 and the last equality is by our definition θ′k⋆
− w =

α−1

(1+κ)d−2
√

d log(6n2/δ)
. Thus, v is a possible solution under Condition 1 and ∥v∥ ≥ ∥vmm∥.

Next we estimate the difference between ∥v′∥2 and ∥v∥2. The expansion of ∥v′∥2 and ∥v∥2 are:

∥v′∥2 = λ′21 ∥µ1∥2 + λ′22 ∥µ2∥2 +
∑
i∈[n]

θ′2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩,

∥v∥2 = λ21∥µ1∥2 + λ22∥µ2∥2 +
∑
i∈[n]

θ2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩.

Similar to the condition (44), we have ∥v′∥ ≤ 2∥vmm∥ = Θ(
√
n/d), which implies that α =

O(
√
n log n). Otherwise, we have

θ′k⋆
∥ξk⋆

∥2 ≥ α−
∑
i̸=k⋆

yk⋆
yiθ

′
i⟨ξi, ξk⋆

⟩ = Ω(α).

It further yields that

∥v′∥2 = Ω(
n

d
) + θ′2k⋆

∥ξk⋆
∥2 = Ω(

n

d
+
α2

d
) = Ω(

n log2 n

d
),

which contradicts with ∥v′∥ = Θ(
√
n/d).

We decompose the difference between ∥v′∥2 and ∥v∥2 into four terms:

∥v′∥2 − ∥v∥2 =(θ′2k⋆
− θ2k⋆

)∥ξk⋆
∥2︸ ︷︷ ︸

I1

+
∑

i∈[n],i̸=k⋆

(θ′2i − θ2i )∥ξi∥2︸ ︷︷ ︸
I2

−
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

+
∑
i∈[n]

∑
j∈[n]

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩︸ ︷︷ ︸

I4

.
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We now estimate I1 to I4 sequentially. For the first term,

I1 ≥ (θ′2k⋆
− θ2k⋆

)(1− κ)d = (θ′k⋆
− θk⋆

)(θ′k⋆
+ θk⋆

)(1− κ)d

=
(α− 1)(1− 2θ′k⋆

√
d log(6n2/δ))

(1 + κ)d− 2
√
d log(6n2/δ)

· Ω
(
1

d

)
· (1− κ)d

= Ω

(
α− 1

d

)
,

where the first inequality is from Lemma 57; the second equality is from Lemma 49; and the last
equality uses the fact that α = O(

√
n log n). Then we can further upper bound max

i∈[n],i̸=k⋆

θ′i as

max
i∈[n],i̸=k⋆

θ′i ≤
(1− κ)d+ 2(α− n)

√
d log(6n2/δ)

((1− κ)d− 2n
√
d log(6n2/δ))2

= O(
1

d
). (69)

For the second term I2, we have

|I2| ≤
∑

i∈[n],i̸=k⋆

(θ2i − θ′2i )(1 + κ)d

≤
(

1

(1− (θ′k⋆
− w)

√
d log(6n2/δ))2

− 1

)
max

i∈[n],i̸=k⋆

θ′2i · n(1 + κ)d

=
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
n

d
) = Õ

(
(α− 1)n

d3/2

)
.

The second inequality is from Lemma 49. The first equality is from (69) and the last equality is from
Assumption 9.

Then we bound | − I3 + I4| as:

| − I3 + I4| ≤
∑
i∈[n]

∑
j∈[n]\{i}

|θiθj − θ′iθ
′
j | · |⟨ξi, ξj⟩|

≤
∑

i∈[n]\{k⋆}

∑
j∈[n]\{k⋆,i}

|θiθj − θ′iθ
′
j | · |⟨ξi, ξj⟩|+ 2

∑
t∈[n]\{k⋆}

|θk⋆
θt − θ′k⋆

θ′t| · |⟨ξk⋆ , ξt⟩|

≤n2
(

1

(1− (θ′k⋆
− w)

√
d log(6n2/δ))2

− 1

)
max

i∈[n],i̸=k⋆

θ′2i · 2
√
d log(6n2/δ)

+ n

(
θ′k⋆

−
θk⋆

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

)
max

i∈[n],i̸=k⋆

θ′i4
√
d log(6n2/δ)

≤
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
n2(1 + κ)

d3/2
) +

α− 1

d
·O(

n

d
) · 2

√
d log(6n2/δ)

=O

(
(α− 1)n2

d2
+

(α− 1)n

d3/2

)
.

