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ABSTRACT

As machine learning becomes more widespread throughout society, aspects in-
cluding data privacy and fairness must be carefully considered, and are crucial for
deployment in highly regulated industries. Unfortunately, the application of pri-
vacy enhancing technologies can worsen unfair tendencies in models. In particu-
lar, one of the most widely used techniques for private model training, differen-
tially private stochastic gradient descent (DPSGD), frequently intensifies disparate
impact on groups within data. In this work we study the fine-grained causes of un-
fairness in DPSGD and identify gradient misalignment due to inequitable gradient
clipping as the most significant source. This observation leads us to a new method
for reducing unfairness by preventing gradient misalignment in DPSGD.

1 INTRODUCTION

The increasingly widespread use of machine learning throughout society has brought into focus
social, ethical, and legal considerations surrounding its use. In highly regulated industries, such as
healthcare and banking, regional laws and regulations require data collection and analysis to respect
the privacy of individuals.1 Other regulations focus on the fairness of how models are developed
and used.2 As machine learning is progressively adopted in highly regulated industries, the privacy
and fairness aspects of models must be considered at all stages of the modelling lifecycle.

There are many privacy enhancing technologies including differential privacy (Dwork et al., 2006),
federated learning (McMahan et al., 2017), secure multiparty computation (Yao, 1986), and ho-
momorphic encryption (Gentry, 2009) that are used separately or jointly to protect the privacy of
individuals whose data is used for machine learning (Choquette-Choo et al., 2020; Adnan et al.,
2022; Kalra et al., 2021). The latter three technologies find usage in sharing schemes and can allow
data to be analysed while preventing its exposure to the wrong parties. However, the procedures
usually return a trained model which itself can leak private information (Carlini et al., 2019). On
the other hand, differential privacy (DP) focuses on quantifying the privacy cost of disclosing aggre-
gated information about a dataset, and can guarantee that nothing is learned about individuals that
could not be inferred from population-level correlations (Jagielski et al., 2019). Hence, DP is often
used when the results of data analysis will be made publicly available, for instance when exposing
the outputs of a model, or the results of the most recent US census (Abowd, 2018).

Not only must privacy be protected for applications in regulated industries, models must be fair.
While there is no single definition that captures what it means to be fair, with regards to model-
based decision making fairness may preclude disparate treatment or disparate impact (Mehrabi et al.,
2021). Disparate treatment is usually concerned with how models are applied across populations,
whereas disparate impact can arise from biases in datasets that are amplified by the greedy nature
of loss minimization algorithms (Buolamwini & Gebru, 2018). Differences in model performance
across protected groups can result in a significant negative monetary, health, or societal impact for
individuals who are discriminated against (Chouldechova & Roth, 2020).

1Examples of laws governing data privacy include the General Data Protection Regulation in Europe, Health
Insurance Portability and Accountability Act in the USA, and Personal Information Protection and Electronic
Documents Act in Canada.

2In the USA, fair lending laws including the Fair Housing Act, and Equal Credit Opportunity Act prohibit
discrimination based on protected characteristics such as race, age, and sex.
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Unfortunately, it has been observed that disparate impact can be exacerbated by applying DP in
machine learning (Bagdasaryan et al., 2019). Applications of DP always come with a privacy-utility
tradeoff, where stronger guarantees of privacy negatively impact the usefulness of results - model
performance in this context (Dwork & Roth, 2014). Underrepresented groups within the population
can experience disparity in the cost of adding privacy, hence, fairness concerns are a major obstacle
to deploying models trained with DP.

The causes of unfairness in DP depend on the techniques used, but are not fully understood. For the
most widely used technique, differentially private stochastic gradient descent (DPSGD), two sources
of error are introduced that impact model utility. Per-sample gradients are clipped to a fixed upper
bound on their norm, then noise is added to the averaged gradient. Disparate impact from DPSGD
was initially hypothesized to be rooted in unbalanced datasets (Bagdasaryan et al., 2019), though
counterexamples were found by Xu et al. (2021). Recent research claims disparate impact to be
caused by incommensurate clipping errors across groups, in turn effected by a large difference in
average group gradient norms (Xu et al., 2021; Tran et al., 2021a).

In this work we highlight the disparate impact of gradient misalignment. In particular, we claim that
the most significant cause of disparate impact is the difference in the direction of the unclipped and
clipped gradients, which in turn can be caused by aggressive clipping and imbalances of gradient
norms between groups. Our analysis of direction errors leads to a variant of DPSGD with properly
aligned gradients. We explore this alternate method in relation to disparate impact and show that
it not only significantly reduces the cost of privacy across all protected groups, it also reduces the
difference in cost of privacy for all groups. Hence, it removes disparate impact and is more effective
than previous proposals in doing so. On top of this, it is the only approach which does not require
access to protected group labels, and thereby avoids disparate treatment of groups. In summary we:

• Conduct a more fine-grained analysis of disparate impact in DPSGD, and demonstrate
gradient misalignment to be the most significant cause;

• Identify an existing algorithm, previously undiscussed in the fairness context, which prop-
erly aligns gradients, and show it reduces disparate impact and disparate treatment;

• Improve the utility of said algorithm via two alterations;
• Experimentally verify that aligning gradients is more successful at mitigating disparate

impact than previous approaches.

2 RELATED WORK

Privacy and Fairness: While privacy and fairness have been extensively studied separately, re-
cently their interactions have come into focus. Ekstrand et al. (2018) considered the intersection
of privacy and fairness for several definitions of privacy. This research gained new urgency when
Bagdasaryan et al. (2019) observed that DPSGD exacerbated existing disparity in model accuracy
on underrepresented groups. Disparate impact due to DP was further observed in Pujol et al. (2020)
and Farrand et al. (2020) for varying levels of group imbalance. Using an adversarial definition of
privacy, Jaiswal & Mower Provost (2020) found that overrepresented groups can incur higher pri-
vacy costs. Similar examples were shown in Xu et al. (2021) for DPSGD, and disparate impact was
linked to groups having larger gradient norms.

Other fairness-aware learning research has evaluated the fairness of a private model’s outcomes on
protected groups. In this context fairness might refer to a statistical condition of non-discrimination
with respect to groups (Mozannar et al., 2020; Tran et al., 2021b), for example, equalized odds
(Jagielski et al., 2019), equality of opportunity (Cummings et al., 2019), or demographic parity (Xu
et al., 2019; Farrand et al., 2020). Chang & Shokri (2021) empirically found that imposing fairness
constraints on private models could lead to higher privacy loss for certain groups. We consider cross-
model fairness where the cost of adding privacy to a non-private model must be fairly distributed
between groups.

Adaptive Clipping: Many variations on the clipping procedure in DPSGD have been proposed to
improve properties other than fairness. Adaptive clipping comes in many forms, but usually tunes
the clipping threshold during training to provide better privacy-utility tradeoffs and convergence
(Andrew et al., 2021; Pichapati et al., 2019). The convergence of DPSGD connects to the symmetry
properties of the distribution of gradients (Chen et al., 2020) which are affected by clipping.

2



Published as a conference paper at ICLR 2023

3 BACKGROUND

3.1 SETTING AND DEFINITIONS

We begin by laying out the problem setting and review the relevant definitions for discussing fairness
in privacy. For concreteness we consider a binary classification problem on a dataset D which
consists of n points of the form (xi, ai, yi), where xi ∈ Rd is a feature vector, yi ∈ {0, 1} is a
binary label, and ai ∈ [K] refers to a protected group attribute which partitions the data. The group
label ai can optionally be an attribute in xi, the label value yi, or some distinct auxiliary value.

The goal is to train a model fθ : Rd → [0, 1] with parameter vector θ that is simultaneously useful
and private, and in which the application of privacy is fair. Utility in the empirical risk minimization
(ERM) problem is governed by the per-sample loss ℓ : [0, 1]× {0, 1} → R, with the optimal model
minimizing the objective L(θ;D) = 1

n

∑
i∈D ℓ(fθ(xi), yi), which happens for optimal parameters

θ∗ = argminθ L(θ;D). The requirement of privacy is applied to the model through its parameters;
private parameters θ̃ must be obtained while exposing a minimal amount of private information in
D. For this we apply the framework of differential privacy, recounted in the next section.

