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Abstract

Inspired by human neurological structures for action an-

ticipation, we present an action anticipation model that en-

ables the prediction of plausible future actions by forecast-

ing both the visual and temporal future. In contrast to cur-

rent state-of-the-art methods which first learn a model to

predict future video features and then perform action antic-

ipation using these features, the proposed framework jointly

learns to perform the two tasks, future visual and temporal

representation synthesis, and early action anticipation. The

joint learning framework ensures that the predicted future

embeddings are informative to the action anticipation task.

Furthermore, through extensive experimental evaluations

we demonstrate the utility of using both visual and temporal

semantics of the scene, and illustrate how this representa-

tion synthesis could be achieved through a recurrent Gen-

erative Adversarial Network (GAN) framework. Our model

outperforms the current state-of-the-art methods on multi-

ple datasets: UCF101, UCF101-24, UT-Interaction and TV

Human Interaction. 1

1. Introduction

We propose an action anticipation model that uses visual

and temporal data to predict future behaviour, while also

predicting a frame-wise future representation to support the

learning. Unlike action recognition where the recognition

is carried out after the event, by observing the full video

sequence (Fig. 1(a)), the aim of action anticipation (Fig.

1(b)) is to predict the future action as early as possible by

observing only a portion of the action [3]. Therefore, for

the prediction we only have partial information in the form

of a small number of frames, so the available information

is scarce. Fig. 1(c) shows the intuition behind our pro-

posed model. The action anticipation task is accomplished

by jointly learning to predict the future embeddings (both

visual and temporal) along with the action anticipation task,

where the anticipation task provides cues to help compen-

1This research was supported by an Australian Research Council

(ARC) Linkage grant LP140100221
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Figure 1. Action anticipation through future embedding predic-

tion. Action recognition approaches (a) carry out the recognition

task via fully observed video sequences while the typical action

anticipation methods (b) are based on predicting the action from a

small portion of the frames. In our proposed model (c) we jointly

learn the future frame embeddings to support the anticipation task.

sate for the missing information from the unobserved frame

features. We demonstrate that joint learning of the two tasks

complements each other.

This approach is inspired by recent theories of how hu-

mans achieve the action predictive ability. Recent psychol-

ogy literature has shown that humans build a mental im-

age of the future, including future actions and interactions

(such as interactions between objects) before initiating mus-

cle movements or motor controls [10, 17, 31]. These repre-

sentations capture both the visual and temporal information

of the expected future. Mimicking this biological process,

5562



our action anticipation method jointly learns to anticipate

future scene representations while predicting the future ac-

tion, and outperforms current state-of-the-art methods.

In contrast to recent works [3, 45, 50] which rely solely

on visual inputs, and inspired by [10, 17, 31], we propose a

joint learning process which attends to salient components

of both visual and temporal streams, and builds a highly in-

formative context descriptor for future action anticipation.

In [50] the authors demonstrate that the context semantics,

which capture high level action related concepts including

environmental details, objects, and historical actions and

interactions, are more important when anticipating actions

than the actual pixel values of future frames. Furthermore,

the semantics captured through pre-trained deep learning

models show robustness to background and illumination

changes as they tend to capture the overall meaning of the

input frame rather than simply using pixel values [8, 26].

Hence in the proposed architecture we extract deep visual

and temporal representations from the inputs streams and

predict the future representations of those streams.

Motivated by recent advances in Generative Adversarial

Networks (GAN) [1, 16, 33] and their ability to automati-

cally learn a task specific loss function, we employ a GAN

learning framework in our approach as it provides the capa-

bility to predict a plausible future action sequence.

Although there exist individual GAN models for antici-

pation [32,56], we take a step further in this work. The main

contribution is the joint learning of a context descriptor for

two tasks, action anticipation and representation prediction,

through the joint training of two GANs.

Fig. 2 shows the architecture of our proposed Action

Anticipation GAN (AA-GAN) model. The model receives

the video frames and optical flow streams as the visual

and temporal representations of the scene. We extract a

semantic representation of the individual streams by pass-

ing them through a pre-trained feature extractor, and fuse

them through an attention mechanism. This allows us to

provide a varying level of focus to each stream and effec-

tively embed the vital components for different action cat-

egories. Through this process low level feature representa-

tions are mapped to a high-level context descriptor which

is then used by both the future representation synthesis and

classification procedures. By coupling the GANs (visual

and temporal synthesisers) through a common context de-

scriptor, we optimally utilise all available information and

learn a descriptor which better describes the given scene.

