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ABSTRACT

Causal representation learning (CRL) offers the promise of uncovering the un-
derlying causal model by which observed data was generated, but the practical
applicability of existing methods remains limited by the strong assumptions re-
quired for identifiability and by challenges in applying them to real-world settings.
Most current approaches are applicable only to relatively restrictive model classes,
such as linear or polynomial models, which limits their flexibility and robustness
in practice. One promising approach to this problem seeks to address these issues
by leveraging changes in causal influences among latent variables. In this vein we
propose a more general and relaxed framework than typically applied, formulated
by imposing constraints on the function classes applied. Within this framework, we
establish partial identifiability results under weaker conditions, including scenarios
where only a subset of causal influences change. We then extend our analysis
to a broader class of latent post-nonlinear models. Building on these theoretical
insights, we develop a flexible method for learning latent causal representations.
We demonstrate the effectiveness of our approach on synthetic and semi-synthetic
datasets, and further showcase its applicability in a case study on human motion
analysis, a complex real-world domain that also highlights the potential to broaden
the practical reach of identifiable CRL models.

1 INTRODUCTION

Causal representation learning (CRL) aims to recover the latent variables and causal structures that
give rise to high-dimensional observations, offering a principled perspective on modeling complex
systems (Scholkopf et al., 2021; Ahuja et al., 2023). By explicitly capturing underlying generative
mechanisms, CRL enhances interpretability and supports robust generalization across environments,
particularly under distribution shifts induced by interventions (Peters et al., 2017; Pearl, 2000). Such
capabilities make CRL particularly valuable in domains such as reinforcement learning and self-
supervised learning, where uncovering latent causal factors can facilitate more general yet effective
representations and enable more effective planning (Mitrovic et al., 2021; Zeng et al., 2024). While
CRL holds clear advantages over correlation-based methods, yielding representations that are more
robust and transferable, it remains difficult to realize these benefits in practice. This is largely due
to the strong assumptions required for identifiability and the challenges associated with deploying
existing models in realistic environments (Bing et al., 2024; Yao et al., 2025).

Leveraging changes in causal influences among latent variables has emerged as a promising strategy
to enhance identifiability and improve estimation quality. Recent work in this direction has focused
on developing theoretically grounded frameworks for identifiability, alongside practical methods
tailored for real-world applications (Squires et al., 2023; Liu et al., 2022; Buchholz et al., 2023;
Liu et al., 2024; Von Kiigelgen et al., 2021; Brehmer et al., 2022; Ahuja et al., 2023; Varici et al.,
2023; von Kiigelgen et al., 2023). Underlying these methods is the core intuition that changes in
causal influences introduce asymmetries, e.g., pre- and post-change behaviors, into the system, which
provides valuable signals that help achieve identifiability. Based on this idea, prior works have
established various identifiability results for restricted function classes over latent variable models,
including, but not limited to linear Gaussian models (Liu et al., 2022; Buchholz et al., 2023), linear
additive noise models (Squires et al., 2023; Chen et al., 2024; Jin & Syrgkanis, 2024), and polynomial
models (Liu et al., 2024). More related work can be found in Sec. A.
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Remaining Challenges. Despite this progress, several limitations pose difficulties for broader
applicability. Theoretically, many existing identifiability results rely on strong assumptions, such
as specific functional forms or distributional constraints, which may not hold in complex or poorly
understood real-world systems. Empirically, due to the relatively strong assumption required for
changes in causal influences in latent space, real-world applications that conform to these assumptions
remain limited. As a result, many identifiability results are primarily evaluated on synthetic datasets,
typically Causal3DIdent (Von Kiigelgen et al., 2021). Although there have been promising attempts to
adapt these identifiability results into effective methods for real-world data, particularly in biological
data (Squires et al., 2023; Zhang et al., 2023) and climate data (Yao et al., 2024), further efforts are
needed to extend CRL to a wider range of real-world scenarios.

Contributions. In this work, we aim to advance the study of leveraging changes in causal influences
by contributing to both theory and practical applications. On the theoretical side, we introduce
a nonparametric condition that characterizes changes in causal influences between latent causal
variables. Under this condition and standard assumptions from nonlinear ICA (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Khemakhem et al., 2020), we show that general latent additive noise
models can be identified up to permutation and scaling. We further extend this result to a more
realistic setting where only a subset of the latent causal variables undergoes changes, resulting in
partial identifiability. Notably, our analysis shows that the proposed nonparametric condition is both
necessary and sufficient for identifiability under the nonlinear ICA framework, without additional
constraints. We also generalize these results to latent post-nonlinear models, which include additive
noise models as a special case. On the practical side, we explore a novel real-world application:
learning causal representations from human motion data. In this setting, the underlying latent causal
system can be interpreted as dynamic motor control modules that govern human motion across
different tasks (Gallego et al., 2017; Doyon & Benali, 2005; Taylor et al., 2006). This opens a new
potential application for applying causal representation learning to complex human-centered data.

2 LATENT ADDITIVE NOISE MODELS WITH CHANGE IN CAUSAL INFLUENCES

We consider a general class of latent additive noise models, where the observed data x is generated
from a set of latent causal variables z € R’. These latent causal variables are causally influenced
by latent noise terms n € R, and their causal relationships are represented by a directed acyclic
graph (DAG). Importantly, we do not assume a fixed graph structure over the latent causal variables,
allowing for flexible modeling of their dependencies and applicability across different settings. To
account for the change of causal influences between latent causal variables z, which may arise from
environmental or contextual factors, we introduce a surrogate variable u. This variable plays a central
role in capturing how changes in external conditions are reflected in the observed data x € R%. The
interpretation of u is application-dependent. In domain adaptation or generalization tasks, it may
represent environmental factors that vary across domains. In time series forecasting (Mudelsee, 2019),
u can capture temporal indices reflecting evolving trends. In remote sensing (RuB3wurm et al., 2020),
it may encode geographic attributes such as longitude and latitude that influence observations.

Data Generation Process. More specifically, we parameterize the latent causal generative models by
assuming n follows an exponential family distribution given u, and z and x are generated as follows:

Perap(@ | u) = [] SHE T 0 ) () 2= gl (pa) + s, ) xi=f(ze). ()

In Eq. (1): Z;(u) is the normalizing constant, and T; ;(n;) is the sufficient statistic for n;, with its
natural parameter 7; ; (u) dependent on u. We assume a two-parameter exponential family, following
the formulation in Sorrenson et al. (2020). In Eq. (2): The term g}'(pa; ) shows how u influences the
mapping of parents pa, to z;. Specifically, u modulates the function g;, e.g., if g; is modeled by a
multilayer perceptron (MLP), u adjusts the weights of the MLP. In Eq. (3): f represents a nonlinear
mapping from z to x, where € is independent noise with density function p. (&), with e € R4~¢.

The surrogate variable u captures distributional shifts in the latent noise variables, as reflected by
changes in the natural parameters across u in Eq.(1). This enables the adaptation of identifiability
results from nonlinear ICA. More importantly, u also models changes in the underlying causal
influences from parent variables to each latent causal variable. In particular, as shown in Eq.(2), u
modulates the functional form g}, effectively characterizing how the parents pa, influence z;. By
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imposing appropriate constraints on g}', we can identify a sufficient and necessary condition for
changes in the causal influences among latent variables (see assumption (iv)), under nonlinear ICA.

3 IDENTIFIABILITY RESULTS OF LATENT ADDITIVE NOISE MODELS

In this section, we analyze identifiability in latent additive noise models by leveraging changes in
causal influences across environments. We first present the complete identifiability result inSection 3.1,
then extend to partial identifiability result in Section 3.2, addressing more general and realistic
scenarios in which only a subset of causal influences among latent variables undergo change. Finally,
we generalize both complete and partial results to latent post-nonlinear models in Section 3.3.

