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Abstract

Can we use machine learning to compress graph data? The absence of ordering
in graphs poses a significant challenge to conventional compression algorithms,
limiting their attainable gains as well as their ability to discover relevant patterns.
On the other hand, most graph compression approaches rely on domain-dependent
handcrafted representations and cannot adapt to different underlying graph dis-
tributions. This work aims to establish the necessary principles a lossless graph
compression method should follow to approach the entropy storage lower bound.
Instead of making rigid assumptions about the graph distribution, we formulate the
compressor as a probabilistic model that can be learned from data and generalise to
unseen instances. Our “Partition and Code” framework entails three steps: first, a
partitioning algorithm decomposes the graph into subgraphs, then these are mapped
to the elements of a small dictionary on which we learn a probability distribution,
and finally, an entropy encoder translates the representation into bits. All the
components (partitioning, dictionary and distribution) are parametric and can be
trained with gradient descent. We theoretically compare the compression quality
of several graph encodings and prove, under mild conditions, that PnC achieves
compression gains that grow either linearly or quadratically with the number of
vertices. Empirically, PnC yields significant compression improvements on diverse
real-world networks.1

1 Introduction

Lossless data compression has been one of the most fundamental and long-standing problems in
computer science. It is by now well-understood that the intrinsic limits of compression are governed
by the entropy of the underlying data distribution [1]. Crucially, these limits expose an intimate
connection between compressibility and machine learning: the better one models the underlying data
distribution (from limited observations) the more bits can be saved and vice-versa [2].

The compression of ordered data such as text, images, or video, underpins the modern technology
from web protocols to video streaming. However, graph-structured data remain a notable exception.
As graph data are becoming more prevalent, it becomes increasingly important to invent practical
ways to encode them parsimoniously.

There are three main challenges one faces when attempting to compress graphs:
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C1. Dealing with graph isomorphism (GI). A key difficulty that distinguishes graphs from conven-
tional data lies in the absence of an inherent ordering of the graph vertices. In order to be able to
approach the storage lower bounds, isomorphic graphs should be encoded with the same codeword.
However, since the complexity of known algorithms for GI is super-polynomial on the number of
vertices [3], a direct use of GI is impractical for graphs consisting of more than a few hundred vertices.
Indeed, an examination of the graph compression literature reveals that most progress has been made
by optimising a vertex ordering and adapting methods originally invented for vectored data [4–6].
Unfortunately, naively encoding graphs as vectors results in a significant loss in compression2.

C2. Evaluating the likelihood. An optimal encoder [1] requires one to accurately estimate and
evaluate the probabilities of all the possible outcomes of the underlying domain. When dealing
with high-dimensional data, this can be addressed by partitioning the data into parts to obtain a
decomposition of the probability distribution: e.g., images can be compressed by modelling the
distribution of pixels or patches [10–12], and text by focusing on characters or n-grams [13–19].
However, since graphs do not admit an efficiently computable canonical ordering, it is unclear what
decomposition one should employ.

C3. Accounting for the description length of the learned model. The classical learning theory trade-off
between model complexity and generalisation is of paramount concern for effective compression.
Though in typical deep learning applications one can aim to model the data distribution with an
overparametrised neural network (NN) that generalises well, utilising such models to compress
information is problematic: since decoding is impossible unless the decoder also receives the learned
model (i.e., the NN parameters), overparametrised models are, by definition, suboptimal. This is a
pertinent issue for likelihood-based neural approaches as overparametrisation is commonly argued to
be a key component of why NNs can be trained [20–22].

Figure 1: Illustration of the graph decom-
position. The subgraph colours correspond
to dictionary atoms a1, a2 and a3. Cuts are
denoted in red.

The Partition and Code (PnC) framework. Our
main contribution is PnC, a framework for learning
compression algorithms suitable for encoding graphs
sampled from an underlying distribution. In the heart
of PnC lie two ideas: (a) Learn to break the problem
into parts. Rather than predicting directly the likeli-
hood, we aim to learn how to decompose graphs into
non-overlapping subgraphs, see Fig. 1. (b) Identify
and code recurring subgraphs when possible. We use
a learned dictionary to code subgraphs that appear
frequently, whereas rare subgraphs are encoded sep-
arately. The dictionary is restricted to contain only
a finite number of small recurring subgraphs. This
biases the model towards interpretable and well gen-
eralising solutions. Both the “partition” and “code”
components of PnC are learned directly from the data,
by optimising the total description length.