Our main contributions are as follow:

• We propose a joint learning framework for early ac-

tion anticipation and synthesis of the future represen-

tations.

• We demonstrate how attention can efficiently deter-

mine the salient components from the multi-modal in-

formation, and generate a single context descriptor

which is informative for both tasks.

• We introduce a novel regularisation method based

on the exponential cosine distance, which effectively

guides the generator networks in the prediction task.

• We perform evaluations on several challenging

datasets, and through a thorough ablation study,

demonstrate the relative importance of each compo-

nent of the proposed model.

2. Previous Work

Human action recognition is an active research area that

has great importance in multiple domains [7, 9, 23]. Since

the inception of the field researchers have focused on im-

proving the applicability of methods to tally with real world

scenarios. The aim of early works was to develop discrete

action recognition methods using image [6, 25] or video in-

puts [15,22,46], and these have been extended to detect ac-

tions in fine-grained videos [29, 37]. Although these meth-

ods have shown impressive performance, they are still lim-

ited for real-world applications as they rely on fully com-

pleted action sequences. This motivates the development of

action anticipation methods, which can accurately predict

future actions utilising a limited number of early frames,

and thereby providing the ability to predict actions that are

in progress.

In [50], a deep network is proposed to predict a rep-

resentation of the future. The predicted representation is

used to classify future actions. However [50] requires the

progress level of the ongoing action to be provided during

testing, limiting applicability [19]. Hu et al. [19] introduced

a soft regression framework to predict ongoing actions. This

method [19] learns soft labels for regression on the subse-

quences containing partial action executions. Lee et al. [30]

proposed a human activity representation method, termed

sub-volume co-occurrence matrix, and developed a method

to predict partially observed actions with the aid of a pre-

trained CNN. The deep network approach of Aliakbarian

et al. [3] used a multi-stage LSTM architecture that incor-

porates context-aware and action-aware features to predict

classes as early as possible. The CNN based action anticipa-

tion model of [40] predicts the most plausible future motion,

and was improved via an effective loss function based on

dynamic and classification losses. The dynamic loss is ob-

tained through a dynamic image generator trained to gener-

ate class specific dynamic images. However, performance is

limited due to the hand-crafted loss function. A GAN based

model can overcome this limitation as it can automatically

learn a loss function and has shown promising performance

in recent research [35, 38, 54].

In our work we utilise a conditional GAN [12,13,36] for

deep future representation generation. A limited number
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Figure 2. Action Anticipation GAN (AA-GAN): The model receives RGB and optical flow streams as the visual and temporal representa-

tions of the given scene. Rather than utilising the raw streams we extract the semantic representation of the individual streams by passing

them through a pre-trained feature extractor. These streams are merged via an attention mechanism which embeds these low-level feature

representations in a high-level context descriptor. This context representation is utilised by two GANs: one for future visual representa-

tion synthesis and one for future temporal representation synthesis; and the anticipated future action is obtained by utilising the context

descriptor. Hence context descriptor learning is influenced by both the future representation prediction, and the action anticipation task.

of GAN approaches can be found for human action recog-

nition [1, 33]. In [33], a GAN is used to generate masks

to detect the actors in input frame and action classifica-

tion is done via a CNN. This method is prone to difficul-

ties with the loss function as noted previously. Considering

other GAN methods, [32, 56] require human skeletal data

which is not readily available; [56] only synthesises the fu-

ture skeletal representation; and [55] considers the task of

synthesising future gaze points using a single generator and

discriminator pair and directly extracting spatio-temporal

features from a 3D CNN. In contrast to these, we analyse

two modes and utilise an attention mechanism to embed the

salient components of each mode into a context descriptor

which can be used for multiple tasks; and we learn this de-

scriptor through joint training of two GANs and a classifier.

The authors of [45] have adapted the model of [50] to a

GAN setting; using GANs to predict the future visual fea-

ture representation. Upon training this representation, they

train a classifier on the predicted features to anticipate the

future action class. We argue that the approach of [45] is

suboptimal, as there is no guarantee that the future action

representation is well suited to predicting the action due to

the two stage learning. Our approach, which learns the tasks

jointly, ensures that a rich multi-modal embedding is learnt

that captures the salient information needed for both tasks.