The third inequality is from Lemma 47 and Lemma 49; The fourth inequality is from the fact that

θ′k⋆
−

θk⋆

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

=
θ′k⋆

− θk⋆
− 2θ′k⋆

(θ′k⋆
− w)

√
d log(6n2/δ)

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

=
Ω(α−1

d )−O(α(α−1)
d3/2 )

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

> 0

So we have θ′k⋆
− θk⋆

1−2(θ′
k⋆

−w)
√

d log(6n2/δ)
≤ θ′k⋆

− θk⋆
; The last equality is from Assumption 5.

Combining the above results, we have

∥v′∥22 − ∥vmm∥22 ≥ Θ

(
α− 1

d

)
+O

(
(α− 1)ηn

d3/2

)
≥ C1(1− β)

d
.

Here C1 = Θ(1) is a constant.
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Then we consider the case when λ′1∥µ1∥2 ≥ 1. In this case, the condition for mixed clean sample
becomes:

θ′ki
· ∥ξki

∥2 +
∑
i′ ̸=ki

ykiyi′θ
′
i′⟨ξki

, ξi′⟩ ≥
1− (1− βi)λ

′
1∥µ1∥2

βi
,

and 1−(1−βi)λ
′
1∥µ1∥2

βi
≤ 1, which indicates that the condition for θ′ki

is relaxed. So mixing 1 more
clean sample is equal to relaxing 1 constraint in the original setting. Therefore, mixing all clean
samples will achieve the best result. From the data generalization model, there are (1− η)n/2+ o(n)
clean samples with label +1 and denote S+1 as their set. Now the condition becomes:

Condition 15 (All clean samples violating optimal token selection).
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩) ≥ 1, i ∈ [n]\ S+1

(1− β)λ′1 · ∥µ1∥2 + β(θ′i · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩) ≥ 1, i ∈ S+1

We have another lemma to estimate the scale of parameters in the max-margin solution in this case.

Here α =
1−(1−β̃)λ′

1∥µ1∥2

β̃
and β̃ = min

i∈[n]
{βi}.

Lemma 51. Suppose that Assumption 9 holds, under Condition 15, we have

max
i∈[n]

θ′i ≤
1

(1− κ)d− 2n
√
d log(6n2/δ)

,

min
i∈[n]

θ′i ≥
(1− κ)dα− 2n

√
d log(6n2/δ)(α+ 1)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

.

Proof of Lemma 51. First we prove the upper bound. Denote j = argmax
i∈[n]

θi, we have

yjv
⊤ξj =

∑
i∈[n]

yiyjθi⟨ξi, ξj⟩

= θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩

≥ θj · (1− κ)d− nθj · 2
√
d log(6n2/δ)

The last inequality is because Lemma 57 and the definition of j. Consider the contrary case when
θj >

1

(1−κ)d−2n
√

d log(6n2/δ)
, we have

yjv
⊤ξj >

1

(1− κ)d− 2n
√
d log(6n2/δ)

· ((1− κ)d− n · 2
√
d log(6n2/δ)) = 1.

By the KKT conditions, if yjv⊤ξj > 1 then we must have θj = 0, and thus we reach a contradiction.

Then we prove the lower bound. For ∀j ∈ S+1 we have

α ≤ θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩

≤ θj · (1 + κ)d+ nmax
i∈[n]

θi · 2
√
d log(6n2/δ)

≤ θj · (1 + κ)d+
n

(1− κ)d− 2n
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).

The second inequality is due to Lemma 57 and the last inequality is from the upper bound we just get.
Therefore, we have

θj ≥
(1− κ)dα− 2n

√
d log(6n2/δ)(α+ 1)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

.

This completes the proof
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Then we can estimate the difference between ∥v′∥2 and ∥vmm∥2 with the following lemma:

Lemma 52. Suppose that Assumption 9 holds, denote v and v′ as the optimal solutions under
condition 12 and condition 15 respectively. We have

∥v′∥22 − ∥vmm∥22 ≥ C2(1− β)

ρ2
.

where C2 = Θ(1) is a constant.

