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ABSTRACT

Causal representation learning (CRL) offers the promise of uncovering the un-
derlying causal model by which observed data was generated, but the practical
applicability of existing methods remains limited by the strong assumptions re-
quired for identifiability and by challenges in applying them to real-world settings.
Most current approaches are applicable only to relatively restrictive model classes,
such as linear or polynomial models, which limits their flexibility and robustness
in practice. One promising approach to this problem seeks to address these issues
by leveraging changes in causal influences among latent variables. In this vein we
propose a more general and relaxed framework than typically applied, formulated
by imposing constraints on the function classes applied. Within this framework, we
establish partial identifiability results under weaker conditions, including scenarios
where only a subset of causal influences change. We then extend our analysis
to a broader class of latent post-nonlinear models. Building on these theoretical
insights, we develop a flexible method for learning latent causal representations.
We demonstrate the effectiveness of our approach on synthetic and semi-synthetic
datasets, and further showcase its applicability in a case study on human motion
analysis, a complex real-world domain that also highlights the potential to broaden
the practical reach of identifiable CRL models.

1 INTRODUCTION

Causal representation learning (CRL) aims to recover the latent variables and causal structures that
give rise to high-dimensional observations, offering a principled perspective on modeling complex
systems (Schölkopf et al., 2021; Ahuja et al., 2023). By explicitly capturing underlying generative
mechanisms, CRL enhances interpretability and supports robust generalization across environments,
particularly under distribution shifts induced by interventions (Peters et al., 2017; Pearl, 2000). Such
capabilities make CRL particularly valuable in domains such as reinforcement learning and self-
supervised learning, where uncovering latent causal factors can facilitate more general yet effective
representations and enable more effective planning (Mitrovic et al., 2021; Zeng et al., 2024). While
CRL holds clear advantages over correlation-based methods, yielding representations that are more
robust and transferable, it remains difficult to realize these benefits in practice. This is largely due
to the strong assumptions required for identifiability and the challenges associated with deploying
existing models in realistic environments (Bing et al., 2024; Yao et al., 2025).

Leveraging changes in causal influences among latent variables has emerged as a promising strategy
to enhance identifiability and improve estimation quality. Recent work in this direction has focused
on developing theoretically grounded frameworks for identifiability, alongside practical methods
tailored for real-world applications (Squires et al., 2023; Liu et al., 2022; Buchholz et al., 2023;
Liu et al., 2024; Von Kügelgen et al., 2021; Brehmer et al., 2022; Ahuja et al., 2023; Varici et al.,
2023; von Kügelgen et al., 2023). Underlying these methods is the core intuition that changes in
causal influences introduce asymmetries, e.g., pre- and post-change behaviors, into the system, which
provides valuable signals that help achieve identifiability. Based on this idea, prior works have
established various identifiability results for restricted function classes over latent variable models,
including, but not limited to linear Gaussian models (Liu et al., 2022; Buchholz et al., 2023), linear
additive noise models (Squires et al., 2023; Chen et al., 2024; Jin & Syrgkanis, 2024), and polynomial
models (Liu et al., 2024). More related work can be found in Sec. A. A deeper comparison with
polynomial models in Liu et al. (2024) is provided in Sec. P.
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Remaining Challenges. Despite this progress, several limitations pose difficulties for broader
applicability. Theoretically, many existing identifiability results rely on strong assumptions, such
as specific functional forms or distributional constraints, which may not hold in complex or poorly
understood real-world systems. Empirically, due to the relatively strong assumption required for
changes in causal influences in latent space, real-world applications that conform to these assumptions
remain limited. As a result, many identifiability results are primarily evaluated on synthetic datasets,
typically Causal3DIdent (Von Kügelgen et al., 2021). Although there have been promising attempts to
adapt these identifiability results into effective methods for real-world data, particularly in biological
data (Squires et al., 2023; Zhang et al., 2023) and climate data (Yao et al., 2024), further efforts are
needed to extend CRL to a wider range of real-world scenarios.

Contributions. In this work, we aim to advance the study of leveraging changes in causal influences
by contributing to both theory and practical applications. On the theoretical side, we introduce
a nonparametric condition that characterizes changes in causal influences between latent causal
variables. Under this condition and standard assumptions from nonlinear ICA (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Khemakhem et al., 2020), we show that general latent additive noise
models can be identified up to permutation and scaling. We further extend this result to a more
realistic setting where only a subset of the latent causal variables undergoes changes, resulting in
partial identifiability. Notably, our analysis shows that the proposed nonparametric condition is both
necessary and sufficient for identifiability under the nonlinear ICA framework, without additional
constraints. We also generalize these results to latent post-nonlinear models, which include additive
noise models as a special case. On the practical side, we explore a novel real-world application:
learning causal representations from human motion data. In this setting, the underlying latent causal
system can be interpreted as dynamic motor control modules that govern human motion across
different tasks (Gallego et al., 2017; Doyon & Benali, 2005; Taylor et al., 2006). This opens a new
potential application for applying causal representation learning to complex human-centered data.

2 LATENT ADDITIVE NOISE MODELS WITH CHANGE IN CAUSAL INFLUENCES

We consider a general class of latent additive noise models, where the observed data x is generated
from a set of latent causal variables z ∈ Rℓ. These latent causal variables are causally influenced
by latent noise terms n ∈ Rℓ, and their causal relationships are represented by a directed acyclic
graph (DAG). Importantly, we do not assume a fixed graph structure over the latent causal variables,
allowing for flexible modeling of their dependencies and applicability across different settings. To
account for the change of causal influences between latent causal variables z, which may arise from
environmental or contextual factors, we introduce a surrogate variable u. This variable plays a central
role in capturing how changes in external conditions are reflected in the observed data x ∈ Rℓ. The
interpretation of u is application-dependent. In domain adaptation or generalization tasks, it may
represent environmental factors that vary across domains. In time series forecasting (Mudelsee, 2019),
u can capture temporal indices reflecting evolving trends. In remote sensing (Rußwurm et al., 2020),
it may encode geographic attributes such as longitude and latitude that influence observations.

