
Effective and Sparse Count-Sketch via k-means clustering

Anonymous submission

Abstract
Count-sketch is a popular matrix sketching algorithm that can
produce a much smaller sketched matrix of an input data
matrix X in O(nnz(X)) time while preserving most of its
properties. Therefore, count-sketch is widely used for ad-
dressing high-dimensionality challenge in machine learning.
However, count-sketch has two main limitations: (1) The ran-
domly generated sketching matrix used in count-sketch does
not consider any intrinsic properties of X. This data-oblivious
method could produce a bad sketched matrix which results
in low accuracy for subsequent machine learning tasks (e.g.,
classification); (2) For highly sparse input data, count-sketch
could produce a dense sketched data matrix and make the
subsequent machine learning tasks more computationally ex-
pensive than on the original sparse data X. To a ddress these
two limitations, we first show an interesting connection be-
tween count-sketch and k-means clustering by analyzing the
reconstruction error of count-sketch. Based on our analysis,
we propose to obtain the low-dimensional sketched matrix
by applying k-means clustering on the columns of X and use
the cluster centers as the low-dimensional sketched matrix. In
addition, to produce a sparse sketched matrix, we propose to
solve k-mean clustering using gradient descent with ε-L1 ball
projection on each iteration. Our experimental results based
on six benchmark datasets have demonstrated that our method
achieves higher accuracy than the original count-sketch and
other matrix sketching algorithms. Our results also demon-
strate that our method produces a much sparser sketched data
matrix than other methods and therefore the prediction cost
of our method is smaller than other methods.

Introduction
Matrix sketching (Woodruff 2014) is a powerful dimen-
sionality reduction method that can efficiently find a small
matrix to replace the original large matrix while preserv-
ing most of its properties. For an input large data matrix
X ∈ Rn×d where n is the number of samples and d is
the number of features, matrix sketching methods gener-
ate a sketch of X by multiplying it with a random sketch-
ing matrix R ∈ Rd×r (r � d) with certain properties.
Compared with traditional dimensionality reduction meth-
ods (e.g., Principal Component Analysis (PCA) (Jolliffe
2011)), matrix sketching methods can obtain the sketched
matrix very efficiently with certain theoretical guarantees
(Woodruff 2014). Therefore, matrix sketching has gained
significant research attention and has been used widely for

handling high-dimensional data in machine learning (Ma-
honey 2011; Ailon and Chazelle 2006; Bojarski et al. 2017;
Choromanski, Rowland, and Weller 2017).

A typical way of applying matrix sketching in machine
learning problems is sketch and solve (Dahiya, Konomis,
and Woodruff 2018). For example, in a linear classification
problem with training data {X,y} where X ∈ Rn×d is a
large input feature matrix and y ∈ Rn is the correspond-
ing label vector, a classification model can be trained by
solving minw∈Rd

∑n
i=1 l(w

Txi, yi) + λ‖w‖2 where l(·, ·)
denotes a loss function (e.g., hinge loss). By using ma-
trix sketching, we can first obtain a sketched data matrix
X̃ ∈ Rn×r by X̃ = XR and then solve a much smaller
problem minv∈Rr

∑n
i=1 l(v

T x̃i, yi) + λ‖v‖2. The expen-
sive computation on the original large matrix X ∈ Rn×d

can be replaced by computation on the small sketched matrix
X̃Rn×r. This sketch and solve method has also been used to
speed up other machine learning tasks, such as least squares
regression (Dobriban and Liu 2019), low-rank approxima-
tion (Tropp et al. 2017; Clarkson and Woodruff 2017) and
k-means clustering (Boutsidis, Zouzias, and Drineas 2010;
Liu, Shen, and Tsang 2017).

Recent advances in randomized numerical linear alge-
bra (Martinsson and Tropp 2020) have provided a solid
theoretical foundation for matrix sketching. Various meth-
ods have been proposed to construct the random matrix R.
The early method (Dasgupta and Gupta 1999) constructs a
dense random Gaussian matrix R where each element in
R is generated from a Gaussian distribution N (0, 1d). This
method requires O(ndr) time for computing the sketched
matrix X̃ = XR since the random Gaussian matrix R
is dense. (Achlioptas 2003) proposed to generate a sparser
random matrix R where each element in R is generated
from {−1, 0, 1} following a discrete distribution. It will re-
duce the computation complexity fromO(ndr) toO(1

3ndr).
In recent years, two famous fast random projection matri-
ces were proposed for efficiently computing the projection
X̃ = XR. The first method is called Subsampled Ran-
domized Hadamard Transform (SRHT) which can achieve
O(ndlog(r)) time for computing XR (Tropp 2011; Ailon
and Liberty 2009). The second method is called count-
sketch (Clarkson and Woodruff 2017) which can compute
XR inO(nnz(X)) time for any input X making the Count-

Sketch method particularly suitable for sparse input data.
In this paper, we focus on improving the count-sketch al-
gorithm in the context of classification.