Proof of Lemma 52. Recall the expansion of ∥vmm∥2 and ∥v′∥2:

∥vmm∥2 =
∑
i∈[n]

θ2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩,

∥v′∥2 = λ′21 ∥µ1∥2 +
∑
i∈[n]

θ′2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩.

Then we have

∥v′∥2 − ∥vmm∥2 =λ′21 ∥µ1∥2︸ ︷︷ ︸
I1

+
∑
i∈[n]

(θ′2i − θ2i )∥ξi∥2︸ ︷︷ ︸
I2

−
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

+
∑
i∈[n]

∑
j∈[n]

yiyjθ
′′
i θ

′′
j ⟨ξi, ξj⟩︸ ︷︷ ︸

I4

.

We now estimate I1 to I4 sequentially. Here we use the same notation α =
1−(1−β̃)λ′

1∥µ1∥2

β̃
and

β̃ = min
i∈[n]

{βi} as in Lemma 51. First from our assumption λ′1∥µ1∥2 ≥ 1 we have

I1 = λ′21 ∥µ1∥2 ≥ 1/ρ2.

Then for I2, we have

|I2| ≤ n(max
i∈[n]

θ2i − min
i∈[n]

θ′2i ) · (1 + κ)d

≤

(
1

((1− κ)d− 2n
√
d log(6n2/δ))2

− 1

(1 + κ)2d2
·
(
α−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)2
)

· (1 + κ)dn

= d(1 + κ)n ·
1− 1

(1+κ)2d2 ((1− κ)dα− 2(α+ 1)n
√
d log(6n2/δ))2

((1− κ)d− 2n
√
d log(6n2/δ))2

= O

(
n

d

)
.

The second inequality is from Lemma 47 and Lemma 51.

Then we bound | − I3 + I4| as:

| − I3 + I4| ≤
∑
i∈[n]

∑
j∈[n]\{i}

(θ′iθ
′
j − θiθj) · |⟨ξi, ξj⟩|

≤ (n)2(max
i∈[n]

θ′2i − min
i∈[n]

θ2i ) · 2
√
d log(6n2/δ)

≤ (n)2
[(

1

(1− κ)d− 2n
√
d log(6n2/δ)

)2

−
(

(1− κ)d− 4n
√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

)2]
· 2
√
d log(6n2/δ)

= Õ

(
κn2

d3/2

)
= O

(
n2

d2

)
.
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The third inequality is from Lemma 47 and 51; The last two equalities are from Assumption 9.
Combining the above results, we have

∥v′∥22 − ∥vmm∥22 ≥ C

ρ2
+O

(
n

d

)
≥ C2(1− β)

ρ2
.

Here C2 = Θ(1) is a constant.

Therefore, combining Lemma 50 and 52, we have the following statement for the difference between
∥v′∥ and ∥vmm∥:

∥v′∥22 − ∥vmm∥22 ≥ C3(1− β)

d
. (70)

Here C3 = Θ(1) is a constant. The inequality is from the SNR condition that ρ = o(
√
d/n).

Now we can prove the main proposition in this scenario.

Proof of Proposition 46 in case 1. From (70) we have

∥v′′∥22 − ∥v∥22 ≥ C3(1− β)

d
= S(1− β)

Here we substitute S = C3

d ≥ 0 Then we have

Γ2 − Γ′2 =
1

∥v∥2
− 1

∥v′∥2
=

∥v′∥2 − ∥v∥2

∥v′∥2 · ∥v∥2
≥ S(1− β)

∥v′∥2 · ∥v∥2
.

Therefore,

Γ− Γ′ ≥ S(1− β)

(Γ + Γ′)∥v∥2 · ∥v′∥2
≥ S(1− β)

2Γ∥v∥2 · ∥v′∥2
.

Set c = S
2Γ∥v∥2·∥v′∥2 = S

2∥v∥∥v′∥2 , we have Γ′ ≤ Γ− c(1− β). And we can upper bound c as

c =
S

2∥v∥∥v′∥2
≤ S

r3mm

≤ C3

r3mmd
.

The first inequality is from ∥v′∥ ≥ ∥v∥ and the second equality is from S = C2

d .