Our framework provides a solution to the three challenges of graph compression. C1: By constraining
the dictionary to only contain graphs of size up to a small constant, we can efficiently solve GI. C2:
Graph partitioning provides us with the desirable decomposition of the distribution. Using appropriate
parametrised probabilistic models, we obtain a closed-form expression for the likelihood that can be
later used by any close-to-optimal entropy coder [23–25]. C3: Since we use NNs to decompose the
distribution (and not to predict the likelihood), we can rely on overparametrisation without having
to relay the NN parameters to the decoder. Also, the complexity of our learned hypothesis (the
dictionary) can be computed, and thus optimised, during training.

Theoretical results. Our analysis reveals that PnC can significantly improve upon less sophisticated
graph encoders and justifies the usefulness of both the “Partition” and the “Code” component.
Specifically, we prove that under mild conditions on the underlying graph distribution, PnC requires
in expectation Θ(n2) less bits than standard graph encodings, even if the latter are given access to an

2This follows by a simple counting argument: there are 2(
n
2) labelled undirected graphs while the respective

number for unlabelled graphs is asymptotically equal to 2(
n
2)/n! [7]. Thus, if all graphs of n vertices are equally

probable, an encoding that does not consider isomorphism would sacrifice logn! bits [8, 9].
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oracle that solves GI. Further, the dictionary induces additional savings of Θ(n) bits, with the gain
being inversely proportional to the entropy of the distribution of the dictionary atoms. Thus, the more
repetitive the patterns in the graph distribution are, the larger will be the compression benefits of PnC.

Practical algorithms. We instantiate of our framework using the following algorithmic modules: (a)
a low-parameter learnable estimate of the probability distribution, (b) learning to select the dictionary
from a graph universe of finite size, and (c) learning to partition. The latter is a parametric randomised
iterative algorithm, the probabilities of which are inferred from a Graph Neural Network (GNN) and
optimised with reinforcement learning. Importantly, all algorithms can be jointly trained in order to
minimise the total description length in a synergistic manner. We evaluate our framework on diverse
real-world graph distributions and showcase compression gains with respect to both conventional and
advanced baseline compressors, in observed and unseen data.

2 Related work

Engineered codecs. The majority of graph compressors are not probabilistic, but rely on hand-
engineered encodings optimised to take advantage of domain-specific properties of e.g., Web-
Graphs [4], social networks [6, 26, 27], and biological networks [28]. A common idea in these
approaches is vertex reordering [4–6, 26, 27, 29–31], where the adjacency matrix is permuted in
such a way that makes it “compression-friendly” for mainstream compressors of sequences, such as
gzip. The algorithms identifying the re-orderings are usually based on heuristics taking advantage
of specific network properties, e.g., community structure. Another recurrent idea is to detect or
use predefined frequent substructures (e.g., cliques) to represent more efficiently different parts of
the graph via grammar rules [32]. These approaches do not attempt to model the underlying graph
distribution and thus to approach the storage lower bounds, but strive to find a balance between
compression ratios and fast operations on the compressed graphs. Thus, despite their practical
importance, they are less relevant to our work. A comprehensive survey can be found in [33].

Theory-driven approaches. Several works have contributed to the foundations of the information
content and the complexity of graphs [8, 9, 34–40]. However, few works have attempted to model
the underlying graph distribution. Perhaps the most outstanding progress has been made for graphs
modelled by the Stochastic Block Model (SBM) [41–48]. Although originally invented for clustering
and network analysis purposes, these approaches can be seamlessly used for compression due to
their exact likelihood computation. In fact, as we argue in this work, virtually any graph clustering
algorithm can be used successfully for compression, by defining codewords corresponding to a
community-based random graph model. However, as our experiments confirm, such approaches are
less effective at compressing graphs that do not contain clusters.

Likelihood-based neural approaches. Any generative model that can provide likelihood estimates
in a finite sample space can be used for lossless compression. As a result, a plethora of likelihood-
based neural compressors have been recently invented, ranging from autoregressive models for
text [18, 19, 49, 50] and images [11, 12] to latent variable models [51–55] (paired with bits-back
coding [56, 57] and Asymmetric Numeral Systems - ANS [25]), normalising flows [58–61] and
most recently, diffusion-based generative models [62, 63]. However, the vast majority of current
graph generators lack the necessary theoretical properties an effective graph compressor should
have: they compute probabilities on labelled graphs instead of isomorphism classes by resorting to a
heuristic ordering [64–71] (in general this will be suboptimal unless we canonicalise the graph/solve
graph isomorphism, while different orderings will have non-zero probabilities, hence we will incur
compression losses), and/or do not provide a likelihood [72–76].

