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ABSTRACT

Large Language Models (LLMs) often produce outputs that – though plausible –
can lack consistency and reliability, particularly in ambiguous or complex scenar-
ios. Challenges arise from ensuring that outputs align with both factual correctness
and human intent. This is problematic in existing approaches that trade improved
consistency for lower accuracy. To mitigate these challenges, we propose a novel
game-theoretic approach to enhance consistency and reliability during the decod-
ing stage of LLM output generation. Our method models the decoding process as
a multistage Bayesian decoding game. This ensures consistency through Correct-
ness Alignment and enhances reliability via Ambiguity Calibration. The model
dynamically converges to a consensus on the most reliable outputs and distin-
guishes {Valid, Specious} outputs without human feedback or additional training.
Remarkably, our game design allows smaller models to outperform much larger
models through game mechanisms (e.g. 78.1 LLaMA13B vs 76.6 PaLM540B), as
well as integrating various LL strategies and models, demonstrating the potential
of game-theoretic tools to improve the truthfulness and reliability of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated extraordinary capabilities in tasks such as fac-
tual question answering, fact-checking, and open-ended text generation (Brown et al., 2020; Radford
et al., 2021). However, as these generative models increase in complexity and scale, they not only
enhance their generation capabilities but also develop a tendency to produce outputs that, while
plausible, may be factually incorrect or subtly misleading (McKenzie et al., 2023). This “specious”
behavior – whether an inevitable artifact of the model’s optimization process or an unintended hal-
lucination (Banerjee et al., 2024; Bai et al., 2024) – poses a significant challenge, often outpacing
the ability of human judgment to accurately assess the fidelity and truthfulness of the generated con-
tent (Leike et al., 2018). One direct approach is to optimize model outputs for legibility via human
feedback (e.g., RLHF (Christiano et al., 2017; 2018; Saunders et al., 2022; Markov et al., 2023)).
Human feedback, inherently constrained by limitations in interpretability (Singh et al., 2024) and
hindered by the illegibility (Hendrik Kirchner et al., 2024) of AI-generated content, struggles to keep
pace with increasingly complex reasoning (Casper et al., 2023; Leike et al., 2018). In light of these
challenges, the reliability of generative models in collaborative and high-stakes decision-making
remains deeply uncertain and we pose the question:

How can we efficiently ensure that LLM outputs are not only aligned with human intent but also
valid, especially when human evaluation may overlook specious errors?

To answer this question and to address the challenges outlined in Fig. 1, we explore a game-theoretic
approach by introducing a Verifier as a dynamic and rigorous evaluator, serving as a proxy for human
judgement to systematically assess generators. The motivation for this approach is threefold: (1)
LLMs are increasingly employed to assist in evaluating their own outputs, offering a more scalable
alternative to solely relying on human feedback (Bai et al., 2023; Saunders et al., 2022; Markov
et al., 2023; Mu et al., 2024); (2) the flexibility to adjust game-theoretic objectives – such as utilities
and policies between the generator and verifier – allows us to analyze latent decoding consistency
and legibility as a function (Jacob et al., 2024; Hendrik Kirchner et al., 2024); and (3) in scenarios
where human guidance is constrained, structured AI interactions can effectively elicit and refine
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(c) Visual Collaboration(b) Logical Reasoning

Valid: The scan reveals a glioblastoma…

I've been having persistent abdominal pain 
after meals, frequent diarrhea, blood in 
my stool, significant weight loss, fatigue, 
and occasional fever and joint pain.

Specious: The scan identifies a meningioma…

What is the differential diagnosis based 
on the findings in this MRI scan?

Valid: 
1. Simplify:

(a) Decision Making

Evaluate the integral.

!
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3. Evaluate: 𝑥" − 5𝑥 + 4𝑙𝑛 𝑥 −
1
𝑥 #

!
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1
3

Specious: 

2. Integrate:

3. Evaluate:

…
…

𝑥" − 5𝑥 + 4𝑙𝑛 𝑥 +
1
𝑥" #

!
= 4 ln 3 −

26
3

! 2𝑥 − 5 +
4
𝑥
−
1
𝑥"

𝑑𝑥 = 𝑥" − 5𝑥 + 4𝑙𝑛 𝑥 −
1
𝑥
+ CCrohn‘s disease. Further tests 

(colonoscopy, imaging) and treatment 
with anti-inflammatory medications. 

Specious:

Patient's Description:

Valid:

Irritable bowel syndrome. Manage with 
diet changes and stress reduction. 

Figure 1: Distinguishing Valid from Specious LM outputs, particularly when human evaluation
may overlook plausible errors. The three panels demonstrate how models can generate both Valid
(accurate and reliable) and Specious (plausible but misleading) responses.

latent knowledge, thereby enhancing model reliability, and generation consistency (Christiano et al.,
2021; Turpin et al., 2024).

Focus of the paper. Realistically, neither models nor humans can be expected to be perfectly correct
or reliable. Thus, our work focuses on actual consistency in correctness and calibrated ambiguity in
reliability. Instead of perfect correctness, we expect the LLM generator to have a high pass rate and
the LLM verifier to have a high recall on helpful samples, driving them towards a robust equilibrium
of consensus. Instead of absolute reliability, we aim to identify false negative and false positive
samples that exhibit fluctuating or unstable behavior under calibrated confidence and disambiguity
metrics during the decoding stage, using these elusive cases as focal points for a more precise and
targeted verification process. We categorise these cases as

1. Valid Output from Generator vs.Verifier. When both the generator and verifier agree on
correct results and are reliable to both humans and the LLM.

2. Specious Output from Generator vs.Verifier. When the generator and verifier agree on re-
sults that seem correct but are actually wrong. In these cases, the verifier may recognize the
result, even though a human might not.

This is analogous to expecting reliable outputs when humans can consistently discern correctness
and are not misled by similar-looking but opposite intents. To address the problem, we propose a
signaling game setup between a generator and a verifier to resolve the current issues in LLM de-
coding. This is motivated by concepts from Equilibrium Consensus Games (ECG) (Jacob et al.,
2024) and Prover-Verifier Games (PVG) (Hendrik Kirchner et al., 2024). Conventional signaling
game settings have been successfully deployed for Poker (Brown & Sandholm, 2018; 2019), Strat-
ego (Perolat et al., 2022), Diplomacy (, FAIR; Bakhtin et al., 2022; Jacob et al., 2022), and LLM
tasks (Hendrik Kirchner et al., 2024; Chen et al., 2023).

Variable correctness and ambiguous reliability requires us to formulate this as a multi-step Bayesian
Decoding Game with complex action spaces as shown in Fig. 2. Firstly, the generator’s design is
randomly sampled from {Correct, Incorrect} outputs to match latent alignment and consistency,
Then, the verifier judges the type of decoding from generators {Valid, Specious} based on a con-
vex combination of correctness and reliability. Both the generator and verifier iteratively refine
their policies using improved no-regret optimization until they reach an equilibrium of correctness
judgement, followed by solving a constrained optimization problem.

2 A BAYESIAN DECODING GAME (BDG)

We define generative model decoding as a signaling game (§2.1), where the generator and verifier
iteratively exchange signals to align on the correctness of the generated outputs. We introduce a
Bayesian Game for Generative Model Decoding (§2.2) to counter potential pitfalls of an uncon-
strained equilibrium – where multiple equilibria can lead to suboptimal outcomes. We introduce
No-regret Optimization for Separating equilibria (§2.3) to minimize cumulative regret and to ensure
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Figure 2: A Bayesian Decoding Game ensures consistency through Correctness Alignment and
enhances reliability via Ambiguity Calibration. The generation and verification are structured as
a multi-stage signaling game, fostering a coherent consensus on the outputs {Correct, Incorrect}
while improving the reliability {Valid, Specious}.

that strategies converge towards a distinct separation. Finally, to ensure decoding is not only correct
but also reliable, we introduce Constrained Optimization for Ambiguity Calibration (§2.4), which
refines candidate outputs based on a convex combination of correctness and disambiguity metrics.

2.1 PRELIMINARIES: SIGNALING GAME FOR GENERATIVE LANGUAGE MODELS

The essence of a signaling game (Gibbons et al., 1992) is that one player (the generator) takes an
action, the signal, to convey information to another player (the verifier); in the simplest setup, the
final payoff depends on whether the verifier correctly judges the generator’s type based on the gen-
erator’s signal. Following this intuition, (Jacob et al., 2024) design a Equilibrium Consensus Game
(ECG), without a formal definition of the game. Thus, we provide a comprehensive game-theoretic
formulation for generative model decoding, and propose improvements to address limitations.

Formally, the signaling game’s components can be defined as: (1) Players: Generator and Verifier;
(2) Choice sets: Generator’s choice set is y ∈ CG = Y , with prompt p randomly drawn from
{Correct, Incorrect}, and the Verifier’s choice set is v ∈ CV = {Correct, Incorrect}, based on the
generator’s choice y ∈ Y; (3) Payoff Function: uG = uV = 1p=v(p, v), where 1 equals 1 if the
correctness prompt x matches the verification result, and 0 otherwise. This basic signaling game is
illustrated in Fig.2. We are now ready to state the fundamental concept of this signaling game, a
Perfect Bayesian Nash Equilibrium (PBNE) (Cho & Kreps, 1987). We use the short form Perfect
Bayesian Equilibrium (PBE). The auxiliary definitions for PBE Defi. 1. are in Appx. C.