Data Generation Process. More specifically, we parameterize the latent causal generative models by
assuming n follows an exponential family distribution given u, and z and x are generated as follows:

p(T,η)(n ∣ u) ∶= ∏
i

exp(∑j Ti,j(ni)ηi,j(u))
Zi(u) , (1) zi ∶= g

u
i (pai) + ni, (2) x ∶= f(z) + ε. (3)

In Eq. (1): Zi(u) is the normalizing constant, and Ti,j(ni) is the sufficient statistic for ni, with its
natural parameter ηi,j(u) dependent on u. We assume a two-parameter exponential family, following
the formulation in Sorrenson et al. (2020). In Eq. (2): The term gui (pai) shows how u influences the
mapping of parents pai to zi. Specifically, u modulates the function gi, e.g., if gi is modeled by a
multilayer perceptron (MLP), u adjusts the weights of the MLP. In Eq. (3): f represents a nonlinear
mapping from z to x, where ε is independent noise with density function pε(ε), with ε ∈ Rℓ.

The surrogate variable u captures distributional shifts in the latent noise variables, as reflected by
changes in the natural parameters across u in Eq.(1). This enables the adaptation of identifiability
results from nonlinear ICA. More importantly, u also models changes in the underlying causal
influences from parent variables to each latent causal variable. In particular, as shown in Eq.(2), u
modulates the functional form gui , effectively characterizing how the parents pai influence zi. By
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imposing appropriate constraints on gui , we can identify a sufficient and necessary condition for
changes in the causal influences among latent variables (see assumption (iv)), under nonlinear ICA.

3 IDENTIFIABILITY RESULTS OF LATENT ADDITIVE NOISE MODELS

In this section, we analyze identifiability in latent additive noise models by leveraging changes in
causal influences across environments. We first present the complete identifiability result inSection 3.1,
then extend to partial identifiability result in Section 3.2, addressing more general and realistic
scenarios in which only a subset of causal influences among latent variables undergo change. Finally,
we generalize both complete and partial results to latent post-nonlinear models in Section 3.3.

3.1 COMPLETE IDENTIFIABILITY RESULT OF LATENT ADDITIVE NOISE MODELS

We explicitly introduce the surrogate variable u as described in the data generation process defined
by Eqs. (1)–(3). This mechanism allows us to formulate key identifiability conditions in terms of u.
We now present the main identifiability result as follows:

Theorem 3.1. Suppose latent causal variables z and the observed variable x follow the causal data
generative models defined in Eqs. (1) - (3). Assume the following holds:

(i) The noise probability density function pε(ε) does not depend on u and is always finite, The
set {x ∈ X ∣φε(x) = 0} has measure zero (i.e., has at most countable number of elements),
where φε is the characteristic function of the density pε,

(ii) The function f in Eq. (3) is smooth and invertible,

(iii) There exist 2ℓ + 1 values of u, i.e., u0,u1, ...,u2ℓ, such that the matrix

L = (η(u = u1) − η(u = u0), ...,η(u = u2ℓ) − η(u = u0)) (4)

of size 2ℓ × 2ℓ is invertible, where η(u) = [ηi,j(u)]i,j ,

(iv) The function class of gui satisfies the following condition: there exists ui, such that, for all

parent nodes zj ∈ pai of zi,
∂g

u=ui
i (pai)
∂zj

= 0.

Then each true latent variable zi is linearly related to exactly one estimated latent variable ẑj , as
zi = sj ẑj + ci, for some constants sj and ci, where all ẑj are learned by matching the true data
distribution p(x ∣ u).

Proof sketch First, we show that the latent noise variables are identifiable up to scaling and
permutation, leveraging recent progress in nonlinear ICA (supported by assumptions (i)–(iii)) and
the structure of additive noise models (Eq. 2, Lemma B.2). Second, building on this, the true latent
causal variables z are related to the estimated ones through an invertible map that is independent
of the auxiliary variable u, by the additive noise model structure (Lemma B.1). Finally, using the
changes in causal influences among z (assumption (iv)), this invertible map reduces to permutation
and scaling. Full details are provided in Appendix C.

Assumptions (i)-(iii) are originally developed by nonlinear ICA (Hyvarinen & Morioka, 2016;
Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020), and have also been adopted
in several recent works on CRL (may with different forms) Liu et al. (2022; 2024); Zhang et al.
(2024); Ng et al. (2025). It is worth noting that the polynomial setting in Liu et al. (2024) can be seen
as a special case of our additive noise models, with assumption (iv) providing the key identifiability
condition (See Appendix P for a detailed comparison).. We here unitize these assumptions considering
the following two main reasons. 1) These assumptions have been verified to be practicable in diverse
real-world application scenarios (Kong et al., 2022; Xie et al., 2022b; Wang et al., 2022). 2) By
extending the results of Sorrenson et al. (2020) to our setting1, we can identify the latent noise
variables up to permutation and scaling, which in turn facilitates the identifiability of the latent causal

1This extension requires addressing a technical gap introduced by Eq. (2), specifically ensuring that (i) the
mapping from n to x remains invertible, and (ii) u does not compromise the identifiability of n.
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variables. it suffices to know that the number of environments exceeds 2ℓ + 1, which is somewhat
more lenient than requiring the exact number, as is the case in some prior works.

Assumption (iv), originally introduced by this work, provides a condition that characterizes the types
of change in causal influences contributing to identifiability. Loosely speaking, this assumption
ensures that the causal influence from parent nodes does not include components that remain invariant
across u, as such invariance would lead to unidentifiability (See Remark 3.2 for more details). This
is achieved by constraining the gradient of gui with respect to zj vanished at the point ui, thereby
preventing the invariance. From a high-level perspective, this closely aligns with the notion of perfect
interventions discussed in prior works (von Kügelgen et al., 2023; Buchholz et al., 2023; Wendong
et al., 2023), thereby ensuring no terms that link zi and its parent node remain unchanged.