Fairness of the privacy methodology can be measured in terms of the disparate impact that applying
privacy has on the protected groups. As in Bagdasaryan et al. (2019), we use a version of accuracy
parity, the difference in classification accuracy across protected groups after adding privacy. We
denote a subset of the data containing all points belonging to group k as Dk = {(xi, ai, yi) ∈
D | ai = k}. A private model has accuracy parity for subset Dk if it minimizes the privacy cost

π(θ,Dk) = acc(θ∗;Dk)− Eθ̃[acc(θ̃;Dk)], (1)

where the expectation is over the randomness involved in acquiring private model parameters. Of
course, metrics other than classification accuracy could be used as required by the problem setting.
Alternatively, fairness for privacy can be measured at the level of the loss function as in Tran et al.
(2021a), which is more amenable to analyzing the causes of unfairness. The excessive risk over the
course of training experienced by a group is

R(θ,Dk) = Eθ̃[L(θ̃;Dk)]− L(θ∗;Dk). (2)

When the model is clear from context we denote R(θ;Dk) as Rk, and similarly for privacy cost
πk. For both accuracy and loss we consider the gap between disparate impact values across groups.
The privacy cost gap is πa,b = |πa − πb| for groups a, b ∈ [K], and the excessive risk gap refers
to Ra,b = |Ra − Rb|. The goal of a fair private classifier is to minimize the privacy cost and/or
excessive risk for all values of the protected group attribute, while maintaining small fairness gaps.

3.2 DIFFERENTIAL PRIVACY

Algorithm 1 DPSGD

Require: Iterations T , Dataset D, sampling
rate q, clipping bound C0, noise
multiplier σ, learning rates ηt

Initialize θ0 randomly
for t in 0, . . . , T − 1 do

B ← Poisson sample of D with rate q
for (xi, yi) in B do

gi ← ∇θℓ(fθt(xi), yi)

ḡi ← gi ·min
(
1, C0

∥gi∥

)
g̃B ← 1

|B|
(∑

i∈B ḡi +N (0, σ2C2
0 I)

)
θt+1 ← θt − ηtg̃B

Differential privacy (DP) (Dwork et al., 2006) is a
widely used framework for quantifying the privacy
consumed by a data analysis procedure. Formally,
let D represent a set of data points, and M a proba-
bilistic function, or mechanism, acting on datasets.
We say that the mechanism is (ϵ, δ)-differentially
private if for all subsets of possible outputs S ⊆
Range(M), and for all pairs of databases D and D′

that differ by the addition or removal of one element,

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D′) ∈ S] + δ. (3)

For the ERM problem, there are several ways to
train a differentially private model (Chaudhuri et al.,
2011). In this work we consider models that can be
trained with stochastic gradient descent (SGD), such as neural networks, and focus on the most suc-
cessful approach, DPSGD (Abadi et al., 2016), in which the Gaussian mechanism (Dwork & Roth,
2014) is applied to gradient updates as in Alg. 1. Since per-sample gradients gi generally do not
have finite sensitivity, defined as ∆h = maxD,D′ ∥h(D) − h(D′)∥ for a function h, they are first
clipped to have norm upper bounded by a fixed hyperparameter C0. Clipped gradients ḡi in a batch
B ⊂ D are aggregated into ḡB and noise is added to produce g̃B used in the parameter update.
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3.3 FAIRNESS CONCERNS FROM CLIPPING AND NOISE IN DPSGD

The two most significant steps in DPSGD, clipping and adding noise, can impact the learning process
disproportionately across groups, but the exact conditions where disparate impact will occur have
been debated (Bagdasaryan et al., 2019; Farrand et al., 2020; Xu et al., 2021; Tran et al., 2021a). The
most concrete connection so far appears in (Tran et al., 2021a), where the expected loss L(θ;Da) is
decomposed into terms contributing to the excessive risk at a single iteration for group a, Ra:

Proposition 1 (Tran et al. (2021a)). Consider the ERM problem with twice-differentiable loss ℓ with
respect to the model parameters. The expected loss E[L(θt+1;Da)] of group a ∈ [K] at iteration t
is approximated up to second order in ∥θt+1 − θt∥ as:

E[L(θt+1;Da)] ≈L(θt;Da)− ηt⟨gDa , gD⟩+
η2
t

2 E[gTBHa
ℓ gB ] (non-private term)

+ ηt⟨gDa
, gD − ḡD⟩+ η2

t

2

(
E[ḡTBHa

ℓ ḡB ]− E[gTBHa
ℓ gB ]

)
(Rclip

a )

+
η2
t

2 Tr(Ha
ℓ )C

2
0σ

2. (Rnoise
a )

The expectation is taken over the randomness of the DP mechanisms, and batches of data.

Terms in the first line appear for ordinary SGD, and do not contribute to the excessive risk Eq. (2).
The terms in the second line, Rclip

a , are caused by clipping since they cancel when ḡB = gB for
every batch. They involve gradients gDa

and Hessians Ha
ℓ , averaged over datapoints belonging to

group a. The final term, Rnoise
a , depends on the scale of noise added in Alg. 1, as well as the trace

of the Hessian, also called the Laplacian, averaged over Da. Based on Prop. 1, Tran et al. (2021a)
argue that clipping causes excessive risk to groups with large gradient norms, which can result from
large input norms ∥xi∥. Whether or not a group is underrepresented has less influence. In the next
section we provide a new perspective on Rclip

a and the underlying causes of unfairness in DPSGD.

4 DISPARATE IMPACT IS CAUSED BY GRADIENT MISALIGNMENT

Figure 1: Direction errors from clipping are more
severe than magnitude errors over the course of
training and can lead to suboptimal convergence.

Clipping in DPSGD introduces two types of er-
ror to the clipped batch gradient ḡB . It will
generally have different norm than ∥gB∥, and
be misaligned compared to the SGD batch gra-
dient, gB . At a high level, gradient misalign-
ment poses a more serious problem to the con-
vergence of DPSGD than magnitude error, as
illustrated in Fig. 1. Changing only the norm
means gradient descent will still step towards
the (local) minimum of the loss function, and
any norm error could be completely compen-
sated for by adapting the learning rate ηt. In
contrast, a misaligned gradient could result in a
step towards significantly worse regions of the loss landscape causing catastrophic failures of con-
vergence. Misaligned gradients add bias which compounds over training, as underrepresented or
complex groups are systematically clipped. For comparison, adding noise to the aggregated gradi-
ent does not add bias, so noise errors tend to cancel out over training. We aim to quantify the relative
impact of these effects and how they contribute to the excessive risk.

We can distinguish the effects of clipping by rewriting the clipped batch gradient as
ḡB=MB

(
∥ḡB∥
∥gB∥gB

)
for an orthogonal matrix MB such that ḡB and MBgB are colinear. As a

proof of concept that gradient misalignment is the more severe error we compared models trained
by taking steps ∥ḡB∥

∥gB∥gB vs. MBgB with no noise added. These represent magnitude errors and
direction errors from clipping, respectively. The models were trained on MNIST with class 8 un-
dersampled, and the results compare the typical class 2 to the underrepresented class 8; full details
are provided in App. B. As seen in Table 1, direction error is more detrimental to performance than
magnitude error. In particular, it disproportionately increases loss and decreases accuracy on the
underrepresented class 8.
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Table 1: Effect of direction vs. magnitude error on MNIST with class 8 undersampled. The results
compare accuracy and loss on the typical class 2 to the underrepresented class 8.

TYPE OF ERROR ACC 2 ACC 8 LOSS 2 LOSS 8

MAGNITUDE 99.0 93.5 0.002 0.005
DIRECTION 96.8 84.1 0.076 0.518

Our first theoretical result quantifies the excessive risk from the two types of errors, and follows
from a Taylor expansion of the expected loss using ḡB in the gradient descent update compared to
gB . The excessive risk from magnitude error comes from comparing gB to ∥ḡB∥

∥gB∥gB , while that of

gradient misalignment is isolated by comparing ḡB=MB

(
∥ḡB∥
∥gB∥gB

)
to ∥ḡB∥

∥gB∥gB (see Fig. 1).

Proposition 2. Consider the ERM problem with twice-differentiable loss ℓ with respect to the model
parameters. The excessive risk due to clipping experienced by group a ∈ [K] at iteration t is
approximated up to second order in ∥θt+1 − θt∥ as

Rclip
a ≈ ηt

〈
gDa ,E

[(
1− ∥ḡB∥

∥gB∥

)
gB

]〉
+

η2
t

2 E
[(

∥ḡB∥2

∥gB∥2 − 1
)
gTBH

a
ℓ gB

]
(Rmag

a )

+ ηt

〈
gDa ,E

[
∥ḡB∥
∥gB∥ (gB−MBgB)

]〉
+

η2
t

2 E
[
∥ḡB∥2

∥gB∥2

(
(MBgB)

THa
ℓ (MBgB)−gTBHa

ℓ gB
)]

, (Rdir
a )

where gDa
, ḡDa

denote the average non-clipped and clipped gradients over group a at iteration t,
Ha

ℓ refers to the Hessian over group a, and MB is an orthogonal matrix such that ḡB and MBgB
are colinear. The expectations are taken over batches of data.
We provide a derivation in App. A. Note that when the magnitude error is zero for all batches,
∥gB∥=∥ḡB∥, we have that Rmag

a =0 as expected. As well, when there is no gradient misalignment
then MB is the identity matrix for every batch, and so Rdir

a = 0.