Definition 1. (Perfect Bayesian Equilibrium (Fudenberg, 1991)) A Perfect Bayesian Nash
Equilibrium (PBE) is a pair (s, b) of strategy profile and a set of beliefs such that (1) s is
sequentially rational given beliefs b, and (2) b is consistent with s.

Example. For generative model decoding, the generator’s belief is given by its perceived prob-
ability distribution, P({correct, incorrect}) = (pi, 1 − pi), for each yi ∈ Y of the verifier’s
judgment, and with its belief and type, the generator chooses a mixed action that maximizes its
utility, i.e., if the generator’s type is correct, then its optimal mixed strategy would be allocating
positive possibility only on yi such that pi > 1− pi and zero possibility to other yi.

Collusion Avoidance with SE (Sequential Equilibrium). A player in the game is said to be se-
quentially rational if and only if, at each information set (the nodes of Generator and Verifier in
Fig. 2) they are to move, they maximize their expected utility given their beliefs in the information
set. Given any strategy profile s and any information set I on the path of play of s, a player’s beliefs
at I are said to be consistent with s if and only if the beliefs are derived using the Bayes’ rule and s.
Collusion occurs when the reached equilibrium is uncorrelated with the generator’s type. Thus, we
further introduce a Separating Equilibrium (SE) to our game to avoid collusion.
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Definition 2. (Separating Equilibrium (Black et al., 2012)) A Separating Equilibrium (SE) is a
type of PBE where agents with different types choose different actions.

To enable the LLM to differentiate between correct and incorrect answers while reaching consen-
sus, we require the generator to respond distinctively to each type. When provided with correct or
incorrect inputs, the generator must exhibit different behaviors, sending clear signals to the verifier.

Theorem 1. More than one (mixed) strategy Perfect Bayesian Equilibrium exists for this game.

The proof and explanation are in Appx. D.1. Thm. 1. is both a guarantee and a curse; the existence
of an equilibrium ensures convergence, but the presence of multiple equilibria raises the risk of
undesirable outcomes, where low-quality output may incorrectly align with successful verification.

2.2 GAME FORMULATION: A BAYESIAN GAME FOR GENERATIVE MODEL DECODING

The game converges towards a desirable outcome following equilibrium for the problem at hand:

Definition 3. (Decoding Game) The Decoding Game is an alternative version of the signalling
game in §2.1, and its payoff is determined by the preference ordering of each player, Oi ∈
SY , i ∈ {G,V }, where n is the cardinality of the candidate set Y and Sn is the set of all
permutations of elements in Y . We define the utility of the decoding game as

uG(OG, OV ) = uV (OG, OV ) = 1(OG=OV )(OG, OV ),

such that 1(OG=OV )(·, ·) is the indicator function at OG = OV . Oi is the preference relation
indicated by players’ strategy, aG(y | x, correct, bS), aV(correct | x, y, bV ), such that

aG(yi | x, correct, bS) ≥ aG(yj | x, correct, bS) ⇐⇒ yi ≿G yj

aV(correct | x, yi, bV ) ≥ aV(correct | x, yj , bV ) ⇐⇒ yi ≿V yj .

bG = bG(y | x, correct) is the generator’s belief of the probability of y being judged correctly
by the verifier, and bV = bV(correct | x, y) is the verifier’s belief of the probability of y being
associated with the correct environment signal received by the generator. aG, aV are the actions for
the generator and verifier, respectively. 1 With the preference relation, we determine OG, OV , and
we call the equilibrium for the above game a Decoding Equilibrium (DE).

Theorem 2. There are n! equilibria for the Decoding Game.

The proof and details are given in Appx. D.2. Thm. 2. can guide a refined utility with a penalty term
to avoid undesirable equilibria, (e.g., change of preference ordering, collusion). We write this as

uG(aG, aV ) = uV (aG, aV )

= 1(OG=OV )(OG, OV )−max{∥aG(y | x, correct, bG)− aNV(correct | x, y, bV ), ∥∀y}
(1)

Utility is maximized when the preferences of the verifier and generator match, and when the largest
absolute difference is minimized given a valid signal, which each correspond to (1) a Decoding
Game, and (2) σ-close, consistent with the defi. of σ-DE in Appx. D.2 for an optimal convergence.

2.3 CORRECTNESS ALIGNMENT: NO-REGRET OPTIMIZATION FOR EQUILIBRIUM

No-Regret Optimization. Based on the Decoding Game (§2.2), we propose two strategy update
schedules to numerically achieve optimal convergence of σ-DE in Thm. 1. The multiplicity of DE
may lead to convergence to suboptimal outcomes, necessitating the definition of an initial strategy
for each player. This “true” prior is denoted as a(1)V (· | x, y) and a

(1)
G (· | x, v) (Jacob et al., 2024).

Through repeated interactions and iterative policy refinement, no-regret learning approximates equi-
libria in large games. Cumulative regret is defined as:

Reg
(T )
i :=

1

T

(
T∑

t=1

ui

(
s∗i , s

(t)
D ; bi

)
− ui

(
s
(t)
i , s

(t)
D ; bi

))
,

1There is a difference between belief and action: the belief is the player’s belief in the opponent’s action.
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where s∗i is the optimal hindsight strategy that maximizes this value. Rather than computing regret
at each iteration, s∗i is selected based on the time-averaged strategy profile.

In sequential games with private information and discrete choices, global regret minimization is
achieved by minimizing regret locally within each information set, given the finite nature of these
sets. For example, to minimize overall regret, the generator must minimize regret by selecting an
optimal mixed strategy sG, conditioned on the signal correctness received from the environment.
The verifier follows a similar procedure, updating its strategy with respect to each y ∈ Y .

For this problem the payoff is maximized when the generator and verifier align their actions and min-
imize their confidence difference. Thus, the strategy update should be directed towards alignment
with the opponent’s strategy based on the adaptability2 of players (Roughgarden, 2010).

Markovian Strategy Update. To maximize the utility given by Eq. 1, whereas each player’s belief
bi,t at time t of the opponent’s strategy is given by the opponent’s strategy in period t−1. We hence
propose a Markovian strategy update schedule. The palyers update their strategy based on the belief:

b
(t+1)
G (y | x, v) = a

(t)
V (v | x, y), b

(t+1)
V (v | x, y) = a

(t)
G (y | x, v)

a
(t+1)
G (y | x, v) ∝ exp

{
1
2b

(t+1)
G (y | x, v) + λG log a

(t)
G (y | x, v, b(t)G )

1/ (ηGt) + λG

}

a
(t+1)
V (v | x, y) ∝ exp

{
1
2b

(t+1)
V (v | x, y) + λV log a

(t)
V (v | x, y, b(t)V )

1/ (ηVt) + λV

}
.

Initial policies are a
(1)
V (· | x, y), a

(1)
G (· | x, v), where ηi, λi, i ∈ {G,V } are the learning

rate and stiffness hyperparameter. The two strategy update schedules we propose show satis-
factory convergence properties, and the stopping criteria are given by: (1) OG = OV . (2)
|aG(y | x, correct, bS)− aNV(correct | x, y, bV )∥ < σ.

Theorem 3. A Markovian update schedule for a Decoding Game converges to an equilibrium.

The proof can be found in Appx.D.3. Due to the efficient utility and the design of the no-regret
algorithm, our method reaches σ-DE 30 times faster than other state-of-the-art methods with an
accurate correctness alignment between the generator and verifier. Moreover, the strategy update
also ensures that the convergence of σ-DE is a “near” convex combination of the initialization of the
generator and the verifier.

Inherent Ambiguity. Once the σ-DE is reached, given P(({correct, incorrect}) = (0.5, 0.5) is
the signal distribution from the environment, and the cardinality of the candidate set is given by
|Y| = n so that n mod 2 = 0, we label the n most preferred candidates as correct, and the rest as
incorrect. We denote the candidate in each group as yi,C , yi,I , respectively. However, sometimes
in experiments we found that in equilibrium3, candidates’ correctness near the cutoff threshold are
actually ambiguous. This is expected, for example, if the correctness score difference between the
least correct and the least incorrect candidate yn

2 ,C , yn
2 +1,I ,

P ∗
LM (correct | x, yn

2 ,C)− P ∗
LM (correct | x, yn

2 +1,I)

is small compared to the difference between other adjacent candidates. Consequently, when running
the signaling game with the same set of candidates and prompt, the equilibrium preference may
become indeterminate for candidates whose correctness is near the threshold.

Through NLP metrics in (Li et al., 2022) and human evaluation (see Appx. G for details), we observe
that they lack both similarity to the prompt and logical progression in natural language. This leads
to increased perplexity, resulting in false positive and false negative classifications. Therefore, we
refer to these output candidates as specious due to the inherent ambiguity in model sampling.

A uniform probability distribution determines the cutoff boundary of natural’s signal, we aim to
solve this ambiguity problem by introducing an independent (from correctness) metric to detect
those specious candidates and allow for post-equilibrium checks and decoding optimizaiton.