Situation 2: p = 0, k − p ̸= 0

Then we consider the case when all wrong token selections come from noisy set. Same as above,
denote the mixed samples as k1, k2, ..., kk−p. And for every mixed sample ki, we have rki =
(1− βi)µki

+ βiξki
. Without losing generality, we assume that yki

= +1 for all i ∈ [k − p], so the
corresponding signal token is µ2. Then the conditions under Situation 2 become

Condition 16 (Change k-p noisy samples).{
yiv

⊤ξi ≥ 1, i ∈ [n]\[k − p]

v⊤rki
≥ 1, i ∈ [k − p]

Denote the max-margin solution under this condition as v′ with parameters λ′1, λ
′
2, θ

′
i, we can interpret

the condition for parameters:
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n]\[k − p]

(1− βi)λ
′
2 · ∥µ2∥2 + βi(θ

′
ki

· ∥ξki∥2 +
∑

i′ ̸=ki

ykiyi′θ
′
i′⟨ξki , ξi′⟩) ≥ 1, i ∈ [k − p]

Compare with Codition 13, the only difference is that we substitute λ′1∥µ1∥2 with λ′2∥µ2∥2. From
the symmetry, we can see that the two conditions are actually the same. Thereofre, we can follow the
proof of Situation 1 to prove for Proposition 46 under this situation.
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Situation 3: p ̸= 0, k − p ̸= 0

Last we consider the case when wrong tokens come from both clean and noisy sets. Denote the
mixed clean samples as k1, k2, ..., kp and the mixed noisy samples as q1, q2, ..., qk−p.Without losing
generality, we assume that yki

= +1 for i ∈ [p] and yqi = −1 for i ∈ [k − p], which indicates that
their signal tokens are all µ1. Then the conditions under Situation 2 become

Condition 17 (p clean samples and k-p noisy samples violating optimal token selection).
yiv

⊤ξi ≥ 1, i ∈ [n]\[k]
v⊤rki

≥ 1, i ∈ [p]

−v⊤rqi ≥ 1, i ∈ [k − p]

Denote the max-margin solution under this condition as v′′ with parameters λ′′1 , λ
′′
2 , θ

′′
i , we can

interpret the condition for parameters:
θ′′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′′
i′⟨ξi, ξi′⟩) ≥ 1, i ∈ [n]\[k]

(1− βi)λ
′′
1 · ∥µ1∥2 + βi(θ

′′
ki

· ∥ξki∥2 +
∑

i′ ̸=ki

ykiyi′θ
′′
i′⟨ξki , ξi′⟩) ≥ 1, i ∈ [p]

−(1− βi)λ
′′
1 · ∥µ1∥2 − βi(θ

′′
qi · ∥ξqi∥

2 +
∑

i′ ̸=qi

yqiyi′θ
′′
i′⟨ξqi , ξi′⟩) ≥ 1, i ∈ [k − p]

We consider three cases: λ′′1∥µ1∥2 ≥ 1, 1 > λ′′1∥µ1∥2 ≥ −1 and λ′′1∥µ1∥2 < −1.

• λ′′1∥µ1∥2 ≥ 1

First when λ′′1∥µ1∥|2 ≥ 1, we have 1−(1−βi)λ
′
1∥µ1∥2

βi
≤ 1, which indicates that the condition

for mixed clean samples’ parameter θ′ki
is relaxed. Meanwhile, for the mixed noisy samples

we have

−θ′′qi · ∥ξqi∥
2 +

∑
i′ ̸=qi

yqiyi′θ
′′
i′⟨ξqi , ξi′⟩ ≥

1 + (1− βi)λ
′′
1∥µ1∥2

βi
≥ 1,

which indicates that the condition is strengthened. Therefore, this case is an extension of the
second case of Situation 1 with strengthening some constraints. These constraints will not
result in a better solution than Situation 1. The following proof is the same as Situation 1
and we omit it for convenience.

• 1 > λ′′1∥µ1∥2 ≥ −1

In this case, the constraints for both mixed clean and noisy samples are strengthened. So
this can be taken as an extension of the first case in Situation 1 with strengthening some
constraints. The following proof is the same as Situation 1 and we omit it for convenience.