Assumption (iv), for instance, could arise in the analysis of cell imaging data (i.e., x), where various
batches of cells are exposed to different small-molecule compounds (i.e., u). each latent variable (i.e.,
zi) represents the concentration level of a distinct group of proteins, with protein-protein interactions
(e.g., causal influences among zi) playing a significant role (Chandrasekaran et al., 2021). Research
has revealed that the mechanisms of action of small molecules exhibit variations in selectivity (Scott
et al., 2016), which can profoundly affect protein-protein interactions (i.e., gui ). The assumption (iv)
requires the existence of a specific u = ui, such that the original causal influences can be disconnected.
This parallels cases where small molecule compounds disrupt or inhibit protein-protein interactions
(PPIs), effectively causing these interactions to cease (Arkin & Wells, 2004). Such molecules are
commonly referred to as inhibitors of PPIs. Developing small molecule inhibitors for PPIs is a
key focus in drug discovery (Lu et al., 2020; Bojadzic et al., 2021). Additionally, gene editing
technologies like CRISPR/Cas9 can effectively ’knock out’ a protein or gene, leading to complete
inhibition. Similarly, receptor antagonists can achieve full inhibition by completely blocking the
activity of a receptor.

We emphasize that assumption (iv) is our key contribution, formulating changes in causal influence as
constraints on the function class and thus distinguishing our work from previous studies. Specifically,

Remark 3.2 (Types of Changes in Causal Influences That Facilitate Identifiability). Not all changes
in causal influences lead to identifiability. Assumption (iv) specifies the types of changes in causal
influences among latent causal variables contributing to identifiability.

To clarify this point, consider the following example.

Example 3.3. Let z2 ∶= MLPu(z1) + n2, where MLPu(z1) can be decomposed as MLPu(z1) =
MLPu

1 (z1) +MLP2(z1), with MLPu
1 (z1) being the u-dependent component and MLP2(z1) being a

z1-dependent term invariant across u. Both MLPu and MLPu
1 belong to the same function class.

In this example, if assumption (iv) is violated, z2 becomes unidentifiable. While the causal influence
from z1 to z2 changes across u due to the u-dependent term MLPu

1 (z1), the invariant term MLP2(z1)
induces a invariant causal link between z1 and z2 across u, which leads to unidentifiable result.
Specifically, the invariant MLP2(z1) can be absorbed into the generative mapping f , resulting in
an alternative representation z′2 ∶= MLPu

1 (z1) + n2, which would generate the same observational
data. That is, the original data generation process can be equivalently written as x = f(z1, z2) = f ○
f1(z1, z

′
2)

2, where f1(z1, z′2) = [z1, z
′
2+MLP2(z1)]. Consequently, the model remains unidentifiable.

A formal statement of this result is given in Theorem 3.4(b). The reason of this unidentifiability is
the presence of the invariant MLP2(z1), which maintains a constant causal influence of z1 on z2
across u. Assumption (iv) mitigates this issue by eliminating such invariant component. It does so by
constraining the function class satisfies: ∂MLPu=u2(z1)/∂z1 = 0 and ∂MLPu=u2

1 (z1)/∂z1 = 0. As a
result, MLP2(z1)/∂z1 = 0, which implies that MLP2(z1)must be a constant, removing z1-dependent
term and thus ensuring identifiability.

3.2 PARTIAL IDENTIFIABILITY RESULT OF LATENT ADDITIVE NOISE MODELS

In practice, satisfying assumption (iv) for every causal influence from parent nodes to each child node
can be challenging. When this assumption is violated for some nodes, full identifiability may not be
achievable. Nevertheless, we can still derive partial identifiability results, as detailed below:

2For simplicity, we here omit the noise term ε. This omission does not affect the following analysis.
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Theorem 3.4. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. (1) - (3), and the assumptions (i)-(iii) are satisfied, for each zi,

(a) if condition (iv) is satisfied, then the true zi is related to the recovered one ẑj , obtained
by matching the true marginal data distribution p(x∣u), by the following relationship:
zi = sj ẑj + cj , where sj denotes scaling, cj denotes a constant,

(b) if condition (iv) is not satisfied, then zi is unidentifiable.

Proof sketch As outlined in the proof sketch for Theorem 3.1, in the second step, without invoking
assumption (iv), we can establish an invertible mapping between the true latent causal variables z
and the estimated ones. Building on this mapping, when the condition in (a) is satisfied, we can
directly prove (a). Conversely, for (b), we can establish the proof of (b), by removing the terms
corresponding to the unchanged causal influences, as illustrated in Example 3.3. Full details are
provided in Appendix D.
Remark 3.5. [Sufficiency and Necessity of condition (iv)] The contrapositive of Theorem 3.4 (b),
which asserts that if zi is identifiable, then condition (iv) is satisfied, serves to establish the necessity
of condition (iv) for achieving complete identifiability. This insight, coupled with Theorem 3.1,
underscores that condition (iv) is not only sufficient but also necessary for the identifiability result,
under assumptions (i)-(iii), without additional assumptions.
Remark 3.6 (Parent nodes do not impact children). The implications of Theorem 3.4 ((a) and (b))
suggest that zi remains identifiable, even when its parent nodes are unidentifiable. This is primarily
because regardless of whether assumption (iv) is met, assumptions (i)-(iii) ensure that latent noise
variables n can be identified. In the context of additive noise models (or post-nonlinear models
discussed in the next section), the mapping from n to z is invertible. Therefore, with identifiable noise
variables, all necessary information for recovering z is contained within n. Furthermore, assumption
(iv) is actually transformed into relations between each node and the noise of its parent node, as stated
in Lemma B.3. As a result, zi could be identifiable, even when its parent nodes are unidentifiable.
Remark 3.7 (Subspace identifiability). The implications of Theorem 3.4 suggest the theoretical
possibility of partitioning the entire latent space into two distinct subspaces: latent invariant space
containing invariant latent causal variables and latent variant space comprising variant latent causal
variables. This insight could be particularly valuable for applications that prioritize learning invariant
latent variables to adapt to changing environments, such as domain adaptation or generalization (Kong
et al., 2022). While similar findings have been explored in latent polynomial models in (Liu et al.,
2024), this work demonstrates that such results also apply to more flexible additive noise models.

Summary This work decomposes causal mechanisms in latent space into two components: one
associated with latent noise variables and the other capturing causal influences from parent nodes. By
analyzing the changes of the distributions of latent noise variables, formalized by assumption (iii) in
Theorem 3.1, we show that the latent noise variables n an be identified. However, identifying n alone
does not ensure component-wise identifiability of the latent causal variables z, as demonstrated by
Theorem 3.4 (b). To address this, we further examine changes in the causal influences. Specifically, gui
in Eq. (2), assumption (iv) has been proven to be a sufficient and necessary condition for component-
wise identifiability of z, supported by Theorem 3.1 and Theorem (a), under assumptions (i)-(iii).
Finally, we extend our theory to a more practical setting where only a subset of the latent variables
satisfies assumption (iv). In this case, we achieve partial identifiability, as shown in Theorem 3.4 (a).