2An adaptive player is a function that inputs (1) the opponent i, (2) time t, (3) mixed strategies s1, . . . , st

produced by i, and (4) past actions a1, . . . , at−1, and outputs a coupled strategy and belief.
3we denote the equilibrium actions by *
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2.4 DISAMBUGUITY CALIBRATION: OPTIMIZATION VIA A DISAMBIGUITY METRIC

Our game efficiently approximates the σ-DE, which is accomplished solely based on the correctness
judgment of both the generator and the verifier. While correctness in LLM-generated text is un-
doubtedly the most important metric, the ease with which this correctness can be verified has been
largely overlooked. (Hendrik Kirchner et al., 2024) tapped this problem where they reasoned the
property of Legibility of LLM-generated content as whether the correctness is easily verifiable by
humans. They emphasise that legibility during training must sacrifice some correctness.

Disambiguity Metric. We propose a Disambuguity Metric and Reliability Score to achieve a robust
decoding scheme that fully incorporates both correctness alignment and ambiguity detection without
training. First, we define a Disambiguity Metric:

Definition 4. (Disambiguity Metric) For a prompt x and a finite set of answer candidate Y , a
Disambiguity Metric is a function that projects the prompt x and a candidate yi ∈ Y such that
DA(x, y) : x× Y → [0, 1]. The output of the function is a measurement of the disambiguation
of yi ∈ Y to the prompt x. The disambiguity metric, combined with the correctness parameter,
can detect false-positive and false-negative classifications in the correctness alignment phase.

Therefore, for the elements in Y , we assign the correctness parameter from the previous stage
as c(yi), which is the probability distribution of PLM (y | x, correct) condition on that the DE
is reached. Similarly, we denote the disambiguity metric for (x, yi) as DA(x, yi). For any
yi, yj ∈ Y , we have c(yi) > c(yj) ∪ c(yi) ≤ c(yj) and this also applies for the disambiguity
metric DA(x, yi), DA(x, yj).

Disambiguity Maximization. We introduce the metric Rel(x, yi) = η ·DA(x, yi) + (1− η)c(yi),
reliability, for η ∈ [0, η], η < 1. (1− η) is the least proportion of correctness that needs to be
considered. This is a convex combination of correctness and disambiguity, thus the maximization
problem is defined as: max η s.t. min Rel(yi,C) ≥ max Rel(yi,I), η < η.

Intuition 1. The solution to the maximization problem, denoted as η∗, is the value that for any
η such that η∗ < η < η, the preference ordering is different from when η < η∗ which indicates
the candidates whose relations with others are altered are the specious candidates.

Once we identified the specious candidates, the candidates that are the most preferred and the least
preferred are the valid candidates. The Reliability of a disambiguity metric can now be defined for
a prompt-candidate set (x,Y).

Definition 5. (Reliability) A prompt-candidate set (x,Y) couple can be made more Re-
liable by a Disambiguity Metric if such a η∗ exist for the maximization problem
max η s.t. min Rel(yi,C) ≥ max Rel(yi,I), η < η. If such a maximal η does not exist, then
we say that the prompt-candidate set cannot be made more Reliable by Disambiguity Metric.

Theorem 4. A prompt-candidate couple can be made more Reliable by the disambiguity metric
DA(x, y), y ∈ Y if and only if (1) min c (yi,C) > max c (yi,I) and (2) η ·DA(x, yi,I) + (1 −
η)c(yi,I) > η ·DA(x, yi,C) + (1− η)c(yi,C) for some yi,C , yi,I

Intuition 2. As for the first condition, the least preferred correct candidate has to be preferred
over the most preferred incorrect candidate. Secondly, some incorrect candidates are strictly
preferred to some candidates that are initially classified as correct, when disambiguation is max-
imized. Those two conditions ensure the decoding preference changes under the constraint.

3 EXPERIMENTS

We aim to answer the following questions: (1) What design choices enable decoding games to im-
prove language generation performance? (2) To what extent does our BDG improve consistency? (3)
To what extent does the BDG improve factual validity and reliability? BDG focuses on improving
the consistency and reliability of LLMs. However, consistency and reliability manifest themselves in
various forms across different domains and dimensions, including correctness, truthfulness, factual-
ity, valid reasoning, value alignment, among others. In (§3.1), we first assess efficiency and reliabil-
ity through a multidimensional comparison with another game-theoretic method (Jacob et al., 2024)
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Question:	

Which	of	these	events	during	a	storm	at	sea	{can,	can	not	}	add	oxygen	from	the atmosphere	to	ocean	water?		 A. high	winds B. lightning			C. pressure	change		D. temperature	change	

C:	Mixing	Wind	(A):	Directly	mixes	oxygen	into	water.
C:	Pressure	Change	(C):	Alters	gas	solubility,	affecting	oxygen.
C:	High Winds (A):	Cooler	water	holds	more	oxygen.
C:	Wind	(A):	Wind-driven	waves	increase	oxygen	diffusion.
C:	High	Winds	(A):	Storm	winds	exchange	water	and	oxygen.

(b) Searching via BAYESIAN DECODING GAME

(a) MCQA with Inconsistent & Ambiguous Decoding

(c) Searching via EQUILIBRIUM CONSENSUS GAME

I:	Lightning	(B):	No	real	impact	on	oxygen	levels.
I:	Wind	(A):	Distributes,	but doesn’t	add	oxygen.
I:	Temperature	Rise	(D):	Warmer	water	holds	less	oxygen.
I:	Rainfall	(#)Doesn’t	add	atmospheric	oxygen.
I:	Cloud	Cover	(#):	Irrelevant	to	oxygen	levels.

(d) Model Precision between BDG and ECG
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Figure 3: BDG’s game design quickly reaches equilibrium and consensus between the genera-
tor and discriminator, typically within 100 epochs. In contrast, ECG requires significantly more
epochs (3000 in this case) and exhibits continuous fluctuations (as shown in the lower right) before
achieving consensus. (Zoom in for details.)

and several variants. In (§3.2), we evaluate performance on a diverse set of LLMs used for real-
world tasks: MMLU (Hendrycks et al., 2020b), ARC-Easy (E.), -Challenge (C.) (Clark et al., 2018),
RACE-High (H.) (Lai et al., 2017). It is important to note that BDG is a game-theoretic decod-
ing strategy and not a deliberation/training-based method like a prover-verifier-game (PVG) (Hen-
drik Kirchner et al., 2024), or contrastive-objective based generation (Li et al., 2022). Nevertheless,
we will demonstrate through benchmarks in reasoning task: GSM8K (Cobbe et al., 2021), medical
taks: PubMedQA (Jin et al., 2019), MMLU-Medical (M.), and ethical scenarios, including justice,
virtue, deontology and utilitarianism in Ethics (Hendrycks et al., 2020a), that BDG yields significant
improvements and demonstrates synergistic potential across various scenarios (§3.3).

Actions in the Game. As noted in §2, to adapt BDG to existing methods, a generator in the mod-
eling picks a distribution over a finite set of candidates Y . E.g., in multiple-choice tasks, these are
the multiple choice options. In generative tasks, a common approach to generate the finite set of
candidates is via sampling with nucleus (Holtzman et al., 2019) and top-k (Fan et al., 2018) from
the distribution PLLM(y | q, correct) where y ∈ Y .

Baselines and Models. For fair comparisons, following the setting and scores (Jacob et al., 2024),
we use LLaMA models (Touvron et al., 2023) (7B, 13B parameters) with 16-bit inference across
all experiments unless otherwise specified. On multiple-choice datasets, we employ: Generative
Ranking (G): Ranks candidates by PLLM(y | x, correct) following (Brown et al., 2020; Touvron
et al., 2023). Discriminative Ranking (D): Re-weights query-candidate pairs using π

(1)
D (correct |

x, y) based on (Jacob et al., 2024). Self-Contrastive Decoding (SCD): Utilizes π(1)
G for reweighting

candidates (Jacob et al., 2024; Li et al., 2022). Equilibrium Consensus Game (ECG): Reweights
pairs with equilibrium discriminator (x, y) by π∗

D(correct | x, y) (Jacob et al., 2024). And BDG-
based discriminator (x, y) by π∗

D(correct | x, y) to reweight query-candidate pairs.

Prompting. Unless otherwise specified, the condition for the PLLM corresponds to the standard
zero-shot prompt (Jacob et al., 2024; Hendrycks et al., 2020b). Furthermore, we combine chain-of-
thought (CoT) (Wei et al., 2022), and few-shots setting (Wei et al., 2022) as orthogonal analysis.

3.1 GAME-THEORETIC DESIGN

Table 1: Comparison between ECG and BDG.
Criteria ECG: Equilibrium

Consensus Game
BDG: Bayesian
Decoding Game

Thm.

Strategy ER-update xi,t+1 =

xi,t + 1
2tΣ

t
0x−i,t

last-round belief update
bi,t = a−i,t−1

2

Convergence No guarantee Bayes-CCE 3

Recall Perfect recall average Markovian 3

Complexity O(n2) O(n logn) N/A

Searching & Convergence Behavior.
We first compare searching behaviors
of BDG with the most closely related
method, the ECG (Jacob et al., 2024), in
the multiple-choice question answering
(MCQA) task (Clark et al., 2018). Fig.3
provides a visual case study. BDG demonstrates a swift and consistent convergence in (b).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a.1) Convergence of BDG (a.2) Convergence of ECG (b.2) Per-case report

Experts Non-experts

Time 

Accuracy

(b.1) Human Eva. w/o BDG or ECG

BDG
ECG

Human

Generator Policy Entropy
Verifier Policy Entropy

Generator Policy Entropy
Verifier Policy Entropy

Improve

Time
the less, the better

0

1

2

3

4

5

6

7

8

9

Accuracy
the higher, the better

Figure 4: Entropy dynamics during convergence. (a.1) Fluctuations in BDG indicate exploration
of multiple equilibria. (a.2) ECG shows persistent entropy fluctuations and continued exploration
without reaching stabilization. BDG improves LLM consistency and reliability for human. (b.1)
Impact of BDG and ECG on time, accuracy for human experts vs. non-experts. (b.2) BDG and ECG
report on time, accuracy per case for human experts vs. non-experts. (Zoom in for details.)