To determine the characteristics of groups that will have unfair outcomes from clipping in DPSGD
we can distill a simpler condition for when Rdir

a > Rdir
b . Tran et al. (2021a) already provide such

a condition for clipping overall, however it does not effectively account for the danger of gradient
misalignment. Their condition is sufficient, but not necessary, and some of its looseness stems from
the inequality xT y ≥ −∥x∥∥y∥ used to convert all terms in Rclip

a into expressions involving group
gradient norms. This approach loses information about gradient direction. We instead propose a
tighter analysis of Rdir

a −Rdir
b using xT y = ∥x∥∥y∥ cos θ, where θ = ∠(x, y).

Proposition 3. Assume the loss ℓ is twice continuously differentiable and convex with respect to
the model parameters. As well, assume that ηt ≤ (maxk∈[K] λk)

−1 where λk is the maximum
eigenvalue of the Hessian Hk

ℓ . For groups a, b ∈ [K], Rdir
a > Rdir

b if

E
[
∥ḡB∥(cos θaB − cos θ̄aB)

]
>

∥gDb
∥

∥gDa∥
E
[
∥ḡB∥(cos θbB − cos θ̄bB)

]
+ E[∥ḡB∥2]

∥gDa∥
, (4)

where θkB=∠(gDk
, gB) and θ̄kB=∠(gDk

, ḡB) for a group k∈ [K]. Furthermore, the bound is tight.

App. A contains our proof. Prop. 3 shows that if the clipping operation disproportionately and
sufficiently increases the direction error for group a relative to group b, then group a incurs larger
excessive risk due to gradient misalignment.

The lower bound for Rdir
a −Rdir

b inferred from Eq. 4 is tight, and in our experiments we empirically
show that it is close to saturation in a typical case. Hence, when the direction errors for groups a
and b are small (i.e. we expect that θiB ≈ θ̄iB for i = a, b), we have that Rdir

a − Rdir
b ≈ 0 regardless

of the size of ∥gDa
∥ relative to ∥gDb

∥. It follows that clipping does not negatively impact excessive
risk if gradients remain aligned. On the other hand if direction error is not close to zero, large group
gradient norms do exacerbate the error in direction, as the dominant term of Rdir

a scales with ∥gDa∥.
The excessive risk in Eq. 2 is evaluated at the end of training, whereas Props. 1 and 2 estimate it
per-iteration. Fig. 1 demonstrates that the full impact of clipping errors may not be felt per-iteration,
but only at convergence. Indeed what matters to the end user is how fair the final model is, not how
fair any intermediate training step is. However, it is not possible to attribute overall excessive risk to
the per-iteration terms Rdir

a , Rmag
a , and Rnoise

a , since the optimal θ∗i used in the expansions of Props.
1 and 2 differ at each iteration, and do not equal the overall optimal θ∗. Still, Table 1 demonstrates
that gradient misalignment is the main cause of disparate impact, so we seek a method to prevent it.
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(a) Left: Per-sample gradients colored based on group
membership. Top: Local clipping in DPSGD Bottom:
Global scaling in DPSGD-Global.

(b) In DPSGD-Global-Adapt scaling alone does not
guarantee finite sensitivity, so gradients with norm
above Z are clipped to C0 (DPSGD-Global clips large
gradients to 0 rather than C0).

Figure 2: Illustration of privatization steps in DPSGD, DPSGD-Global, and DPSGD-Global-Adapt

5 PREVENTING GRADIENT MISALIGNMENT IN DPSGD

Algorithm 2 DPSGD-Global(-Adapt)

Require: Iterations T , Dataset D, sam-
pling rate q, clipping bound C0,
strict clipping bound Z ≥ C0,
noise multipliers σ1, (σ2), learn-
ing rates ηt, (clipping learning rate
ηZ , threshold τ ≥ 0)

Initialize θ0 randomly
for t in 0, . . . , T − 1 do

B ← Poisson sample of D with rate q
for (xi, yi) in B do

gi ← ∇θℓ(fθt(xi), yi)

γi ←

{
C0

Z , ∥gi∥ ≤ Z

0 ( C0

∥gi∥ ), ∥gi∥ > Z

ḡi ← γigi
g̃B ← 1

|B|
(∑

i∈B ḡi +N (0, σ2
1C

2
0 I)

)
θt+1 ← θt − ηtg̃B
(Adaptively set Z):
bt ← |{i : ∥gi∥ > τ · Z}|
b̃t ← 1

|B| (bt +N (0, σ2
2))

Z ← Z · exp(−ηZ + b̃t)

Our results so far show that gradient misalignment
due to clipping is the most significant cause of un-
fairness in DPSGD. Logically, Rdir

a would be min-
imized if privatization left the direction of gB un-
changed. A promising avenue is to scale down all
per-sample gradients in a batch by the same amount.
This is the approach taken by DPSGD-Global (Bu
et al., 2021), which was recently proposed to im-
prove the convergence of DPSGD, and has not been
discussed in the context of fairness before. Our theo-
retical results suggest that global scaling will reduce
disparate impact.

DPSGD-Global (Alg. 2) aims to preserve privacy
by scaling gradients as ḡi = γgi, 0 < γ < 1. Of
course, scaling alone is insufficient to ensure per-
sample gradients have bounded sensitivity. How-
ever, supposing that there were a strict upper bound
Z ≥ ∥gi∥ ∀ i ∈ D, then scaling all gradients by
γ = C0/Z would guarantee bounded sensitivity of
C0 for each ḡi (Fig. 2a). Given sufficient smooth-
ness of the loss function, for any sample of data there
will be such an upper bound maxi∈D ∥gi∥, but deter-
mining it exactly cannot be done in a differentially
private manner. DPSGD-Global sets Z as a hyper-
parameter without looking at the data, in the same way C0 is chosen in DPSGD. If Z fails to be
a strict upper bound, any gradients with ∥gi∥ > Z are discarded to guarantee a bound on sensitiv-
ity. When Z is chosen sufficiently large, no gradients are discarded and gradient misalignment is
avoided. The drawback of a large Z is that the scaled gradients ḡi will become small and conver-
gence of gradient descent may be hindered.

In addition to identifying that DPSGD-Global has the potential to reduce disparate impact, we pro-
pose two modifications to improve its utility. First, we note that discarding gradients with ∥gi∥ > Z
can exacerbate disparate impact as it is often underrepresented groups that have large gradient norms
(Xu et al., 2021). Instead, we clip large gradients to have norm C0, which preserves more informa-
tion while maintaining finite sensitivity (Fig. 2b). Second, rather than choosing Z as a hyperpa-
rameter, we adaptively update Z to upper-bound maxi∈B ∥gi∥. When Z is larger than all gradients
it should be reduced to scale down gradients less, but if gradients are being clipped, Z should be
increased. Z can be updated each iteration by privately estimating bt, the number of gradients in
B that are larger than Z times a tolerance threshold τ ≥ 0. Since bt is a unit sensitivity quantity
we can estimate it privately as b̃t = 1

|B| (bt + N (0, σ2
2)). Then, we use the geometric update rule

Z ← Z · exp(−ηZ + b̃t) with a learning rate ηZ (cf. (Andrew et al., 2021)). When all samples
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have gradient norm less than or equal to τ · Z, then in expectation b̃t = 0 and Z is decreased by
a factor of exp(−ηZ). Alternatively, Z is increased when b̃t > ηZ , which occurs with probability
0.977 when bt

|B| ≥ ηZ + 2σ2

|B| . As a result, with high probability the algorithm will not have more
than |B|ηZ + 2σ2 gradients with norm exceeding τ · Z.

We call the method with our two alterations DPSGD-Global-Adapt, shown in Alg. 2 in red paren-
theses. We empirically find in Sec. 6 that both global approaches improve fairness compared to
prior methods, and that DPSGD-Global-Adapt has improved utility over DPSGD-Global. While the
alterations are minor, our main contributions are elucidating that gradient misalignment is the main
cause of disparate impact, and identifying that global scaling can prevent this problem.