3.3 EXTENSION TO LATENT POST-NONLINEAR MODELS

While latent additive noise models, as defined in Eq. (2), are general, their capacities are still limited,
e.g., requiring additive noise. In this section, we generalize latent additive noise models to latent
post-nonlinear models (Zhang & Hyvärinen, 2009; Uemura et al., 2022; Keropyan et al., 2023), which
generally offer more powerful expressive capabilities than latent additive noise models. To this end,
we replace Eq. (2) by the following:

z̄i ∶= ḡi(zi) = ḡi(g
u
i (pai) + ni), (5)

where ḡi denotes a invertible post-nonlinear mapping. It includes the latent additive noise models Eq.
(2) as a special case in which the nonlinear distortion ḡi does not exist. Based on this, we can identify
z̄ up to component-wise invertible nonlinear transformation as follows:
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Corollary 3.8. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. (1), (5) and (3). Assume that conditions (i) - (iv) in Theorem 3.1
hold, then each true latent variable z̄i is related to exactly one estimated latent variable ˆ̄zj , which
is learned by matching the true marginal data distribution p(x∣u), by the following relationship:
z̄i =Mj( ˆ̄zj)+cj , where Mj and cj denote a invertible nonlinear mapping and a constant, respectively.

Proof sketch The proof proceeds intuitively as follows. Since each function ḡi in Eq. (5) is
invertible, we can define a new invertible function by composing f with ḡ, component-wise via ḡi.
This composition preserves invertibility and allows us to directly apply Theorem 3.1, yielding the
stated identifiability result. Full details are provided in Appendix E..

Similar to Theorem 3.4, we have partial identifiability result:
Corollary 3.9. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. (1), (5) and (3). Under the condition that the assumptions (i)-(iii)
are satisfied, for each z̄i, (a) if it is a root node or condition (iv) is satisfied, then the true z̄i is related
to the recovered one ˆ̄zj , obtained by matching the true marginal data distribution p(x∣u), by the
following relationship: z̄i = Mj(ˆ̄zj) + cj , where Mj denotes a invertible mapping, cj denotes a
constant, (b) if condition (iv) is not satisfied, then z̄i is unidentifiable.

Proof sketch Again, since the function ḡi is invertible defined in Eq. (5) and f is invertible in
theorem 3.4, we can use the result of theorem 3.4 (b) to conclude the proof. Refer to Appendix F.
Remark 3.10 (Sharing Properties). Corollary 3.9 establishes that the properties outlined in Theorem
3.4, including remark 3.5 to 3.7, remain applicable in latent post-nonlinear causal models.

4 LEARNING LATENT ADDITIVE NOISE MODELS

In this section, we translate our theoretical findings into a novel method for learning latent causal
models. Our primary focus is on learning additive noise models, as extending the method to latent
post-nonlinear models is straightforward, simply involving the utilization of invertible nonlinear
mappings. Following previous work in (Liu et al., 2022), due to permutation indeterminacy in latent
space, we can naturally enforce a causal order z1 ≻ z2 ≻ ...,≻ zℓ without specific semantic information.
This does not imply that we require knowledge of the true causal order, refer to Appendix G for more
details. With guarantee from Theorem 3.1, each variable zi can be imposed to learn the corresponding
latent variables in the correct causal order. As a result, we formulate a prior model as follows:

p(z∣u) =
ℓ

∏
i=1

p(zi∣z<i ⊙mi(u),u),=
ℓ

∏
i=1
N(µzi(z<i ⊙mi(u),u), δ

2
zi(z<i ⊙mi(u),u)), (6)

where we focus on latent Gaussian noise variables, to satisfy the exponential family assumption
in Eq. (1) and naturally allow the implementation of the reparameterization trick. Moreover, we
introduce additional vectors mi(u), by enforcing sparsity on mi(u) and the component-wise product
⊙, which aligns with assumption (iv) and facilitates learning the latent causal graph structure. In our
implementation, we impose the L1 norm, though other methods may also be flexible, e.g., sparsity
priors (Carvalho et al., 2009; Liu et al., 2019). We employ a variational posterior to approximate the
true posterior p(z∣x,u):

q(z∣u,x) =
ℓ

∏
i=1

q(zi∣z<i ⊙mi,u,x),=
ℓ

∏
i=1

N(µzi(z<i ⊙mi(u),u,x), δ
2
zi(z<i ⊙mi(u),u,x)), (7)

where the variational posterior shares the same parameter mi to limit both the prior and the variational
posterior, maintaining the same latent causal graph structure. In addition, we enforce a Gaussian
posterior conditioned on the parent nodes, to align with the prior model and model assumption in
Eqs. (1) and (2). Finally, we arrive at the objective:

maxEq(z∣x,u)(log p(x∣z,u)) −DKL(q(z∣x,u)∣∣p(z∣u)) − γ∑
i

∥mi(u)∥
1
1, (8)

where DKL denotes the KL divergence, γ denotes a hyperparameters to control the sparsity of latent
causal structure. The objective is known as the evidence lower bound (ELBO), which serves as a
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lower bound of the log-likelihood. Under certain conditions, it can match the true data distribution,
which is one of the requirements for our identifiability guarantee in Theorem 3.1. Moreover, the
variational estimator is consistent in the sense that, as the number of data samples grows, the learned
variational posterior converges to the true posterior 3 , ensuring reliable recovery of the underlying
latent variables. Implementation details can be found in Appendix J.

5 EXPERIMENTS

Synthetic Data We first conduct experiments on synthetic data, generated by the following process:
we divide latent noise variables into M segments, where each segment corresponds to one value of u
as the segment label. Within each segment, the location and scale parameters are respectively sampled
from uniform priors. After generating latent noise variables, we generate latent causal variables, and
finally obtain the observed data samples by an invertible nonlinear mapping on the causal variables.
Details can be found in H.