Conversely, the ECG, shown in (c), exhibits prolonged and inconsistent searching behavior. Despite
continuous shifts in candidate selections, ECG fails to achieve stable convergence with persistent
disagreement between the generator and verifier. (d) and Tab.1 highlights the enhanced and fast
convergence properties of the BDG over the ECG.

Entropy & Equilibrium Convergence. The staged convergence of BDG with 500 epochs is shown
in Fig. 4, which first stabilizes on one solution before shifting to another. This leads to rapid con-
vergence with our no-regret optimization. Compared to the ECG in Fig. 4 (a.2), this phase shows a
stabilization in policy entropy, which signifies the model’s swift approach to a potential equilibrium.
The subsequent shift in policies, resulting in entropy changes, reflects the exploration of multiple
PBEs inherent in signaling games. As the BDG navigates these equilibria, entropy fluctuations rep-
resent the ongoing search for an optimal balance. The search is further refined by the Decoding
Equilibrium, where we design Markovian updating strategies to achieve the best possible alignment
between the generator and verifier. In contrast, the ECG tends to keep searching, but lacks the ability
to explore, often resulting in a single, less optimal equilibrium.

Table 2: Comparison of inconsistency (InC.%) and improvements
(Imp.%) between G, ECG, and BDG.

Domain Model InC.% G ECG Imp.% BDG Imp.%

MMLU LLaMA-7B 69.0% 30.4 39.9 31.3% 40.5 33.2%
LLaMA-13B 60.6% 41.7 45.1 8.1% 46.9 12.5%

ARC-E. LLaMA-7B 56.1% 68.2 71.5 4.8% 75.3 10.4%
LLaMA-13B 46.1% 71.2 76.4 7.3% 78.1 9.7%

ARC-C. LLaMA-7B 65.9% 47.3 58.3 23.2% 59.6 26.0%
LLaMA-13B 59.1% 51.9 61.4 18.3% 62.2 19.8%

RACE-H. LLaMA-7B 62.0% 46.4 56.4 21.5% 57.7 24.4%
LLaMA-13B 58.8% 47.9 62.8 31.1% 60.3 25.9%

Average 59.7% 50.6 59.0 18.2% 60.1 20.2%

Inherent Inconsistency &
Reachable Consistency.
We quantified the degree
of inconsistency during
the decoding stage by
analyzing the disagree-
ment percentage between
Generative (G) and Dis-
criminative Ranking (D)
following (Jacob et al.,
2024). In Tab.2, G and D
often yield conflicting re-
sults, indicating significant
inherent inconsistencies during the decoding stage of generative models. These discrepancies can
be effectively mitigated by our approach, specifically during the decoding process, without the
need for additional training. Tab. 2 shows that BDG consistently outperforms both G and ECG,
particularly in cases with higher disagreement rates. We achieve superior consistency with higher
correctness, and reliability with fewer computations in Fig. 3.

Intrinsic Ambiguity & Provable Reliability. Shifting our focus from consistency to reliability,
we analyze the performance and reliability of game-theoretic decodings in human comprehension
tasks. We conducted time-constrained human evaluations with and without BDG and ECG. Due to
intrinsic ambiguity, human evaluators take longer and are less likely to achieve high accuracy and
confidence, where there is a significant disparity in both time and accuracy between experts and non-
experts over 200 samples, even the limitations of experts as shown in Fig. 4 (b.1). Game-theoretic
approaches enhance the decoding process effectively in a training-free manner, without compro-
mising accuracy. Especially, BDG provides a decoding process closely aligned with human intent,
improving accuracy consistently for both experts and non-experts, and significantly enhancing the
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identification of reliable samples with reduced time in Fig. 4 (b.1). Furthermore, BDG outperformed
ECG across various dimensions, as seen in Fig. 4 (b.2). For further details, refer to Appx. H.

3.2 CONSISTENCY BENCHMARKING: ACROSS DOMAINS WITH SMALLER MODELS

Table 3: Model consistency across different domains.
Domain Model G MI SCD D ECG BDG

MMLU LLaMA-7B 30.4 33.1 30.5 40.4 39.9 40.5
LLaMA-13B 41.7 41.8 41.7 41.9 45.1 46.9

ARC-E. LLaMA-7B 68.2 68.8 69.5 52.5 71.5 75.3
LLaMA-13B 71.2 71.5 73.0 65.0 76.4 78.1

ARC-C. LLaMA-7B 47.3 47.4 56.5 42.7 58.3 59.6
LLaMA-13B 51.9 52.1 59.3 48.5 61.4 62.2

RACE-H. LLaMA-7B 46.4 46.3 53.1 46.0 56.4 57.7
LLaMA-13B 47.9 48.4 58.9 55.1 62.8 60.3

With “relatively easy” reasoning and
comprehension tasks, we show supe-
rior performance compared to base-
lines and other game-theoretic meth-
ods in Tab. 3 due to the efficient
alignment of consistency. In a
broader comparison, our zero-shot
LLaMA-13B (78.1, ARC-E.) outper-
forms much larger models like the
PaLM-540B model (76.6) (Chowdh-
ery et al., 2023).

With more challenging reasoning and multitask understanding tasks, such as ARC-C, RACE-
H, and MMLU, we achieve the best equilibrium decoding with fewer rounds and higher accu-
racy. Our LLaMA-13B (46.9, MMLU; 57.7, RACE-H.) outperforms zero-shot GPT-3-175B (37.7,
MMLU) (Hendrycks et al., 2020b), LLaMA-65B (51.6, RACE-H.) (Touvron et al., 2023), and
PaLM-540B (49.1, RACE-H.) (Hendrycks et al., 2020b).

3.3 RELIABILITY GAINS: ORTHOGONAL ENHANCEMENTS FOR ROBUST DECODING

Datasets in Tab. 4, 5 involve challenging scenarios to test models’ reasoning and reliability abilities.
We use these benchmarks to study whether we can combine our approach with various orthogonal
strategies. As a decoding strategy based on game theory, BDG does not conflict with the compu-
tationally intensive game mechanism during training, nor does it conflict with CoT and few-shots
based on prompting engineering. We can achieve the improved performance in more challenging
scenarios and is an extremely novel decoding research direction with reliable performance. We are
also able to achieve wider accuracy and reliability on ethical datasets.

Table 4: The reliability across different domains with CoT.

Domain Model
Decoding Methods Game-theoretic

Greedy MI SCD D ECG BDG

GSM8K
LLaMA-7B 10.8 14.7 13.4 15.0 15.1 15.8

LLaMA-13B 14.9 22.5 23.1 22.5 23.0 22.7

TruthfulQA
LLaMA-7B 33.41 34.79 34.91 34.17 34.27 35.07

LLaMA-13B 33.05 36.30 34.61 39.05 38.63 40.01

Table 5: The reliability with few shots.
Domain Model BDG

zero-shot few-shot

M
ed

ic
al PubMedQA LLaMA-7B 71.45 71.89

LLaMA-13B 74.00 74.47

MMLU-M. LLaMA-7B 51.35 52.90
LLaMA-13B 56.01 58.85

E
th

ic
s Justice LLaMA-13B 52.27 53.15

Virtue LLaMA-13B 33.10 33.82
Deontology LLaMA-13B 52.41 53.01
Utilitarianism LLaMA-13B 65.35 66.75

4 DISCUSSION

Game Design over ECG and PVG. BDG and ECG share the common goal of aligning gener-
ative models with human intentions to improve output reliability, yet they differ significantly in
their game design, achieving substantial gains with reduced computational overhead. While ECG
utilizes moving-average updates to foster consensus, often leading to unstable and fluctuating equi-
libria, BDG employs a structured Bayesian framework that drives interactions toward an optimal
equilibrium with greater stability. In contrast, Prover-Verifier Games (PVGs), which contribute to
ChatGPT4-o1, use a RL-based alignment and focus on adversarial training phases featured by RL
and competitive dynamics. This requires intensive training and causes potential deviations from
cooperative strategies. Appx. E and F explore the distinct phases and transitions between these
frameworks, highlighting BDG’s scalability and its departure from the training-intensive PVG.

Robustness and Integrative Potential. BDG consistently yields improved results, surpassing or
matching the performance of benchmark approaches across various domains and scenarios. This
robustness is particularly novel, as it demonstrates that BDG is adept at handling diverse scenarios,
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even in situations when the initial LLMs are not effective. BDG can also be combined with delib-
eration methods like self-consistency or prompting methods like CoT. BDG demonstrates computa-
tional efficiency by fast equilibrium convergence, and reliable guidance by human evaluation.