An important caveat, which is often ignored in the literature, is that when parametrising the distribution
with a neural network, the data cannot be recovered unless the decoder has access to the network
itself. Hence it is necessary to account for the NN’s description length when evaluating compression
gains. However, generative models are usually parameter inefficient, while compressing them
(especially during training) is a challenging problem [77]. Note that this is significantly different than
compressing neural classifiers, since the capacity to infer the likelihood up to high precision needs to
be retained. Therefore, these approaches can have diminishing (or even negative) returns when the
dataset size is not large enough. In contrast, by optimising the total description length (equivalent to
maximum a-posteriori), we design a compressor that is practical even for small datasets, while the
learned dictionary makes our compressor interpretable.
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Other related work includes using compression objectives paired with heuristic algorithms for
downstream tasks, such as motif finding [78, 79] and graph summarisation [80, 81], lossy compres-
sion/coarsening [82–87], and graph dictionary learning in the context of sparse coding [88, 89].

3 Preliminaries

We use capital letters for sets A,B, bold font for vectors x and matrices X, and calligraphic font X
for families of sets. We express the information content in bits by using a base-2 logarithm log.

Graphs. Let G = {V,E} be a graph with n vertices V = {v1, . . . , vn} and m edges, where eij ∈ E
whenever vertices vi, vj ∈ V are connected by an edge. For simplicity, we assume the graphs to be
undirected, though the same methods apply to directed graphs as well with minimal modifications.
Let cut(A,B) = {eij ∈ E | vi ∈ A and vj ∈ B} denote the set of edges with endpoints at two
different vertex sets A,B ⊆ V .

Information theory. Following the usual terminology in information theory and Minimum Descrip-
tion Length (MDL) theory [2, 90, 91], we assume an observation space G (in our case a space of
possible graphs), and a probability distribution p (sometimes referred to as probabilistic source)
producing samples from the observation space. We observe a dataset G = {G1, G2, . . . , G|G|} of i.i.d.
observations drawn from p. Note that this setting is in contrast with most works on graph compression
[4, 30, 5, 6], where the target is to compress a single large network, such as a social network or a
web graph. Let a description method or symbol code CODE : G→ {0, 1}∗ be a mapping from the
observation space to a variable-length sequence of binary symbols, the output of which is a codeword.

In the context of graph compression, we are interested in the description length of the code LCODE(G),
or L(G) for brevity, i.e., the number of bits needed to encode the graph G, rather than the code
itself, given a single requirement: the code needs to be uniquely decodable, meaning that any
concatenation of codes can be uniquely mapped to a sequence of observations. This property can be
easily verified using only the description lengths by the well-known Kraft–McMillan inequality (l.h.s.
in formula (1)), an important implication of which is that every uniquely decodable code implies a
probability distribution q(G) (r.h.s):∑

G∈G

2−L(G) ≤ 1 (code) ⇐⇒ q(G) =
2−L(G)∑
G∈G 2−L(G)

(distribution) (1)

This equivalence allows us to always define underlying probabilistic models when working directly
with description lengths. When the Kraft–McMillan inequality holds with equality, we say that
the code is complete; the case of strict inequality means the code is redundant. Moreover, in the
case of complete codes, the expected length of the code corresponds to the distribution entropy
Hq[G] (plus a constant term when the code is redundant). Thus, compression is synonymous to
defining probabilistic models with the lowest possible entropy. An important notion that frequently
appears in our theoretical analysis is the binary entropy, i.e., the entropy of a bernoulli variable
with probability of success p. To distinguish it from the general notion of entropy we will denote
it as H(p) = −p log p− (1− p) log(1− p). It holds that 0 ≤ H(p) ≤ 1, where the l.h.s equality is
satisfied for p ∈ {0, 1} and the r.h.s. for p = 1/2.

Common graph encodings. An important principle that we follow is that whenever we cannot
make any assumptions about an underlying distribution, or modelling it is impractical, then the
uniform distribution punif is chosen for encoding. The reason is that uniform distribution is worst-
case optimal [90]: for any non-uniform unknown distribution p, there always exists a distribution
q the corresponding encoding of which will be on expectation worse than the uniform encoding:
Ex∼p[− log q(x)] > Ex∼p[− log punif(x)]. In the context of graphs, when we cannot make any
assumptions or when enumeration is impossible, we will be using a slightly more informative
distribution: the Erdős–Rényi (ER) random graph model. This model assigns equal probability to
all labelled graphs with n vertices and m edges. Assuming a uniform probability over the possible
number of vertices n and number of edges m given n, we get:

Lnull(G) = log(nmax + 1) + log

((
n

2

)
+ 1

)
+ log

((n
2

)
m

)
, (2)

where nmax is an upper bound on the number of vertices. The “null” encoding compresses more
efficiently graphs that are either very sparse or very dense (low-surprise) as the number of possible
graphs with m edges is maximised when m = n(n− 1)/4.
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4 The Partition & Code (PnC) graph compression framework

Our pipeline consists of three main modules: a partitioning module, a dictionary module, and an
entropy encoding module. (a) The partitioning module is responsible for decomposing the graph
into disjoint subgraphs and cross-subgraph edges (or cuts). Subgraphs play the role of elementary
structures, akin to characters or words in text compression, and pixels or patches in image compression.
(b) The dictionary is a small collection of subgraphs (atoms) that are recurrent in the graph distribution.
The dictionary module maps the partitioned subgraphs to atoms in the dictionary, allowing us to
represent the graph as a collection of atom indices and cuts. (c) Finally, this representation is given as
input to the an entropy encoder that translates it into bits.