Count-sketch constructs the random matrix R by a prod-
uct of two matrices D and Φ, i.e., R = DΦ, where D ∈
Rd×d is a random diagonal matrix where each diagonal val-
ues is uniformly chosen from {1,−1} and Φ ∈ Rd×r is a
very sparse matrix where each row has only one randomly
selected entry equal to 1 and all other entries are 0. Previ-
ously, (Paul et al. 2014) applied count-sketch for linear SVM
classification and showed that linear SVM trained on the
sketched data matrix has comparable generalization ability
as in the original space in the case of classification. How-
ever, we argue that there are two main limitations of count-
sketch: (1) It is a data-oblivious method where the genera-
tion of sketching matrix R is totally independent of input
data matrix X. The sketched matrix may not be effective
for the subsequent classification algorithm; (2) The sketched
data matrix X̃ could be much denser than the original in-
put data X. The dense matrix could make the subsequent
classification algorithm on the sketched data more computa-
tionally expensive than on the original data X because the
number of non-zero values in projected data could be larger
than the number of non-zero values in the original data. Even
though data-oblivious matrix sketching has been extensively
studied, few studies focus on efficient data-dependent matrix
sketching. Recently, (Xu et al. 2017) proposed to use the ap-
proximated singular value decomposition (SVD) as the pro-
jection subspace. (Lei and Lan 2020) proposed to improve
SRHT by non-uniform sampling by exploiting data proper-
ties. However, both of them will produce a dense sketched
matrix for sparse input data.

In this paper, we focus on addressing the aforementioned
two limitations of count-sketch. To address the first limita-
tion, we first show an interesting connection between count-
sketch and k-means clustering by analyzing the reconstruc-
tion error of count-sketch. Based on our analysis, we pro-
pose to reduce the reconstruction error of count-sketch by
using k-means clustering on the columns of X. The result-
ing sparse cluster centers are used as the low-dimensional
sketched data matrix. To address the second limitation, we
propose to get sparse cluster centers by optimizing k-means
objective function using gradient descent with ε-L1 ball pro-
jection in each iteration. Finally, we compare our proposed
methods with the other five popular matrix sketching al-
gorithms on six real-life datasets. Our experimental results
clearly demonstrate that our proposed data-dependent ma-
trix sketching methods achieve higher accuracy than count-
sketch and other random matrix sketching algorithms. Our
results also show our method produces a sparser sketched
data matrix than count-sketch and other matrix sketching
methods. The prediction cost of our method is smaller than
other matrix sketching methods.

Preliminaries
Randomized Matrix Sketching
Given a data matrix X ∈ Rn×d and a random sketching ma-
trix R ∈ Rd×r with r � d, a sketched matrix is produced

by
X̃ = XR ∈ Rn×r. (1)

Note that the matrix R is randomly generated and is in-
dependent of the input data X. As shown in the follow-
ing Johnson-Lindenstrauss Lemma (JL lemma), randomized
matrix sketching can preserve the pairwise distance of all
data points using the sketched data matrix X̃.

Lemma 1 (JL lemma (Johnson and Lindenstrauss 1984))
For any 0 < ε < 1 and any integer n, let r = O(log n/ε2)
and R ∈ Rd×r be a random orthonormal matrix. Then for
any set X of n points in Rd, the following inequality about
the pairwise distance between any two data points xi and
xj in X holds true with high probability:
(1−ε)‖xi−xj‖2 ≤ ‖RTxi−RTxj‖2 ≤ (1+ε)‖xi−xj‖2.

Count-Sketch
Among various methods for constructing the sketching
matrix R, count-sketch (or called sparse embedding) is
well suited for sparse input data X since it can achieve
O(nnz(X)) time complexity for computing XR. Count-
sketch (Clarkson and Woodruff 2017) constructs the random
matrix R ∈ Rd×r as R = DΦ where D and Φ are defined
as follows,
• D is a d × d diagonal matrix with each diagonal entry

independently chosen to be 1 or −1 with a probability of
0.5.

• Φ ∈ {0, 1}d×r is a d × r binary matrix with Φi,h(i) =
1, and all remaining entries are 0. h is a random map
such that for any i ∈ {1, 2, . . . , d}, h(i) = j, for j ∈
{1, 2, . . . , r} with a probability of 1

r .
Note that random sketching matrix R in count-sketch is a
very sparse matrix where each row has only one nonzero en-
try. This nonzero entry is uniformly chosen and the value is
either 1 or −1 with a probability of 0.5. XR can be com-
puted in O(nnz(X)) time because each nonzero entry in X
is at most by multiplied by one nonzero entry in XR. (Paul
et al. 2014) applied count-sketch for linear SVM classifica-
tion and showed that linear svm trained on the sketched data
can ensure comparable generalization ability as in the origi-
nal space in the case of classification.

Methodology
Even though count-sketch has been successfully used for di-
mensionality reduction in linear SVM classification (Paul
et al. 2014), we argue that this data-oblivious method has
two limitations: (1) The sketching matrix R = DΦ is ran-
domly generated. It could result in bad sketched data when
some important columns in X are not sampled using R; (2)
Count-sketch will not preserve the sparsity rate of the origi-
nal data.