• λ′′1∥µ1∥2 < −1

In this case, the constraints are strengthened for mixed clean samples while relaxed for the
mixed noisy samples. So we consider it as the extension of Situation 2 when λ′1∥µ1∥2 < −1
with strengthening some constraints. The following proof is the same as Situation 2 and we
omit it for convenience.

Therefore, we complete the proof for all possible situations.

Training and Test error analysis
From Proposition 46 we can derive the convergence direction of p and v, i.e. pmm and vmm. Note
that Theorem 17 does not depend on the selection of optimal tokens, so it still holds in this case when
optimal tokens are noise tokens for all samples. We restate it here for convenience:

Theorem 53. Suppose that Assumption 9 holds, with probability at least 1− δ on the training dataset,
we have
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• the margin induced by pR/R in p-SVM is at least (1− ζ)Ξ, where

ζ =
log(4

√
(1 + κ)d∥vmm∥3dρ2)

RΞ
.

• the label margin induced by vr/r in v-SVM is at least (1− γ)Γ, where γ =
2
√

(1+κ)d

Γ exp((1−ζ)RΞ) .

Then we could estimate the test error in this case. From Theorem 53 we have

p⊤
R(ξi − µi) ≥ (1− ζ)RΞ,∀i ∈ [n] (71)

yiv
⊤
r ξi ≥ (1− γ)Γr, ∀i ∈ [n]. (72)

Here ζ, γ,Ξ,Γ are the same as the definition in Theorem 53. Similarly, we have the following lemma
for ζ, γ.
Lemma 54. Suppose that Assumption 9 holds, with probability at least 1− δ on the training dataset,
consider the same setting in Theorem 17, we have ζ < 0.2 and γ < 1.

Proof of Lemma 54. First we upper bound ∥pmm∥. Consider the following possible solution p̃:

p̃ =
∑
i∈[n]

2
ξi
d
. (73)

We then proved that p̃ satisfies (63). For ∀k ∈ [n], we have

p̃⊤(ξk − µk) =
∑
i∈[n]

2
⟨ξi, ξk⟩
d

≥ 2(1− κ) +
∑

i∈[n],i̸=k

2
⟨ξi, ξk⟩
d

≥ 2(1− κ) +
2n
√
d log(6n2/δ)

d
≥ 1.

The first and second inequalities are from Lemma 57; The last inequality is from Assumption 9.

Therefore, the max-margin solution pmm must have no greater norm than p̃. So we can upper bound
pmm as

∥pmm∥2 ≤ ∥p̃∥2 =
4

d2

( ∑
i∈[n]

∥ξi∥2 +
∑

i,j∈[n],i̸=j

⟨ξi, ξj⟩
)

≤ 4

d2
(
(1 + κ)nd+ 2n2

√
d log(6n2/δ)

)
≤ 5n

d
.

The second inequality is from Lemma 57; The last inequality is from the definition of d in Assumption
9.

Then from the definition of ζ in Theorem 17, we have

ζ =
log(4

√
(1 + κ)d∥vmm∥3dρ2)

RΞ
≤ C1

√
n/d

R
log(4

√
(1 + κ)d∥vmm∥3dρ2)

≤ C2

√
n/d

R
log

(
n3

d

)
< 0.2.

Here C1, C2 = Θ(1). The first inequality is from Ξ−1 = ∥pmm∥ ≤
√
5n/d; The second inequality

is from the upper bound of ∥vmm∥ in Lemma 48 and the last inequality is from the definition of R in
Assumption 9. And for γ, we have

γ =
2M

Γ exp((1− ζ)RΞ)
= C ′

1

M∥vmm∥
exp(R/∥vmm∥)

≤ C ′
2

√
d · (n/d)

exp(R/
√
n/d)

< 1.

Here C ′
1, C

′
2 = Θ(1). The first inequality is from the lower and upper bound of ∥vmm∥ in Lemma

28 and the last inequality is from the definition of R in Assumption 5.
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Then we have the following lemma to estimate the innerproduct of pR and signal token:
Lemma 55. Suppose that Assumption 9 holds, with probability at least 1− δ on the training dataset,
we have

|⟨pR,µj⟩| ≤ 0.9(1− ζ)Rξ

for j ∈ {1, 2}.