3.1 COMPLETE IDENTIFIABILITY RESULT OF LATENT ADDITIVE NOISE MODELS

We explicitly introduce the surrogate variable u as described in the data generation process defined
by Egs. (1)-(3). This mechanism allows us to formulate key identifiability conditions in terms of u.
We now present the main identifiability result as follows:

Theorem 3.1. Suppose latent causal variables z and the observed variable x follow the causal data
generative models defined in Egs. (1) - (3). Assume the following holds:

(i) The noise probability density function pe (&) does not depend on u and is always finite,
(ii) The function f in Eq. (3) is smooth and invertible,
(iii) There exist 20 + 1 values of u, i.e., ug, Uy, ..., Usy, such that the matrix

L=(n(u=u)-n(u=up),..nu=uy)-n(u=u)) @)
of size 20 x 2( is invertible, where n(u) = [n; ;j(u)]; ;,

(iv) The function class of g}' satisfies the following condition: there exists u;, such that, for all

g™ (pa,

parent nodes z; € pa; of z;, g’TW =0.
J

Then each true latent variable z; is linearly related to exactly one estimated latent variable %;, as

z; = 8j2j + ¢;, for some constants s; and c;, where all Z; are learned by matching the true data

distribution p(x | u).

Assumptions (i)-(iii) are originally developed by nonlinear ICA (Hyvarinen & Morioka, 2016;
Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020). We here unitize these
assumptions considering the following two main reasons. 1) These assumptions have been verified to
be practicable in diverse real-world application scenarios (Kong et al., 2022; Xie et al., 2022b; Wang
et al., 2022). 2) By extending the results of Sorrenson et al. (2020) to our settingl , it suffices to know
that the number of environments exceeds 2¢ + 1, which is somewhat more lenient than requiring the
exact number, as is the case in some prior works.

Assumption (iv), originally introduced by this work, provides a condition that characterizes the types
of change in causal influences contributing to identifiability. Loosely speaking, this assumption
ensures that the causal influence from parent nodes does not include components that remain invariant
across u, as such invariance would lead to unidentifiability (See Remark 3.2 for more details). This
is achieved by constraining the gradient of gj* with respect to z; vanished at the point u;, thereby
preventing the invariance. From a high-level perspective, this closely aligns with the notion of perfect
interventions discussed in prior works (von Kiigelgen et al., 2023; Buchholz et al., 2023; Wendong
et al., 2023), thereby ensuring no terms that link z; and its parent node remain unchanged.

Assumption (iv), for instance, could arise in the analysis of cell imaging data (i.e., x), where various
batches of cells are exposed to different small-molecule compounds (i.e., u). each latent variable (i.e.,
z;) represents the concentration level of a distinct group of proteins, with protein-protein interactions
(e.g., causal influences among z;) playing a significant role (Chandrasekaran et al., 2021). Research

'This extension requires addressing a technical gap introduced by Eq. (2), specifically ensuring that (i) the
mapping from n to x remains invertible, and (ii) u does not compromise the identifiability of n.
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has revealed that the mechanisms of action of small molecules exhibit variations in selectivity (Scott
et al., 2016), which can profoundly affect protein-protein interactions (i.e., g;'). The assumption (iv)
requires the existence of a specific u = u;, such that the original causal influences can be disconnected.
This parallels cases where small molecule compounds disrupt or inhibit protein-protein interactions
(PPIs), effectively causing these interactions to cease (Arkin & Wells, 2004). Such molecules are
commonly referred to as inhibitors of PPIs. Developing small molecule inhibitors for PPIs is a
key focus in drug discovery (Lu et al., 2020; Bojadzic et al., 2021). Additionally, gene editing
technologies like CRISPR/Cas9 can effectively "knock out’ a protein or gene, leading to complete
inhibition. Similarly, receptor antagonists can achieve full inhibition by completely blocking the
activity of a receptor.

We emphasize that assumption (iv) is our key contribution, formulating changes in causal influence as
constraints on the function class and thus distinguishing our work from previous studies. Specifically,

Remark 3.2 (Types of Changes in Causal Influences That Facilitate Identifiability). Not all changes
in causal influences lead to identifiability. Assumption (iv) specifies the types of changes in causal
influences among latent causal variables contributing to identifiability.

To clarify this point, consider the following example.

Example 3.3. Let 2z, := MLP"(21) + no, where MLP"(z1) can be decomposed as MLP"(z,) =
MLPY (z1) + MLPy(27), with MLPY} (21 ) being the u-dependent component and MLP5 (21 ) being a
z1-dependent term invariant across u. Both MLP" and MLPY' belong to the same function class.

In this example, if assumption (iv) is violated, z5 becomes unidentifiable. While the causal influence
from z; to z5 changes across u due to the u-dependent term MLP}' (21 ), the invariant term MLP5(z1)
induces a invariant causal link between z; and z9 across u, which leads to unidentifiable result.
Specifically, the invariant MLP5 (27 ) can be absorbed into the generative mapping f, resulting in
an alternative representation z4 := MLP}'(z1) + na, which would generate the same observational
data. That is, the original data generation process can be equivalently written as x = £(21, 23) =f o
f1(21,25)%, where fy (21, 25) = [21, 25+ MLP(21)]. Consequently, the model remains unidentifiable.
A formal statement of this result is given in Theorem 3.4(b). The reason of this unidentifiability is
the presence of the invariant MLPs( 21 ), which maintains a constant causal influence of z; on 2z
across u. Assumption (iv) mitigates this issue by eliminating such invariant component. It does so by
constraining the function class satisfies: OMLP"™"2(21)/0z; = 0 and OMLP}""?(21)/0z1 = 0. As a
result, MLP5(z1)/0z = 0, which implies that MLP5( z; ) must be a constant, removing 21 -dependent
term and thus ensuring identifiability.

3.2 PARTIAL IDENTIFIABILITY RESULT OF LATENT ADDITIVE NOISE MODELS

In practice, satisfying assumption (iv) for every causal influence from parent nodes to each child node
can be challenging. When this assumption is violated for some nodes, full identifiability may not be
achievable. Nevertheless, we can still derive partial identifiability results, as detailed below:

Theorem 3.4. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Egs. (1) - (3), and the assumptions (i)-(iii) are satisfied, for each z;,

(a) if condition (iv) is satisfied, then the true z; is related to the recovered one Z;, obtained
by matching the true marginal data distribution p(x|u), by the following relationship:
z; = 8j2j + ¢, where s; denotes scaling, c; denotes a constant,

(b) if condition (iv) is not satisfied, then z; is unidentifiable.

Remark 3.5 (Sufficiency and Necessity of condition (iv)). The contrapositive of Theorem 3.4 (b),
which asserts that if z; is identifiable, then condition (iv) is satisfied, serves to establish the necessity
of condition (iv) for achieving complete identifiability. This insight, coupled with Theorem 3.1,
underscores that condition (iv) is not only sufficient but also necessary for the identifiability result,
under assumptions (i)-(iii), without additional assumptions.

Remark 3.6 (Parent nodes do not impact children). The implications of Theorem 3.4 ((a) and (b))
suggest that z; remains identifiable, even when its parent nodes are unidentifiable. This is primarily

?For simplicity, we here omit the noise term e. This omission does not affect the following analysis.
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because regardless of whether assumption (iv) is met, assumptions (i)-(iii) ensure that latent noise
variables n can be identified. In the context of additive noise models (or post-nonlinear models
discussed in the next section), the mapping from n to z is invertible. Therefore, with identifiable noise
variables, all necessary information for recovering z is contained within n. Furthermore, assumption
(iv) is actually transformed into relations between each node and the noise of its parent node, as stated
in Lemma B.3. As a result, z; could be identifiable, even when its parent nodes are unidentifiable.

Remark 3.7 (Subspace identifiability). The implications of Theorem 3.4 suggest the theoretical
possibility of partitioning the entire latent space into two distinct subspaces: latent invariant space
containing invariant latent causal variables and latent variant space comprising variant latent causal
variables. This insight could be particularly valuable for applications that prioritize learning invariant
latent variables to adapt to changing environments, such as domain adaptation or generalization (Kong
et al., 2022). While similar findings have been explored in latent polynomial models in (Liu et al.,
2024), this work demonstrates that such results also apply to more flexible additive noise models.

Summary This work decomposes causal mechanisms in latent space into two components: one
associated with latent noise variables and the other capturing causal influences from parent nodes. By
analyzing the changes of the distributions of latent noise variables, formalized by assumption (iii) in
Theorem 3.1, we show that the latent noise variables n an be identified. However, identifying n alone
does not ensure component-wise identifiability of the latent causal variables z, as demonstrated by
Theorem 3.4 (b). To address this, we further examine changes in the causal influences. Specifically, gj!
in Eq. (2), assumption (iv) has been proven to be a sufficient and necessary condition for component-
wise identifiability of z, supported by Theorem 3.1 and Theorem 3.4 (b), under assumptions (i)-(iii).
Finally, we extend our theory to a more practical setting where only a subset of the latent variables
satisfies assumption (iv). In this case, we achieve partial identifiability, as shown in Theorem 3.4 (a).