When using count-sketch in data classification, the first
limitation could result in bad low-dimensional embedding
and then produce a classification model with low accuracy.
To illustrate this limitation, we show the classification accu-
racy of using count-sketch for dimensionality reduction on
mnist dataset for ten different runs in Figure 1. As shown in

Figure 1: Classification accuracy of using count-sketch on
different runs

Figure 1, count-sketch is not stable. It produces low classi-
fication accuracy in some runs. We also show the classifi-
cation of our proposed method that will be introduced later
in this figure. We can see that our proposed method obtains
higher and stabler accuracy than count-sketch.

The second limitation of count-sketch is that the sketched
matrix could be much denser than the original data when
used with sparse input data. We checked the sparsity rate
of mnist data before and after count-sketch. The original
sparsity rate for mnist data is 80.78% and the sparsity rate
is decreased to 1.72% in the sketched data. Therefore, the
sketched data could be much denser than the original data
and make the subsequent classification algorithm slower be-
cause the number of non-zero values in sketched data could
be larger than the number of non-zero values in the origi-
nal data. More results will be discussed in the experiment
section.

Connection between Count-Sketch and k-means
clustering
Since the construction of matrix D and Φ in count-sketch is
oblivious to the input data matrix X, it could produce a bad
sketched matrix (e.g., some important columns in X are not
be sampled in Φ) and therefore results in low classification
accuracy. In this paper, we seek to develop a data-dependent
count-sketch method for addressing the two limitations of
count-sketch. To motivate our method, we start by analyz-
ing the reconstruction error of the count-sketch method and
show an interesting connection between count-sketch and k-
means clustering.

Let us define a diagonal scaling matrix S ∈ Rr×r as

Sii =
1∑d

j=1 Φji

(2)

Note that (DΦS
1
2)T (DΦS

1
2) equals to an identity matrix

with size r×r. The reconstruction error of count-sketch can
be represented as
‖X−X(DΦS

1
2)(DΦS

1
2)T ||2F = ‖X−XDΦSΦTDT ||2F

(3)
where ‖A‖F denotes the Frobenius norm of matrix A. As
shown in the following Proposition 1, the reconstruction er-
ror of count-sketch as shown in (3) is equivalent to the ob-
jective function of applying k-means clustering to cluster the

d columns of M = XD into r clusters.

Proposition 1 The reconstruction error of count-sketch
‖X−XDΦSΦTDT ||2F is equivalent to the objective func-
tion of applying k-means clustering on the columns of ma-
trix product M = XD if we treat Φ as a learnable variable
which denotes the cluster membership of each column in M,
‖X−XDΦSΦTDT ||2F = ‖M−MΦSΦT ||2F

=

d∑
i=1

‖M(:,i) − cI(M(:,i))‖
2
2,

(4)

where M(:,i) denotes the i-th column of M, I(M(:,i)) re-
turns the index of the cluster that M(:,i) belongs to and
cI(M(:,i)) is the centroid of that cluster.

The proof of proposition 1 is in the appendix section. The
proposition 1 provides an interesting connection between
count-Sketch and k-means clustering. In the count-Sketch
algorithm, the clustering membership indicator matrix Φ is
randomly generated which does not consider intrinsic data
properties. It could result in bad embedding with high re-
construction error.

Improved count-sketch by k-means and L1 ball
projection
As shown in (12), the reconstruction error of count-sketch
can be improved by replacing the random cluster member-
ship indicator matrix Φ in the original count-sketch algo-
rithm with a cluster membership indicator matrix produced
by k-means algorithm on the columns of M. Motivated by
this observation, we propose to use k-means algorithm to
learn the cluster membership indicator matrix Φ from data to
achieve lower reconstruction error. Therefore, the new clus-
ter centers returned by k-means with k = r, which equals
to XDΦS, can be used as the new low-dimensional fea-
ture representation. As shown in proposition 1. This new
sketched matrix will result in low reconstruction error than
the original count-sketch method.

Apart from the reconstruction error, as mentioned earlier,
another limitation of count-sketch is that it may not preserve
the sparsity rate of the input data X. In other words, the new
data presentation X̃ could be dense even if the original data
X is highly sparse data. This limitation could make the sub-
sequent algorithm on projected data X̃ be even slower than
just using the original data X without count-sketch. There-
fore, instead of using the Lloyd’s classic k-means algorithm
(Lloyd 1982), we would like to develop a new method to ob-
tain very sparse cluster centers. We propose to obtain sparse
cluster centers by optimizing the objective of k-means as
shown in (12) using gradient descent together with L1 ball
projection (Duchi et al. 2008) in each update.

The gradient of the k-means objective function∑d
i=1 ‖M(:,i) − cI(M(:,i))‖22 with respect to the j-th

cluster center cj is

∇cj =

d∑
i=1

−2δ(I(M(:,i)), j)(M(:,i) − cj), (5)

where δ(I(M(:,i)), j) is a binary function which returns 1 if
I(M(:,i)) equals to j (i.e., the i-th column of M belongs to

Algorithm 1: ε-L1 ball projection (Sculley 2010)

Input: c ∈ Rn, L1 ball radius λ, tolerance parameter ε
Output: projected sparse vector c ∈ Rn

1: if ‖c‖ ≤ λ(1 + ε) return c
2: l = 0; u = ‖c‖∞; r = ‖c‖1
3: while r > λ(1 + ε) or r < λ do # Bisection to find θ
4: θ = l+u

2

5: r =
∑n

i=1 max(0, |ci| − θ)
6: if r < λ then u = θ else l = θ
7: end while
8: for i = 1 to n do # L1 ball projection
9: ci = sign(ci)max(0, |ci| − θ)

10: end for

the j-th cluster). Otherwise it returns 0. In other words, the
computation of gradient ∇cj only depends on columns that
belong to the j-th cluster in the current iteration.