Decoding the graph in a lossless way involves inverting these three steps: initially the atom indices
and cuts are decoded using the same probabilistic model with the encoder, then the atoms are retrieved
from the dictionary, and finally all elements are composed back to obtain the original structure. The
composition becomes possible by making sure that the cuts are encoded w.r.t. an arbitrarily chosen
ordering of each atom’s vertices, hence the decoded graph is guaranteed to be isomorphic to the input,
but not necessarily with the same vertex ordering.

4.1 Step 1. Partitioning

The first step of PnC is to employ a parametric partitioning algorithm PARTθ to decompose each
graph G into b subgraphs of bounded size:

PARTθ(G) = (H, C) and H = {H1, H2, · · · , Hb}, (3)

where Hi = {Vi, Ei} is the i-th subgraph and C = {V,EC} is a b-partite graph containing all cut
edges EC = E − ∪iEi. Variable θ indicates the learnable parameters.

Is partitioning necessary? In order to convert probability estimates to codewords, entropy encoders
[23–25] need to be able to compute the probability of every graph in the observation space (or
equivalently to have access to the cumulative distribution function (c.d.f.)) - see challenge C2 in
Section 1. To achieve this goal, one needs to partition the observation space in a way that permits
efficient enumeration of the possible outcomes. Analogously, as we will see in Section 4.3, graph
partitioning allows us to decompose the distribution and thus to obtain a closed-form expression for
the likelihood. Further, Theorem 1 suggests that partitioning brings a useful inductive bias for graph
data providing significant storage gains compared to distribution-agnostic baselines.

4.2 Step 2. Graph dictionary

Rather than naively compressing each subgraph in (3) under a null model, an effective compression
algorithm should exploit regularities in the output of PARTθ. We propose to utilise a dictionary
that stores the most commonly occurring subgraphs. Concretely, we define a dictionary D to be a
collection of connected subgraphs (or atoms) from some universe U:

D = {a1, a2, · · · , a|D|}, where ai ∈ U. (4)

There are two viable choices for the atom encoding: (a) If the universe is small enough to be efficiently
enumerable then we can assume a uniform distribution over U which yields the description length
L(D) = |D| log |U|. Intuitively, this would amount to storing the index of each atom within a list
enumerating U. (b) On the other hand, when U is too large to enumerate the atoms can be stored
one-by-one based on the null-model encoding given in (2):

L(D) =
∑
ai∈D

Lnull(ai). (5)

It is important to note that, to be as effective as possible, the partitioning and the dictionary should
be co-designed: D should capture those subgraphs that are most likely, whereas PARTθ should be
biased towards subgraphs with similar structure. The use of a dictionary makes it possible to explicitly
account for (and thus optimise) the description length of the learned hypothesis (i.e., equation above),
which is an essential component of any compression algorithm (see challenge C3 in Section 1).
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4.3 Step 3. Graph encoding

The last step entails compressing G by encoding the output (H, C) of PARTθ. As discussed in
Section 3, a uniquely decodable code implies a probability distribution, i.e., qφ(G) = qφ(H, C) which
corresponds to a description length Lφ(H, C) = − log qφ(H, C), where φ denotes the learnable
parameters. In the following we explain how qφ is decomposed.

Subgraphs. We opt for a dual encoding of subgraphs: one for the subgraphs that belong to the
dictionary Hdict, and one for non-dictionary subgraphs Hnull that are encoded with the help of a null
model as in Eq. (2). This choice has a dual purpose: (a) It allows PARTθ to choose non-dictionary
atoms. This is crucial to our approach, since constraining the partitioning to specific isomorphism
classes would significantly complicate optimisation. (b) Further, it enables us to maintain a balance
between two common structures found in real-world networks—frequent subgraphs (stored in the
dictionary), and low-entropy subgraphs as implied by the null model (i.e., very sparse or very dense
subgraphs). The distribution is therefore decomposed into the following components:

Number of subgraphs. First, we encode the number of dictionary and non-dictionary subgraphs (bdict
and bnull respectively) as follows:

qφ(bdict, bnull) = Binomial(bdict|b;φ)qφ(b) =

(
b

bdict

)
(1− δφ)bdictδb−bdict

φ qφ(b), (6)

where 1− δφ = P[H ∈ D] is the probability of an arbitrary subgraph to belong in the dictionary and
qφ(b) is a categorical.