3.3 EXTENSION TO LATENT POST-NONLINEAR MODELS

While latent additive noise models, as defined in Eq. (2), are general, their capacities are still limited,
e.g., requiring additive noise. In this section, we generalize latent additive noise models to latent
post-nonlinear models (Zhang & Hyvirinen, 2009), which generally offer more powerful expressive
capabilities than latent additive noise models. To this end, we replace Eq. (2) by the following:

z; = 8i(2i) = 8i(g; (pay) + ni), 5
where g; denotes a invertible post-nonlinear mapping. It includes the latent additive noise models Eq.

(2) as a special case in which the nonlinear distortion g; does not exist. Based on this, we can identify
Z up to component-wise invertible nonlinear transformation as follows:

Corollary 3.8. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Egs. (1), (5) and (3). Assume that conditions (i) - (iv) in Theorem 3.1
hold, then each true latent variable Z; is related to exactly one estimated latent variable Ej, which
is learned by matching the true marginal data distribution p(x|u), by the following relationship:
z; = M;(z;)+c;, where M; and c; denote a invertible nonlinear mapping and a constant, respectively.

Similar to Theorem 3.4, we have partial identifiability result:

Corollary 3.9. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Egs. (1), (5) and (3). Under the condition that the assumptions (i)-(iii)
are satisfied, for each z;, (a) if it is a root node or condition (iv) is satisfied, then the true z; is related
10 the recovered one z;, obtained by matching the true marginal data distribution p(x|u), by the
following relationship: z; = Mj(éj) + ¢j, where M denotes a invertible mapping, c; denotes a
constant, (b) if condition (iv) is not satisfied, then z; is unidentifiable.

Remark 3.10 (Sharing Properties). Corollary 3.9 establishes that the properties outlined in Theorem
3.4, including remark 3.5 to 3.7, remain applicable in latent post-nonlinear causal models.

4 LEARNING LATENT ADDITIVE NOISE MODELS

In this section, we translate our theoretical findings into a novel method for learning latent causal
models. Our primary focus is on learning additive noise models, as extending the method to latent
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post-nonlinear models is straightforward, simply involving the utilization of invertible nonlinear
mappings. Following previous work in (Liu et al., 2022), due to permutation indeterminacy in latent
space, we can naturally enforce a causal order 21 > 22 > ..., > 2y without specific semantic information.
This does not imply that we require knowledge of the true causal order, refer to Appendix G for more
details. With guarantee from Theorem 3.1, each variable z; can be imposed to learn the corresponding
latent variables in the correct causal order. As a result, we formulate a prior model as follows:

¢ ¢
p(zlu) = I_—{p(ZiIZq ©m;(u),u),= I_—!N(uzi (z<; ©my(u), ), 87, (z<; ©m;(u),u)),  (6)

where we focus on latent Gaussian noise variables, considering the re-parametric trick, and we
introduce additional vectors m; (u), by enforcing sparsity on m;(u) and the component-wise product
O, to attentively learn latent causal graph structure. In our implementation, we impose the L1 norm,
though other methods may also be flexible, e.g., sparsity priors (Carvalho et al., 2009; Liu et al.,
2019). We employ a variational posterior to approximate the true posterior p(z|x, u):

Y4 ¥4
q(zlu,x) = [T q(zilz< © my,u,x), = [TN (42, (2« © mi (1), 1, %), 62, (2<; © mi(u), u,x)), @)

i=1 =1
where the variational posterior shares the same parameter m; to limit both the prior and the variational
posterior, maintaining the same latent causal graph structure. Finally, we arrive at the objective:
1
max Eq(zpx,u) (log p(x[z, u)) = Drcr(q(zlx, w)|[p(zun)) - ) |m; (a1, (8)
i

where D1, denotes the KL divergence, v denotes a hyperparameters to control the sparsity of latent
causal structure. Implementation details can be found in Appendix J.

5 EXPERIMENTS

Synthetic Data We first conduct experiments on synthetic data, generated by the following process:
we divide latent noise variables into M segments, where each segment corresponds to one value of u
as the segment label. Within each segment, the location and scale parameters are respectively sampled
from uniform priors. After generating latent noise variables, we generate latent causal variables, and
finally obtain the observed data samples by an invertible nonlinear mapping on the causal variables.
Details can be found in H.

We evaluate our proposed method,
implemented with multilayer percep-
trons (MLPs) and hence referred to
as MLPs, to model the causal rela-
tions among latent causal variables,
against established models: vanilla
VAE (Kingma & Welling, 2013), 53-
VAE (Higgins et al., 2017), identifi-
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able VAE (iVAE) (Khemakhem et al.,
2020), and latent polynomial models
(Polynomials) (Liu et al., 2024). No-
tably, the iVAE demonstrates the ca-
pability to identify true independent
noise variables, subject to certain con-
ditions, with permutation and scaling.
Polynomials, while sharing similar assumptions with our proposed method, are prone to certain
limitations. Specifically, they may suffer from numerical instability and face challenges due to the
exponential growth in the number of terms. While the 5-VAE is popular in disentanglement tasks
due to its emphasis on independence among recovered variables, it lacks robust theoretical backing.
Our evaluation focuses on two metrics: the Mean of the Pearson Correlation Coefficient (MPC) to
assess performance, and the Structural Hamming Distance (SHD) to gauge the accuracy of the latent
causal graphs. The result for iVAE is obtained by applying the method from (Huang et al., 2020) to
the latent variables estimated by iVAE. Figure 1 illustrates the comparative performances of various
methods, e.g., VAE and iVAE, across different models, e.g., models with different dimensions of

Figure 1: Performance comparison under latent additive Gaus-
sian noise. Left: MPC scores for different methods, where the
proposed MLPs method achieves the best performance, supporting
our theoretical results. Right: SHD scores of the proposed method,
Polynimals (Liu et al., 2024), and iVAE combined with the method
from Huang et al. (2020).
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latent variables. Based on MPC, the proposed method demonstrates satisfactory results, thereby
supporting our identifiability claims. Additionally, Figure 2 presents how the proposed method
performs when condition (iv) is not met. It is evident that condition (iv) is a sufficient and necessary
condition characterizing the types of distribution shifts for identifiability in the context of latent
additive noise models. These empirical findings align with our partial identifiability results. More
results on high-dimensional synthetic image data can be found in Appendix L.
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Figure 2: Performance of the proposed method under scenarios where condition (iv) is not satisfied regarding
the causal influence of z1 — 22 (consequently, z2 — 23, and z3 — z4). The results are in agreement with partial
identifiability in Theorem 3.4, i.e., roughly speaking, latent variables that satisfy Condition (iv) are identifiable,
while those that do not are not identifiable.

Post-Nonlinear Models In the above experiments, we obtain the observed data samples as derived
from a random invertible nonlinear mapping applied to the latent causal variables. The nonlinear
mapping can be conceptualized as a combination of an invertible transformation and the specific
invertible mapping, g;. From this perspective, the results depicted in Figures 1 and 2 also demonstrate
the effectiveness of the proposed method in recovering the variables z; in latent post-nonlinear models
Eq. (5), as well as the associated latent causal structures. Consequently, these results also serve to
corroborate the assertions in Corollary 3.8 and 3.9, particularly given that g; are invertible.

Semi-Synthetic fMRI Data Building on the works in Liu et al. (2022; 2024), we extended
the application of the proposed method to the fMRI hippocampus dataset (Laumann & Poldrack,
2015). This dataset comprises signals from six distinct brain regions: perirhinal cortex (PRC),
parahippocampal cortex (PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and CA3/Dentate
Gyrus (DG). These signals, recorded during resting states, span 84 consecutive days from a single
individual. Each day’s data contributes to an 84-dimensional vector, e.g., u. Our focus is on
uncovering latent causal variables, therefore, we treat these six brain signals as such. Specifically, we
assume that they undergo a random nonlinear mapping into the observable space, after which suitable
methods can be applied to recover them.