Proof of Lemma 55. First we use contradiction to prove for the lower bound. Assume that
|⟨pR,µj⟩| > 0.9(1− ζ)RΞ. We can estimate ∥pR∥ as

∥pR∥2 > (0.9(1− ζ)RΞ)2/ρ2 > (0.5Ξ2/ρ2) ·R2 ≥ (0.1d/nρ2) ·R2 > R2.

The second inequality is from Lemma 54 ; The third inequality is from Ξ2 = ∥pmm∥−2 ≥ d/(5n);
The last inequality is from our SNR condition ρ = o(

√
d/n). This leads to a contradiction.

From Lemma 41, we can denote vr as

vr = λ1µ1 + λ2µ2 +
∑
i∈[n]

yiθiξi.

Denote vξ =
∑

i∈[n] yiθiξi as the noise part of vr. Then we prove that pR, vξ are near orthogonal

Lemma 56. Suppose that Assumption 9 holds, with probability at least 1− δ on the training dataset,
we have

|⟨pR,vξ⟩| ≤ c

for some constant c ∈ (0, 1).

Proof of Lemma 56. First plugging in the parameters in vξ we have

⟨pR,vξ⟩ =
∑
i∈[n]

yiθip
⊤
Rξi

=
∑

yi=+1

θip
⊤
Rξi −

∑
yi=−1

θip
⊤
Rξi

≤ (n11 + n21)(max
i
θi)(RΞ +O(Rρ))− (n12 + n22)(min

i
θi)((1− ζ)RΞ−O(Rρ))

≤ (n/2)(max
i
θi −min

i
θi)RΞ︸ ︷︷ ︸

I1

+O(
√
n)(max

i
θi)RΞ︸ ︷︷ ︸

I2

+n(max
i
θi)(ζRΞ +O(Rρ))︸ ︷︷ ︸

I3

.

The first inequality is from Theorem 53 that (1− ζ)RΞ ≤ p⊤
R(ξi − µi) ≤ RΞ and p⊤

Rµi = O(Rρ)
and the second inequality is from Lemma 59. Then we bound I1 ∼ I3 respectively. For I1, we need
to first bound θi. From Theorem 53 we have

(1− γ)Γr ≤ yiv
⊤
r ξi ≤ Γr, ∀i ∈ [n].

Denote j = argmaxi θi, we have

yjv
⊤
r ξj ≥ θj∥ξj∥2 + nθj

√
d log(6n2/δ) ≥ θj((1− κ)d+ n

√
d log(6n2/δ)).

Therefore, we can upper bound θj as

θj ≤
yjv

⊤
r ξi

(1− κ)d+ n
√
d log(6n2/δ)

≤ Γr

(1− κ)d+ n
√
d log(6n2/δ)

. (74)

Then we can lower bound θi as

yiv
⊤
r ξi ≤ θi∥ξi∥2 + nθj

√
d log(6n2/δ) ≤ (1 + κ)dθi +

Γrn
√
d log(6n2/δ)

(1− κ)d+ n
√
d log(6n2/δ)

.
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Therefore,

θi ≥
(1− γ)(1− κ)Γrd− γΓrn

√
d log(6n2/δ)

(1 + κ)d(1− κ)d+ n
√
d log(6n2/δ)

.

So we can estimate I1 as

I1 ≤ (nRΞ/2) ·
(

Γr

(1− κ)d+ n
√
d log(6n2/δ)

−
(1− γ)(1− κ)Γrd− γΓrn

√
d log(6n2/δ)

(1 + κ)d(1− κ)d+ n
√
d log(6n2/δ)

)

≤ R
√
nd/2 · Γr ·

(
1− (1−γ)(1−κ)

1+κ + γn log(6n2/δ)
(1+κ)d

(1− κ)d+ n
√
d log(6n2/δ)

)
≤ Rr(κ+ γ).

The second inequality is from Ξ = ∥pmm∥ = Θ(
√
d/n) and the last inequality is from Γ =

∥vmm∥−1 = Θ(
√
d/n).

Then we bound I2. From (74) we have maxi θi = Θ(Γr/d). Therefore,

I2 ≤ O(
√
n)Θ(Γr/d)RΞ ≤ Rr ·O(1/

√
n).

The last inequality is from Γ,Ξ = Θ(
√
d/n).