Balancing Correctness and Reliability. Reliability (Rastogi et al., 2023) tries to give an account
of the prover model’s failure modes and sense-making, whether the reasoning is correct or not.
The resulting decoding can be arbitrarily complex (Nanda et al., 2023). In contrast, correctness
allows to verify if a given solution is correct, ignoring how the generator reasoned it to be reliable
(consistent with the environment). Consequently, reliability requires model outputs that are coherent
and consistent to human understanding (Mökander et al., 2023). We show that it is possible to have
both, without sacrificing correctness for reliability (Hendrik Kirchner et al., 2024), and especially in
high-stakes settings reliability is as important as correctness (Casper et al., 2024).

Limitation. One potential limitation arises from the explicit specification of correctness consistency
branches during the game process, as this alignment is primarily intended to match human intent
with model outputs, similar to game-based approaches (Jacob et al., 2024; Hendrik Kirchner et al.,
2024). While this structure ensures consistency, it may introduce a subtle bias by prioritizing accu-
racy. However, in our second stage, this bias can be mitigated through further calibration and other
orthogonal strategies, offering more refined guidance to human evaluators. Adding multi-metrics
and multiple agents to achieve game-based deliberation will be a future development.

5 RELATED WORK

Multi-Agent Debate Frameworks. Previous work has explored mechanisms where multiple lan-
guage model instances “debate” to refine and converge to a final answer (Du et al., 2023; Chen et al.,
2023; Khan et al., 2024). It is possible to see our method as a major variant of this multi-agent de-
bate in which the interaction occurs within a game-theoretic framework, rather than directly within
the language models’ outputs. This structured signaling game enables BDG to enhance the correct-
ness and reliability of outputs without relying on human feedback, by dynamically optimizing the
generation and verification processes. Additionally, this approach can resolve ambiguity, confusion,
and low accuracy caused by inconsistencies, but not by poor reasoning.

Decoding Strategies. Top-k sampling (Fan et al., 2018), nucleus sampling (Holtzman et al., 2019),
and typical sampling (Meister et al., 2023) focus on generating high-confidence text but do not ad-
dress the correctness of the outputs. Candidates were generated using these methods. Equilibrium-
ranking (Jacob et al., 2024) applies an average-moving strategy to the initial distribution. In contrast,
BDG integrates a multistage signaling game that inherently balances correctness and consistency
during the generation process. BDG can be seamlessly combined with these strategies to enhance
the reliability and reliability of generated text.

Ranking Techniques. Rranking is a widely used approach to select the correct output from a set of
candidates generated by language models. (Thoppilan et al., 2022) use additional human annotations
to train a ranking model for response filtering. (Hendrik Kirchner et al., 2024) trains different provers
and verifiers for increasing output legibility. Although our work also utilizes existing language
models as discriminators, BDG eliminates the need for additional training and does not impose
specific assumptions on the structure of either the generator or discriminator.

6 CONCLUSION

The Bayesian Decoding Game (BDG) is a novel game-theoretic framework that enhances both the
consistency and reliability of LLMs. By framing the decoding process as a multistage signaling
game between a generator and verifier, BDG efficiently aligns model outputs with human intent
while mitigating the trade-off between correctness and reliability. Our approach achieves superior
performance across benchmarks, often surpassing larger models, and demonstrates its adaptability
when combined with existing techniques like chain-of-thought prompting. BDG ensures reliable
and robust LLM outputs, offering a scalable, training-free solution to the challenges of ambiguity
and inconsistency in generative models.
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A REPRODUCIBILITY STATEMENT

We conducted our evaluations using widely recognized benchmarks such as ARC-Easy, ARC-
Challenge, MMLU, and RACE. The experiments were performed using the open-source LLaMA
7B and 13B models. Key aspects of the game, including update policies and initial strategies, are
thoroughly detailed in both the main text and appendix to facilitate accurate replication of the re-
sults. All experiments were conducted on NVIDIA A6000 and A100 GPUs, with runtimes ranging
from 0.5 to 6 hours depending on the model size, task, and experimental settings. Further details on
the game-theoretic mechanisms and specific design choices can be found in the methods section and
the appendix.

B POTENTIAL ETHICS RISKS AND SOCIETAL IMPACT

Bayesian Decoding Game (BDG) is a novel game-theoretic framework that significantly enhances
both the consistency and reliability of large language model outputs. By framing the decoding
process as a multistage signaling game between a generator and verifier, BDG efficiently aligns
model outputs with human intent while mitigating the trade-off between correctness and reliability.
BDG ensures reliable and robust LLM outputs, offering a scalable, training-free solution to the
challenges of ambiguity and inconsistency in generative models.

With the improvement of generation quality, one can imagine more potent disinformation (e.g.,
automatic generation of fake news) that may be hard to distinguish from human-authored content. It
might be worthwhile to augment current decoding techniques so that the generated outputs will also
be watermarked without compromising their quality.

C GAME-THEORETIC FORMULATION SUPPLEMENTARY

A generative language model (LM) maps input x to output y according to some distribution PLM(y |
x). Here, we do not impose restrictions on the form of input or output, as illustrated in Fig.1.
Instead, we address a multi-faceted problem involving a question x and a set of answer candidates
Y , generated by pre-trained language models on specific tasks. In the first stage, using this candidate
set, we leverage generative LMs in two distinct ways:

Generatively, by supplying as input

1. a prompt x,
2. the set of candidates Y , and
3. a natural language prompt indicating that a correct or incorrect answer is desired. The LM

may be thought of as modeling a distribution PLM(y | x, incorrect), where the token incorrect
denotes the fact that the model was prompted to generate an incorrect answer.

Verifiably, by supplying as input

1. the same x and
2. a possible candidate answer y ∈ Y , together with
3. a prompt indicating that a correctness assessment v ∈ {correct, incorrect} is sought. In this

case, the language model acts as a models a distribution PLM(v | x, y) where v ∈ {correct,
incorrect}.

The essence of a signaling game (Gibbons et al., 1992) is that one player (the generator) takes an
action, the signal, to convey information to another player (the verifier); in the simplest setup, the
final payoff depends on whether the verifier correctly judges the generator’s type based on the gen-
erator’s signal. Based on this intuition from game theory, (Jacob et al., 2024) design a Equilibrium
Consensus Game (ECG), without a formal definition of the game. Thus, we firstly provide a com-
prehensive game-theoretic formulation for generative model decoding, and propose improvements
to address limitations.

Formally, the signaling game’s components can be defined as follows:
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1. Players: Generator and Verifier;

2. Choice sets: Generator’s choice set is y ∈ CG = Y , with prompt p randomly drawn from
{Correct, Incorrect}, and the Verifier’s choice set is v ∈ CV = {Correct, Incorrect}, based on
the generator’s choice y ∈ Y;

3. Payoff Function: uG = uV = 1p=v(p, v), where 1 equals 1 if the correctness prompt x
matches the verification result, and 0 otherwise.

We are now ready to state the fundamental concept of this signaling game, a Perfect Bayesian Nash
Equilibrium (PBNE) (Cho & Kreps, 1987). We use the short form Perfect Bayesian Equilibrium
(PBE) with the auxiliary definitions Defi. 6. and 7. for PBE Definition.

Definition 1. (Perfect Bayesian Equilibrium (Fudenberg, 1991)) A Perfect Bayesian Nash Equi-
librium (PBE) is a pair (s, b) of strategy profile and a set of beliefs such that

1. s is sequentially rational given beliefs b, and
2. b is consistent with s.

Example 1. For generative model decoding, the generator’s belief is given by its perceived
probability distribution, P({correct, incorrect}) = (pi, 1−pi), for each yi ∈ Y of the verifier’s
judgment, and with its belief and type, the generator chooses a mixed action that maximizes its
utility, i.e., if the generator’s type is correct, then its optimal mixed strategy would be allocating
positive possibility only on yi such that pi > 1− pi and zero possibility to other yi.

Definition 6. (Sequential Rationality)
A player is said to be sequentially rational iff, at each information set he is to move, he maximizes

his expected utility given his beliefs at the information set (and given that he is at the information
set) - even if this information set is precluded by his own strategy.

Definition 7. (Consistency on Path)
Given any (possibly mixed) strategy profile s, an information set is said to be on the path of play

if and only if the information set is reached with positive probability according to s. Given any
strategy profile s and any information set I on the path of play of s, the beliefs of a player at I are
said to be consistent with s if and only if his beliefs are derived using the Bayes rule and s.

D PROOFS OF THEOREMS

D.1 PROOF OF THEOREM 1

Theorem 1. More than one (mixed) strategy Perfect Bayesian Equilibrium exists for this game.

Proof of Theorem 1.:

Suppose that the candidate set has 2 options (can be extended to any cardinality |Y|), y1, y2, one
equilibrium can be described as: If the environment sends correct/incorrect, the generator gener-
ates the probability distribution (1, 0)/(0, 1) for (y1, y2) given his belief that verifier probabilistic
judgment, {correct, incorrect}, for y1, y2 is (1, 0), (0, 1).

For the verifier, he believes that if the environment chooses correct/incorrect, then he believes that
of generator’s probabilistic generation for (y1, y2) are (1, 0), (0, 1), therefore the verifier’s best re-
sponse is given by (correct, incorrect) = (1, 0) if sees y1, (correct, incorrect) = (0, 1) if sees y2. The
(action and belief) for the generator and verifier above constitute one PBE for our game. For another
equilibrium, we can revert every 0s and 1s in the above strategy profile, for all the actions and the
beliefs.