Figure 3 presents the comparative results yielded by the proposed method alongside various other
methods. Notably, the VAE, 3-VAE, and iVAE models presume the independence of latent variables,
rendering them incapable of discerning the underlying latent causal structure. Conversely, other
methods, including latent linear models, latent polynomials, and latent MLPs, are able to accurately
recover the latent causal structure with guarantees. Among these, the MLP models outperform
the others in terms of MPC. In the study by Liu et al. (2024), it is noted that linear relationships
among the examined signals tend to be more prominent than nonlinear ones. This observation might
lead to the presumption that linear models would be effective. However, this is not necessarily the
case, as these models can still yield suboptimal outcomes. In contrast, MLPs demonstrate superior
performance in term of MPC, particularly when compared to polynomial models, which are prone to
instability and exponential growth issues. The effectiveness of MLPs is further underscored by their
impressive average MPC score of 0.981. It is important to emphasize that while the improvement
in MPC over the proposed method (also achieving 0.981) may appear marginal, compared to prior
methods such as linear models (MPC 0.965) and polynomial models (MPC 0.977), this seemingly
"slight" gain in MPC corresponds to a substantial difference in the recovered graph structures, which
is visually illustrated in Figure 3 (b3). Moreover, ur MLP-based model achieves an SHD of 4.75
+ 0.22, outperforming the polynomial model (5.5 + 0.25) and the linear model (5.0 £+ 0.28). Here,
we note that although the polynomial model may underperform the linear model on average, in this
particular example its ability to capture non-linear relationships allows it to achieve a lower SHD.
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Figure 3: (a) MPC scores achieved by different methods. Notably, the proposed MLPs achieve an outstanding
average MPC of 0.981, outperforming polynomials (0.977) and linear models (0.965). (b) Recovered latent
causal structures using (bl) latent linear models, (b2) latent polynomials, and (b3) latent MLPs. Results for
linear models and polynomials are sourced from (Liu et al., 2024). Blue edges align with known anatomical
connectivity, red edges violate anatomical constraints, and green edges are reversed directions.
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Figure 4: Some sample examples of the data we used.

Real Human Motion Dataset In the final experiment, we apply the proposed method to a potential
real-world application: human motion analysis. The human nervous system adapts flexibly to different
motor tasks (e.g., walking, running, lifting, or fine hand manipulation). In this setting, the observed
data, i.e., human skeleton poses captured via motion capture (i.e., X), is influenced by different motor
tasks u (Cappellini et al., 2006; Yuan et al., 2015). It is natural to consider that human motion is
governed by a set of underlying latent variables (i.e., z) (Schmidt et al., 2018; Svoboda & Li, 2018;
Taylor et al., 2006; Gallego et al., 2017). Each latent variable z; capture patterns analogous to motor
neuron activation dynamics (Gallego et al., 2017). The interactions among these latent variables
capture the coordination dynamics between control modules involved in executing the task. Crucially,
previous studies demonstrate that these interactions are task-dependent and reconfigurable (i.e., gj')
(Doyon & Benali, 2005; Bizzi et al., 2008; d’Avella et al., 2003; Rehme et al., 2013).

For example, compared to gait velocity in the single-task condi- Adjacency Matrix
tion, the networks associated with gait velocity in the dual-task
condition were associated with greater functional connectivity
in supplementary motor and prefrontal regions (Yuan et al.,
2015). Dynamic causal modeling was applied for neuronal
states of the regions of interest the motor task time series to esti-
mate endogenous and context-dependent effective connectivity
(Rehme et al., 2013). Therefore, modeling human motion with
latent variables whose interaction strengths vary across motor
tasks offers a biologically plausible framework for capturing
the flexibility and task-specific nature of human motor control.

Node i

We use the Human3.6M dataset, which provides a diverse set

of 17 motion tasks such as discussion, smoking, taking photos, P kg TR
and talking on the phone. Following pre-processing steps from
prior works (see Appendix M.1), we construct a filtered subset
comprising 7 subjects and 15 motion tasks, resulting in a total
of 105 distinct values of the condition variable u. For each
condition, we obtain 1,040 samples. Each sample is represented as a 2 x 16 matrix, where 2 denotes
the spatial coordinates, and 16 corresponds to skeletal keypoints, such as joints of the head, shoulders,
elbows, and knees. Figure 4 shows some samples we used in experiments after preprocessing.

Figure 5: The estimated adjacency ma-
trix by the proposed method.

Due to the absence of ground-truth semantics for latent variables, we evaluate the proposed method by
intervening on each latent variable and observing the corresponding changes in the output data. This
allows us to infer the potential semantic meaning associated with each latent factor. We emphasize
that precisely disentangling latent variables remains a challenging task, even in synthetic settings.
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Figure 6: Visualization of selected latent variable interventions. Intervention on zg leads to changes from the
shoulder joint to the wrist joint, whereas intervention on z7 affects only the wrist joint, indicating the causal
relationship from the shoulder to the wrist. The right reveals the causal relationship from the elbow to the wrist.

Therefore, our focus is on identifying dominant changes in the observed data. Together with the
estimated adjacency matrix in Figure 5, we can observe from Figures 7 and 6 that the proposed
method obtains potential latent causal relations, including from the shoulder joint to the wrist joint,
and from the elbow to the wrist joint. Such results tend to be plausible, as they are closely aligned
with the dynamic model of intersegmental limb interactions. For example, it has been demonstrated
that the nervous system predicts and compensates for interaction torques arising from shoulder and
elbow movements to adjust wrist muscle activity reflexively, reflecting an internal model of limb
dynamics (Kurtzer et al., 2008). In particular, they showed that elbow muscle activity precedes and
modulates wrist muscle responses, indicating that the nervous system integrates information about
elbow joint dynamics to coordinate distal muscle control effectively. See Appendix M for details.

6 CONCLUSION

This study makes a significant contribution by Laten pimension Taversl s Diferen vaues
establishing a precise condition for identifying  § g 8 8 8 >
the types of distribution shifts necessary for the ? ? ? ? lp P ? 2
identifiability of latent additive noise models. 01 l j

We also introduce partial identifiability, appli-

cable in cases where only a subset of distribu- B 3 % % % g g8

tion shifts satisfies this condition. Furthermore, ? ? ? ? ?’ ? ?’ v
we extend the results to latent post-nonlinear B
causal models, thereby broadening the theoret- 01 01 01 01 oi cj, oi

ical scope. These theoretical insights are trans-

lated into a practical method, and we conductex- Figure 7: Intervention results for z; and zg, which
tensive empirical testing across a wide range of provide evidence of the causal relationship from the
datasets. Importantly, we demonstrate a promis- elbow to the wrist in the right hand.

ing application in learning causal representa-

tions for human motion data. We hope that this work paves the way for the development of practical
methods for learning causal representations.

Dominant Keypoint(s)

7 LIMITATIONS AND DISCUSSIONS

It should be noted that our framework relies on the Assumptions (i)-(iv), as well as the generative
model defined in Eqs. (1)—(3), which are inherently untestable in practice. This limitation is not
unique to our work but is a common challenge across the causal representation learning community.
Precisely because of this, there is strong motivation to continue relaxing such assumptions and
extending the scope of current theoretical results, which is what this work aims to do. In addition,
empirical evaluations on real data provide evidence that our approach is effective, demonstrating that
the insights derived from our theoretical analysis can meaningfully guide practical modeling, despite
the untestable nature of the underlying assumptions.
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A RELATED WORK

Given the challenges associated with identifiability in causal representation learning, numerous
existing works tackle this issue by introducing specific assumptions. We categorize these related
works into three primary parts based on the nature of these assumptions.

Special graph structure Some progress in achieving identifiability centers around the imposition of
specific graphical structure constraints (Silva et al., 2006; Shimizu et al., 2009; Anandkumar et al.,
2013; Frot et al., 2019; Cai et al., 2019; Xie et al., 2020; 2022a; Lachapelle et al., 2021). Essentially,
these graph structure assumptions reduce the space of possible latent causal representations or
structures, by imposing specific rules for how variables are connected in the graph. One popular
special graph structure assumption is the presence of two pure children nodes for each causal variable
(Xie et al., 2020; 2022a; Huang et al., 2022). Very recently, the work in (Adams et al., 2021)
provides a viewpoint of sparsity to understand previous various graph structure constraints. However,
any complex causal graph structures may appear in real-world scenarios, beyond the pure sparsity
assumption. In contrast, our approach adopts a model-based representation for latent variables,
allowing arbitrary underlying graph structures.