Last we bound I3 as

I3 = nΘ(Γr/d)(ζRΞ +O(Rρ))

≤ Θ(r
√
n/d)(log(4

√
(1 + κ)d∥vmm∥3dρ2) +O(Rρ))

≤ Rr ·O(ρ
√
n/d).

The first inequality is from Γ,Ξ = Θ(
√
d/n) and the last inequality is from Assumption 9.

Combining the results above, we have

⟨pR,vξ⟩ ≤ I1 + I2 + I3 ≤ Rr ·O(
√
1/n+ ρ

√
n/d) ≤ c

for sufficiently large d and n. Here the last inequality comes from Assumption 9.

With the lemmas above, we could prove for the main theorem

Proof of Theorem 10. First we show that the model can perfectly classify all training samples. From
Theorem 17, we have

yiv
⊤
r ri = yiβiv

⊤
r ξi + yi(1− βi)v

⊤
r µi ≥ βi(1− γ)Γr − 0.9(1− βi)(1− γ)Γr > 0,

for ∀i ∈ [n]. The last inequality is from Lemma 54. Thus yi = sign(f(Xi;pR,vr)) for all i ∈ [n].

Then we bound the test error. This is equivalent to estimate y · f(pR,vr;X) and we could write it as

y · f(pR,vr;X) = y · exp(⟨pR,µ
′⟩)v⊤

r µ
′ + exp(⟨pR, ξ

′⟩)v⊤
r ξ

′

exp(⟨pR,µ′⟩) + exp(⟨pR, ξ′⟩)
.

We first upper bound the term y · exp(⟨pR,µ
′⟩)v⊤

r µ
′. From Theorem 53, the non-optimality of i-th

sample is

1− βi =
exp(⟨pR,µi⟩)

exp(⟨pR,µi⟩) + exp(⟨pR, ξi⟩)
≤ 1

1 + exp((1− ζ)ΞR)
for all i ∈ [n].

The last inequality is from the first statement in Theorem 53. Consider the sample that contains the
same signal token as µ′, we have

(1− βi)v
⊤
r µi =

exp(⟨pR,µi⟩)v⊤
r µi

exp(⟨pR,µi⟩) + exp(⟨pR, ξi⟩)
.
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Therefore,

y · exp(⟨pR,µ
′⟩)v⊤

r µ
′ ≤ exp(⟨pR,µi⟩)|v⊤

r µi| ≤
exp(⟨pR,µi⟩) + exp(⟨pR, ξi⟩)

1 + exp((1− ζ)ΞR)
· |v⊤

r µi|

≤ 2 exp(⟨pR, ξi⟩)
exp((1− ζ)ΞR)

· |v⊤
r µi| ≤

2 exp(ΞR)

exp((1− ζ)ΞR)
· |v⊤

r µi|

≤ 2 exp(ζΞR) · ρr = (4
√

(1 + κ)d∥vmm∥3dρ2) · ρr ≤ Cn3/2ρ3r (75)

for some constant C > 0. Here the third inequality is from p⊤
R(ξi − µi) ≥ 0; The fourth inequality

is from the fact that ⟨pR, ξi⟩ ≤ ΞR and the last inequality is from ∥vr∥ ≤ r, ∥µi∥ ≤ ρ. Then we
can bound the test error as

P(y · f(pR,vr;X) ≤ 0) = P(y · exp(⟨pR,µ
′⟩)v⊤

r µ
′ + y · exp(⟨pR, ξ

′⟩)v⊤
r ξ

′ ≤ 0)

≥ P(y · exp(⟨pR, ξ
′⟩)v⊤

r ξ
′ ≤ −Cn3/2ρ3r)

≥ 1

4
P
(
yv⊤

ξ ξ
′ ≤ −e−R/C · Cn3/2ρ3r | ⟨pR/R, ξ

′⟩ ∈ [1/C,C]

)
≥ 1

4
(
1

2
− cC + C exp(−R/C)n3/2ρ3√

2π(1− c2)
) ≥ 1

16
.

The first inequality is from (75); the second inequality use the fact that there exists a constant C > 0
such that P(N(0, 1) ∈ [1/C,C]) ≥ 1/4; the third inequality comes from Lemma 60 and the last
inequality uses Assumption 9.

.