Both global methods apply the sampled Gaussian mechanism (Mironov et al., 2019) to gradient
norms with a sensitivity of C0, and hence are amenable to the same DP analysis as DPSGD itself.
In DPSGD-Global-Adapt, the additional step of privately estimating the number of gradients with
norm larger than τ · Z must be accounted for in the overall DP guarantee via a composition of
sampled Gaussian mechanisms. From the analysis in (Mironov et al., 2019), DPSGD-Global-Adapt
is (ϵ, δ)-DP for any σ1, σ2 > 0, where ϵ can be determined numerically given δ. However, our
adaptive method is empirically not sensitive to the exact count bt, so a relatively large amount of
noise can be used, see (Andrew et al., 2021) for comparison. In practice we used σ2 ≈ 10σ1 which
produced a negligible additional cost in the overall privacy budget.

Finally, we note that other approaches for mitigating unfairness, specifically DPSGD-F (Xu et al.,
2021) and that of Tran et al. (2021a), require protected group labels for the training set. Collecting
such labels may expose individuals to additional privacy risks in the case of security breaches, or
may be prohibited in practice. Both global methods have the advantage of not requiring protected
group labels for training data, and treat all training examples on an equal footing, thereby avoiding
disparate treatment, while disparate impact is mitigated by reducing gradient misalignment.

6 EXPERIMENTS

In our experiments we provide evidence that gradient misalignment is the most significant cause
of unfairness, and demonstrate that global scaling can effectively reduce unfairness by aligning
gradients. Our code for reproducing the experiments is provided as supplementary material.

6.1 EXPERIMENT SETTINGS

For all experiments, full details are provided in App. B. We use an artificially unbalanced MNIST
training dataset where class 8 only constitutes about 1% of the dataset on average, and protected
groups are the classes. We also use two census datasets popular in the ML fairness literature, Adult
and Dutch (van der Laan, 2000), preprocessed as in Le Quy et al. (2022). For both datasets, “sex”
is the protected group attribute which is balanced between males and females. Finally, we use the
CelebA dataset (Liu et al., 2015) for binary classification on the gender label. The protected group
attribute is whether the image contains eyeglasses. Images with eyeglasses comprise 12% of male
images but only 2% of female images, and are more difficult to classify accurately.

We compare both global scaling techniques (Alg. 2) against two methods designed to reduce unfair-
ness, DPSGD-F (Xu et al., 2021) (Alg. 3) and the Fairness-Lens method (Tran et al., 2021a) (Alg.
4), both of which are reviewed in App. B.5. Each method’s effectiveness in removing disparate
impact is measured using privacy cost πa (Eq. 1), and excessive risk Ra (Eq. 2) per group, as well
as the privacy cost gap πa,b, and excessive risk gap Ra,b between groups. For MNIST, the underrep-
resented group 8 is compared to group 2 (Xu et al., 2021). All experiments were run for 5 random
seeds, and results are given as means ± standard errors.

For MNIST and CelebA, all methods train a convolutional neural network with two layers of 32 and
16 channels, 3x3 kernels, and tanh activations. Adult uses an MLP model with two hidden layers
of 256 units, while Dutch uses a logistic regression model. For all private methods, we use an RDP
accountant (Mironov, 2017) with δ = 10−6. As a baseline, for DPSGD we set σ = 1, C0 = 0.5
for Adult, σ = 1, C0 = 0.1 for Dutch, and σ = 0.8, C0 = 1 for image datasets. With this, training
20 epochs for tabular datasets, 60 epochs for MNIST and 30 epochs for CelebA gives ϵ = 3.41 for
Adult, ϵ = 2.27 for Dutch, ϵ = 5.90 for MNIST, and ϵ = 2.49 for CelebA. DPSGD-F has negligibly
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higher ϵ, while our method achieves the same ϵ guarantees to three significant digits. Complete
hyperparameters are given in App. B.2.

6.2 RESULTS

Table 2: Performance and Fairness metrics for MNIST

METHOD ACC 2 ACC 8 π2 π8 π2,8 LOSS 2 LOSS 8 R2 R8 R2,8

NON PRIVATE 98.0±0.1 84.3±1.1 - - - 0.06±0.00 0.32±0.01 - - -
DPSGD 89.0±0.1 26.3±0.4 8.9±0.1 57.9±1.3 48.9±1.3 0.67±0.01 2.56±0.04 0.61±0.01 2.24±0.03 1.63±0.03

DPSGD-F 89.5±0.1 59.3±0.4 8.5±0.1 24.9±1.3 16.4±1.3 0.65±0.01 1.47±0.04 0.59±0.01 1.16±0.03 0.56±0.04

DPSGD-G. 90.6±0.2 62.0±2.6 7.4±0.1 22.2±2.6 14.8±2.7 0.34±0.01 1.31±0.04 0.28±0.01 0.99±0.03 0.71±0.04

DPSGD-G.-A. 92.0±0.2 65.5±1.2 6.0±0.2 18.8±0.9 12.8±0.8 0.35±0.01 1.20±0.04 0.29±0.01 0.89±0.03 0.60±0.03

Table 3: Performance and Fairness metrics for CelebA

METHOD ACC W/O ACC W πW/O πW πW/O, W LOSS W/O LOSS W RW/O RW RW/O, W

NON PRIVATE 95.8±0.1 89.7±0.4 - - - 0.11±0.00 0.24±0.01 - - -
DPSGD 86.5±0.2 74.0±0.6 9.3±0.3 15.7±0.6 6.4±0.7 0.60±0.01 1.34±0.05 0.49±0.01 1.10±0.05 0.61±0.05

DPSGD-F 91.8±0.2 79.7±0.5 4.0±0.2 10.0±0.6 6.0±0.6 0.32±0.01 0.97±0.04 0.21±0.01 0.73±0.04 0.52±0.04

DPSGD-G. 93.1±0.3 82.5±0.5 2.7±0.3 7.2±0.6 4.5±0.5 0.21±0.01 0.57±0.05 0.10±0.01 0.33±0.05 0.24±0.04

DPSGD-G.-A. 94.2±0.1 84.5±0.2 1.6±0.2 5.2±0.5 3.6±0.4 0.17±0.00 0.45±0.01 0.06±0.00 0.21±0.01 0.15±0.01

Tables 2 and 3 display the accuracy and loss, along with privacy cost and excessive risk metrics re-
spectively for MNIST on classes 2 and 8 and CelebA on group W with eyeglasses, and group W/O
without.3 Recall that higher is better for accuracy, but for all other metrics lower is better. Accord-
ing to the one-sided Wilcoxon signed rank test, both global methods have statistically significant
(p < 0.05) improvement over DPSGD on accuracy, loss, privacy cost gap, and excessive risk gap.
Similarly, DPSGD-Global-Adapt has statistically significant improvement over DPSGD-Global and
DPSGD-F on accuracy and loss. The same conclusions hold for the Adult dataset, and also for Dutch
with the exception of DPSGD-Global being comparable to DPSGD in loss, see Tables 4 and 5 in
App. B.7. We infer that the global scaling technique mitigates unfairness, while our modifications
further improve utility.

Not only are final model metrics improved, we see that DPSGD-Global-Adapt trains more similarly
to non-private SGD in Fig. 3 for Dutch (cf. Figs. 8, 9, and 10 in App. B.7 for Adult, MNIST, and
CelebA). This shows the average train loss per iteration, and average norm of the batched gradient.
The difference in loss for groups in DPSGD-Global-Adapt resembles that of the non-private method
more closely than other methods. Consider Fig. 3 (bottom), where the group M average norm
does not converge to 0 in DPSGD, a problem which is somewhat improved in DPSGD-F, while
for FairLens the group F norms become much larger. In DPSGD-Global-Adapt the norms for both
groups remain small, but importantly the gap between groups is reduced.

3The FairLens method (Tran et al., 2021a) is not compared for MNIST and CelebA because the author-
provided code only handles binary classification problems, and does not scale to image datasets.

Figure 3: Dutch dataset. Top: Train loss per epoch. Bottom:∥gB∥ averaged over batches per epoch.
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Figure 4: Adult dataset. Top Rdir
a , excessive risk due to gradient misalignment per group. Bottom

Rmag
a , excessive risk due to magnitude error per group. See Prop. 2 for definitions.

Fig. 4 shows the excessive risk terms due to gradient misalignment Rdir
a , and magnitude error Rmag

a

for Adult at each iteration (see Figs. 11, 12, and 13 in App. B.7 for Dutch, MNIST, and CelebA).
We see that global clipping almost completely removes direction errors as intended, but as a tradeoff
increases magnitude error. However, we have argued that direction error is the more severe cause of
disparate impact over the course of training, which is borne out by the results in Tables 1, 2 and 3, as
well as 4, and 5 in App. B.7. Direction errors introduce bias which accumulates, whereas magnitude
errors do not alter the convergence path, and noise errors add zero bias and tend to cancel out.