By using gradient descent, in each iteration, the cluster
center cj can be updated as

cj = cj − η∇cj , (6)
where η is the learning rate. However, directly using (6) will
not produce sparse cluster centers.

To obtain sparse cluster centers, we will use ε-L1 ball pro-
jection to make cj be a sparse vector. The ε-L1 ball projec-
tion is proposed in (Sculley 2010) which is approximated ex-
tension of the exact L1 ball projection (Duchi et al. 2008). ε-
L1 is very effective at getting sparse cluster centers as shown
in (Sculley 2010). The basic idea of ε-L1 ball projection is
to use bisection to find a value θ that projects a dense vector
cj to an L1 ball with a radius between λ and (1 + ε)λ. After
θ is found, ε-L1 ball projection will map the i-th entry in cj
(denoted as cji) to

cji = sign(cji)max(0, |cji| − θ). (7)
As shown in (7), the resulting cluster centers cjs will be

sparse vectors since max(0, |cji| − θ) will make an element
to 0 if its absolute value is smaller than θ. The whole proce-
dure of ε-L1 ball projection is described in Algorithm 1.

By using Algorithm 1 in each iteration of optimizing k-
means objective function by gradient descent, we will get
sparse cluster centers.

Algorithm Implementation and Analysis
We summarize our proposed algorithm for improving the
original count-sketch in algorithm and name it as Effective
and Sparse Count-SKetch (ESCK). Our proposed algorithm
first obtain M as shown in step 1-2 which is the same as
the original count-sketch. The contribution of our proposed
algorithm is to replace the randomly generated cluster mem-
bership indicator matrix Φ in count-sketch with the learned
cluster membership indicator matrix Φ. The r sparse cluster
centers will be used as the low-dimensional data representa-
tion. As shown from step 3 to 12, sparse cluster centers are
obtained by using gradient descent with ε-L1 ball projection
to cluster d columns into r groups.

With respect to time complexity, step 2 only needs
O(nnz(X)) time because D is a diagonal matrix. The time
complexity for steps 3 to 12 is upper bounded by O(ndrt)

Algorithm 2: Effective and Sparse Count-SKetch (ESCK)

Input: X ∈ Rn×d, reduced dimension r, iteration t, pa-
rameter ε, λ for L1 ball projection;
Output: low-dimensional data representation X̃ ∈ Rn ×r

and the learnt cluster membership indicator matrix Φ

1: Generate a diagonal random sign matrix D
2: Compute M = XD
3: Randomly pick r columns from M as the cluster centers
{cj}rj=1

4: for iter = 1 to t do
5: Create all zero matrix Φ ∈ Rd×r

6: for i = 1 to d do
7: j = argminj‖M(:,i) − cj‖22
8: Φi,j = 1
9: end for

10: Update each cluster centers using (6)
11: Obtain sparse cluster centers using Algorithm 1
12: end for
13: return X̃ = [c1, c2, . . . , cr] and Φ

where t is the number of iterations. For sparse input data, the
time complexity in each iteration for updating cluster cen-
ters will smaller than O(ndr) since both data and clusters
are sparse. Empirically, the k-means algorithm using gradi-
ent descent converges very fast and only a few iterations are
needed. In our experiments, we will show that our proposed
method is only several times slower than count-sketch. How-
ever, the classification accuracy obtained by our method is
much larger than count-sketch and other methods. Note that
our proposed method can also return the learned cluster
membership indicator matrix Φ. Therefore, our algorithm
can be extended to an inductive setting and generate the fea-
ture mapping for new unseen data by using X̃ = XDΦS
which enjoys the same low computational complexity as the
count-sketch method.

Dataset # of # of # of sparsity
samples features classes rate

usps 9,298 256 10 0%
mnist 60,000 780 10 80.78%
gisette 7,000 5,000 2 0.85%
real-sim 72,309 20,958 2 99.75%
rcv1-binary 20,242 47,236 2 99.84%
rcv1-multi 15,564 47,236 53 99.86%

Table 1: Summary of experimental datasets

Experiments
In this section, we compare our methods with differ-
ent commonly-used random dimensionality reduction algo-
rithms based on six real-life datasets. These datasets are
downloaded from LIBSVM website(Chang and Lin 2011).
The summarization of these six datasets is shown in Table 1.
The sparsity rate as shown in the last column is the fraction

Performance
usps mnist gisette real-sim rcv1-binary rcv1-multi

(r=30) (r=100) (r=256) (r=256) (r=256) (r=256)

PCA
Accuracy(%) 93.61 ± 0.01 90.55 ± 0.03 94.52 ± 0.01 84.20 ± 0.01
Sparsity rate 0% 0% 0% - - 0%
Prediction time(ms) 3.0 21.9 3.8 22.4