Furthermore, by extending this to a multi-modal setting, we

demonstrate the importance of attending to both visual and

temporal features for the action anticipation task.

3. Action Anticipation Model

Our action anticipation model is designed to predict the

future while classifying future actions. The model aims to

generate embeddings for future frames, to obtain a complete

notion of the ongoing action and to understand how best to

classify the action. In Sec. 3.1, we discuss how the con-

text descriptor is generated using the visual and temporal

input streams while Sec. 3.2 describes the use of the GAN

in the descriptor generation process. The future action clas-

sification procedure is described in Sec. 3.3 and we further

improve this process with the addition of the cosine distance

based regularisation method presented in Sec. 3.4.

3.1. Context Descriptor Formulation

Inputs to our model are two fold: visual and temporal.

The visual inputs are the RGB frames and the temporal in-

puts are the corresponding optical flow images (computed

using [4]). If the number of input video frames is T, then
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both the visual input (IV ) and the temporal input (ITP ) can

be represented as follows,

IV = {IV1 , IV2 , . . . , IVT },

ITP = {ITP
1 , ITP

2 , . . . , ITP
T }.

(1)

These inputs are passed through a pre-trained feature ex-

tractor which extracts features θV and θTP frame wise,

θV = {θV1 , θV2 , . . . , θVT },

θTP = {θTP
1 , θTP

2 , . . . , θTP
T }.

(2)

Then θV and θTP are sent through separate LSTM net-

works to capture the temporal structure of the input features.

The LSTM outputs are defined as,

hV
t = LSTM(θVt ), hTP

t = LSTM(θTP
t ). (3)

Attention values are generated for each frame such that,

eVt = tanh(aV [hV
t ]

⊤), eTP
t = tanh(aTP [hV

t ]
⊤), (4)

where aV and aTP are multilayer perceptrons trained to-

gether with the rest of the network, and are passed through

a sigmoid function to get the score values,

αV
t = σ([eVt , e

TP
t ]), αTP

t = 1− αV
t . (5)

Then, an attention weighted output vector is generated,

µ̃V
t = αV

t h
V
t , µ̃

TP
t = αTP

t hV
t (6)

Finally these output vectors are concatenated (denoted

by [, ]) to generate the context descriptor (Ct),

Ct = [µ̃V
t , µ̃

TP
t ]. (7)

Ct encodes the recent history of both inputs, and thus is

used to predict future behaviour.

3.2. Visual and Temporal GANs

GAN based models are capable of learning an output that

is difficult to discriminate from real examples. They learn a

mapping from the input to this realistic output while learn-

ing a loss function to train the mapping. The context de-

scriptor, Ct, is the input for both GANs (visual and temporal

synthesisers, see Fig. 2). The ground truth future visual and

temporal frames are denoted FV and FTP , and are given

by,

FV = {FV
1 , FV

2 , . . . , FV
T },

FTP = {FTP
1 , FTP

2 , . . . , FTP
T }.

(8)

We extract features for FV and FTP similar to Eq. 2,

βV = {βV
1 , βV

2 , . . . , βV
T },

βTP = {βTP
1 , βTP

2 , . . . , βTP
T }.

(9)

These features, βV and βTP , are utilised during GAN

training. The aim of the generator (GV or GTP ) of each

GAN is to synthesise the future deep feature sequence that

is sufficiently realistic to fool the discriminator (DV or

DTP ). It should be noted that the GAN models do not learn

to predict the future frames, but the deep features of the

frames (visual or temporal). As observed in [50] this allows

the model to recognise higher-level concepts in the present

and anticipate their relationships with future actions. This

is learnt through the following loss functions,

LV (GV , DV ) =

T∑

t=1

logDV (Ct, β
V )+

T∑

t=1

log(1−DV (Ct, G
V (Ct))),

(10)

LTP (GTP , DTP ) =
T∑

t=1

logDTP (Ct, β
TP )+

T∑

t=1

log(1−DTP (Ct, G
TP (Ct))).

(11)

3.3. Classification

The deep future sequences are learnt through the two

GAN models as described in Sec. 3.2. A naive way to

perform the future action classification is using the trained

future feature predictor and passing the synthesised future

features to the classifier. However, this is sub-optimal as

GV and GTP have no knowledge of this task, and thus fea-

tures are likely sub-optimal for it. As such, in this work

we investigate joint learning of the embedding prediction

and future action anticipation, allowing the model to learn

the salient features that are required for action anticipation.