Dictionary subgraphs. The dictionary subgraphs are encoded in a permutation invariant way via a
multinomial distribution, i.e., we encode the histogram of atoms:

qφ(Hdict|bdict, D) = Multinomial(b1, b2, . . . , b|D| | bdict;φ) = bdict!
∏
a∈D

qφ(a)ba

ba!
, (7)

where ba =
∣∣{H ∈ Hdict|H ∼= a}

∣∣ and
∑
a∈D ba = bdict.

Non-Dictionary subgraphs. The non-dictionary subgraphs are encoded independently according to
the null model:

qφ(Hnull|bnull, D) =
∏

Hi∈Hnull

qnull(Hi). (8)

Cuts. We encode the cuts conditioned on the subgraphs, using a non-parametric uninformative null
model for multi-partite graphs similar to [45] (see Appendix B.1 for the detailed expression) that
prioritises low-entropy cuts. In this way we give more emphasis to the subgraphs and an inductive
bias towards distinct clusters in the graph.

Overall, the description length of (H, C) = PARTθ(G) is given by

Lφ(H, C|D) = Lφ(bdict, bnull) + Lφ(Hdict|bdict, D) + Lnull(Hnull|bnull, D) + Lnull(C|H), (9)

and the learnable parameter set is
{
δφ, {qφ(b)

}bmax

b=bmin
, {qφ(a)}a∈D

}
.

Remarks about graph isomorphism (GI). Observe that given a fixed decomposition, our parametri-
sation is invariant to isomorphism, which is a desirable property since isomorphic graphs will be
assigned codewords with the same length. Note that this is not sufficient to guarantee that all isomor-
phic graphs will be assigned the same codeword. Since this would imply a solution to GI, it remains
an open problem. However, our graph encoding provides desirable tradeoffs between the expressivity
of the probabilistic model, its number of parameters, and computational complexity, since it can adapt
to different graph distributions using only a few parameters and solving GI only for small graphs.

4.4 Selecting a hypothesis by minimising the total description length

Putting everything together, in order to encode a graph dataset G sampled i.i.d. from G we minimise
the total description length

min
θ,D,φ

∑
G∈G

Lφ(PARTθ(G) |D) + L(D) (10)
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with respect to the parameters θ of the parametric partitioning algorithm, the dictionary D, and the
parameters φ of the probabilistic model. Eq. (10) is a typical two-part Minimum Description Length
(MDL) objective [92, 90]. Using standard MDL terminology, the tuple (θ,D, φ) is a point hypotheses
and minimising (10) amounts to finding the simplest hypothesis that best describes the data.

5 Theoretical analysis: quadratic and linear gains

The following section performs a comparative analysis of the description length growth rate of various
graph compressors. We compare PnC against two strong baselines: (a) The code length Lpart induced
by a pure partitioning-based graph encoding. Here, a graph is decomposed into subgraphs and cuts,
but the distribution of subgraphs is not modelled (i.e., both subgraphs and cuts are encoded with a
null model Lpart(G) = Lnull(H) + Lnull(C|H)). (b) The code length of encodings that do not rely on
partitioning but encode each graph as a whole. Importantly, our results hold even for those baselines
that encode the isomorphism class of each graph, rather than the graph itself, such as the Erdős-Renyi
model for unlabelled graphs of n vertices: LER-S(G) = log |Gn,m|+ log(n2 + 1), where Gn,m is the
set of all graphs with n vertices and m edges. LER-S(G) serves as lower bound to typical encodings
such as that of Eq. (2), but can be impractical to implement due to the complexity of GI. The analysis
of additional baselines can be found in Appendix A.

Our main theorem shows that, under mild conditions on the underlying graph distribution, the
expected description lengths of the compared encodings are totally ordered:
Theorem 1. Consider a distribution p over graphs with n vertices and a partitioning algorithm that
decomposes a graph into b blocks of k = O(1) vertices. Then it holds that:

EG∼p[LPnC(G)]
(1b)

. EG∼p[Lpart(G)]
(1a)

. EG∼p[LER-S(G)] (11)

under the following conditions:

(1a) log(k2+1)
k2 ) + H̄mij < H̄m, where H̄mij = EG∼p[H

(mij
k2

)
] and H̄m = EG∼p[H( mn2 )] is the

expected binary entropy of the cut size mij between two subgraphs and that of the total number of
edges m, respectively.

(1b) |D| < (k2 + 1)2k
2H̄mi , where |D| is the size of the dictionary and H̄mi = EG∼p[H

(
mi
k2

)
] the

expected binary entropy of the number of edges mi in a subgraph.