Gaussian
Accuracy(%) 90.60 ± 0.01 88.92 ± 0.03 90.70 ± 0.01 79.25 ± 0.06 81.63 ± 0.01 69.71 ± 0.01
Sparsity rate 0% 0% 0% 0% 0% 0%
Prediction time(ms) 2.9 20.8 3.0 31.2 8.0 22.4

Achlioptas
Accuracy(%) 90.17±0.03 87.70±0.02 89.80± 0.03 76.85±0.06 81.86±0.01 67.56±0.07
Sparsity rate 0% 0.01% 0% 1.07% 0.03% 0.03%
Prediction time(ms) 3.1 55.0 4.0 41.9 11.7 88.8

Count-Sketch
Accuracy(%) 90.74 ± 0.01 87.66 ± 0.01 90.37 ± 0.02 77.21 ± 0.06 80.19±0.02 69.38± 0.06
Sparsity rate 0% 1.72% 0% 73.36% 73.65% 74.47%
Prediction time(ms) 3.0 51.0 4.5 12.0 4.5 24.9

SRHT
Accuracy(%) 89.86 ± 1.66 87.14 ± 0.84 90.45 ± 0.87 78.37 ± 0.20 80.29 ± 0.69 68.50 ± 0.29
Sparsity rate 0% 0% 0% 0% 0% 0%
Prediction time(ms) 3.3 79.4 3.6 22.6 7.0 103.0

SRHT-topr
Accuracy(%) 90.68 ± 1.51 88.15 ± 0.77 92.45 ± 0.55 82.48 ± 0.19 82.14 ± 0.24 71.01 ± 0.77
Sparsity rate 0% 0% 0% 0% 0% 0%
Prediction time(ms) 4.2 75.2 3.3 46.6 6.1 101.0

ESCK-full
Accuracy(%) 92.55± 0.02 90.60±0.02 95.13± 0.02 88.68±0.07 92.91±0.01 78.99 ± 0.01
sparsity rate 16.60% 43.10% 3.66% 89.57% 87.61% 88.44%
Prediction time(ms) 1.5 15.8 2.5 4.0 1.0 13.5

ESCK-miniBatch
Accuracy(%) 92.18± 0.01 90.50±0.02 94.45 ± 0.03 88.25±0.08 90.01±0.02 77.13 ± 0.01
sparsity rate 46.78% 40.29% 37.58% 97.47% 94.78% 95.37%
Prediction time(ms) 2.0 16.9 1.3 1.0 1.0 6.0

Table 2: Experimental results of different random matrix sketching methods
of zeros in each input data matrix X. As shown in Table 1,
there are four sparse datasets (mnist, real-sim, rcv1-binary,
rcv1-multi) and two dense datasets (usps, gisette). We evalu-
ate the performance of the following seven matrix sketching
methods:
• Gaussian: The sketching matrix is a random Gaussian

Matrix (Dasgupta and Gupta 1999).
• Achlioptas: A sparser sketching matrix is randomly gen-

erated from a discrete distribution (Achlioptas 2003).
• Count-Sketch: original oblivious count-sketch method

(Clarkson and Woodruff 2017).
• SRHT : The sketching matrix is generated by SRHT

(Tropp 2011).
• SRHT-topr An improved variant of SRHT which is data-

dependent (Lei and Lan 2020).
• ESCK-full: our proposed method that uses full batch gra-

dient descent with ε-L1 ball projection.
• ESCK-miniBatch: our proposed method that uses mini-

batch gradient descent with ε-L1 ball projection.
We also include the results of using PCA (Jolliffe and
Cadima 2016) for dimensionality reduction. Due to the high
computational complexity of PCA, we cannot get the results
of PCA on real-sim and rcv1-binary datasets.

Experimental Setting. For the two dense datasets (usps
and gisette), we have scaled the feature values to [−1,
1] using min-max normalization. We use five-fold cross-
validation to evaluate the accuracy of different random ma-
trix sketching methods. The regularization parameter C in
SVM is chosen from {10−5, 10−4, . . . , 104, 105}. The ε pa-
rameter for ε-L1 ball projection is fixed to 0.1 and λ pa-
rameter is chosen from {10, 20, 30, 40} . Our experiments

are performed on a desktop with Intel(R) Core(TM) i7-9700
CPU and @ 3.00GHz and 16.0 GB RAM.

Experimental Results. We report the classification accu-
racy, sparsity rate of the sketched matrix and prediction time
of different algorithms in Table 2. The projected dimension
r for each dataset is given in the first row of this table. The
results for different settings of projected dimension r will
be discussed later. The results of PCA in given in the sec-
ond row. For random matrix sketching methods, the first four
methods are data-oblivious random projection methods and
the last three are data-dependent random projection meth-
ods. The best accuracy for each dataset is in bold and italic
and the second-best accuracy for each dataset is in bold.

Table 2 shows that the data-dependent matrix sketching
methods (i.e., SRHT-topr, ESCK-full and ESCK-miniBatch)
get higher accuracy than data-independent matrix sketching
methods. Among the random matrix sketching methods, the
proposed ESCK-full algorithm achieves the best accuracy
on all six datasets. The proposed method ESCK-miniBatch
gets slightly lower accuracy than ESCK-full but gets higher
accuracy than the other five matrix sketching methods. The
results in Table 2 demonstrate that our proposed methods
achieve better accuracy than other random matrix sketching
methods.