Hence, the GANs are able to support learning salient fea-

tures for both processes. We perform future action classi-

fication for the action anticipation task through a classifier,

the input for which is Ct. Then the classification loss can

be defined as,

LC = −
T∑

t=1

yt log f
C(Ct). (12)

It is important to note that the context descriptor Ct is in-

fluenced by both the classification loss, Lc, and the GAN

losses, LV and LTP , as GV and GTP utilise the context

descriptor to synthesise the future representations.
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3.4. Regularisation

To stabilise GAN learning a regularisation method such

as the L2 loss is often used [20]. However the cosine dis-

tance has been shown to be more effective when comparing

deep embeddings [51, 52]. Furthermore when generating

future sequence forecasts it is more challenging to forecast

representations in the distant future than the near future.

However, the semantics from the distant future are more in-

formative for the action class anticipation problem, as they

carry more information about what the agents are likely to

do. Hence we propose a temporal regularisation mechanism

which compares the predicted embeddings with the ground

truth future embeddings using the cosine distance, and en-

courages the model to focus more on generating accurate

embeddings for the distant future,

LR =

T∑

t=1

−etd(GV (Ct), β
V
t ) +

T∑

t=1

−etd(GTP (Ct), β
TP
t ),

(13)

where d represents the cosine distance function. Motivated

by [3] we introduce the exponential term, et, encouraging

more accurate prediction of distant future embeddings.

Then, the loss for the final model that learns the con-

text descriptor Ct and is reinforced by both deep future se-

quence synthesisers (GAN models), and the future action

classification can be written as,

L = wV LV + wTPLTP + wcLC + wRLR, (14)

where wV , wTP , wc and wR are hyper-parameters

which control the contribution of the respective losses.

4. Evaluations

4.1. Datasets

Related works on action anticipation or early action pre-

diction typically use discrete action datasets. The four

datasets we use to evaluate our work are outlined below.

UCF101 [49] has been widely used for discrete action

recognition and recent works for action anticipation due to

its size and variety. The dataset includes 101 action classes

from 13,320 videos with an average length of 7.2 seconds.

In order to perform comparison to the state-of-the-art meth-

ods, we utilise the provided three training/testing splits and

report the average accuracy over three splits.

UCF101-24 [47] is a subset of the UCF101 dataset. It

is composed of 24 action classes in 3207 videos. In order

to compare action anticipation results to the state-of-the-art

we utilise only the data provided in set1.

UT-Interaction (UTI) [43] is a human interaction

dataset, which contains videos of two or more people per-

forming interactions such as handshake, punch etc. in a se-

quential and/or concurrent manner. The dataset has total of

120 videos. For the state-of-the-art comparison we utilise

a 10-fold leave-one-out cross validation on each set and the

mean performance over all sets is obtained, as per [3].

TV Human Interaction (TV-HI) [39] dataset is a col-

lection of 300 video clips collected from 20 different TV

shows. It is composed of four action classes of people per-

forming interactions such as handshake, highfive, hug and

kiss, and a fifth action class called ‘none’ which does not

contain any of the four actions. The provided train/ test

splits are utilised with a 25-fold cross validation, as per [50].

4.2. Network Architecture and Training

Considering related literature for different datasets, dif-

ferent numbers of observed frames [3, 45] are used. Let T

be the number of observed frames, then we extract frames

T + 1 to T + T́ as future frames, where T́ is the number of

future frames for embedding prediction. As the temporal in-

put, similar to [46] we use dense optical flow displacements

computed using [4]. In addition to horizontal and vertical

components we also use the mean displacement of the hor-

izontal and vertical flow. Both visual and temporal inputs

are individually passed through a pre-trained ResNet50 [18]

trained on ImageNet [41], and activations from the ‘activa-

tion 23’ layer are used as the input feature representation.

The network of the generator is composed of two LSTM

layers followed by a fully connected layer. The generator

is fed only with the context input while the discriminator

is fed with both the context and the real/fake feature repre-

sentations. The two inputs of the discriminator are passed

through separate LSTM layers and then the merged output

is passed through two fully connected layers. The classi-

fier is composed of a single LSTM layer followed by a sin-

gle fully connected layer. For clarity, we provide model

diagrams in the supplementary materials. For all LSTMs,

300 hidden units are used. For the model training proce-

dure we follow the approach of [20], alternating between

one gradient decent pass for the discriminators, and the gen-

erators and the classifier using 32 samples per mini batch.