Temporal Information The temporal constraint that the effect cannot precede the cause has been
applied in causal representation learning (Yao et al., 2021; Lippe et al., 2022b; Yao et al., 2022;
Lippe et al., 2022a; Li et al., 2025). The success of utilizing temporal information to identify causal
representations can be attributed to its innate ability to establish causal direction through time delay.
By tracking the sequence of events over time, we gain the capacity to infer latent causal variables.
In contrast to these approaches, our focus lies on discovering instantaneous causal relations among
latent variables.

Changes in Causal Influences Recent advances have significantly developed the use of changes in
causal influences within latent space as a means for identifying causal representations (Von Kiigelgen
et al., 2021; Liu et al., 2022; 2024; Brehmer et al., 2022; Ahuja et al., 2023; Squires et al., 2023;
Buchholz et al., 2023; Varici et al., 2023; von Kiigelgen et al., 2023; Ahuja et al., 2022; Varici et al.,
2024; Varici et al., 2024). Several of these works leverage such changes in conjunction with model
constraints on the mapping from latent to observed space, such as assuming linear or polynomial
(Squires et al., 2023; Varici et al., 2023; Ahuja et al., 2023; Zhang et al., 2023; Varici et al., 2024;
Jin & Syrgkanis, 2024). In contrast, our approach allows for flexibility by employing MLPs for
this mapping. In addition, some works focus on imposing model assumptions on the latent causal
variables, such as linear Gaussian models (Buchholz et al., 2023; Liu et al., 2022), linear additive
noise models (Squires et al., 2023; Chen et al., 2024), and polynomial additive noise models (Liu
et al., 2024). In contrast, our work considers both additive noise models and the more general
post-nonlinear models, thereby broadening the scope of identifiable causal structures. Furthermore,
prior work often relies on paired data before and after random, unknown interventions (Ahuja et al.,
2022; Brehmer et al., 2022), a requirement that has been relaxed in recent work (Varici et al., 2025)
to using data from two uncoupled intervention environments, whereas our method operates on fully
unpaired data, a more realistic setting for applications such as biology (Squires et al., 2023; Stark
et al., 2020). Additionally, some approaches require single-node interventions (von Kiigelgen et al.,
2023; Buchholz et al., 2023), whereas our framework allows interventions on one node while other
nodes may also be simultaneously affected. In contrast to Ng et al. (2025), our framework imposes
exponential-family assumptions on the latent noise variables and achieves identifiability with fewer
environments in certain settings, whereas theirs relies on nonparametric assumptions and typically
requires a larger number of diverse environments.
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B LEMMAS

For ease of exposition in the following sections, we first introduce the following lemmas.

Lemma B.1. The mapping, between the latent causal variables z and the recovered latent variables
Z by matching the true marginal data distribution p(x | u), does not depend on u.

Proof. Consider Eq. (3) and assume that the function f is smooth and invertible, as stated in Assump-
tion (ii). Suppose there exists an alternative solution such that x = £(2z), where { is also invertible.
By equating the likelihoods, we obtain:

2=1"1(f(z,¢)). )

Since ¢ is independent of u (as per assumption (i)), and both f and f do not depend on u, it follows
that the mapping between z and z is also invariant with u. O

Illustrative Example for Lemma B.1. Consider the following structural equations:
21 ="n1,
2o =A(u) - 21 + na,
X1 = 21,
_ .3
X = 29 + 271,
Here we neglect noise € for simplify. In this example, although the latent causal variable z5 explicitly

depends on u through A(u), the observed variables x = (x1,25) are deterministic functions of
z = (21, 22), and this functional mapping does not involve u.

Now suppose we attempt to recover latent variables z = (21, 2) from x. Since x1 = 21, we have
%21 = x1. Given that x5 = zg’ + 21 = zg + 1, we can rearrange and solve for 25 as:
)1/3

Zy = (12— 21
Hence, the inverse mapping:
z= (CCl, (zg - xl)l/S)
do not dependent of A(u), despite the fact that A(u) affects the distribution of z. Moreover, since the

mapping from z to x is also independent of A\(u), it follows that the overall mapping between Z and
z does not depend on \(w) either.

Lemma B.2. Let h denote the mapping from n to z. Then, h is invertible, and its Jacobian
determinant is equal to 1, i.e., | det Jy,| = 1.

Proof. The result follows directly from the structural form of the generative process. According to
Eq. (2), each variable z; depends only on its parents and the corresponding noise variable n;. This
allows us to recursively express each z; in terms of its ancestral noise variables and n;.

Without loss of generality, assume the true causal ordering is z; < 23 < -+ < 2p. Then the mapping
h" : n — z can be written as:
Z1= ni ,
——
hi(n1)
22 = g5 (21) +n2 = g5 (n1) +na,
———

h;‘(nl,ng)

23 = g3 (1,95 (n1) +n2) +n3, (10)

h¥(n1,n2,n3)

This defines a mapping h"(n) = [A}(n1), kY (n1,n2), b5 (n1,n2,n3),. .. ]. Due to the structure of
the additive noise model and the acyclicity of the underlying causal graph (DAG), the Jacobian matrix
of h" is lower triangular with ones on the diagonal. Consequently, the determinant of the Jacobian is
1, ie., |det Jpu| = 1, and h" is invertible. O
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Lemma B.3. Under Assumption (iv) in Theorem 3.1, consider the recursive mapping defined in
Eq. (10). Let n; denote the latent noise variable corresponding to a parent node z;: € pa; of z;,
where i’ < i. Then, the partial derivative of hi* with respect to n; vanishes at u = u;, i.e.,

DR (... m;)

o =0.
Proof. From Eq. (10), the recursive mapping is
h(ny,...,n;) =g (z1,...,2i-1) + 1.
Applying the chain rule gives
onh} dg;* 0z

8711;/ zj€pa, 8zj 8711‘1

By Assumption (iv), there exists a parameter u; such that for all parent nodes z; € pa,,

Ogr ™
99y,
ﬁzj

Therefore, each term in the sum above vanishes, yielding

i s %5,

8711-/ zj€pa; 87%/

This completes the proof. O
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C THE PROOF OF THEOREM 3.1

Theorem 3.1. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Egs. (1) - (3). Assume the following holds:

(i) The noise probability density function pe (&) must not depend on u and is always finite,
(ii) The function f in Eq. (3) is smooth and invertible,
(iii) There exist 2¢ + 1 values of u, i.e., ug, Uy, ..., Ugy, such that the matrix

L=(n(u=u)-n(u=up),..,n(u=uy)-n(u=u)) (11)
of size 20 x 2( is invertible. Here n(u) = [n; ;(u)]; ;,

(iv) The function class of g}' satisfies the following condition: there exists u;, such that, for all
og; Vi (pa,)
L = =0.

parent nodes z; of z;, 7z,

Then each true latent variable z; is linearly related to exactly one estimated latent variable %;, as
z; = 8j2; + ¢;, for some constants s; and c;, where all Z; are learned by matching the true marginal
data distribution p(x | u).

Proof. The proof of Theorem 3.1 unfolds in three distinct steps. Initially, Initially, Step I shows how
the identifiability result from (Sorrenson et al., 2020) holds in our context. Specifically, it confirms
that each true latent noise variable n; is related to exactly one estimated latent variable 7;, e.g.,
n; = A; jn; + ¢, for some constant A; ; and ¢;. Building on this, Step II demonstrates a linkage
between the estimated latent causal variables Z and the true z, formulated as z = ®(Z). Finally,
Step III utilizes Lemma B.3 to illustrate that the transformation @, introduced in Step II, essentially
simplifies to a combination of permutation and scaling, articulated as z = PZ + c.