With respect to the sparsity rate of the sketched data, as
expected, Gaussian, Achlioptas, SRHT and SRHT-topr will
produce dense data even if the input data is sparse. The origi-
nal count-sketch method and our proposed methods can pro-
duce sparse embedding for highly sparse input data. The
sparsity rate of the sketched data produced by our proposed
methods is higher than the count-sketch. Furthermore, our
proposed method could result in sparse embedding for dense

Figure 2: Impact of Projection Dimension r

(a) real-sim (b) rcv1-binary (c) mnist (d) gisette

Figure 3: Accuracies with Different Sparsity Rates
input data (e.g., usps and gisette). With respect to the predic-
tion time, the prediction time of our methods is lower than
other methods. We summarize the prediction costs for differ-
ent algorithms on a single input data sample in Table 3. In
this table, we decompose the prediction cost into (1) Project
cost (i.e., computing x̃ = RTx) and classification cost (i.e.,
computing vT x̃). As shown in Table 3, both count-sketch
and our proposed ESCK are very efficient for prediction.

Methods Projection Cost Classification Cost

Gaussian O(dr) O(r)
Achlioptas O(dr) O(r)
Count-Sketch O(nnz(x)) O(nnz(x̃))
SRHT O(dlog(d)) O(r)
SRHT-topr O(dlog(d)) O(r)
ESCK O(nnz(x)) O(nnz(x̃))

Table 3: Prediction cost for different methods on a single
input x

Impact of Projection Dimension r. In Figure 2, we show
the results of different algorithms with different projection
dimension r. As shown in the figure, our method ESCK-full
consistently get better accuracy than other matrix sketch-
ing methods. The other two data-dependent matrix sketch-
ing methods ESCK-minibatch and SRHT-topr also get bet-
ter than the four data-oblivious matrix sketching method.
When the parameter r is small, the accuracy improvement
of ESCK-full is large on real-sim and rcv1-binary datasets.

Impact of Sparse Sketched Matrix By tuning the λ pa-
rameter ε-L1 ball projection, our proposed method can re-
sult in a very sparse sketched matrix X̃. In this section, we
explore how the sparsity rate of the sketched matrix affects
the classification accuracy. In Figure 3, we show the spar-

sity rate and accuracy for count-sketch and ESCK-full. The
blue dashed line shows the accuracy of count-sketch and the
sparsity rate is annotated by the text above this line. The red
line shows the accuracies of ESCK-full with different spar-
sity rate of the sketched matrix. As shown in Figure 3, the
ESCK-full obtain better accuracy than count-sketch with a
higher sparsity rate. As the sparsity rate increased, we can
observe that accuracy could slightly decrease but still higher
than count-sketch. On the mnist dataset, the count-sketch
method generates a dense sketched matrix with a sparsity
rate equals to 1.72% and the accuracy of the subsequent clas-
sifier is 87.65%. In comparison, the ESCK-full can generate
a sparse sketched matrix with higher classification accuracy.

We have compared the embedding time of our proposed
method with the original count-sketch during the training
stage. We also investigate the effect of the diagonal random
sign matrix D in our algorithm. The detailed results and dis-
cussion can be found in supplementary materials.

Conclusion
In this paper, we propose a novel data-dependent count-
sketch algorithm that can produce more effective and sparse
subspace embedding than the original count-sketch algo-
rithm. Our new method applies k-means clustering algo-
rithm to obtain the sketched data matrix. A sparse sketched
data matrix is obtained by using gradient descent with ε-
L1 ball projection to optimize the k-means clustering ob-
jective function. We compared our proposed algorithm with
the other five matrix sketching algorithms. Our experimen-
tal results on six real-life datasets have demonstrated that
our proposed methods achieve higher classification accura-
cies than count-sketch and other matrix sketching methods.
Also, our proposed methods can produce a sketched matrix
with high sparsity rate than other methods that can make the
subsequent classification model more efficient than others.