The Adam optimiser [24] is used with a learning rate of

0.0002 and a decay of 8 × 10−9, and is trained for 40

epochs. Hyper-parameters wV , wTP , wc, wR are evaluated

experimentally and set to 25, 20, 43 and 15, respectively.

Please refer to supplementary material for these evaluations.

When training the proposed model for the UTI and TV-HI

datasets, due to the limited availability of training examples

we first train the model on UCF101 training data and fine-

tuned it on the training data from the specific datasets.

For the implementation of our proposed method we

utilised Keras [5] with Theano [2] as the backend.
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4.3. Performance Evaluation

4.3.1 Evaluation Protocol

To evaluate our model on each dataset, where possible

we consider two settings for the number of input frames,

namely the ‘Earliest’ and ‘Latest’ settings. For UCF101 and

UTI, similar to [3] we consider 20% and 50% of the frames

for the ‘Earliest’ and ‘Latest’ settings, respectively; follow-

ing [3] we do not use more than 50 frames for the ‘Latest’

setting. For each dataset and setting, we resample the in-

put videos such that all sequences have a constant number

of frames. Due to unavailability of baseline results and fol-

lowing [45], for UCF101-24 we report evaluate using 50%

of the frames from each video and for the TV-HI dataset, as

in [14, 27], we consider only 1 seconds worth frames.

4.3.2 Comparison to the state-of-the-art methods

Evaluations for UCF101, UCF101-24, UTI and TV-HI

datasets are presented in Tables 1, to 4 respectively. Consid-

ering the results, the authors of Multi stage LSTM [3] and

RED [14] have introduced a new hand engineered loss that

encourages the early prediction of the action class. The au-

thors of RBF-RNN [45] use a GAN learning process where

the loss function is also automatically learnt. Similar to

the proposed architecture, the RBF-RNN [45] model also

utilises the spatial representation of the scene through a

Deep CNN model and tries to predict the future scene rep-

resentations. However in contrast to the proposed architec-

ture this method does not utilise temporal features, or joint

learning. We learn a context descriptor which effectively

combines both spatial and temporal representations which

not only aids the action classification but also anticipates

the future representations more accurately. This led us to

obtain superior results. In Tab. 2, the results for UCF101-24

shows that our model is able to outperform RBF-RNN [45]

by 0.9% while in Tab. 3 we outperform [45] on the UTI

dataset by 1.3% at the earliest setting.

When comparing the performance gap between the earli-

est and latest settings, our model has a smaller performance

drop compared to the baseline models. The gap for UCF101

on our model is 1.4% while the gap for the Multi stage

LSTM model [3] is 2.9%. GV and GTP synthesise the

future representation of both visual and temporal streams

while considering the current context. As such, the pro-

posed model is able to better anticipate future actions, even

with fewer frames. Our evaluations on multiple benchmarks

further illustrate the generalisability of the proposed archi-

tecture, with varying video lengths and dataset sizes.

4.4. Ablation Experiments

To further demonstrate the proposed AA-GAN method,

we conducted an ablation study by strategically removing

Method Earliest Latest

Context-aware + loss in [21] 30.6 71.1

Context-aware + loss in [34] 22.6 73.1

Multi stage LSTM [3] 80.5 83.4

Proposed 84.2 85.6

Table 1. Action anticipation results for UCF101 considering the

‘Earliest’ 20% of frames and ‘Latest’ 50% of frames.

Method Accuracy

Temporal Fusion [11] 86.0

ROAD [47] 92.0

ROAD + BroxFlow [47] 90.0

RBF-RNN [45] 98.0

Proposed 98.9

Table 2. Action anticipation results for UCF101-24 considering

50% of frames from each video.

Method Earliest Latest

S-SVM [48] 11.0 13.4

DP-SVM [48] 13.0 14.6

CuboidBayes [42] 25.0 71.7

CuboidSVM [44] 31.7 85.0

Context-aware+ loss in [21] 45.0 65.0

Context-aware + loss in [34] 48.0 60.0

I-BoW [42] 65.0 81.7

BP-SVM [28] 65.0 83.3

D-BoW [42] 70.0 85.0

multi-stageLSTM [3] 84.0 90.0

Future-dynamic [40] 89.2 91.9

RBF-RNN [45] 97.0 NA

Proposed 98.3 99.2

Table 3. Action anticipation results for UTI ‘Earliest’ 20% of

frames and ‘Latest’ 50% of frames.