The compression gains are:

EG∼p[LPart(G)] . EG∼p[LER-S(G)]− n2
(

H̄m −
log(k2 + 1)

k2
− H̄mij

)
(12)

and

EG∼p[LPnC(G)] . EG∼p[Lpart(G)]− nk(1− δ)
(

H̄mi −
H(D)− log(k2 + 1)

k2

)
, (13)

where 1− δ is the probablity that a subgraph belongs in the dictionary and H(D) = Ha∼qφ(a)[a] is
the entropy of the distribution on dictionary atoms qφ(a).

Theorem 1 provides insights on the compressibility of certain graph distributions given their structural
characteristics. In particular, we can make the following remarks: (a) Condition (1a) can be satisfied
even for very small values of k as long as the graphs possess community structure. Perhaps counter-
intuitively, when k = O(1) we can satisfy the condition even if the communities have O(n) size
by splitting them into smaller subgraphs. This is possible because, in contrast to the majority of
graph partitioning objectives that are based on minimum cuts, the compression objective attains its
minimum when the cuts have “low entropy”. Since communities that are tightly internally connected
have large cuts, H̄mij and the code length will be kept small. This is a key observation that strongly
motivates the use of partitioning for graph compression. (b) Condition (1b) provides an upper bound
to the size of the dictionary, which can be easily satisfied for moderately small values of k. More
importantly, the dependence of the compression gain on the entropy H(D), reveals that dictionary
atoms should be frequent subgraphs in the distribution, confirming our intuition. The bounds also
show that, since the probabilities of the atoms are estimated from the data, PnC does not need to
make assumptions about the inner structure of the subgraphs and can adapt to general distributions.
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In Appendix A.4, we also provide theoretical evidence on the importance of of encoding dictionary
subgraphs as isomorphism classes instead of adjacency matrices, which is related to challenge C1
mentioned in the introduction. In particular, Theorem 2 shows that, if isomorphism is not taken into
account, the number of bits that will be lost will grow linearly with the number of vertices. All proofs
and detailed assumptions can be found in Appendix A.

6 Optimisation and learning algorithms

We turn our focus to learning algorithms for the optimisation of the MDL objective (10). The
following sections explain how each parametric component of PnC is learned.

Subgraph encoding φ. The graph encoding is parametrised as follows: qφ(ai) and qφ(b) are
parametrised by learnable variables that are converted into categorical distributions over the dictionary
atoms and the number of vertices respectively, using a softmax function. Similarly, δφ is parametrised
by a learnable variable converted to a probability via the sigmoid function.

Dictionary D. Let U = {a1, a2, . . . a|U|} be a practically enumerable universe and define
x = (x1, x2, . . . , x|U|) as

xi =

{
1 if ai ∈ D
0 otherwise.

Thus, xi indicates whether D contains subgraph ai. Now, optimising w.r.t the dictionary amounts to
finding the binary assignments for x that minimise (10). To circumvent the combinatorial nature of
this problem, we apply the continuous relaxation x̂i = σ(ψi),∀i ∈ {0, 1, . . . , |U|}, where σ is the
sigmoid, ψi are learned continuous variables, and x̂i ∈ [0, 1] a fractional alternative to xi. Appendix
B.3 shows how (10) can be re-written w.r.t. x and optimised by using the surrogate gradient w.r.t x̂i.

It is important to note that, in practice, we do not have to introduce indicator variables for the entire
universe: Since most subgraphs ai will be never encountered in the graph distribution, we build the
universe adaptively during training, by progressively adding the different graphs that the partitioning
algorithm yields. We also allow the universe to contain subgraphs of size up to k = O(1), in order to
ensure that the isomorphism testing between atoms and subgraphs can be efficiently computed.

Parametric graph partitioning algorithm. Finding the graph partitions that minimise (10) in
principle requires searching in the space of partitioning algorithms. Instead, we constrain this space
via a differentiable parametrisation that allows us to perform gradient-based optimisation. Currently,
learning to partition is an open problem, as to the extent of our knowledge known neural approaches
require a fixed number of clusters [93–95] or do not guarantee that the subgraphs are connected [96].

Our Neural Partitioning is a randomised algorithm parametrised with a graph neural network (GNN).
When run on a graph, the GNN outputs a random (H, C) together with a corresponding probability
pGNN
θ (H, C|G) and training is performed by estimating the gradients w.t.t. θ with REINFORCE [97].