6.3 TIGHTNESS OF LOWER BOUNDS

Figure 5: Comparison of excessive risk gaps R0,1 to
lower bounds on Adult. Left: R0,1 due to clipping er-
ror, and bound from Tran et al. (2021a). Right: R0,1

due to direction error, and bound from our Prop. 3.

In Fig. 5 we compare the usefulness of the
lower bound of Rclip

a −Rclip
b given in the

proof of Theorem 3 in Tran et al. (2021a),
to the lower bound we give in Prop. 3 for
Rdir

a −Rdir
b . We see that while group 0 ex-

periences disparate impact due to clipping,
the lower bound from Tran et al. (2021a) is
negative for each iteration, failing to cap-
ture that Rclip

0 >Rclip
1 . On the other hand,

the true values of Rdir
0 −Rdir

1 are closely
lower-bounded in our version, such that
disparate impact due to direction error is
accurately predicted. The assumptions of
Prop. 3 are discussed in App. B.6.

7 DISCUSSION

In this paper we identified a core cause of disparate impact in DPSGD, gradient misalignment,
and proposed a mitigating solution, global scaling. We empirically verified that global scaling is
successful in improving fairness in terms of accuracy and loss over DPSGD and other fair baselines
on several datasets. Our method has additional advantages over other fair baselines in that it does
not require the collection of protected group data for training, does not involve disparate treatment,
and it removes disparate impact for all groups simultaneously.

It is important to note that while global scaling is effective at reducing disparate impact by aligning
gradients, it does not resolve the privacy-utility trade-off, which exists in any private mechanism
fundamentally. Nor does it ensure that the model is non-discriminatory towards subgroups, only
that adding privacy does not exacerbate unfairness. For example, biases in data collection or dis-
criminatory modelling assumptions can cause disparate impact within the non-private model, which
overlaying global scaling will not cure. Any models trained with global scaling should still be vali-
dated for fairness independently; failure to do so could unknowingly cause additional unfairness.
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A THEORETICAL RESULTS

A.1 PROOFS OF MAIN RESULTS

In this section we provide complete proofs for our theoretical contributions.

Proposition 2. Consider the ERM problem with twice-differentiable loss ℓ with respect to the model
parameters. The excessive risk due to clipping experienced by group a ∈ [K] at iteration t is
approximated up to second order in ∥θt+1 − θt∥ as

Rclip
a ≈ ηt

〈
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,E
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∥gB∥

)
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]〉
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∥ḡB∥2

∥gB∥2

(
(MBgB)

THa
ℓ (MBgB)−gTBHa

ℓ gB
)]

,

(Rdir
a )

where gDa
, ḡDa

denote the average non-clipped and clipped gradients over group a at iteration t,
Ha

ℓ refers to the Hessian over group a, and MB is an orthogonal matrix such that ḡB and MBgB
are colinear. The expectations are taken over batches of data.

We remark that assuming a twice-differentiable loss is a mild requirement in machine learning where
most loss functions and models are designed to be smooth enough for backpropagation.

Proof.

The proof is based on a Taylor expansion of the excessive risk, as in Tran et al. (2021a).

Let MB be an orthogonal matrix such that ḡB = MB

(
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∥gB∥gB are colinear, and so the former characterizes direction error, and the latter error
in magnitude. The excessive risk due to error in magnitude for group a at iteration t is then given by

E
[
L
(
θt − ηt

∥ḡB∥
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∥ḡB∥2

∥gB∥2
gTBH

a
ℓ gB

]
.

12



Published as a conference paper at ICLR 2023

Hence,
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η2t
2

(
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We can also further simplify Rdir
a by using that ḡD = E[ḡB ], ḡB = MB
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and that MB is

a linear transformation
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Proposition 3. Assume the loss ℓ is twice continuously differentiable and convex with respect to
the model parameters. As well, assume that ηt ≤ (maxk∈[K] λk)

−1 where λk is the maximum
eigenvalue of the Hessian Hk

ℓ . For groups a, b ∈ [K], Rdir
a > Rdir
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∥ḡB∥(cos θbB − cos θ̄bB)

]
+

E[∥ḡB∥2]
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, (6)

where θkB=∠(gDk
, gB) and θ̄kB=∠(gDk

, ḡB) for a group k∈ [K]. Furthermore, the bound is tight.

Again, requiring a twice continuously differentiable loss is a mild requirement. However, when
neural networks are used most loss functions are non-convex. Empirically we see in Fig. 5 that the
lower bound can still apply in practice. The requirement on the learning rate is under the control of
the practitioner, and we have verified that in practice it can be satisfied.

Proof.
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This proof follows some steps presented in Lemma 2 of Tran et al. (2021a). We seek a simplified
condition for when the following is positive,
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Looking at one of the inner product terms, we use that ⟨x, y⟩ = ∥x∥∥y∥ cos(x, y) and linearity of
expectation to obtain〈
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We can also get a bound on the difference in conjugates of the Hessian,
E
[
∥ḡB∥2

∥gB∥2

(
(MBgB)

THa
ℓ (MBgB)− gTBH

a
ℓ gB

)]
. Note that since we assume the loss ℓ is

convex, the Hessian Ha
ℓ is positive semi-definite such that xTHa

ℓ x ≥ 0 for all vectors x. It follows
that E[xTHa

ℓ x] ≥ 0 and so using linearity of expectation,

E
[
∥ḡB∥2

∥gB∥2
(
(MBgB)

THa
ℓ (MBgB)− gTBH

a
ℓ gB

)]
≤ E

[
∥ḡB∥2

∥gB∥2
(MBgB)

THa
ℓ (MBgB)

]
. (9)

Since ℓ is twice continuously differentiable we have that Ha
ℓ is symmetric and hence xTHa

ℓ x ≤
λa∥x∥2 where λa is the maximum eigenvalue of Ha

ℓ . We then again use that ∥MBgB∥ = ∥gB∥ and
linearity of expectation to obtain

E
[
∥ḡB∥2

∥gB∥2
(
(MBgB)

THa
ℓ (MBgB)− gTBH

a
ℓ gB

)]
≤ λaE

[
∥ḡB∥2

]
. (10)

Similar analysis gives that E
[
∥ḡB∥2

∥gB∥2

(
(MBgB)

THa
ℓ (MBgB)− gTBH

a
ℓ gB

)]
≥ −λaE[∥ḡB∥2].

Combining the above, it follows that

Rdir
a −Rdir

b ≥ ηt
(
∥gDa

∥E
[
∥ḡB∥(cos θaB − cos θ̄aB)

]
− ∥gDb

∥E
[
∥ḡB∥(cos θbB − cos θ̄bB)

])
− η2t

2
(λa + λb)E[∥ḡB∥2],

(11)

and since we assume ηt ≤ 1
maxk∈[K] λk

,

Rdir
a −Rdir

b ≥ ηt
(
∥gDa

∥E
[
∥ḡB∥(cos θaB − cos θ̄aB)

]
− ∥gDb

∥E
[
∥ḡB∥(cos θbB − cos θ̄bB)

]
− E[∥ḡB∥2]

)
.

(12)

It follows that Rdir
a > Rdir

b when the following is satisfied:

E
[
∥ḡB∥(cos θaB − cos θ̄aB)

]
>
∥gDb

∥
∥gDa

∥
E
[
∥ḡB∥(cos θbB − cos θ̄bB)

]
+

E[∥ḡB∥2]
∥gDa

∥
. (13)
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Finally, to see that the bound is tight we simply note that the inequalities that were introduced
can all be saturated simultaneously. In Eq. 9 we require that gTBH

a
ℓ gB = 0, and in Eq. 10 we

require (MBgB)
THa

ℓ (MBgB) = λa∥MBgB∥2 for each batch. These independent conditions can
plausibly be met for some Ha

ℓ , gB , and MB . The only other inequality introduced is the assumption
ηt ≤ 1

maxk∈[K] λk
, which we can strengthen to ηt =

1
maxk∈[K] λk

for the sake of achieving saturation.

A.2 ALTERNATE DECOMPOSITIONS OF THE CLIPPING ERROR

In Sec. A.2 we proposed a decomposition of the clipped batch gradient into parts representing
magnitude and direction error, ḡB=MB

(
∥ḡB∥
∥gB∥gB

)
. We presented a simple experiment in Table 1

to demonstrate that direction error causes the most severe problems for the final performance of
models, and analysed the contributions of the two effects to the excessive risk in Prop. 2.

Figure 6: Decomposition of steps between
gB and ḡB .