Method Accuracy

Vondrick et. al [50] 43.6

RED [14] 50.2

Proposed 55.7

Table 4. Action anticipation results for TV Human Interaction

dataset considering 1 second worth of frames from each video.

components of the proposed system. We evaluated seven

non-GAN based model variants and ten GAN-based vari-

ants of the proposed AA-GAN model. Non-GAN based

models are further broken into two categories: models with

and without future representation generators. Similarly, the

GAN based models fall into two categories: those that do

and do not learn tasks jointly Diagrams of these ablation

models are available in the supplementary materials.

Non-GAN based models: These models do not utilise

any future representation generators, and are only trained

through classification loss.

(a) ηC,V : A model trained to classify using the context
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feature extracted only from the visual input stream (V).

(b) ηC,TP : As per model (a), but using the temporal input

stream (TP).

(c) ηC,(V+TP ): As per (a), but using both data streams to

create the context embedding.

Non-GAN based models with future representation

generators: Here, we add future embedding generators

to the previous set of models. The generators are trained

through mean squared error (i.e. no discriminator and no

adversarial loss) while the classification is learnt through

categorical cross entropy loss. The purpose of these models

is to show how the joint learning can improve performance,

and how a common embedding can serve both tasks.

(d) ηC,V + GV : Model with the future visual representa-

tion generator (GV ) and fed only with the visual input

stream to train the classifier

(e) ηC,TP +GTP : As per (d), but receiving and predicting

the temporal input stream.

(f) ηC,(V+TP ) + GV + GTP : The model is composed

of both generators, GV and GTP , and fed with both

visual and temporal input streams.

(g) ηC,(V+TP ) + GV + GTP + Att: As per (f) but with

the use of attention to combine the streams.

GAN based models without joint training: These

methods are based on the GAN framework that generates

future representations and a classifier that anticipates the

action where these two tasks are learnt separately. We first

train the GAN model using the adversarial loss and once

this model is trained, using the generated future embeddings

the classifier anticipates the action.

(h) ηC,V +GANV \Joint: Use the GAN learning frame-

work with only the visual input stream and cosine dis-

tance based regularisation is used.

(i) ηC,TP+GANTP \Joint: As per (h), but with the tem-

poral input stream

(j) AA-GAN \Joint Use the GAN learning framework

with both the visual and temporal input streams.

GAN based models with joint training: These models

train the deep future representation generators adversarially.

The stated model variants are introduced by removing the

different components from the proposed model.

(k) ηC,V + GANV \(LR): The proposed approach with

only the visual input stream and without cosine dis-

tance based regularisation.

(l) ηC,TP +GANTP \(LR): The proposed approach with

only the temporal input stream and without cosine dis-

tance based regularisation.

(m) ηC,V +GANV : The proposed approach with only the

visual input stream. Cosine distance based regularisa-

tion is used.

(n) ηC,TP + GANTP : The proposed approach with only

the temporal input stream. Cosine distance based reg-

ularisation is used.

(o) AA-GAN \(LR) : Proposed model without cosine dis-

tance based regularisation.

(p) AA-GAN \(DR) : Similar to the proposed model,

however GV and GTP predict pixel values for future

visual and temporal frames instead of representations

extracted from the pre-trained feature extractor.

Method Accuracy

(a) ηC,V 45.1

(b) ηC,TP 39.8

(c) ηC,(V+TP ) 52.0

(d) ηC,V +GV 54.7

(e) ηC,TP +GTP 52.4

(f) ηC,(V+TP ) +GV +GTP 68.1

(g) ηC,(V+TP ) +GV +GTP +Att 68.8

(h) ηC,V +GANV \Joint 98.1

(i) ηC,TP +GANTP \Joint 97.9

(j) AA-GAN \Joint 98.3

(k) ηC,V +GANV \(LR) 96.0

(l) ηC,TP +GANTP \(LR) 95.4

(m) ηC,V +GANV 98.4

(n) ηC,TP +GANTP 98.1

(o) AA-GAN \(LR) 98.7

(p) AA-GAN \(DR) 95.9

AA-GAN (proposed) 98.9

Table 5. Ablation results for UCF101-24 dataset for the ‘Latest’

setting, which uses 50% of the frames from each video.