Step I: Suppose we have two sets of parameters 8 = (f, T, h,n) (e.g., parameters for generative
model) and 6 = (f' ,T,ﬁ,ﬁ) (e.g., parameters for inference model) corresponding to the same
conditional probabilities, i.e., p(¢ T n,xn) (x[u) = P4 h) (x|u) for all pairs (x,u), where T denote
the sufficient statistic of latent noise variables n, and h is defined in Eq. (B.2). Due to the assumption
(1), the assumption (ii), and the fact that h is invertible (e.g., Lemma B.2), by expanding the conditional
probabilities via the change of variables formula and taking the logarithm, we have:

log|det J¢-1(x)|+log pe(e) +log|det Jy-1(z)| + log p(r ) (n]u)
=log|det J g,5y-1 ()] +10g p g ) (B]01), (12)

where we assume an alternative solution exists such that x = f(2) = f(h(,u)). By using the
exponential family as defined in Eq. (1), we have:

log|det J¢-1(x)| +log pe (€) +log|det Jy-1(2)| + T (n)n(u) —log [] Zi(u) = (13)
log |det J z,5y-1 (x)] + T7(2)A(u) - log H Zi(w), (14)

By using Lemma B.2, e.g., |det Jy,| = 1, we have: |det Jy,-1| = 1. Further, since both h and h must to
be the same function class, we also have: |det J ﬁ,1| = 1. Given the above, Eqgs. 13-14 can be reduced
to:

log |det J¢-1 (x)| +log pe () + TT (n)n(u) - log [] Zi(u) =
log |det Iz ; (x)| + TT (2)7(u) - log [ ] Zi(u). (15)

Then by expanding the above at points w; and ug, then using Eq. (15) at point u; subtract Eq. (15) at
point ug, we find:

Zi(ag)
Zi(w)

Zi(ug)

(T(n),7(u)) ZIO Zta)”

= (T(n),7( Zlo (16)
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Here 7j(uw;) = n(w;) - n(ug). By assumption (iii), and combining the 2¢ expressions into a single
matrix equation, we can write this in terms of L from assumption (iii),

L'T(n) = LTT(h) +b. (17)

Since L7 is invertible, we can multiply this expression by its inverse from the left to get:

T(n) = AT(d) +c, (18)

Where A = (LT)‘lfJT. According to lemma 3 in (Khemakhem et al., 2020) that there exist & distinct
values n} to n¥ such that the derivative 7’(n}), ..., T"(n¥) are linearly independent, and the fact that
each component of T; ; is univariate, we can show that A must be full rank.

Since we assume the noise to be two-parameter exponential family members as defined in Eq. (1),
Eq. (18) can be re-expressed as:

T1(n) ) T, (d)

=Al - 1
(i )2 1 ) e a9)
Then, we re-express T in term of Ty, e.g., To(n;) = t(T1(n;)) where ¢ is a nonlinear mapping. As

a result, we have from Eq. (19) that: (a) T} (n;) can be linear combination of T, (i) and ’i‘z(ﬁ), and

(b) t(T} (n;)) can also be linear combination of T (i) and T'5(f1). This implies the contradiction
that both T’ (n;) and its nonlinear transformation ¢(7} (n;)) can be expressed by linear combination

of T (1) and Ty (i1). This contradiction leads to that each true latent noise variable n; is related
to exactly one estimated latent variable 72; (See APPENDIX C in (Sorrenson et al., 2020) for more
details), as:

n; = Ai,jﬁj +C;. (20)

Note that this result holds for two-parameter Gaussian, inverse Gaussian, Beta, Gamma, and Inverse
Gamma (See Table 1 in (Sorrenson et al., 2020)).

For simplicity, in the following we neglect the noise term € in Eq (3). As a result, we can express
Eq. (20) in vector form as:

n=Pn+c, 2D

where P is a permutation with scaling matrix. Note that this simplification is for convenience only,
the identifiability result still holds even when the noise term is included. In the case where the noise
term is included, the only difference is that the definition of 1 in Eq. (21) becomes a subset of that in
Eq. (19), thus involving a slight abuse of notation.

Step II:By Lemma B.2, we can denote z and Z by:
z =h"(n), (22)
2 =h"(d), (23)

where h is defined in B.2. Replacing n and 1i in Eq. (21) by Eq. (22) and Eq. (23), respectively, we
have:

(h*)!(2z) = P(h")""(2) +¢, (24)
where h (as well as h) are invertible supported by Lemma B.2. We can rewrite Eq. (24) as:
z=h"(P(h")"}(2) +c¢). (25)
Denote the composition by ®, we have:
z=®(2). (26)

Note that & must also satisfy the condition of being independent of u, as demonstrated by Lemma
B.1. Consequently, ® in Eq. (26) is independent of u.

Step III Next, Replacing z and Z in Eq. (26) by Egs. 21, 22, and 23:

20
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h*(Pi+c) = ®(h%(i)) (27)
By differentiating Eq. (27) with respect to i

TP =JaJ;.. (28)

Without loss of generality, let us consider the correct causal order z; > 25 > ..., > 24 so that J,= and
J . are lower triangular matrices whose the diagonal are 1, and P is a diagonal matrix with elements

8171, 82’2, 83’3,

Elements above the diagonal of matrix Jg Since J. is a lower triangular matrix, and P is a
diagonal matrix, Jg must be a lower triangular matrix.

Then by expanding the left side of Eq. (28), we have:

S1,1 0 0
Ohy (n1,n2)

S1,1—25 > 82,2 0

JpuP = e, On u , 29)
h S11 Ohg (7’817;?27n3) S22 Ohg (721722127713) S35 ...
by expanding the right side of Eq. (28), we have:
Jo, , A 0 0
JaJe = Jq>2,1 + J‘I’2,2 %:;1,712) J‘I>2,2 0 30
PJpu = J 3 AR (n1,...,n;) ohY (n1,...,n3) (30)
B3, t Zi=2 Jq’s,a, —  on, Jq’sa + J‘1>3,3  dns J‘I"s,s

The diagonal of matrix J& By comparison between Eq. (29) and Eq. (30), we have Jg, , = s ;.

Elements below the diagonal of matrix J4 By comparison between Eq. (29) and Eq. (30), and
Lemma B.3, for all ¢ > j we have Jg, ; = 0. For example, given the fact that the equality of two
matrices implies element-wise equality, by comparing the corresponding elements of the two matrices
Eq. (29) and Eq. (30), e.g., we have

8h§(n17n27n3) 8?15‘(7117,713)
S22~ — 1 27
877,2 877,2

Assume that Jg,, # 0. By Lemma B.3, under the recursive definition in Eq. (10), the gradient

Ohy " (n1,n2,n3 . . . . .
% = 0. To maintain consistency between the generative and inference models, we can

naturally use this as prior knowledge to impose the same constraint on the inference model, i.e.,
Bhgzui (n1,n2,n3)

Ons R
both h and h. Analogously, just as assuming an exponential family for latent noise variables in the
generative model naturally leads to imposing the same family on the inference model (as shown in
Eq. (12)), here the restriction on the generative model’s function class justifies enforcing the identical
constraint in the inference model.

= Jq>3y2 + J‘P3,3 (31)

= (. This is not an assumption, but a principled constraint for the function class of

By similar reasoning, this argument extends to all elements Jg, , with 7 > j, establishing that all
entries below the diagonal of Jg are zero. As a result, the Jacobian matrix Jg in Eq. (28) must
coincide with the permutation matrix P, implying that the transformation in Eq. (26) reduces to a
permutation transformation.

z=Pz+c. (32)
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D THE PROOF OF THEOREM 3.4

Theorem 3.4. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqgs. (1) - (3), under the condition that the assumptions (i)-(iii) are
satisfied, for each z;,

(a) ifitis a root node or condition (iv) is satisfied, then the true z; is related to the recovered
one %j, obtained by matching the true marginal data distribution p(x|u), by the following
relationship: z; = s;Z; + c;, where s; denotes scaling, c; denotes a constant,

(b) if condition (iv) is not satisfied, then z; is unidentifiable.

Proof. Since the proof process in Steps I and II in Appendix C do not depend on the assumption (iv),
the results in both Eq. (29) and Eq. (30) hold. Then consider the following two cases.

* In cases assumption (iv) holds true for z;, by using Lemma B.3, and by comparison between
Eq. (29) and Eq. (30), we have: for all j < ¢ we have Jg, . = 0, which implies that we can
obtain that z; = Si,iéi + C;.

* In cases where assumption (iv) does not hold for z;, such as when we compare Eq. (29)
with Eq. (30), we are unable to conclude that the i-th row of the Jacobian matrix Js
contains only one element. For example, consider ¢ = 2, and by comparing Eq. (29) with

Eq. (30), we can derive the following equation: s; 1 %ﬂi’nz) =Jo,, +Ja,, %ﬂi’””.

In this case, if assumption (iv) does not hold (thus Lemma B.3 does not hold too), then
%nllv"z) _ J@ZQ%;;"?)
data distribution p(x|u). This implies that .Jg, , does not necessarily need to be zero, and
thus can be nonzero. Consequently, zo can be represented as a combination of 2; and
Z2, resulting in unidentifiability. Note that this unidentifiability result also show that the
necessity of condition (iv) for achieving complete identifiability, by the contrapositive, i.e.,
if z; is identifiable, then condition (iv) is satisfied.

once Jg,, =511 holds true, we can match the true marginal

O

E THE PROOF OF COROLLARY 3.8

Corollary 3.8. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Assume that conditions (i) - (iv) in Theorem 3.1
hold, then each true latent variable zZ; is related to exactly one estimated latent variable ,?j, which
is learned by matching the true marginal data distribution p(x|u), by the following relationship:
z; = M;(z;)+c;, where M; and c; denote a invertible nonlinear mapping and a constant, respectively.