Our algorithm proceeds by iteratively sampling (and removing) subgraphs from the graph until it
becomes empty. At each step t we select a subgraph Ht, by first sampling its vertex count kt, and
subsequently sampling at most kt vertices. To guarantee connectivity, we also sample the vertices
iteratively and mask-out the probabilities outside the pre-selected vertices’ neighbourhoods. The
complexity of the algorithm is O(n), where n the number of the vertices of the graph. Please refer
to Appendix B.4 for an in-depth explanation of the algorithm and relevant implementation details.
We stress that we mainly consider this algorithm as a proof of concept that we ablate against other
non-parametric partitioning algorithms. A plethora of solutions can be explored in a parametric
setting and we welcome future work in this direction.

MDL objective. Given dataset G, we train all components by minimising the description length:

L(G) = Lx(D) +
∑
G∈G

E(H,C)∼pGNN
θ (H,C|G)[Lφ,x(H, C|D)]. (14)

Taking the expectation over the GNN output (H, C) ∼ pGNN
θ (H, C|G)), we calculate the gradients as:

∇φL(G) =
∑
G∈G E[∇φ Lφ,x(H, C)|D)], ∇x̂L(G) = ∇x̂ Lx̂(D) +

∑
G∈G E[∇x̂ Lφ,x̂(H, C|D)],

and ∇θL(G) =
∑
G∈G E[Lφ,x(H, C|D)∇θ ln pGNN

θ (H, C|G)].
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Figure 2: PnC + Neural Part. - Most probable graphs in the IMDB-B dataset (left) and the attributed
MUTAG dataset (right). Atom types and bond types are represented as vertex and edge attributes.

7 Empirical Results

We evaluate our framework in a variety of datasets: small molecules, proteins and social networks [98–
102]. Across all methods, we assume an optimal encoder that attains the entropy lower bound (this is
often realistic since modern entropy coders asymptotically approach it) to evaluate the expressive
power of each model independently of the encoder. We measure the description length of the data as
their negative log-likelihood (NLL) under each probabilistic model, as well as the total description
length by adding the cost of the parameters which need to be transmitted to the decoder (see Appendix
D for details).

Baselines. We aim to assess representative approaches across the entire spectrum of graph proba-
bilistic models, i.e., from completely uninformative non-parametric distributions to overparametrised
neural generative models. We consider the following types of compressors: (a) Null models. We
select the uniform model, where all edges are assumed to be sampled independently with probability
equal to 0.5, the edge list model, a typical graph representation, and the Erdős-Renyi model (Eq. (2)).
(b) Partitioning-based. non-parametric methods that aim at grouping vertices in tightly-connected
clusters. They can be used for any type of sparse matrix [103] and are based on the assumption
that there exists a hidden community structure in the graph. The partioning algorithms used are
SBM fitting [44–47], Louvain [104] and Label Propagation [105] clustering. The encoding we use
to encode the clusters corresponds exactly to the SBM assumptions, hence the partitioning-based
results are always superior for this approach. (c) Likelihood-based neural compressors. As with any
likelihood-based model, graph generative models can be transformed into graph compressors. We
evaluate the original GraphRNN [66] and GRAN [68] networks, as well as smaller instantations that
have undergone model compression using the Lottery Ticket Hypothesis algorithm [106].

Results. Tables 1 and 2 report the compression quality of each method measured in terms of the
average number of bits required to store each edge in a dataset (bpe). We present four variants of
PnC, differing on the type of partitioning algorithm used [105, 104, 47]. We report separately the
cost of compressing the data as well as the total cost (including the parameters). Several observations
can be made with regards to the baselines:

First off, off-the-shelf likelihood-based neural approaches are poor compressors due to failing to
address challenge C3. These models exhibit an unfavorable trade-off between the data and model
complexity, often requiring significantly more bpe than the null models. Although model compression
techniques can alleviate this tradeoff (especially for larger datasets, e.g., pruned GraphRNN on ZINC),
in most of the cases the compression ratios required to outperform PnC are significantly higher than
the best that have been reported in the literature (See Table 4 in the Appendix). Perhaps more
importantly, it is unclear how to optimise the model description length during training (one of the
few exceptions is [107]) and usually model compression might be tedious and is based on heuristics
[108–111]. See Appendix C.2 for more details and additional experiments.