References
Achlioptas, D. 2003. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal of com-
puter and System Sciences, 66(4): 671–687.
Ailon, N.; and Chazelle, B. 2006. Approximate nearest
neighbors and the fast Johnson-Lindenstrauss transform. In
Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, 557–563.
Ailon, N.; and Liberty, E. 2009. Fast dimension reduction
using Rademacher series on dual BCH codes. Discrete &
Computational Geometry, 42(4): 615.
Arora, S.; Hazan, E.; and Kale, S. 2006. A fast random
sampling algorithm for sparsifying matrices. In Approxima-
tion, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 272–279. Springer.
Bojarski, M.; Choromanska, A.; Choromanski, K.; Fagan,
F.; Gouy-Pailler, C.; Morvan, A.; Sakr, N.; Sarlos, T.; and
Atif, J. 2017. Structured adaptive and random spinners for
fast machine learning computations. In Artificial Intelli-
gence and Statistics, 1020–1029.
Boutsidis, C.; Zouzias, A.; and Drineas, P. 2010. Random
projections for k-means clustering. In Advances in Neural
Information Processing Systems, 298–306.
Chang, C.-C.; and Lin, C.-J. 2011. LIBSVM: A library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST), 2(3): 1–27.
Choromanski, K. M.; Rowland, M.; and Weller, A. 2017.
The unreasonable effectiveness of structured random or-
thogonal embeddings. In Advances in Neural Information
Processing Systems, 219–228.
Clarkson, K. L.; and Woodruff, D. P. 2017. Low-rank ap-
proximation and regression in input sparsity time. Journal
of the ACM (JACM), 63(6): 1–45.
Dahiya, Y.; Konomis, D.; and Woodruff, D. P. 2018. An
empirical evaluation of sketching for numerical linear alge-
bra. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 1292–
1300.
Dasgupta, S.; and Gupta, A. 1999. An elementary proof of
the Johnson-Lindenstrauss lemma. International Computer
Science Institute, Technical Report, 22(1): 1–5.
Ding, C.; He, X.; and Simon, H. D. 2005. On the equivalence
of nonnegative matrix factorization and spectral clustering.
In Proceedings of the 2005 SIAM international conference
on data mining, 606–610. SIAM.
Dobriban, E.; and Liu, S. 2019. Asymptotics for sketching in
least squares regression. In Advances in Neural Information
Processing Systems, 3675–3685.
Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; and Chandra, T.
2008. Efficient projections onto the l1-ball for learning in
high dimensions. In Proceedings of the 25th international
conference on Machine learning, 272–279.
Johnson, W. B.; and Lindenstrauss, J. 1984. Extensions
of Lipschitz mappings into a Hilbert space. Contemporary
mathematics, 26(189-206): 1.

Jolliffe, I. 2011. Principal component analysis. Springer.
Jolliffe, I. T.; and Cadima, J. 2016. Principal component
analysis: a review and recent developments. Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 374(2065): 20150202.
Lei, Z.; and Lan, L. 2020. Improved Subsampled Random-
ized Hadamard Transform for Linear SVM. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, 4519–
4526. AAAI Press.
Liu, W.; Shen, X.; and Tsang, I. 2017. Sparse Embedded k-
Means Clustering. In Advances in Neural Information Pro-
cessing Systems, 3319–3327.
Lloyd, S. 1982. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2): 129–137.
Mahoney, M. W. 2011. Randomized Algorithms for Matri-
ces and Data. Foundations and Trends® in Machine Learn-
ing, 3(2): 123–224.
Martinsson, P.-G.; and Tropp, J. 2020. Randomized numeri-
cal linear algebra: Foundations & algorithms. arXiv preprint
arXiv:2002.01387.
Paul, S.; Boutsidis, C.; Magdon-Ismail, M.; and Drineas, P.
2014. Random Projections for Linear Support Vector Ma-
chines. ACM Transactions on Knowledge Discovery from
Data (TKDD), 8(4): 1–25.
Sculley, D. 2010. Web-scale k-means clustering. In Pro-
ceedings of the 19th international conference on World wide
web, 1177–1178.
Tropp, J. A. 2011. Improved analysis of the subsampled ran-
domized Hadamard transform. Advances in Adaptive Data
Analysis, 3(01n02): 115–126.
Tropp, J. A.; Yurtsever, A.; Udell, M.; and Cevher, V. 2017.
Practical sketching algorithms for low-rank matrix approxi-
mation. SIAM Journal on Matrix Analysis and Applications,
38(4): 1454–1485.
Woodruff, D. P. 2014. Sketching as a Tool for Numerical
Linear Algebra. Theoretical Computer Science, 10(1-2): 1–
157.
Xu, Y.; Yang, H.; Zhang, L.; and Yang, T. 2017. Efficient
non-oblivious randomized reduction for risk minimization
with improved excess risk guarantee. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
2796–2802.

Appendix
Proof of Proposition 1
Proposition 1 The reconstruction error of count-sketch
‖X−XDΦSΦTDT ||2F is equivalent to the objective func-
tion of applying k-means clustering on the columns of ma-
trix product M = XD if we treat Φ as a learnable variable
which denotes the cluster membership of each column in M,
‖X−XDΦSΦTDT ||2F = ‖M−MΦSΦT ||2F

=

d∑
i=1

‖M(:,i) − cI(M(:,i))‖
2
2,

(8)

where M(:,i) denotes the i-th column of M, I(M(:,i)) re-
turns the index of the cluster that M(:,i) belongs to and
cI(M(:,i)) is the centroid of that cluster.

We first rewrite the reconstruction error as ‖X −
XDΦSΦTDT ||2F = ‖X − XDDT + XDDT −
XDΦSΦTDT ||2F . Note that D is a d × d diagonal ma-
trix with each diagonal entry either 1 or −1, therefore X =
XDDT . Let us use M to denote XD, we will have

‖X−XDΦSΦTDT ||2F
=‖XDDT −XDΦSΦTDT ||2F
=‖MDT −MΦSΦTDT ||2F

(9)

Next, we will show that ‖MDT −MΦSΦTDT ||2F =
‖M−MΦSΦT ||2F as follows,

‖MDT −MΦSΦTDT ‖2F
= trace((MDT −MΦSΦTDT)

(MDT −MΦSΦTDT)T)

= trace((M−MΦSΦT)DTD(M−MΦSΦT)T)

= trace((M−MΦSΦT)(M−MΦSΦT)T).