Figure 1: Performance comparison under latent additive Gaus-
sian noise. Left: MPC scores for different methods, where the
proposed MLPs method achieves the best performance, supporting
our theoretical results. Right: SHD scores of the proposed method,
Polynimals (Liu et al., 2024), and iVAE combined with the method
from Huang et al. (2020).

We evaluate our proposed method,
implemented with multilayer percep-
trons (MLPs) and hence referred to
as MLPs, to model the causal rela-
tions among latent causal variables,
against established models: vanilla
VAE (Kingma & Welling, 2013), β-
VAE (Higgins et al., 2017), identifi-
able VAE (iVAE) (Khemakhem et al.,
2020), and latent polynomial models
(Polynomials) (Liu et al., 2024). No-
tably, the iVAE demonstrates the ca-
pability to identify true independent
noise variables, subject to certain con-
ditions, with permutation and scaling.
Polynomials, while sharing similar assumptions with our proposed method, are prone to certain
limitations. Specifically, they may suffer from numerical instability and face challenges due to the
exponential growth in the number of terms. While the β-VAE is popular in disentanglement tasks
due to its emphasis on independence among recovered variables, it lacks robust theoretical backing.
Our evaluation focuses on two metrics: the Mean of the Pearson Correlation Coefficient (MPC) to
assess performance, and the Structural Hamming Distance (SHD) to gauge the accuracy of the latent
causal graphs. The result for iVAE is obtained by applying the method from (Huang et al., 2020) to
the latent variables estimated by iVAE. Figure 1 illustrates the comparative performances of various
methods, e.g., VAE and iVAE, across different models, e.g., models with different dimensions of
latent variables. Based on MPC, the proposed method demonstrates satisfactory results, thereby
supporting our identifiability claims. Additionally, Figure 2 presents how the proposed method
performs when condition (iv) is not met. It is evident that condition (iv) is a sufficient and necessary
condition characterizing the types of distribution shifts for identifiability in the context of latent
additive noise models. These empirical findings align with our partial identifiability results. More
results on high-dimensional synthetic image data can be found in Appendix L.

Post-Nonlinear Models In the above experiments, we obtain the observed data samples as derived
from a random invertible nonlinear mapping applied to the latent causal variables. The nonlinear
mapping can be conceptualized as a combination of an invertible transformation and the specific
invertible mapping, ḡi. From this perspective, the results depicted in Figures 1 and 2 also demonstrate
the effectiveness of the proposed method in recovering the variables zi in latent post-nonlinear models
Eq. (5), as well as the associated latent causal structures. Consequently, these results also serve to
corroborate the assertions in Corollary 3.8 and 3.9, particularly given that ḡi are invertible.

3More strictly, this holds under the assumption that the variational posterior has sufficient capacity to
represent the true posterior, and in the limit of the optimal ELBO solution. Note that the sparsity regularization
term with weight γ may introduce bias, therefore, strict consistency holds when γ is sufficiently small, such that
the regularized solution remains close to the unregularized ELBO optimum.
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Figure 2: Performance of the proposed method under scenarios where condition (iv) is not satisfied regarding
the causal influence of z1 → z2 (consequently, z2 → z3, and z3 → z4). The results are in agreement with partial
identifiability in Theorem 3.4, i.e., roughly speaking, latent variables that satisfy Condition (iv) are identifiable,
while those that do not are not identifiable.

(a) MPC scores. (b1) Linear (b2) Polynomials (b3) MLPs

Figure 3: (a) MPC scores achieved by different methods. Notably, the proposed MLPs achieve an outstanding
average MPC of 0.981, outperforming polynomials (0.977) and linear models (0.965). (b) Recovered latent
causal structures using (b1) latent linear models, (b2) latent polynomials, and (b3) latent MLPs. Results for
linear models and polynomials are sourced from (Liu et al., 2024). Blue edges align with known anatomical
connectivity, red edges violate anatomical constraints, and green edges are reversed directions.

Semi-Synthetic fMRI Data Building on the works in Liu et al. (2022; 2024), we extended
the application of the proposed method to the fMRI hippocampus dataset (Laumann & Poldrack,
2015). This dataset comprises signals from six distinct brain regions: perirhinal cortex (PRC),
parahippocampal cortex (PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and CA3/Dentate
Gyrus (DG). These signals, recorded during resting states, span 84 consecutive days from a single
individual. Each day’s data contributes to an 84-dimensional vector, e.g., u. Our focus is on
uncovering latent causal variables, therefore, we treat these six brain signals as such. Specifically, we
assume that they undergo a random nonlinear mapping into the observable space, after which suitable
methods can be applied to recover them.

Figure 3 presents the comparative results yielded by the proposed method alongside various other
methods. Notably, the VAE, β-VAE, and iVAE models presume the independence of latent variables,
rendering them incapable of discerning the underlying latent causal structure. Conversely, other
methods, including latent linear models, latent polynomials, and latent MLPs, are able to accurately
recover the latent causal structure with guarantees. We also include CausalVAE Yang et al. (2021) as
a baseline. Among these, the MLP models outperform the others in terms of MPC. In the study by
Liu et al. (2024), it is noted that linear relationships among the examined signals tend to be more
prominent than nonlinear ones. This observation might lead to the presumption that linear models
would be effective. However, this is not necessarily the case, as these models can still yield suboptimal
outcomes. In contrast, MLPs demonstrate superior performance in term of MPC, particularly when
compared to polynomial models, which are prone to instability and exponential growth issues. The
effectiveness of MLPs is further underscored by their impressive average MPC score of 0.981. It
is important to emphasize that while the improvement in MPC over the proposed method (also
achieving 0.981) may appear marginal, compared to prior methods such as linear models (MPC
0.965) and polynomial models (MPC 0.977), this seemingly "slight" gain in MPC corresponds to a
substantial difference in the recovered graph structures, which is visually illustrated in Figure 3 (b3).
Moreover, we found that CausalVAE consistently produces fully connected graphs across all different
random seeds, resulting in an SHD of 9.0 ± 0.0. MLP-based model achieves an SHD of 4.75 ± 0.22,
outperforming the polynomial model (5.5 ± 0.25) and the linear model (5.0 ± 0.28). Here, we note
that although the polynomial model may underperform the linear model on average, in this particular
example its ability to capture non-linear relationships allows it to achieve a lower SHD.
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Figure 4: Some sample examples of the data we used.