The evaluation results of the ablation models on the

UCF101-24 test set are presented in Tab. 5.

Non-GAN based models (a to g): Model performance

clearly improves when using both data streams together

over either one individually (see (c) vs (a) and (b); and (f)

vs (d) and (e)). Hence, it is clear that both streams pro-

vide different information cues to facilitate the prediction.

Comparing the results of models that do not utilise the fu-

ture representation generators to (d), we see that overseeing

future representation does improve the results.

GAN based models without joint training (h to j):

Comparing the non-GAN based methods with ablation
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(b) Ablation model (g)(see Section 4.4)

Figure 3. Projections of the discriminator hidden states for the for

the AA-GAN (a) and ablation model (g) in (b) before (in blue) and

after (in red) training. Ground truth action classes are in brackets.

Insert indicates sample frames from the respective videos.

model (h), we see that a major performance boost is

achieved through the GAN learning process, denoting the

importance of the automated loss function learning. Com-

paring the performance of visual and temporal streams, we

observe that the visual stream is dominant, however com-

bining both streams through the proposed attention mecha-

nism captures complimentary information.

GAN based models with joint training (k to p): Com-

paring models (h) and (i), which are single modal mod-

els that do not use joint training, with models (m) and (n)

which do, we can see the clear benefit offered by learning

the two complementary tasks together. This contradicts the

observation reported in [45], who use a classifier which was

connected to the predicted future embeddings. We spec-

ulate that by learning a compressed context representation

for both tasks we effectively propagate the effect of the ac-

tion anticipation error through the encoding mechanisms,

allowing this representation to be informative for both tasks.

Finally, by coupling the GAN loss together with LR, where

the cosine distance based regularisation is combined with

the exponential loss to encourage accurate long-term pre-

dictions, we achieve state-of-the-art results. Furthermore

we compare the proposed AA-GAN model, where GV and

GTP synthesise future visual and temporal representations,

against ablation model (p) where GV and GTP synthesise

pixel values for future frames. It is evident that the latter

model fails to capture the semantic relationships between

the low-level pixel features and the action class, leading to

the derived context descriptor being less informative for ac-

tion classification, reducing performance.

To demonstrate the discriminative nature of the learnt

context embeddings, Fig. 3 (a) visualises the embedding

space before (in blue) and after (in red) training of the pro-

posed context descriptor for 30 randomly selected examples

of the TV-HI test set. We extracted the learned context de-

scriptor, Ct, and applied PCA [53] to generate 2D vectors.

Ground truth action classes are indicated in brackets.

This clearly shows that the proposed context descrip-

tor learns embeddings which are informative for both fu-

ture representation generation and the segregation of action

classes. From the inserts which show sample frames from

the videos, visual similarities exist between the classes,

hence the overlap in the embedding space before training.

However after learning, the context descriptor has been able

to maximise the interclass distance while minimising the

distance within the class. Fig. 3 (b) shows an equivalent

plot for the ablation model (g). Given the cluttered nature of

the embeddings before and after learning, it is clear that the

proposed GAN learning process makes a significant contri-

bution to learning discriminative embeddings 2

4.5. Time Complexity

We evaluate the computational demands of the proposed

AA-GAN model for the UTI dataset’s ‘Earliest’ setting.

The model contains 43M trainable parameters, and gener-

ates 500 predictions (including future visual and temporal

predictions and the action anticipation) in 1.64 seconds us-

ing a single core of an Intel E5-2680 2.50 GHz CPU.

5. Conclusion

In this paper we propose a framework which jointly

learns to anticipate an action while also synthesising future

scene embeddings. We learn a context descriptor which fa-

cilitates both of these tasks by systematically attending to

individual input streams and effectively extracts the salient

features. This method exhibits traits analogous to human

neurological behaviour in synthesising the future, and ren-

ders an end to end learning platform. Additionally, we

introduced a cosine distance based regularisation method

to guide the generators in the synthesis task. Our evalua-

tions demonstrate the superior performance of the proposed

method on multiple public benchmarks.

2Additional qualitative evaluations showing generated future visual and

temporal representations are in the supplementary material.
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