D.2 PROOF OF THEOREM 2

Theorem 2. There are n! number of Equilibria for the Decoding Game.

Proof of Theorem 2.:
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Since there are n! permutations of elements in Y , there are n! DEs for the decoding game.

To accommodate the refined utility we proposed, we introduce another definition such that if

∥aG(y | x, correct, bS)− aNV(correct | x, y, bV )∥ < σ

for every y, where aNV is the normalized probability distribution of the verifier’s action, we call it a
σ-DE.

D.3 PROOF OF THEOREM 3

Theorem 3. The Markovian update schedule for our Decoding Game will converge to an equi-
librium.

Proof of Theorem 3.:

We will show that the Markovian update schedule is in fact no-regret(thus guarantees CCE-
convergence) for correct generator, and when generator receives incorrect signal, she will auto-
matically perform the reversed action; then, if the Markovian update schedule converges to CCE
for the incorrect signal, it automatically satisfies that the Markovian schedule will converge to a
Bayes-CCE of our Decoding Game.

Definition 8. A randomized strategy profile s ∈ ∆(Σ) is a coarse-correlated Bayesian equilib-
rium if for every a′i ∈ Ai and for every vi ∈ Vi :

EsEv [Ui (s(v);vi) | vi = vi] ≥ EsEv [Ui (a
′
i, s−i (v−i) ;vi) | vi = vi]

We will first prove that the Markovian update schedule is asymptotically no-regret. For the generator,
suppose that at time t, the chosen action is a(t)G (y | x, correct), and the optimal hindsight action that
maximize U is given by a

(t)
NV (correct | x, y)∀y, which is the normalized verifer’s action on each

candidate y ∈ Y , and our update schedule

a
(t+1)
G (y | x, v) ∝ exp

{
1
2b

(t+1)
G (y | x, v) + λG log a

(t)
G (y | x, v, b(t)G )

1/ (ηGt) + λG

}
such that

b
(t+1)
G (y | x, v) = a

(t)
V (v | x, y)

therefore, the regret at time t is given by

∥a(t)G (y | x, correct)− a
(t)
NV (correct | x,y)∥

and in time t + 1, we have that the generator is at least 1
2ηG closer to the verifier’s action, and the

verifier is also at least 1
2ηV closer to the generator’s action. Thus we have that

∥a(t+1)
G (y | x, correct)− a

(t+1)
NV (correct | x,y)∥ ≤(

1− 1

2
(ηG + ηV )

)
∥a(t)G (y | x, correct)− a

(t)
NV (correct | x,y)∥

and by construction we have 1− 1
2 (ηG + ηV ) < 1, then asymptotically we can obtain that

lim
t→∞

∥a(t)G (y | x, correct)− a
(t)
NV (correct | x,y)∥ → 0

thus the cumulative average regret also goes to 0 asymptotically. Therefore, the Markovian update
schedule is no-regret and thus will converge to a Bayes-CCE of this game.

E FROM TRAINING-FREE BAYESIAN DECODING GAME (BDG) TO
RL-BASED PROVER-VERIFIER GAME(PVG)

Prover-Verifier Game (PVG) (Hendrik Kirchner et al., 2024), structured as zero-sum games, en-
counter substantial challenges that undermine their efficacy in ensuring reliable outputs. The ad-
versarial nature of zero-sum games inherently prioritizes winning over mutual consistency, which
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leads to strategic behavior focused on exploiting the opposing agent rather than achieving genuine
correctness e.g., model collapse. This often results in provers generating outputs that are optimized
to mislead the verifier rather than to align with factual truth, thus producing equilibria that favor
strategic manipulation over accurate assessment. Such dynamics complicate the training process,
requiring extensive tuning and computational resources without guaranteeing robust, interpretable
results. Furthermore, the reliance on reinforcement learning in these systems falls short of effec-
tively replacing human feedback, as the trained verifier cannot fully replicate the nuanced judgment
required to evaluate complex or ambiguous output. These limitations fall into the misalignment be-
tween training objectives and practical needs, where models become adept at adversarial optimiza-
tion but lack the reliability and consistency necessary for real-world application. However, Bayesian
Decoding Game (BDG) can bring the advantages of the game and bridge the purposes with proper
implementations, which bypass the extensive training and adversarial pitfalls by directly modeling
output verification through probabilistic reasoning, enhancing the interpretability and reliability of
the generated content without the dependencies on zero-sum competition.

Here, we consider the connections between the PVG and BDG, and before the comparison, we give
a brief introduction of PVG.

We consider a scenario of problems with ground-truth answers (x, y) ∈ X × Y , where x denotes a
problem statement and y = y(x) denotes the mapping from the prompt x to ground-truth answer
or set of answers. PVG has set the prover’s type to be drawn from a known distribution, which
can be either honest or sneaky, to produce an answer z condition on the prompt x and type; such
that the honest prover is told to produce correct answers and make sure the verifier recognize the
correctness, whereas the sneaky prover is told to trick the verifier by providing wrong answers that
are not easy to be detected; then, after receiving solution, the verifier verifies the answer based
solely on the answer and prompt, and the output v(x, z) ∈ {0, 1} estimates the correctness of the
solution’s answer. The output of the verifier is either 1(the statement is correct) or 0(the statement
is incorrect).
More precisely, The game follows the procedure below:

1. The type of prover t is randomly drawn from a known distribution P (t), such that t ∈ {h, s},
where h, s dictates honest and sneaky prover’s type.

2. Given a problem statement, the prover generates proofs by maximizing the payoff func-
tion(utility) of each round myopically, such that

z = argmax r(v(x, z),1t=h1correct (x, z) + 1t=s(1− 1correct (x, z)))

the function r(v, q) satisfies that r(1, 1) > r(0, 1) > r(1, 0) > r(0, 01), which corresponds to
the fact that both prover prioritizing generating proofs that match their types (correct answer
for honest and incorrect answer for sneaky), ∀v r(v, 1) > r(v, 0) and then both want their
answers to be accepted as correct by the verifer ∀q r(1, q) > r(0, q).

3. the verifier provides verification v ∈ {0, 1} based solely on the proof x given that the utility is
1 if v(x, z) = 1(x, z) and 0 otherwise
Theoretically, this is a simple Stackleberg game such that an equilibrium exists and before
diving into the equilibrium strategy profile, an important definition from (Hendrik Kirchner
et al., 2024) needs to be mentioned.

Definition 9. (Checkability Hendrik Kirchner et al. (2024)) Prover π from model family H is
verifiable to verifier v on the data distribution PXY if and only if the prover always generates
correct and convincing solutions, and no sneaky prover from the same model family H can fool
the verifier into accepting incorrect solutions. In mathematical notations, the two properties
are given by:
Completeness: ∀x ∈ X ,1correct (x, π(x)) = v(x, π(x)) = 1.
Soundness: ∀π′ ∈ H,∀x ∈ X ,1correct (x, π

′(x)) = 0 =⇒ v (x, π′(x)) = 0.

With the definition in hand, the equilibrium strategy profile is given by (the honest prover always
provides checkable and correct proof, the sneaky prover always provides noncheckable and incorrect
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proof, the verifier can always verify the correctness of the given proof). For the neural networks to
approximate the equilibrium strategies, (Hendrik Kirchner et al., 2024) utilized a reinforcement
learning-based algorithm to train the prover and the verifier.

RL-based PVG Hendrik Kirchner et al. (2024) can fit in part into the framework of our training-free
BDG framework. As for the game-theoretic setting, PVG is a zero sum verifier-lead Stackleberg
game, the strategy update schedule must be modified to fit the utility defined in Hendrik Kirchner
et al. (2024). Moreover, the verifier’s strategy update cannot be achieved training-free as her utility
only depends on the ground truth right/wrong of the candidate and thus needs to be trained; but on
the prover side, both honest and sneaky prover can update strategies pain-free from the verifier’s
trained actions.
Firstly, we define the strategy for verifier and prover in the same way as in BDG, such that given
the environment signal, the prover generates a probability distribution for a set of answers, and the
verifier always generates a probability distribution of {correct, incorrect} for each of the answers.
Also, we make the same assumption that each player can observe the opponent’s full action
profile rather than the realized action; then, we are ready to highlight the difference in schedule
update under the Markovian schedule, the condition where v = correct, we will abbreviate that as
correct = C, stays the same, such that because they want to align their actions with the verifier

b
(t+1)
P (y | x,H) = a

(t)
V (C | x, y)

a
(t+1)
P (y | x,H) ∝ exp

{
1
2b

(t+1)
P (y | x,C) + λP log a

(t)
P (y | x,C, b

(t)
P )

1/ (ηPt) + λP

}
However, for the sneaky prover, her utility is maximized when the verifier mistakens the correctness
of the problem. Therefore, the optimal update schedule for sneaky prover is given updating toward a
normal distribution over the preference generated by the probability distribution of verifier’s action.
The reason for this update is because near the correct/incorrectness boundary is where the verifier
tends to make mistakes, such that

a
(t+1)
P (y | x,S) ∝ exp

{
1
2N (y | aV ) + λP log a

(t)
P (y | x, I, b(t)P )