= ‖M−MΦSΦT ||2F .
(10)

Combining (9) and (10), the reconstruction error of count-
sketch can be rewritten as
‖X−XDΦSΦTDT ||2F = ‖M−MΦSΦT ||2F (11)

Based on the definition of matrix Φ, Φ is a d×r indicator
matrix which each row has only one non-zero entry. There-
fore, Φ can viewed as a cluster membership indicator matrix
which corresponds to randomly assign d columns of matrix
M into r clusters. The non-zero element Φij = 1 in i-th row
of Φ denotes the i-th column in M is assigned to cluster j.
Note that the i-th column of matrix product MΦSΦT is the
centroid of the cluster where the i-th column M(:,i) belongs
to. Therefore

‖M−MΦSΦT ||2F =

d∑
i=1

‖M(:,i) − cI(M(:,i))‖
2
2, (12)

where I(M(:,i)) returns the index of the cluster that the i-
th column M(:,i) belongs to and cI(M(:,i)) is the centroid
of that cluster. By treating Φ as a learnable variable which
denotes the cluster membership, the reconstruction error of
count-sketch is the same as the objective function of k-
means algorithm on the columns of M as shown in (12).

Note that our proposition 1 is different to results in (Ding,

He, and Simon 2005). (Ding, He, and Simon 2005) aim to
explain the connection between non-negative matrix factor-
ization and kernel k-means. However, in our paper, we aim
to analyze the reconstruction error of count-sketch and us-
ing k-mean algorithm as a more effective column sampling
methods

Additional Experimental Results
Embedding Time of Different Algorithms in the Training
Stage We compare the embedding time of our proposed
method with the original count-sketch during the training
stage. The results are shown in Table 4. As expected, our
proposed methods will be several times slower than the orig-
inal count-sketch since we need to perform k-means cluster-
ing on the columns of M. ESCK-miniBatch is faster than
ESCK-full.

embedding time during training stage
Count-Sketch ESCK-full ESCK-miniBatch

usps 1.2s 5.3s 1.1s
mnist 5.1s 26.4s 6.5s
gisette 2.6s 10.2s 4.5s
real-sim 2.6s 38.5s 13.5s
rcv1-bianry 1.9s 12.6s 5.3s
rcvl-multi 1.1s 8.5s 4.1s

Table 4: Comparison of the embedding during the training
stage

The Effect of the Diagonal Random Sign Matrix D

As mentioned in the paper, count-sketch (Clarkson and
Woodruff 2017) constructs the random matrix R ∈ Rd×r

as R = DΦ where D is a d × d diagonal matrix with each
diagonal entry independently chosen to be 1 or −1 with a
probability of 0.5. Previous studies (Arora, Hazan, and Kale
2006; Clarkson and Woodruff 2017) have proved that the
matrix R constructed in this way can guarantee with the
property that the structure in the high dimension space can
also approximately preserved in the randomly projected sub-
space. In the theoretical analysis of count-sketch (Clarkson
and Woodruff 2017), the expectation of the pairwise distance
between two samples in the projected subspace will not be
equal to the pairwise distance in the input space without us-
ing D. Here we empirically investigate the effect of the di-
agonal random sign matrix D in our method. Our empirical
results are shown in Table 5. Our results show that the ef-
fect of D is very subtle in our method since our method is a
deterministic sampling method while count-sketch is a ran-
dom sampling method. We leave the theoretical analysis of
the effect of D in our future work.

Performance
usps mnist gisette real-sim rcv1-binary rcv1-multi

(r=30) (r=100) (r=256) (r=256) (r=256) (r=256)

ESCK-full
Accuracy(%) 92.55± 0.02 90.60±0.02 95.13± 0.02 88.68±0.07 92.91±0.01 78.99 ± 0.01
Sparsity rate 16.60% 43.10% 3.66% 89.57% 87.61% 88.44%
Prediction time(ms) 1.5 15.8 2.5 4.0 1.0 13.5

ESCK-full without D

Accuracy(%) 91.60± 0.02 90.45±0.01 95.06± 0.01 88.54±0.07 92.89±0.01 77.67 ± 0.02
Sparsity rate 50.81% 56.37% 3.66% 90.60% 87.61% 88.49%
Prediction time(ms) 0.9 12.3 2.4 4.0 1.2 13.9

ESCK-miniBatch
Accuracy(%) 92.18± 0.01 90.50±0.02 94.45 ± 0.03 88.25±0.08 90.01±0.02 77.13 ± 0.01
Sparsity rate 46.78% 40.29% 37.58% 97.47% 94.78% 95.37%
Prediction time(ms) 2.0 16.9 1.3 1.0 1.0 6.0

ESCK-miniBatch without D

Accuracy(%) 91.90± 0.01 89.53±0.02 93.83 ± 0.03 88.04±0.08 90.30±0.02 77.61 ± 0.01
Sparsity rate 3.33% 40.07% 0.08% 91.78% 91.96% 89.16%
Prediction time(ms) 1.9 16.6 3.9 4.1 0.9 12.5

Table 5: Experimental results on the effect of diagonal random sign matrix D