However, the decomposition we used is not unique,
and furthermore it is not possible to completely iso-
late the two effects in the excessive risk analysis. For
example, if we think of magnitude error as the dif-
ference in loss between using update vector gB and
∥ḡB∥
∥gB∥gB (γ in Fig. 6), then it follows that the remain-
ing error is due to gradient misalignment, in other
words, the difference in loss between using update
vector ∥ḡB∥

∥gB∥gB and ḡB (λ in Fig. 6). In this exam-
ple, the error due to gradient misalignment includes
both error in direction and error in magnitude, while
magnitude error is “pure”,

Rmag
a = E[L(θt − ηt

∥ḡB∥
∥gB∥gB ;Da)− L(θt − ηtgB ;Da)], (14)

Rdir
a = E[L(θt − ηtḡB ;Da)− L(θt − ηt

∥ḡB∥
∥gB∥gB ;Da)]. (15)

A different way of decomposing the clipping error is considering the direction error as the difference
in loss between using update vector gB and MBgB (α in Fig. 6). In this case, direction error is pure,
i.e. does not include difference in magnitudes. It follows that the remaining error is magnitude
error, so is the difference in loss between using update vector MBgB and ḡB (β in Fig. 6). Thus, the
magnitude error in this case quantifies the difference in loss of scaling the already misaligned ḡB ,

Rdir
a

∗
= E[L(θt − ηtMBgB ;Da)− L(θt − ηtgB ;Da)], (16)

Rmag
a

∗ = E[L(θt − ηtḡB ;Da)− L(θt − ηtMBgB ;Da)]. (17)

In our analysis we used the first decomposition where magnitude error can be completely corrected
by an adjustment of the learning rate, and direction error, what we hypothesized to be the largest
cause of disparate impact, is the remaining part of the clipping error. For completeness, by using the
second decomposition we can derive alternative versions of Props. 2 and 3:
Proposition 2*. Consider the ERM problem with twice-differentiable loss ℓ with respect to the
model parameters. The excessive risk due to clipping experienced by group a ∈ [K] at iteration t is
approximated up to second order in ∥θt+1 − θt∥ as

Rclip
a ≈ ηt

〈
gDa

,E
[(

∥gB∥
∥ḡB∥−1

)
ḡB

]〉
+

η2
t

2 E
[(

1− ∥gB∥2

∥ḡB∥2

)
ḡTBH

a
ℓ ḡB

]
, (Rmag

a
∗)

+ E [ηt ⟨gDa
, gD −MBgB ]⟩+ η2

t

2 E
[
(MBgB)

THa
ℓ (MBgB)− gTBH

a
ℓ gB

]
, (Rdir

a
∗)

where gDa , ḡDa denote the average non-clipped and clipped gradients over group a at iteration t,
Ha

ℓ refers to the Hessian over group a, and MB is an orthogonal matrix such that ḡB and MBgB
are colinear. The expectations are taken over batches of data.
Proposition 3*. Assume the loss ℓ is twice continuously differentiable and convex with respect to
the model parameters. As well, assume that ηt ≤ (maxk∈[K] λk)

−1 where λk is the maximum
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eigenvalue of the Hessian Hk
ℓ . For groups a, b ∈ [K], Rdir

a > Rdir
b if

E
[
∥gB∥(cos θaB − cos θ̄aB)

]
>
∥gDb

∥
∥gDa

∥
E
[
∥gB∥(cos θbB − cos θ̄bB)

]
+

E[∥gB∥]
∥gDa

∥
(18)

where θkB = ∠(gDk
, gB) and θ̄kB = ∠(gDk

, ḡB) for a group k ∈ [K].

We omit the proofs since they are directly analogous to those in App. A.1.

B EXPERIMENTAL DETAILS

B.1 DATASET PREPROCESSING

MNIST We use the artificially unbalanced MNIST training dataset where class 8 is sampled with
probability 9% such that class 8 only constitutes about 1% of the dataset on average. This gives about
6000 data samples for each class, other than class 8 with about 500. The protected group values are
the class labels. As in Xu et al. (2021), we compare models on how they treat the under-represented
class 8 versus the well-represented class 2. The test set remains balanced, with approximately 1000
samples for each class. Data is scaled to be in the domain [0,1].

Adult The original Adult dataset4 consists of 48,842 samples, reduced to 45,222 by removing
all samples with missing values. The “final weight” feature is removed and the “race” attribute
is discretized by {white, non-white}, giving 5 numerical, 3 binary and 6 categorical features. The
numerical features are normalized and the categorical features are one-hot encoded. As is typical
in the fairness literature, choices for the protected attribute are “sex”, “race” (binary) and possibly
the discretized “age”. We use “sex” by default. The classification label is “income” (whether or not
income exceeds $50,000). Prior to sampling, the Adult dataset is unbalanced with respect to sex
with 30,527 males and 14,695 females. We sample a balanced dataset as in Xu et al. (2021) with
14,000 females and 14,000 males on average.

Dutch The Dutch dataset van der Laan (2000)5 is preprocessed by dropping underage samples (14
and under) and removing the “weight” feature. As well, all “unemployed” samples are removed, as
well as those with missing or middle-level “occupation”, for a total of 60,420 samples. Specifically,
“occupation” values 3,6,7,8 are considered middle-level. “Occupation” is then made binary by con-
sidering values 4,5,9 as low-level professions (0) and 1,2 as high-level professions (1). The binary
classification task is to predict “occupation”, given the rest of the features. We consider “sex” as the
protected group attribute. The processed dataset is balanced with respect to “sex” with 30,147 male
and 30,273 female samples.

We use an 80/20 train/test split for both tabular datasets.

CelebA The CelebA dataset (Liu et al., 2015)6, consists of 64x64 pixel RGB images of celebrity
faces, along with binary attributes describing each image. Many of these attributes are subjective,
but we chose to use the most objective ones for training and group labels. We used the binary
attribute “Male” for the classification target, which is roughly balanced at 84,434 males in 202,599
total images. The attribute “Eyeglasses” was our protected group label; although wearing eyeglasses
in public typically does not construe sensitive information, we used this attribute because it was
objectively defined, and formed a minority group which was empirically more difficult for models
to classify accurately. Of the male images, 10,478 have eyeglasses, while only 2,715 female images
have them. The training/validation/test split is provided with the dataset and is roughly in a 80/10/10
ratio.

4The Adult dataset is available at archive.ics.uci.edu/ml/datasets/Adult.
5The Dutch dataset is also available through the work of Le Quy et al. (2022) at

raw.githubusercontent.com/tailequy/fairness dataset/main/Dutch census/dutch census 2001.arff.
6We accessed this dataset via kaggle.com/datasets/jessicali9530/celeba-dataset.
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B.2 EXPERIMENT SETTINGS

We set σ = 1, C0 = 0.5 for Adult, σ = 1, C0 = 0.1 for Dutch, while for MNIST and CelebA, we
set σ = 0.8 and C0 = 1. For DPSGD-F, the gradient noise is unchanged σ2 = σ, and σ1 = 10σ2.
For FairLens, we use regularization weights as in Tran et al. (2021a), λ1 = λ2 = 1. For non-global
methods, the learning rate is ηt = 0.01 for all iterations t and all datasets except Dutch which has
ηt = 0.8. For DPSGD-Global we have ηt = 1, Z = 50 for Adult, ηt = 2, Z = 1 for Dutch,
ηt = 0.2, Z = 100 for MNIST, and ηt = 0.1, Z = 100 for CelebA. For DPSGD-Global-Adapt
we have σ2 = 10, Z = 50, ηZ = 0.1 for all datasets (the only exception is for CelebA Z = 100),
ηt = 0.2, τ = 1 for Adult, η = 1, τ = 1 for Dutch, and η = 0.1, τ = 0.7 for MNIST and CelebA.
All methods for all datasets use training and test batches of size 256.

Experiments were conducted on single TITAN V GPU machines. Approximately four GPU-days
were used to train all methods over five seeds for the four datasets.

B.3 IMPLEMENTATION DETAILS

The excessive risk terms for different groups (Rclip
a and Rnoise

a in Prop. 1 and Rmag
a and Rdir

a in Prop.
2) all involve the Hessian of the loss function with respect to the model parameters. Calculating the
Hessian as a matrix is computationally expensive, but more crucially requires memory that scales
quadratically in the number of parameters. In the previous work studying Rclip

a and Rnoise
a , Tran et al.