Real Human Motion Dataset In the final experiment, we apply the proposed method to a potential
real-world application: human motion analysis. The human nervous system adapts flexibly to different
motor tasks (e.g., walking, running, lifting, or fine hand manipulation). In this setting, the observed
data, i.e., human skeleton poses captured via motion capture (i.e., x), is influenced by different motor
tasks u (Cappellini et al., 2006; Yuan et al., 2015). It is natural to consider that human motion is
governed by a set of underlying latent variables (i.e., z) (Schmidt et al., 2018; Svoboda & Li, 2018;
Taylor et al., 2006; Gallego et al., 2017). Each latent variable zi capture patterns analogous to motor
neuron activation dynamics (Gallego et al., 2017). The interactions among these latent variables
capture the coordination dynamics between control modules involved in executing the task. Crucially,
previous studies demonstrate that these interactions are task-dependent and reconfigurable (i.e., gui )
(Doyon & Benali, 2005; Bizzi et al., 2008; d’Avella et al., 2003; Rehme et al., 2013).

Figure 5: The estimated adjacency ma-
trix by the proposed method.

For example, compared to gait velocity in the single-task condi-
tion, the networks associated with gait velocity in the dual-task
condition were associated with greater functional connectivity
in supplementary motor and prefrontal regions (Yuan et al.,
2015). Dynamic causal modeling was applied for neuronal
states of the regions of interest the motor task time series to esti-
mate endogenous and context-dependent effective connectivity
(Rehme et al., 2013). Therefore, modeling human motion with
latent variables whose interaction strengths vary across motor
tasks offers a biologically plausible framework for capturing
the flexibility and task-specific nature of human motor control.

We use the Human3.6M dataset, which provides a diverse set
of 17 motion tasks such as discussion, smoking, taking photos,
and talking on the phone. Following pre-processing steps from
prior works (see Appendix M.1), we construct a filtered subset
comprising 7 subjects and 15 motion tasks, resulting in a total
of 105 distinct values of the condition variable u. For each
condition, we obtain 1,040 samples. Each sample is represented as a 2 × 16 matrix, where 2 denotes
the spatial coordinates, and 16 corresponds to skeletal keypoints, such as joints of the head, shoulders,
elbows, and knees. Figure 4 shows some samples we used in experiments after preprocessing.

Figure 6: Intervention results for z1 and z2, which
provide evidence of the causal relationship from the
elbow to the wrist in the right hand.

Due to the absence of ground-truth semantics
for latent variables, we evaluate the proposed
method by intervening on each latent variable
and observing the corresponding changes in the
output data. This allows us to infer the potential
semantic meaning associated with each latent
factor. We emphasize that precisely disentan-
gling latent variables remains a challenging task,
even in synthetic settings. Therefore, our fo-
cus is on identifying dominant changes in the
observed data. Together with the estimated adja-
cency matrix in Figure 5, we can observe from
Figures 6 and 7 that the proposed method ob-
tains potential latent causal relations, including
from the shoulder joint to the wrist joint, and from the elbow to the wrist joint. Such results tend
to be plausible, as they are closely aligned with the dynamic model of intersegmental limb inter-
actions. For example, it has been demonstrated that the nervous system predicts and compensates
for interaction torques arising from shoulder and elbow movements to adjust wrist muscle activity
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z6 → z7 z10 → z11

Figure 7: Visualization of selected latent variable interventions. Intervention on z6 leads to changes from the
shoulder joint to the wrist joint, whereas intervention on z7 affects only the wrist joint, indicating the causal
relationship from the shoulder to the wrist. The right reveals the causal relationship from the elbow to the wrist.

reflexively, reflecting an internal model of limb dynamics (Kurtzer et al., 2008). In particular, they
showed that elbow muscle activity precedes and modulates wrist muscle responses, indicating that
the nervous system integrates information about elbow joint dynamics to coordinate distal muscle
control effectively. See Appendix M for details.

6 CONCLUSION

This study makes a significant contribution by establishing a precise condition for identifying the
types of distribution shifts necessary for the identifiability of latent additive noise models. We also
introduce partial identifiability, applicable in cases where only a subset of distribution shifts satisfies
this condition. Furthermore, we extend the results to latent post-nonlinear causal models, thereby
broadening the theoretical scope. These theoretical insights are translated into a practical method, and
we conduct extensive empirical testing across a wide range of datasets. Importantly, we demonstrate
a promising application in learning causal representations for human motion data. We hope that this
work paves the way for the development of practical methods for learning causal representations.

7 LIMITATIONS AND DISCUSSIONS

It should be noted that our framework relies on the Assumptions (i)-(iv), as well as the generative
model defined in Eqs. (1)–(3), which are inherently untestable in practice. This limitation is not
unique to our work but is a common challenge across the causal representation learning community.
Precisely because of this, there is strong motivation to continue relaxing such assumptions and
extending the scope of current theoretical results, which is what this work aims to do. In addition,
empirical evaluations on real data provide evidence that our approach is effective, demonstrating that
the insights derived from our theoretical analysis can meaningfully guide practical modeling, despite
the untestable nature of the underlying assumptions.
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A RELATED WORK

Given the challenges associated with identifiability in causal representation learning, numerous
existing works tackle this issue by introducing specific assumptions. We categorize these related
works into three primary parts based on the nature of these assumptions.

Special graph structure Some progress in achieving identifiability centers around the imposition of
specific graphical structure constraints (Silva et al., 2006; Shimizu et al., 2009; Anandkumar et al.,
2013; Frot et al., 2019; Cai et al., 2019; Xie et al., 2020; 2022a; Lachapelle et al., 2021). Essentially,
these graph structure assumptions reduce the space of possible latent causal representations or
structures, by imposing specific rules for how variables are connected in the graph. One popular
special graph structure assumption is the presence of two pure children nodes for each causal variable
(Xie et al., 2020; 2022a; Huang et al., 2022). Very recently, the work in (Adams et al., 2021)
provides a viewpoint of sparsity to understand previous various graph structure constraints.However,
any complex causal graph structures may appear in real-world scenarios, beyond the pure sparsity
assumption. In contrast, our approach adopts a model-based representation for latent variables,
allowing arbitrary underlying graph structures.