In addition, as expected from Theorem (1a), non-parametric clustering algorithms work well when
the dataset has a strong community structure, but are not a good choice for more structured datasets.
For instance, the best clustering algorithm requires 2.4× more bpe for ZINC than the best PnC. PnC
variants achieve the best compression in all datasets considered. This follows from Theorem (1b),
since the learned dictionaries are relatively small, and confirms our hypothesis that our framework
is sufficiently flexible to account for the particularities of each dataset. As seen, neural partitioning
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Table 1: Average bits per edge (bpe) for molecular graph datasets. First, Second, Third

Method
type

Graph type Small Molecules

Dataset name MUTAG PTC ZINC

data total params data total params data total params

Null
Uniform (raw adjac.) - 8.44 - - 17.43 - - 10.90 -
Edge list - 7.97 - - 9.38 - - 8.60 -
Erdős-Renyi - 4.78 - - 5.67 - - 5.15 -

Partitioning SBM-Bayes - 4.62 - - 5.12 - - 4.75 -
(non-parametric) Louvain - 4.80 - - 5.27 - - 4.77 -

PropClust - 4.92 - - 5.40 - - 4.85 -

Neural GraphRNN 1.33 3338.21 388K 1.57 1394.59 389K 1.62 43,16 388K
(likelihood) GRAN 0.81 12557.75 1460K 2.18 5269.82 1470K 1.30 157.7 1461K

GraphRNN (pruned) 1.95 12.39 1.08K 2.16 6.71 1.10K 1.79 2.02 1.90K
GRAN (pruned) 2.59 24.56 2.23K 4.31 14.00 2.36K 3.26 3.47 1.69K

PnC PnC + SBM 3.81 4.11 49 4.38 4.79 155 3.34 3.45 594
PnC + Louvain 2.20 2.51 47 2.68 3.14 166 1.96 1.99 196
PnC + PropClust 2.42 3.03 63 3.38 4.02 178 2.20 2.35 726

PnC + Neural Part. 2.17±0.02 2.45±0.02 46±1 2.63±0.26 2.97±0.14 143±31 2.01±0.02 2.07±0.03 384±105

Table 2: Average bits per edge (bpe) for social and protein graph datasets. First, Second, Third

Method
type

Graph type Biology Social Networks

Dataset name PROTEINS IMDB-B IMDB-M

data total params data total params data total params

Null
Uniform (raw adjac.) - 24.71 - - 2.52 - - 1.83 -
Edge list - 10.92 - 8.29 - - 7.74 -
Erdős-Renyi - 5.46 - - 1.94 - - 1.32 -

Partitioning
(non-parametric)

SBM-Bayes - 3.98 - - 0.80 - - 0.60 -
Louvain - 3.95 - - 1.22 - - 0.88 -
PropClust - 4.11 - - 1.99 - - 1.37 -

Neural
(likelihood)

GraphRNN 2.03 156.99 392K 1.03 132.27 395K 0.72 127.84 392K
GRAN 1.51 607.96 1545K 0.26 488.88 1473K 0.17 475.13 1467K
GraphRNN (pruned) 2.63 3.76 2.56K 1.43 1.92 1.28K 0.91 1.39 1.28k
GRAN (pruned) 4.28 5.11 1.78K 0.84 1.75 2.38K 0.55 1.41 2.31K

PnC PnC + SBM 3.26 3.60 896 0.50 0.54 198 0.38 0.38 157
PnC + Louvain 3.34 3.58 854 0.96 1.02 202 0.66 0.70 141
PnC + PropClust 3.42 3.68 866 1.45 1.64 241 0.93 1.04 178

PnC + Neural Part. 3.34±0.25 3.51±0.23 717±61 1.00±0.04 1.05±0.04 186±25 0.66±0.05 0.72±0.05 178±14

performs in every case better, or on par with the combination of PnC with the Louvain algorithm.
However, in the social network datasets, the combination of PnC with SBM achieves the best
performance. This occurs because these networks fit nicely with the SBM inductive bias (which
as a matter of fact is exactly that of low-entropy cuts), and most importantly, due to the fact that
the clusters recovered by the SBM are small and repetitive, which makes them ideal for the PnC
framework. We also observe that there is room for improvement for the neural partitioning variant,
and hypothesise that a more powerful parametrised algorithm can be designed. Since learnable
partitioning is still an open problem, we leave this research direction to future work.

Fig. 2 shows the most likely dictionary atoms for the IMDB-B and the MUTAG dataset (also including
attributes - Appendix C.3 provides additional experiments). Observe that cliques or near-cliques
and typical molecular substructures, such as carbon cycles and junctions are recovered for social
networks and molecules respectively. This clearly highlights the connection between compression
and pattern mining and provides evidence for potential applications of our framework.

8 Conclusion

This paper marks an important step towards learnable entropy-based graph compression. To the best
of our knowledge, our work represents the first attempt to address the basic principles of parametric
compressors of unlabelled graphs learned from observations. In addition, we suggest practical
instantiations of our framework that can be trained with gradient-based optimisation, accounting
for the total description length, hence aiming for the largest possible parsimony. A number of new
research questions arise, such as how to design more expressive, albeit parsimonious distribution
estimators, how to improve the neural partitioning algorithms, and how to ensure scalability to single
large networks that pose a significant challenge w.r.t the memory constraints of GPUs. We hope that
our work will inspire further research in this emerging research area.
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