(2021a) use the PyHessian library to compute the Hessian as a matrix, and then used it to compute
the products and traces needed for Rclip

a and Rnoise
a . Because this approach incurs a high memory

burden, the models trained were limited to small MLPs with a single hidden layer of 20 hidden
units.7

In our implementation, provided as supplemental material, we avoid computing the Hessian as a
matrix altogether which allows us to scale our experiments to common image datasets. For the
four datasets, our models have parameter counts of N = 91650 for Adult, N = 120 for Dutch,
N = 80522 for MNIST, and N = 120722 for CelebA, which would produce Hessian matrices with
up to 14.5 billion entries. Instead, we compute the terms involving Hessians like Ha

ℓ gB through
Hessian-vector products (HVPs) using the functorch8 library with PyTorch 1.11. Using HVPs re-
quires memory comparable to that used when computing gradients for SGD.

For the trace of the Hessian matrix, also called the Laplacian, one possible approach that does not
require realizing the entire matrix in memory is to compute HVPs with unit vectors to isolate each
diagonal element: Tr(Ha

ℓ ) =
∑N

i=1 I
T
i H

a
ℓ Ii where Ii is the ith column of the identity matrix.

While exact, this approach requires N HVPs for each group a ∈ K, of which there are at least two.
Since this method is much too expensive for even the simple MLPs and CNNs we used, we instead
employed Hutchinson’s trace estimator (Hutchinson, 1990) to estimate Tr(Ha

ℓ ) = Ez[z
THa

ℓ z]. This
estimator is unbiased when z is drawn from a Rademacher distribution which we used, and only
requires n HVPs per group, where n can be chosen as large as required for convergence of the
estimate. In practice we used n = 100.

Additionally, whereas Tran et al. (2021a) replace dataset gradients gD and gDa with batch gradients
when computing Rclip

a and Rnoise
a in Prop. 1, we use the exact gD and gDa

. This eliminates an easily
preventable source of noise in our results.

To further reduce computation time, we only evaluate excessive risk terms (Hessians) every 50, 100,
200, or 200 iterations for the Adult, Dutch, MNIST, and CelebA datasets respectively.

B.4 DIRECTION ERROR IS MORE SEVERE THAN MAGNITUDE ERROR

As noted earlier, Prop. 2 only evaluates excessive risk for a single iteration, not necessarily capturing
how each of Rdir

a and Rmag
a contribute to convergence and disparate impact over the course of train-

ing. In order to evaluate the full impact of magnitude error and error due to gradient misalignment,
we consider the difference in final loss and accuracy between models which have zero magnitude

7See implementation available at openreview.net/forum?id=7EFdodSWee4.
8See documentation at pytorch.org/functorch/stable/.
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error and zero direction error in Table 1. In these experiments, we consider zero magnitude error to
be when ∥ḡB∥ = ∥gB∥ for all batches, and zero direction error to be when gB and ḡB are aligned
for all batches. Note that these definitions correspond to comparing update vectors gB and ∥gB∥

∥ḡB∥ ḡB

for the zero magnitude error experiment, and comparing update vectors gB and ∥ḡB∥
∥gB∥gB for the zero

direction error experiment. These do not correspond to the definitions of Rdir
a and Rmag

a in Prop. 2,
but capture the intuitive definitions of direction and magnitude error. As described in App. A.2,
while Rclip

a = Rmag
a +Rdir

a , direction error and magnitude error cannot be purely separated with any
definition of Rmag

a , Rdir
a .

B.5 BASELINE METHODS

We compared our approach DPSGD-Global-Adapt with its predecessor DPSGD-Global, which was
designed to improve convergence, not fairness, as well as two approaches specifically designed to
improve fairness.

DPSGD-Global (Bu et al., 2021) is presented in Alg. 2, and involves scaling almost all per-sample
gradients by a global factor rather than only scaling large gradients with ∥gi∥ > C0 by a norm-
dependent factor. We say “almost all”, because scaling alone does not provide a strict upper bound
on the sensitivity, as required for an application of the Gaussian mechanism, see Fig. 2b. The method
additionally clips gradients to zero if their norm is above a strict upper bound Z, which we found
to be unnecessarily aggressive. Otherwise, the global scaling factor is C0/Z, which ensures that the
sensitivity, namely C0, is finite. The advantage of DPSGD-Global is that it can better preserve the
direction of ḡB , especially when no gradients are clipped to zero. Hence, Bu et al. (2021) advocate
for setting Z larger than ∥gi∥ for any sample in the batch. The drawback of a large Z is that all
gradients are scaled down by a larger factor, so the convergence will be slowed unless the learning
rate is increased to compensate. Setting Z is itself a challenge because we cannot inspect the batch
to determine maxi ∥gi∥ without accounting for that expense in our privacy budget. In Sec. 5 we
described how DPSGD-Global-Adapt resolves these concerns, first by clipping less aggressively, to
C0 instead of 0, while maintaining the same sensitivity, and second by adaptively setting Z each
round according to a private estimate of how many gradients in a batch exceeded τ · Z (using the
tolerance threshold τ ).

Xu et al. (2021) designed DPSGD-F as a method for removing disparate impact caused by DPSGD
by adaptively setting the clipping threshold for different protected groups. The method was based
on the observation that negatively impacted groups tended to have large gradient norms which were
affected more by clipping. Hence, the clipping threshold is raised for groups with larger gradient
norms, based on a private estimate of how many gradients per-group have ∥gi∥ > C0. Given large
enough batch sizes, the private estimate can be done with much more noise as compared to the
gradient update, so it does not meaningfully increase the privacy budget.

One drawback of this approach is that it requires group label information for every datapoint in
the training set. In practice, especially in highly regulated industries, such information may not
be permissible to use or even collect. Collecting additional private information from data subjects
on protected attributes can itself be a negative process and creates unnecessary privacy risks. One
major advantage of DPSGD-Global-Adapt is that it reduces unfairness without ever using group
label information.

While each group is clipped using its own threshold, noise is added to the batched gradient based on
the sensitivity, determined by the largest group threshold. While all groups receive the same theo-
retical privacy guarantee in terms of (ϵ, δ), groups that are clipped to smaller thresholds may enjoy
stronger empirical privacy guarantees, as determined for example by adversarial attacks (Jagielski
et al., 2020; Nasr et al., 2021). Hence, it appears likely that DPSGD-F can produce unfairness in the
amount of privacy afforded to different groups.

DPSGD-F is shown in Alg. 3. Note that we present the algorithm as implemented in the author’s
codebase, not as written in their paper. In our experiments we use the version shown in Alg. 3.

Our final baseline, referred to as “FairLens” was developed in (Tran et al., 2021a) to reduce excessive
risk from clipping, Rclip

a , and adding noise, Rnoise
a . Regularization terms are added to the loss function

in DPSGD that specifically target these sources of excessive risk. The source of Rnoise was identified
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Algorithm 3 DPSGD-F

Require: Iterations T , Dataset D, sampling rate q, clipping bound C0, noise multipliers σ1, σ2,
learning rates ηt

Initialize θ0 randomly
for t in 0, . . . , T − 1 do

B ← Poisson sample of D with rate q
for (xi, ai, yi) in B do

gi ← ∇θℓ(fθt(xi), yi) ▷ Compute per-sample gradients
for k in [K] do

mk ←
∣∣{i : ∥gki ∥ > C0

}∣∣ ▷ Count samples per-group above/below clipping bound
ok ←

∣∣{i : ∥gki ∥ ≤ C0

}∣∣{
m̃k, õk

}
k∈[K]

←
{
mk, ok

}
k∈[K]

+N (0, σ2
1I) ▷ Privatize unit sensitivity count vectors{

m̃k, õk
}
k∈[K]

←
{
max(⌊m̃k⌋, 0),max(⌊õk⌋, 0)

}
k∈[K]

▷ Postprocessing

m̃ =
∑

k∈[K] m̃
k

for k in [K] do
b̃k = m̃k + õk

Ck = C0 ·
(
1 + m̃k/b̃k

m̃/|B|

)
for (xi, ai, yi) in B do

ḡi ← gi ·min
(
1, Ck

∥gi∥

)
where k = ai ▷ Clip according to per-group clipping bounds

g̃B ← 1
|B|

(∑
i∈B ḡi +N (0, σ2

2C
2
0 I)

)
θt+1 ← θt − ηtg̃B

to involve the per-group Laplacian of the loss ℓ with respect to model parameters - a second order
derivative whose computation scales poorly with model size. To avoid this difficulty, the authors
used a stand-in for the Laplacian based on the distance of a point to the decision boundary.

Our implementation is directly based off of code made available by the authors on OpenReview at
openreview.net/forum?id=7EFdodSWee4. The version implemented in their code is shown in Alg.
4, and assumes there are only two mutually exclusive protected groups, denoted a and b. Hence, it is
not applicable to the MNIST dataset. We also attempted to use this code for our CelebA experiments
but found that the implementation did not scale to the simple CNNs we used. Therefore, we omitted
FairLens from the CelebA experiments.