Temporal Information The temporal constraint that the effect cannot precede the cause has been
applied in causal representation learning (Yao et al., 2021; Lippe et al., 2022b; Yao et al., 2022;
Lippe et al., 2022a; Li et al., 2025). The success of utilizing temporal information to identify causal
representations can be attributed to its innate ability to establish causal direction through time delay.
By tracking the sequence of events over time, we gain the capacity to infer latent causal variables.
In contrast to these approaches, our focus lies on discovering instantaneous causal relations among
latent variables.

Changes in Causal Influences Recent advances have significantly developed the use of changes in
causal influences within latent space as a means for identifying causal representations (Von Kügelgen
et al., 2021; Liu et al., 2022; 2024; Brehmer et al., 2022; Ahuja et al., 2023; Squires et al., 2023;
Buchholz et al., 2023; Varici et al., 2023; von Kügelgen et al., 2023; Ahuja et al., 2022; Varıcı et al.,
2024; Varici et al., 2024). Several of these works leverage such changes in conjunction with model
constraints on the mapping from latent to observed space, such as assuming linear or polynomial
(Squires et al., 2023; Varici et al., 2023; Ahuja et al., 2023; Zhang et al., 2023; Varıcı et al., 2024;
Jin & Syrgkanis, 2024). In contrast, our approach allows for flexibility by employing MLPs for
this mapping. In addition, some works focus on imposing model assumptions on the latent causal
variables, such as linear Gaussian models (Buchholz et al., 2023; Liu et al., 2022), linear additive
noise models (Squires et al., 2023; Chen et al., 2024), and polynomial additive noise models (Liu
et al., 2024). In contrast, our work considers both additive noise models and the more general
post-nonlinear models, thereby broadening the scope of identifiable causal structures. Furthermore,
prior work often relies on paired data before and after random, unknown interventions (Ahuja et al.,
2022; Brehmer et al., 2022), a requirement that has been relaxed in recent work (Varici et al., 2025)
to using data from two uncoupled intervention environments, whereas our method operates on fully
unpaired data, a more realistic setting for applications such as biology (Squires et al., 2023; Stark
et al., 2020). Additionally, some approaches require single-node interventions (von Kügelgen et al.,
2023; Buchholz et al., 2023), whereas our framework allows interventions on one node while other
nodes may also be simultaneously affected. In contrast to Ng et al. (2025), our framework imposes
exponential-family assumptions on the latent noise variables and achieves identifiability with fewer
environments in certain settings, whereas theirs relies on nonparametric assumptions and typically
requires a larger number of diverse environments.
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B DEFINITION AND LEMMAS

For ease of exposition in the following sections, we first introduce the following definition and
lemmas.

Definition B.1. [Recursive Structural Mapping hu] Assume the latent causal variables follow the
causal ordering z1 ≺ z2 ≺ ⋅ ⋅ ⋅ ≺ zℓ (See justification in Sec. O). Together with additive noise model
assumption in Eq. 2, we have:

zj = g
u
j (z1∶j−1) + nj , j = 1, . . . , ℓ. (9)

Then the mapping hu ∶ n↦ z induced by these equations is defined recursively by

hu
1 (n1) ∶= n1, (10)

and, for each j ≥ 2,

hu
j (n1∶j) ∶= g

u
j (h

u
1 (n1), h

u
2 (n1∶2), . . . , h

u
j−1(n1∶j−1)) + nj . (11)

The overall mapping is

hu
(n) ∶= [hu

1 (n1), h
u
2 (n1∶2), . . . , h

u
ℓ (n1∶ℓ)]. (12)

Lemma B.1. The mapping, between the latent causal variables z and the recovered latent variables
ẑ by matching the true marginal data distribution p(x ∣ u), does not depend on u.

Proof. Consider Eq. (3) and assume that the function f is smooth and invertible, as stated in Assump-
tion (ii). Suppose there exists an alternative solution such that x = f̂(ẑ), where f̂ is also invertible.
By equating the likelihoods, we obtain:

ẑ = f̂−1(f(z,ε)). (13)

Since ε is independent of u (as per assumption (i)), and both f and f̂ do not depend on u, it follows
that the mapping between z and ẑ is also invariant with u.

Illustrative Example for Lemma B.1. Consider the following structural equations:

z1 = n1,

z2 = λ(u) ⋅ z1 + n2,

x1 = z1,

x2 = z
3
2 + z1,

Here we neglect noise ε for simplify. In this example, although the latent causal variable z2 explicitly
depends on u through λ(u), the observed variables x = (x1, x2) are deterministic functions of
z = (z1, z2), and this functional mapping does not involve u.

Now suppose we attempt to recover latent variables ẑ = (ẑ1, ẑ2) from x. Since x1 = z1, we have
ẑ1 = x1. Given that x2 = z

3
2 + z1 = z

3
2 + x1, we can rearrange and solve for z2 as:

ẑ2 = (x2 − x1)
1/3

.

Hence, the inverse mapping:
ẑ = (x1, (x2 − x1)

1/3)

do not dependent of λ(u), despite the fact that λ(u) affects the distribution of z. Moreover, since the
mapping from z to x is also independent of λ(u), it follows that the overall mapping between ẑ and
z does not depend on λ(u) either.

Lemma B.2. Let hu denote the mapping from n to z as defined in Definition B.1. Then, h is
invertible, and its Jacobian determinant is equal to 1, i.e., ∣detJh∣ = 1.
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Proof. The result follows directly from the structural form of the generative process. According to
Eq. (2), each variable zi depends only on its parents and the corresponding noise variable ni. This
allows us to recursively express each zi in terms of its ancestral noise variables and ni.

According to the definition of hu in Definition B.1, we have:

z1 = n1
¯

hu
1 (n1)

,

z2 = g
u
2 (z1) + n2 = g

u
2 (n1) + n2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

hu
2 (n1,n2)

,

z3 = g
u
3 (n1, g

u
2 (n1) + n2) + n3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hu
3 (n1,n2,n3)

, (14)

⋮

Due to the structure of the additive noise model and the acyclicity of the underlying causal graph
(DAG), the mapping hu is invertible. Moreover, its Jacobian matrix is lower triangular with ones on
the diagonal, which directly implies that ∣detJhu ∣ = 1.