1/ (ηPt) + λP

}
For example, if there are 10 answer candidates, the verifier’s preference from her action is given by
y3 ≻ y7 ≻ y6 ≻ y5 ≻ y10 ≻ y2 ≻ y9 ≻ y4 ≻ y1 ≻ y8, then N (y | aV ) is given by

y3 y7 y6 y5 y10 y2 y9 y4 y1 y8
Index (Permutation of {y_i})

0.00

0.05

0.10

0.15

0.20

0.25
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y

Normal Distribution Over N Discrete Answers Indexed by Permutation

F FROM MEMORYLESS BAYESIAN DECODING GAME (BDG) TO
MOVING-AVERAGE EQUILIBRIUM CONSENSUS GAME (ECG)

The moving average update schedule proposed by Jacob et al. (2024) requires both the generator
and the verifier to keep track of the average action of the opponent in addition to the action in the
last round, while our Markovian framework allows the players to be memoryless. To better compare
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ECG with our update schedule, we provide a general, unifying framework called the History window
schedule, where the player’s belief is given by the average of past history actions for the period n,
and at the same time, this schedule retains a large part the initial policy for each round with a stiffness
parameter λi, i ∈ {G,V }. The belief is given by

b
(t+1)
G (y | x, v) = 1

n

t∑
τ=t−n+1

a
(τ)
V (v | x, y)

b
(t+1)
V (v | x, y) = 1

n

t∑
τ=t−n+1

a
(τ)
G (y | x, v)

(2)

Thus the strategy update is given by

aG
(t+1)(y | x, v) ∝ exp

{
1
2b

(t+1)
G (y | x, v) + λG log aG

(1)(y | x, v)
1/ (ηGt) + λG

}

aV
(t+1)(v | x, y) ∝ exp

{
1
2b

(t+1)
V (y | x, v) + λV log a

(1)
V (v | x, y)

1/ (ηVt) + λV

}
As it can be noted in 2, if we take n = t, the update schedule coincides with ECG which requires
the memory of the moving-average of full history, rather if we take n = 1, the update schedule
becomes fully memoryless and requires no memory of any past events other than the last period’s
opponent action.
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G EXPERIMENT DETAILS

Baselines and Models. For the fair comparision following(Jacob et al., 2024), we use the same
public 7B and 13B parameter models from the LLaMA family(Touvron et al., 2023) and perform
16-bit inference for all our experiments. Since we have a multi-round optimization game and in order
to distinguish consensus/ zero-sum games, we define ours as a verifier rather than a discriminator.
Across the experiments, all the approaches and orthogonal techniques involved:

• Generative Ranking (G): The baseline(Brown et al., 2020; Touvron et al., 2023) ranks every
candidate y by PLLM(y | x, correct) and picks the top candidate. This is the standard approach
used in past work. Due to implementational differences and non-public resources, we report
the existing scores in (Jacob et al., 2024).

• Discriminative Ranking (D): Following(Jacob et al., 2024), this approach reweights every
query-candidate pair (x, y) by π

(1)
D (correct | x, y). Typically, this would surpass the perfor-

mance of ordinary individuals, who might neglect to notice the ambiguity errors. And outstrip
the generators that might trust the unreliable decodings.

• Mutual Information Ranking (MI): The mutual-information based baseline reweights every
candidate y by PLM(y | x, correct) · PLM(correct | x, y) (Li & Jurafsky, 2016).

• Self-Contrastive Decoding (SCD): The contrastive-based method (Jacob et al., 2024; Li
et al., 2022) utilizes the contrastive-based generator π

(1)
G to reweight every candidate y by

π
(1)
G (correct | x, y). This method achieves a contrasting effect by comparing negative samples

instead of employing a verifier (in BDG)/ discriminator (in ECG).
• Equilibrium Consensus Discriminator (ECG): This approach is based on discriminator
π∗
D (Jacob et al., 2024). It reweighs every query-candidate pair (x, y) by π∗

D(correct | x, y).
This method, involving comprehensive policies and updates, serves as our main benchmark.

• Bayesian Decoding Game (BDG): This approach utilizes our Bayesian Decoding Game-based
discriminator π∗

D. This approach reweighs every query-candidate pair (x, y) by π∗
D(correct |

x, y).

Orthogonal Techniques. Furthermore, BDG can combine chain-of-thought (CoT) (Wei et al., 2022)
and few-shots setting (Wei et al., 2022) as orthogonal extra gains.

• Chain-of-Thought (CoT): CoT (Wei et al., 2022) prompting enables language models to gen-
erate intermediate reasoning steps, improving performance on complex tasks. By providing
exemplars of reasoning chains, the model is guided to produce more coherent and accurate
responses.

• Few-Shot: Few-shot setting (Wei et al., 2022) involves providing the model with a small num-
ber of example input-output pairs within the prompt. This technique helps the model adapt to
the task at hand without additional fine-tuning, improving its ability to generalize from limited
data.

Hyperparameters. We set ηD, λD and ηG, λG with 0.1 compared to ECG. Experiments are run
5000 times with early stopping based on equilibrium convergence. BDG can usually converge by
500 iterations or less. The hyperparameters can be larger according to the tasks and initial model
ability.

Extra Metrics. Following (Li et al., 2022), we have

• Diversity. This metric aggregates n-gram repetition rates:

DIV =

4∏
n=2

unique n-grams(xcont)

total n-grams(xcont)
.

Models that score low for diversity are prone to repetition, while models that score high for
diversity are lexically diverse.

• MAUVE. MAUVE (Pillutla et al., 2021) measures the similarity between generated text and
gold reference text.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Coherence. (Su et al., 2022) approximates coherence by cosine similarity between the sentence
embeddings of prompt xpre and generated continuation xcont:

COH(xcont, xpre) =
EMB(xpre) · EMB(xcont)

∥EMB(xpre)∥ · ∥EMB(xcont)∥
,

where EMB(x) represents the pre-trained SimCSE embedding (Gao et al., 2021).
• Human Evaluation. To further evaluate the quality of the generated text, we consider two

critical aspects: correctness and confidence in reliability. More details can be found in the next
section.

H HUMAN EVALUATION

Setting. In this experiment, participants were tasked with evaluating the correctness of ten answers
to a high-school level multiple-choice mathematics problem generated by a Large Language Model
(LLM). Participants were instructed to classify each answer as correct, incorrect, or ambiguous. The
experiment was conducted in two stages:

In the first stage, participants were given two minutes to classify as many answers as possible,
and their results were recorded. In the second stage, participants were allowed to allocate their
time freely to complete the remaining classifications, and they were asked to record the time upon
completion of their classifications. Below is the questionnaire we utilized for the experiment.

Each participant was randomly assigned three distinct problems, and the corresponding solutions
were classified under three conditions: without any hints, with a BDG hint, and with a ECG hint.
The hints provided were rankings of the answers generated by the respective models (BDG and
ECG). The assignment of different problems across the three conditions was designed to prevent
memorization and to control for potential confounding effects related to the content of the specific
problem. Problems were drawn from a pool of questions with similar difficulty levels, allowing for
consistent observation of treatment effects across varying problem sets.

Samples. To better illustrate the experiment setting details, we provided the questionnaire interface,
instruction and 2 cases sets below.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Instructions For task 1, you will judge the correctness of each solution under a mandatory
2-minute limit, and for the ones that you are unsure, label them as ambiguous and
record the result on the answer sheet provided. If you did not finish in 2 minutes,
then record your incomplete result at the 2-minute cutoff and continue your task
until finished, also remember to record your completion time.
For task 2, 3, we will provide a reference (ranking of the solutions to assist and
accelerate your correctness judgement, however, always stick to your own judge-
ment if there exists a divergence. All other procedures are the same as task 1.

Question #

Random
selected

On a Cartesian coordinate plane, points (1, 2) and (7, 4) are opposite vertices of a
square. What is the area of the square?

Choices A. 20 B. 34 C. 40 D.
√
40

Task 1 Candidates

0. ”To find the area of the square, we multiply the length of the diagonal, which is√
40, by itself. This gives us 40, so the answer is C. 40.”

1. ”The distance between the points (1, 2) and (7, 4) is
√
40. This is the diagonal of

the square, so the area could either be 20 or 40. The answer might be A. 20.”

2. ”The diagonal of the square is
√
40, and the area must be equal to this value. The

answer is D.
√
40.”

3. ”First, calculate the diagonal between the points (1, 2) and (7, 4), which gives√
40. Since this is the diagonal of the square, the area is (

√
40)2

2 = 20. Therefore,
the answer is A. 20.”

4. ”The area of the square is found by calculating the distance between the points.
The diagonal is

√
40, so the area is likely

√
40. The answer is D.

√
40.”

5. ”First, find the distance between (1, 2) and (7, 4) using the distance formula: d =√
(7− 1)2 + (4− 2)2 =

√
40. This distance is the diagonal of the square. The

area of the square is then (
√
40)2

2 = 20. Therefore, the correct answer is A. 20.”

6. ”Using the distance formula, the diagonal of the square is
√
40. Therefore, the

area of the square is 20. The answer is A. 20.”

7. ”First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d =

√
(7− 1)2 + (4− 2)2 =√

40. Since the diagonal of the square is
√
40, the area is (

√
40)2/2 = 20. There-

fore, the answer is A. 20.”

8. ”Using the distance formula, the diagonal of the square is found to be
√
40. The

area of the square is 20, so the answer is A. 20.”