B.6 VERIFYING ASSUMPTIONS ON LOWER BOUND

Figure 7: The maximum eigenvalue of any
group’s Hessian remains below ηt

−1.

In Sec. 6.3 and Fig. 5 we compared the use-
fulness of our lower bound on Rdir

a −Rdir
b from

Prop. 3, to a previous lower bound in the lit-
erature. For our lower bound to be valid, the
assumptions of Prop. 3 should be satisfied. The
first assumption, that the loss is twice contin-
uously differentiable with respect to the model
parameters, holds since the model architecture
is an MLP with tanh activations. However, the
loss is not in general convex. The third assump-
tion, that the inverse of the learning rate upper
bounds the largest eigenvalue of any group’s
Hessian, is checked empirically for each iter-
ation in Fig. 7.
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Algorithm 4 FairLens

Require: Iterations T , Dataset D, sampling rate q, clipping bound C0, noise multiplier σ, learning
rates ηt, regularization weights γ1, γ2

Initialize θ0 randomly
for t in 0, . . . , T − 1 do

B ← Poisson sample of D with rate q
for (xi, ai, yi) in B do

gi ← ∇θℓ(fθt(xi), yi) ▷ Compute per-sample gradients of original loss

ḡi ← gi ·min
(
1, C0

∥gi∥

)
gB ← 1

|B|
∑

i∈B gi

ḡB ← 1
|B|

∑
i∈B ḡi

for k in {a, b} do
gBk
← 1

|Bk|
∑

i∈B,ai=k gi

fk ← 1
|Bk|

∑
i∈B,ai=k fθt(xi)

R1 = |⟨gBa
− gBb

, ḡB − gB⟩|
R2 = 1

2 (fa · (1− fa) + fb · (1− fb))
L = ℓ(fθt(xi), yi) + γ1R1 + γ2R2 ▷ Define regularized loss
for (xi, ai, yi) in B do

g′i ← ∇θL(fθt(xi), yi) ▷ Compute per-sample gradients of regularized loss

ḡ′i ← g′i ·min
(
1, C0

∥g′
i∥

)
▷ Clip to ensure finite sensitivity

g̃′B ← 1
|B|

(∑
i∈B ḡ′i +N (0, σ2C2

0 I)
)

θt+1 ← θt − ηtg̃
′
B

B.7 ADDITIONAL RESULTS

In this section we complete the set of experimental results shown in Sec. 6 over all datasets and
methods. All results are averaged over five random seeds with one standard error shown.

Table 4: Performance and Fairness metrics for Adult dataset

METHOD ACC M ACC F πM πF πM,F LOSS M LOSS F RM RF RM,F

NON PRIVATE 80.5±0.4 92.2±0.1 - - - 0.40±0.00 0.19±0.00 - - -
DPSGD 69.9±0.4 88.5±0.1 10.6±0.3 3.6±0.1 6.9±0.3 0.78±0.01 0.40±0.01 0.39±0.00 0.21±0.01 0.17±0.01

FAIRLENS 68.8±0.4 88.5±0.1 11.7±0.2 3.7±0.1 7.9±0.2 0.57±0.00 0.42±0.00 0.18±0.00 0.23±0.00 0.05±0.00

DPSGD-F 78.0±0.6 89.4±0.1 2.5±0.3 2.7±0.1 0.2±0.3 0.49±0.00 0.31±0.01 0.09±0.00 0.12±0.00 0.02±0.01

DPSGD-G. 78.5±0.5 89.9±0.1 2.0±0.2 2.2±0.1 0.2±0.2 0.43±0.00 0.25±0.00 0.04±0.00 0.05±0.00 0.02±0.00

DPSGD-G.-A. 80.7±0.4 92.3±0.1 −0.1±0.1 −0.1±0.1 0.0±0.1 0.39±0.00 0.18±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Table 5: Performance and Fairness metrics for Dutch dataset

METHOD ACC M ACC F πM πF πM,F LOSS M LOSS F RM RF RM,F

NON PRIVATE 79.9±0.2 86.9±0.0 - - - 0.499±0.000 0.447±0.000 - - -
DPSGD 76.0±0.2 86.4±0.1 3.8±0.3 0.4±0.0 3.4±0.4 0.520±0.001 0.450±0.001 0.021±0.001 0.003±0.001 0.018±0.002

FAIRLENS 78.6±0.3 86.9±0.1 1.3±0.2 −0.1±0.0 1.4±0.2 0.552±0.001 0.526±0.000 0.053±0.001 0.079±0.000 0.026±0.001

DPSGD-F 78.9±0.2 86.6±0.1 0.9±0.1 0.3±0.0 0.7±0.1 0.503±0.001 0.447±0.001 0.005±0.001 0.000±0.000 0.005±0.001

DPSGD-G. 79.0±0.2 86.5±0.1 0.8±0.1 0.4±0.0 0.4±0.2 0.510±0.001 0.460±0.001 0.012±0.001 0.013±0.001 0.002±0.001

DPSGD-G.-A. 79.4±0.1 86.7±0.1 0.4±0.2 0.2±0.0 0.2±0.2 0.504±0.001 0.452±0.001 0.006±0.001 0.005±0.001 0.001±0.001

First we look at the final performance and fairness metrics on the test set for Adult in Table 4
and Dutch in Table 5 (cf. MNIST in Table 2 and CelebA in Table 3). We see that FairLens is
inconsistent in reducing the privacy cost gap and excessive risk gap compared to DPSGD. DPSGD-
F improves both fairness metrics while achieving better performance. DPSGD-Global improves over
or is comparable to DPSGD-F in all metrics, and does so without requiring access to protected group
membership information. Our method DPSGD-Global-Adapt further improves both performance
and fairness by clipping less aggressively and adaptively setting the upper clipping threshold Z.
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Figure 8: Adult dataset. Top: Train loss per epoch. Bottom:∥gB∥ averaged over batches per epoch.

Figure 9: MNIST dataset. Top:Train loss per epoch. Bottom:∥gB∥ averaged over batches per epoch.

Figure 10: CelebA dataset. Top: Train loss per epoch. Bottom: ∥gB∥ averaged over batches per
epoch.

To go along with the training curves shown for Dutch in Fig. 3, we present the same for Adult in
Fig. 8, MNIST in Fig. 9, and CelebA in Fig. 10. The trends are consistent across datasets - whereas
DPSGD produces large values and a large gap for the gradient norms and losses between protected
groups, our method DPSGD-Global-Adapt reduces the values and gap at all stages of training.
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Figure 11: Dutch dataset. Top: Excessive risk due to gradient misalignment per group. Bottom:
Excessive risk due to magnitude error per group.

Figure 12: MNIST dataset. Top: Excessive risk due to gradient misalignment per group. Bottom:
Excessive risk due to magnitude error per group.

Figure 13: CelebA dataset. Top: Excessive risk due to gradient misalignment per group. Bottom:
Excessive risk due to magnitude error per group.

We also present the values of terms Rdir
a and Rmag

a over training for Dutch in Fig. 11, for MNIST
in Fig. 12, and CelebA in Fig. 13 as was done for Adult in Fig. 4. Both Global methods dramat-
ically reduce Rdir

a compared to DPSGD at the cost of larger Rmag
a . Comparing to the final training

results where global methods also show the best performance, this provides further evidence for our
hypothesis that gradient misalignment is the most significant cause of disparate impact in DPSGD.
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Figure 14: Excessive risk due to noise error per group for the Adult dataset

Figure 15: Excessive risk due to noise error per group for the Dutch dataset

Figure 16: Excessive risk due to noise error per group for the MNIST dataset

Figure 17: Excessive risk due to noise error per group for the CelebA dataset

We note that by tuning the learning rate in DPSGD-Global and DPSGD-Global-Adapt, there is a
trade-off between magnitude error and noise error. Referring to Prop. 1, Rnoise

a =
η2
t

2 Tr(Ha
ℓ )C

2
0σ

2,
we see that the excessive risk due to noise is affected by the learning rate ηt, the noise multiplier σ,
clipping bound C0 and the trace of the Hessian for group a. In choosing a larger learning rate for
the global methods to offset the magnitude error, we increase the noise error quadratically. Refer
to the values of Rnoise

k over training for Adult in Fig. 14, Dutch in Fig. 15, MNIST in Fig. 16,
and CelebA in Fig. 17. While the excessive risk due to noise is significantly larger for the global
methods, these methods outperform all other private methods at the end of training, see Tables 2, 3,
4, 5. Gaussian noise adds zero bias and the errors it introduces tend to cancel out over the course of
training. These observations further validate that direction error is the core cause of disparate impact,
and minimizing gradient misalignment should be prioritized over other sources of unfairness.
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