Proof. The proof can be done from the following: since in Theorem 3.1, the only constraint imposed
on the function f is that the function f is invertible , as mentioned in condition (ii). Consequently, we

can create a new function f by composing f with function g, in which each component is defined by

the function g;. Since g; in invertible as defined in Eq. (5), f remains invertible. As a result, we can
utilize the proof from Appendix C to obtain that z can be identified up to permutation and scaling,
i.e., Eq. (32) holds. Finally, given the existence of a component-wise invertible nonlinear mapping
between z and z as defined in Eq. (5), i.e.,

zZ=g(z). (33)

we can also obtain estimated Z by enforcing a component-wise invertible nonlinear mapping on the
recovered Z

z=8(2). (34)
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Replacing z and Z in Eq. (32) by Eq. (33) and Eq. (34), respectively, we have
g'(7)=Pg (5)+c. (35)

As aresult, we conclude the proof. O

F THE PROOF OF COROLLARY 3.9

Corollary 4.9. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Egs. 1, 5 and 3. Under the condition that the assumptions (i)-(iii) are
satisfied, for each z;, (a) if condition (iv) is satisfied, then the true latent variable Z; is related to
one estimated latent variable z;, which is learned by matching the true marginal data distribution
p(x[u), by the following relationship: z; = M;(z;) + ¢;, (b) if condition (iv) is not satisfied, then z;
is unidentifiable.

Proof. Again, since in Theorem 3.1, the only constraint imposed on the function f is that the function
f is invertible, as mentioned in condition (ii). Consequently, we can create a new function T by
composing f with function g, in which each component is defined by the function g;. Since g; is
invertible as defined in Eq. (5), T remains invertible. Given the above, the results in both Eq. (29) and
Eq. (30) hold. Then consider the following two cases.

* In cases where z; represents a root node or assumption (iv) holds true for z;, using the
proof in Appendix D we can obtain that z; = s; ;Z; + ¢;. Then, given the existence of a
component-wise invertible nonlinear mapping between z; and z; as defined in Eq. (5), we
can proof that there is a invertible mapping between the recovered z; and the true ;.

* In cases where assumption (iv) does not hold for z;, using the proof in Appendix D z; is
unidentifiable, we can directly conclude that Z; is also unidentifiable.

O

G UNDERSTANDING ENFORCING CAUSAL ORDER IN THE INFERENCE MODEL

In the inference model, we naturally enforce a causal order z; > 25 > --- > z, without requiring
specific semantic information. This does not imply that we need to know the true causal order a prior.
Instead, we leverage the permutation indeterminacy in latent space, as demonstrated in (Liu et al.,
2022).

For instance, suppose the underlying latent causal variables correspond to properties such as the size
(1) and color (z2) of an object. Permutation indeterminacy implies that we cannot guarantee whether
the recovered latent variable Z; represents the size or the color. This ambiguity in the latent space,
however, offers an advantage: by predefining a causal order, we enforce that Z; causes 25, without
explicitly specifying the semantic meaning of these variables.

Due to the identifiability guarantee, 21, as the first node in the predefined causal order, will learn the
semantic information of the first node in the true underlying causal order, e.g., the size. Similarly, 25,
as the second node in the predefined causal order, will be assigned to learn the semantic feature of
the second node (e.g., color). As a result, we can naturally establish a causal fully-connected graph
by pre-defining causal order, ensuring the estimation of a directed acyclic graph (DAG) in inference
model and avoiding DAG constraints, such as those proposed by (Zheng et al., 2018).

H DATA DETAILS

Synthetic Data In our experimental results using synthetic data, we utilize 50 segments, with each
segment containing a sample size of 1000. Furthermore, we explore latent causal or noise variables
with dimensions of 2, 3, 4, and 5, respectively. Specifically, our analysis centers around the following
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structural causal model:

n; i~ N(a, ), (36)
21 = nq, (37)
2z = A1,2(u) sin(z1) + na, (38)
z3 = Ag.3(u) cos(2z2) + na, (39)
2y = Az.4(u)log(23) +na, (40)
25 = Az,5(u) exp(sin(23)) + ns. 41)

In this context, both av and 3 for Gaussian noise are drawn from uniform distributions within the
ranges of [-2.0,2.0] and [0.1, 3.0], respectively. The values of \; ;(u) are sampled from a uniform
distribution spanning [-2.0,-0.1]u [0.1,2.0]. After sampling the latent variables, we use a random
three-layer feedforward neural network as the mixing function, as described in (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Khemakhem et al., 2020).

Synthetic Data for Partial Identifiability In our experimental results, which utilized synthetic
data to explore partial identifiability, we modified the Eqs (36)-(40) by

2:’2' =Z;t Zi-1. (42)
In this formulation, for each ¢, there exists a z;_; that remains unaffected by u, thereby violating

condition (iv).

Image Data In our experimental results using image data, we consider the following latent structural
causal model:

n; i~ N(a, 8), (43)
Z1 =N 44)
29 = A1 2(u)(sin(z1) + 21) + na, (45)
z3 = Ao, 3(u)(cos(z2) + 22) + ng, (46)

where both « and S for Gaussian noise are drawn from uniform distributions within the ranges of
[-2.0,2.0] and [0.1, 3.0], respectively. The values of A, ;(u) are sampled from a uniform distribution
spanning [-2.0,-0.1]u [0.1,2.0].
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I LATENT CAUSAL GRAPH STRUCTURE

Our identifiability result, as presented in Theorem 3.1, establishes the identifiability of latent causal
variables, thereby ensuring the unique recovery of the corresponding latent causal graph. This result
builds upon the intrinsic identifiability of nonlinear additive noise models, as demonstrated in prior
work (Hoyer et al., 2008; Peters et al., 2014), and holds regardless of any scaling applied to z.
Moreover, while linear Gaussian models are unidentifiable in a single environment (Shimizu et al.,
20006), identifiability can be achieved in multiple environments (e.g., across different values of u),
supported by the principle of independent causal mechanisms (Huang et al., 2020; Ghassami et al.,
2018; Liu et al., 2022).

J IMPLEMENTATION FRAMEWORK

We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory. Figure 8
illustrates our proposed method for learning latent nonlinear models with additive Gaussian noise.
In our experiments with synthetic and fMRI data, we implemented the encoder, decoder, and MLPs
using three-layer fully connected networks, complemented by Leaky-ReLLU activation functions.
For optimization, the Adam optimizer was employed with a learning rate of 0.001. In the case of
image data experiments, the prior model also utilized a three-layer fully connected network with
Leaky-ReLU activation functions. The encoder and decoder designs were adopted from (Liu et al.,
2024) and are detailed in Table | and Table 2, respectively.

Layer Output / Activation

Conv2d(3, 32, 4, stride=2, padding=1) Leaky-ReLLU
Conv2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
Linear(32x32x4 + size(u), 30) Leaky-ReLLU
Linear(30, 30) Leaky-ReLLU
Linear(30, 3*2) -

Table 1: Encoder for the image data.

Layer Output / Activation
Linear(3, 30) Leaky-ReLLU
Linear(30, 30) Leaky-ReLU
Linear(30, 32x32x4) Leaky-ReLLU

ConvTranspose2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1) Leaky-ReLLU
ConvTranspose2d(32, 3, 4, stride=2, padding=1) -

Table 2: Decoder for the image data.
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Figure 8: Implementation Framework to learn latent nonlinear models (i.e., MLP) with Gaussian noise. In this
example, we demonstrate the method using 3 latent variables, however, our approach is versatile and can be
effectively generalized to accommodate much larger graphs.
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K RESULTS ON SYNTHETIC HIGH-DIMENSION DATA

In this section, we present additional experimental results on synthetic data to evaluate the effective-
ness of the proposed method in scenarios with a large number of latent variables. The performance in
these cases is shown in Figure 9. Compared to the polynomial-based approach in (Liu et al., 2024),
the proposed method, such as MLP, achieves significantly better MCC scores, demonstrating its
advantages over polynomials. This superiority becomes particularly evident as the number of latent
variables increases. MLPs, being highly flexible, can effectively adapt to the growing complexity.
In contrast, when the number of latent variables increases, the number of parent nodes also tends
to grow, requiring polynomial-based approaches to incorporate additional nonlinear components to
capture the complex relationships among latent variables, which becomes increasingly challenging.