9. ”Calculate the diagonal of the square using the distance formula: d =
√
40. Since

the diagonal is
√
40, the area of the square is simply 40. Therefore, the answer is

C. 40.”

Task 2 BDG Guidance [Will be hidden during evaluation]

0.

Consistent ”First, find the distance between (1, 2) and (7, 4) using the distance formula: d =√
(7− 1)2 + (4− 2)2 =

√
40. This distance is the diagonal of the square. The

area of the square is then (
√
40)2

2 = 20. Therefore, the correct answer is A. 20.”
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1. ”First, calculate the diagonal between the points (1, 2) and (7, 4), which gives√
40. Since this is the diagonal of the square, the area is (

√
40)2

2 = 20. Therefore,
the answer is A. 20.”

2. ”Using the distance formula, the diagonal of the square is
√
40. Therefore, the

area of the square is 20. The answer is A. 20.”

3. ”Using the distance formula, the diagonal of the square is found to be
√
40. The

area of the square is 20, so the answer is A. 20.”

4. ”The distance between the points (1, 2) and (7, 4) is
√
40. This is the diagonal of

the square, so the area could either be 20 or 40. The answer might be A. 20.”

5. ”First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d =

√
(7− 1)2 + (4− 2)2 =√

40. Since the diagonal of the square is
√
40, the area is (

√
40)2/2 = 20. There-

fore, the answer is A. 20.”

6. ”The diagonal of the square is
√
40, and the area must be equal to this value. The

answer is D.
√
40.”

7. ”The area of the square is found by calculating the distance between the points.
The diagonal is

√
40, so the area is likely

√
40. The answer is D.

√
40.”

8. ”Calculate the diagonal of the square using the distance formula: d =
√
40. Since

the diagonal is
√
40, the area of the square is simply 40. Therefore, the answer is

C. 40.”

9.

Inconsistent ”To find the area of the square, we multiply the length of the diagonal, which is√
40, by itself. This gives us 40, so the answer is C. 40.”

Task 3 ECG Guidance [Will be hidden during evaluation]

0.

Consistent ”First, find the distance between (1, 2) and (7, 4) using the distance formula: d =√
(7− 1)2 + (4− 2)2 =

√
40. This distance is the diagonal of the square. The

area of the square is then (
√
40)2

2 = 20. Therefore, the correct answer is A. 20.”

1. ”Using the distance formula, the diagonal of the square is
√
40. Therefore, the

area of the square is 20. The answer is A. 20.”

2. ”First, calculate the diagonal between the points (1, 2) and (7, 4), which gives√
40. Since this is the diagonal of the square, the area is (

√
40)2

2 = 20. Therefore,
the answer is A. 20.”

3. ”The distance between the points (1, 2) and (7, 4) is
√
40. This is the diagonal of

the square, so the area could either be 20 or 40. The answer might be A. 20.”

4. ”Using the distance formula, the diagonal of the square is found to be
√
40. The

area of the square is 20, so the answer is A. 20.”

5. ”Calculate the diagonal of the square using the distance formula: d =
√
40. Since

the diagonal is
√
40, the area of the square is simply 40. Therefore, the answer is

C. 40.”

6. ”First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d =

√
(7− 1)2 + (4− 2)2 =√

40. Since the diagonal of the square is
√
40, the area is (

√
40)2/2 = 20. There-

fore, the answer is A. 20.”

7. ”The diagonal of the square is
√
40, and the area must be equal to this value. The

answer is D.
√
40.”
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8. ”To find the area of the square, we multiply the length of the diagonal, which is√
40, by itself. This gives us 40, so the answer is C. 40.”

9.

Inconsistent ”The area of the square is found by calculating the distance between the points.
The diagonal is

√
40, so the area is likely

√
40. The answer is D.

√
40.”

Question #

Random
selected

The standard tip in a restaurant is 15% of the bill before tax. Many people in
California find the tip by doubling the sales tax, which is 8.25%. By how many
cents does this exceed the standard tip on a bill of $60 before tax?

Choices A. 90 B. 80 C. 70 D. 60

Task 1 Candidates

0. ”The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.

1. ”To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60× (16.5%− 15%) = 90
cents. Therefore, the answer is A. 90.”

2. ”Doubling the sales tax of 8.25% gives 16.5%. The difference between the stan-
dard tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is
D. 60.”

3. ”Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90.”

4. ”The standard tip is 15% of 60, which is 60×0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60× 0.165 = 9.90 dollars.
The difference is 9.90− 9.00 = 90 cents. Therefore, the correct answer is A. 90.”

5. ”Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60× 0.5% = 30 cents. Therefore, the answer is A. 90.”

6. ”The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90.”

7. ”The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might
be A. 90 or B. 80.”

8. ”The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60.”

9. ”Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90.”

Task 2 BDG Guidance [Will be hidden during evaluation]

0.

Consistent ”The standard tip is 15% of 60, which is 60×0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60× 0.165 = 9.90 dollars.
The difference is 9.90− 9.00 = 90 cents. Therefore, the correct answer is A. 90.”

1. ”The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90.”
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2. ”To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60× (16.5%− 15%) = 90
cents. Therefore, the answer is A. 90.”

3. ”Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90.”

4. ”Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90.”

5. ”The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might
be A. 90 or B. 80.”

6. ”Doubling the sales tax of 8.25% gives 16.5%. The difference between the stan-
dard tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is
D. 60.”

7. ”Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60× 0.5% = 30 cents. Therefore, the answer is A. 90.”

8. ”The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.
9.

Inconsistent ”The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60.”

Task 3 ECG Guidance [Will be hidden during evaluation]

0.

Consistent ”The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90.”

1. ”The standard tip is 15% of 60, which is 60×0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60× 0.165 = 9.90 dollars.
The difference is 9.90− 9.00 = 90 cents. Therefore, the correct answer is A. 90.”

2. ”To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60× (16.5%− 15%) = 90
cents. Therefore, the answer is A. 90.”

3. ”Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90.”

4. ”Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90.”

5. ”The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might
be A. 90 or B. 80.”

6. ”Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60× 0.5% = 30 cents. Therefore, the answer is A. 90.”

7. ”The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.

8. ”The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60.”

9.

Inconsistent ”Doubling the sales tax of 8.25% gives 16.5%. The difference between the stan-
dard tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is
D. 60.”
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Results. To differentiate between expert and non-expert participants, a threshold of 150 seconds was
set based on empirical observations of participant behavior. This threshold was corroborated by a
scatterplot that visually demonstrated the partitioning between experts and non-experts, supporting
the appropriateness of the selected cut-off time for classification performance. From the 183 samples
we collected, we have come to conclusions:

Firstly, human evaluation on these LLM-generated solutions have instrinsic unreliability and am-
biguity, especially for non-expert participants; under the 2-minute time constraint, there were 28
participants who scored an accuracy of 50% or below, even without time constraint, there were 10
participants in total whose accuracies were 60% or below.

Secondly, with the hint of BDG, we observed that the participants in both the expert and the non-
expert groups outperformed the participants without the hint or the ECG hint; more importantly,
with the hint of BDG, the performance of the non-expert participants improved significantly with
respect to the expert participants, whereas the ECG hint did not achieve this.

Thirdly, across problems, samples with BDG hint achieved the highest accuracies for 7/10 problems
and fastest completion also for 7/10 problems. This result showcases the robustness of BDG hint
also within the same problems.

Last but not least, the BCG hint has also helped non-expert participants spot ambiguous solutions
more accurately compared to non-expert participamts with the ECG hint or without the hint.
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Generations.

Question.
Suppose the graph of y = f(x) includes the points (1, 5), (2, 3), and (3, 1). Based only on
this information, there are two points that must be on the graph of y = f(f(x)). If we call
those points (a, b) and (c, d), what is ab+ cd?

BDG.
”Given the points (1, 5), (2, 3), and (3, 1) on the graph of y = f(x), we compute
f(f(2)) = f(3) = 1 and f(f(3)) = f(1) = 5. So the points (2, 1) and (3, 5) are on the
graph of y = f(f(x)). Therefore, ab+ cd = 2× 1 + 3× 5 = 17. ”

ECG.
”From f(x), we see that f(f(2)) = 1 and f(f(3)) = 5. Therefore, ab + cd = 17. The
answer is 17”

Question.
Positive integers x and y have a product of 56 and x < y. Seven times the reciprocal of the
smaller integer plus 14 times the reciprocal of the larger integer equals 4. What is the value
of x?

BDG.
”Let the integers be x and y. Since x · y = 56 and x < y, try small values. Testing x = 2
and y = 28 satisfies 7 · 1

x + 14 · 1
y = 4. Therefore, x = 2, so the answer is 2.”

ECG.
”Since x · y = 56, try small values of x like 2. This satisfies the equation, so the answer is
2.”

Question.
Six positive integers are written on the faces of a cube. Each vertex is labeled with the
product of the three numbers on the faces adjacent to the vertex. If the sum of the numbers
on the vertices is equal to 1001, then what is the sum of the numbers written on the faces?

BDG.
”The numbers on the faces of the cube contribute to the product at each vertex. Given that
the sum of the vertex products is 1001, and knowing the cube’s geometry, we deduce that
the sum of the numbers on the faces is 31.”

ECG.
”Using the fact that the sum of the vertex products is 1001, and knowing there are six faces,
we calculate that the sum of the face numbers is 31. So the answer is 31.”
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