A.6 Supplement Lemmas

Here we list some technical lemmas for the main proof.

Lemma 57. (Properties of Training Data) Suppose that δ > 0 and κ = O(
√
log(6n/δ)/d) =

Õ(1/
√
d) .Then with probability at least 1− δ, we have

(1− κ)d ≤ ∥ξi∥22 ≤ (1 + κ)d

|⟨ξi, ξj⟩| ≤ 2
√
d log(6n2/δ)

for any i, j ∈ [n].

Proof of Lemma 57. By Bernstein’s inequality (see Theorem 2.8.1 in Vershynin (2018)), with proba-
bility at least 1− δ/(3n) we have

|∥ξi∥22 − d| = O(
√
d log(6n/δ)).

Therefore, there exists κ = O(
√

log(6n/δ)/d) that

(1− κ)d ≤ ∥ξi∥22 ≤ (1 + κ)d.

Moreover, ⟨ξi, ξj⟩ has mean zero. For any i, j ∈ [n] and i ̸= j, by Bernstein’s inequality, with
probability at least 1− δ/(3n2) we have

|⟨ξi, ξj⟩| ≤ 2
√
d log(6n2/δ).

Applying a union bound completes the proof.

Set δ = 6n exp(−d/4C1n
2) for any constant C1 > 0, we can follow the proof of Lemma 57 and

conclude the next remark:
Remark 58. (Properties of New Test Sample) Let (X = (µk, ξ), y) ∼ D. Then with probability at
least 1− 6n exp(−d/4C1n

2), we have

|⟨ξ, ξi⟩| ≤
d

C1n

for any i ∈ [n].
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Lemma 59. With probability at least 1− 6δ,∣∣|C| − n(1− η)
∣∣ ≤√n log(1

δ
);

∣∣|N | − nη
∣∣ ≤√n log(1

δ
);

∣∣|Ci| − n(1− η)

2

∣∣ ≤√n log(1
δ
);

∣∣|Ni| −
nη

2

∣∣ ≤√n log(1
δ
), i = 1, 2.

Proof. Note that |C| ∼ Binom(n, 1− η). Applying Hoeffding’s inequality, we have

P
(∣∣|C| − (1− η)n

∣∣ > t
)
≤ 2 exp(−2t2

n
).

Let t =
√
n log(1/δ). We have that with probability at least 1− δ,

∣∣|C| − (1− η)n
∣∣ ≤√n log(1

δ
).

Similarly, note that |N | ∼ Binom(n, η), |C1| ∼ Binom(n, (1 − η)/2), |C2| ∼ Binom(n, (1 −
η)/2), |N1| ∼ Binom(n, η/2) and |N2| ∼ Binom(n, η/2), we have that each of the following
events holds with probability at least 1− δ:∣∣|C| − n(1− η)

∣∣ ≤√n log(1
δ
);

∣∣|N | − nη
∣∣ ≤√n log(1

δ
);

∣∣|Ci| − n(1− η)/2
∣∣ ≤√n log(1

δ
), i = 1, 2;

∣∣|Ni| − nη/2
∣∣ ≤√n log(1

δ
), i = 1, 2.

Lemma 60. Suppose X ∼ N(0, Id), and v,p ∈ Rd are two vectors with ∥v∥ = ∥p∥ = 1,v⊤p ≤ c
for some constant c ∈ (0, 1). Given some constant C > 1, for z < 0,

P(v⊤X < z|p⊤X ∈ [1/C,C]) ≥ 1

2
− 1√

2π

cC − z√
1− c2

.

Proof of Lemma 60. Denote xv = v⊤X ∼ N(0, 1), xp = p⊤X ∼ N(0, 1). Then we have xv, xp ∼
N (0, 1). Denote the covariance between xv, xp by c0, then we have

c0 = Cov(xv, xp) = v⊤Cov(X)p = v⊤p ≤ c.

Note that
xv

d
= c0xp +

√
1− c20r,

where r ∼ N(0, 1) is independent of xp. It follows that

P(xv < z|xp ∈ [
1

C
,C]) = P(r <

z − c0xp√
1− c20

|xp ∈ [
1

C
,C]) ≥ P(r <

z − cC√
1− c2

) ≥ 1

2
− 1√

2π

cC − z√
1− c2

.
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