While much of the current work on causal representation learning focuses on foundational identifia-
bility theory, optimization challenges in the latent space remain underexplored. We hope this work
not only provides a general theoretical result but also inspires further research on inference methods
in the latent space.
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Figure 9: Performances of the proposed method on a large number of latent variables.
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L EXPERIMENTS ON HIGH-DIMENSIONAL SYNTHETIC IMAGE DATA

+* +* * +* +*
| | | |
- - - - -

Figure 10: Samples generated by using a modified version of the chemistry dataset originally presented in (Ke
etal., 2021). In this adaptation, the objects’ colors (representing different states) change in accordance with a
specified causal graph, e.g., ‘diamond’ causes ‘triangle’, and ‘triangle’ causes ’square’.

We further validate our proposed identifiability results and methodology using images from the
chemistry dataset introduced by (Ke et al., 2021). This dataset is representative of chemical reactions
where the state of one element can influence the state of another. The images feature multiple objects
with fixed positions, but their colors, representing different states, change according to a predefined
causal graph. To align with our theoretical framework, we employ a nonlinear model with additive
Gaussian noise for generating latent variables that correspond to the colors of these objects. The
established latent causal graph within this context indicates that the ‘diamond’ object (denoted as
z1) influences the ‘triangle’ (z2), which in turn affects the ‘square’ (z3). Figure 10 provides a visual
representation of these observational images, illustrating the causal relationships in a tangible format.

Figure 12 presents MPC outcomes as derived from various methods. Among these, the proposed
method demonstrates superior performance. In addition, both the proposed method (MLPs) and Poly-
nomials can accurately learn the causal graph with guarantee. However, Polynomial encounters issues
such as numerical instability and exponential growth in terms, which compromises its performance
in MPC, as seen in Figure 12. This superiority of MLPs is further evidenced in the intervention
results, as depicted in Figure 11, compared with results of Polynomial shown in Figure 13. Additional
traversal results concerning the learned latent variables from other methodologies are detailed in
Figure 14 (VAE), Figure 15 (3-VAE) and Figure 16 (iVAE). For these methods without identifiability,
traversing any learned variable results in a change in color across all objects.

EERRREE EERRRRN
L} L]
< -« -«
Figure 11: From left to right, the interventions are applied to the causal representations z1, 22, and z3 learned by

the proposed method (MLPs), respectively. The vertical axis represents different samples, while the horizontal
axis represents the enforcement of various values on the learned causal representation.
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z Z> Z3 z; Z2 z3 z z; z3
2z, 0.089 0.094 0.857 2z, 0.0670.582 0.628 7z, 0.095 0.631 0.683
z, 0.606 0.620 0.070 2z, 0.958 0.065 0.046 z, 0.1560.758 0.705
23 0.811 0.681 0.042 z3 0.117 0.429  0.765 2z30.980 0.126 0.028
b2} z2 z3 z; z; z3
7z, 10.862 0.281 0.003 2,110,912 0.501 0.024
7z, 0.5530.868 0.123 7z, 0.162 0.893 0.101
z3 0.225 0.312 0.918 z3 0.089 0.139 0.948

Figure 12: MPC obtained by different methods on the image dataset. From top to bottom and left to right:
VAE, 3-VAE, iVAE, Polynomials, and the proposed method (MLPs). The proposed method performs better than
others, which is not only in line with our identifiability claims but also highlights the flexibility of MLPs.

Figure 13: From left to right, the interventions are applied to the causal representations 21, 22, and
z3 learned by Polynomials, respectively. The vertical axis represents different samples, while the
horizontal axis represents the enforcement of various values on the learned causal representation.
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Figure 14: The traversal results achieved using VAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the *diamond’ variable (denoted as z7) influences the ‘triangle’ variable
(22), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.
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Figure 15: The traversal results achieved using 3-VAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z;) influences the ‘triangle’ variable
(22), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.
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Figure 16: The traversal results achieved using iVAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z;) influences the ‘triangle’ variable
(22), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.
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M DETAILS AND MORE RESULTS OF EXPERIMENTS ON HUMAN MOTION
DATA

M.1 PREPROCESSING

We adopt a two-stage preprocessing pipeline to construct 2D pose sequences from the Human3.6M
dataset. First, we extract ground-truth 3D joint positions provided in the dataset. Each 3D pose is
transformed from world coordinates into the camera coordinate frame using the associated extrinsic
parameters (rotation and translation). Subsequently, we apply a perspective projection using the intrin-
sic parameters (focal length and principal point), and the resulting 2D coordinates are converted into
image-space pixel positions based on the camera resolution. This process follows the implementation
provided by https://github.com/facebookresearch/VideoPose3D/blob/main/
data/prepare_data_h36m.py. Corrupted sequences (e.g., Directions for subject S11)
are excluded, and only valid data is retained. The final output is stored as structured 2D keypoint
arrays indexed by subject, action, and camera.

In the second stage, for each unique (subject, action) pair, we keep only the sequence from the first
camera view. A unique one-hot vector is assigned to each pair, which is then concatenated to the
2D joint coordinates of every frame across all joints. To ensure balanced representation among all
subject-action categories, we uniformly sample the same number of frames from each sequence based
on the shortest available sequence length. This balanced and encoded dataset is then prepared for
subsequent training tasks. As a result, we obtain a final dataset comprising 140 contexts ¢.e., u, each
containing 1040 frames, with each frame represented by 2D coordinates of 16 joints.

M.2 MORE RESULTS

In our implementation, we empirically set the number of latent variables to 14. The model is trained
using the Adam optimizer with a learning rate of 1e-3 for 7000 epochs. We use the encoder designed
to effectively encode 2D keypoint sequences. We employ an encoder to effectively encode 2D
keypoints, where each input frame consists of 2 x 14 keypoint coordinates augmented with a subject-
action condition vector u. The input is first projected via a linear layer into a higher-dimensional
feature space, enhancing its representational capacity. This is followed by a stack of Mixer layers,
which alternate between mixing information across spatial (e.g., keypoint) and feature dimensions,
thereby capturing complex dependencies both spatially and channel-wise. After all Mixer blocks,
a layer normalization is applied to stabilize training. The used decoder applies multiple Mixer
layers to iteratively mix spatial and channel information, followed by layer normalization for stable
training. Finally, a linear layer projects the hidden features back to the keypoint coordinate dimension,
producing an output that matches the original input shape of 2 x 14 keypoint coordinates, representing
the reconstructed 2D coordinates. This decoder architecture symmetrically complements the encoder
by reversing the compositional token embedding process, enabling effective recovery of keypoint
positions from latent representations.

Figures 17-19 illustrate the results of intervention on each learned latent variables by our method.
As discussed in the main manuscript, and supported by the estimated adjacency matrix shown in
Figure 5, we observe that certain latent variables—specifically z; and zo, 26 and 27, as well as z1¢
and z;1—exhibit potential causal relationships. These include plausible dependencies such as from
the shoulder to the wrist joint, and from the elbow to the wrist. Such findings are consistent with
biomechanical principles of intersegmental limb dynamics.

For comparison, we also implemented the latent polynomial models proposed by (Liu et al., 2024). As
shown in Figures 20-22, the learned latent representations in this baseline tend to be more entangled,
lacking the interpretable structure observed in our approach.

N ACKNOWLEDGMENT OF LLMS USAGE

We acknowledge that large language models (LLMs) were used in this work only for word-level
tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,
results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and
conclusions presented in this manuscript are solely the work of the authors.
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Figure 17: Complete Results of Intervention on the Estimated Latent Variables z; to z5 by the Proposed
Method.
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Figure 18: Complete Results of Intervention on the Estimated Latent Variables z¢ to z10 by the Proposed
Method.
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Figure 20: Complete Results of Intervention on the Estimated Latent Variables z; to z5 by Latent Polynomial
Model.
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Figure 21: Complete Results of Intervention on the Estimated Latent Variables zs to 219 by Latent Polynomial
Model.
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Figure 22: Complete Results of Intervention on the Estimated Latent Variables 211 to z14 by Latent Polynomial
Model.
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