Lemma B.3. Under Assumption (iv) in Theorem 3.1, consider the recursive mapping defined in
Eq. (14). Let ni′ denote the latent noise variable corresponding to a parent node zi′ ∈ pai of zi,
where i′ < i. Then, the partial derivative of hu

i with respect to ni′ vanishes at u = ui, i.e.,

∂hu=ui

i (n1, . . . , ni)

∂ni′
= 0.

Proof. From Eq. (14), the recursive mapping is

hu
i (n1, . . . , ni) = g

u
i (z1, . . . , zi−1) + ni.

Applying the chain rule gives
∂hu

i

∂ni′
= ∑

zj∈pai

∂gui
∂zj
⋅
∂zj

∂ni′
.

By Assumption (iv), there exists a parameter ui such that for all parent nodes zj ∈ pai,

∂gu=ui

i

∂zj
= 0.

Therefore, each term in the sum above vanishes, yielding

∂hu=ui

i

∂ni′
= ∑

zj∈pai
0 ⋅

∂zj

∂ni′
= 0.

This completes the proof.
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C THE PROOF OF THEOREM 3.1

Theorem 3.1. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. (1) - (3). Assume the following holds:

(i) The noise probability density function pε(ε) does not depend on u and is always finite, The
set {x ∈ X ∣φε(x) = 0} has measure zero (i.e., has at most countable number of elements),
where φε is the characteristic function of the density pε,

(ii) The function f in Eq. (3) is smooth and invertible,

(iii) There exist 2ℓ + 1 values of u, i.e., u0,u1, ...,u2ℓ, such that the matrix

L = (η(u = u1) − η(u = u0), ...,η(u = u2ℓ) − η(u = u0)) (15)

of size 2ℓ × 2ℓ is invertible. Here η(u) = [ηi,j(u)]i,j ,

(iv) The function class of gui satisfies the following condition: there exists ui, such that, for all

parent nodes zj of zi,
∂g

u=ui
i (pai)
∂zj

= 0.

Then each true latent variable zi is linearly related to exactly one estimated latent variable ẑj , as
zi = sj ẑj + ci, for some constants sj and ci, where all ẑj are learned by matching the true marginal
data distribution p(x ∣ u).

Proof. The proof of Theorem 3.1 unfolds in three distinct steps. Initially, Initially, Step I shows
how the nonlinear ICA identifiability result (Khemakhem et al., 2020; Sorrenson et al., 2020) holds
in our context. Specifically, it confirms that each true latent noise variable ni is related to exactly
one estimated latent variable n̂j , e.g., ni = Ai,j n̂j + cj , for some constant Ai,j and ci. Building on
this, Step II demonstrates a linkage between the estimated latent causal variables ẑ and the true z,
formulated as z =Φ(ẑ). Finally, Step III utilizes Lemma B.3 to illustrate that the transformation Φ,
introduced in Step II, essentially simplifies to a combination of permutation and scaling, articulated
as z = Pẑ + c.

Notation Suppose we have two sets of parameters θ = (f ,T,hu,η) (e.g., parameters for generative
model) and θ̂ = (f̂ , T̂, ĥu, η̂) (e.g., parameters for the estimated model) corresponding to the same
conditional probabilities, i.e., p(f ,T,hu,η)(x∣u) = p(f̂ ,T̂,ĥu,η̂)(x∣u) for all pairs (x,u), where T

denotes the sufficient statistics of the latent noise variables n, and f corresponds to the mapping
from latent causal variables to observed variables, both are defined in the causal generative model
in Eqs. (1)–(3). The mapping hu, defined in Definition B.1, maps latent noise n to latent causal
variables z according to the assumed causal order and additive noise structure. f̂ , T̂, ĥu, η̂ correspond
to the analogous mappings and parameters in the estimated model.

Step I: According to the Notation above, using p(f ,T,hu,η)(x∣u) = p(f̂ ,T̂,ĥu,η̂)(x∣u) for all pairs
(x,u), we can leverage the technique from Step I in the proof of B.2.2 in Khemakhem et al. (2020) to
conclude that if the observed distributions coincide after adding noise, then the underlying noise-free
distributions must also coincide. Specifically,
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∫ p(T,η)(n∣u)p(f ,hu)(x∣n)dn = ∫ p(T̂,η̂)(z∣u)p(f̂ ,ĥu)(x∣n)dn (16)

⇒ ∫ p(T,η)(n∣u)pε(x − f ○ h
u
(n))dn = ∫ p(T̂,η̂)(n∣u)pε(x − f̂ ○ ĥ(n))dn (17)

⇒ ∫ p(T,η)((f ○ h
u
)
−1
(x̄)∣u)∣detJ(f○hu)−1(x)∣pε(x − x̄)dx̄

= ∫ p(T̂,η̂)((f̂ ○ ĥ
u
)
−1
(x̄∣u))∣detJ(f̂○ĥu)−1(x)∣pε(x − x̄)dx̄ (18)

⇒ ∫ p̃(T,η,f ,hu,u)(x̄)pε(x − x̄)dx̄ = ∫ p̃(T̂,η̂,̂f ,ĥu,u)(x̄)pε(x − x̄)dx̄ (19)

⇒ (p̃(T,η,f ,hu,u) ∗ pε)(x) = (p̃(T̂,η̂,̂f ,ĥu,u) ∗ pε)(x) (20)

⇒ F [p̃(T,η,f ,hu,u)](ω)φε(ω) = F [p̃(T̂,η̂,̂f ,ĥu,u)](ω)φε(ω) (21)

⇒ F [p̃(T,η,f ,hu,u)](ω) = F [p̃(T̂,η̂,̂f ,ĥu,u)](ω) (22)

⇒ p̃(T,η,f ,hu,u)(x) = p̃(T̂,η̂,̂f ,ĥu,u)(x) (23)

where:

• in Eq. (18), We made the change of variable x̄ = f ○ hu(n) on the left hand side, and
x̄ = f̂ ○ ĥu(n) on the right hand side. Note that, here f and hu are invertible, due to
assumption (ii) and Lemma B.2.

• in Eq. (19), we introduced:

p̃(T,η,f ,hu,u)(x) = p(T,η)((f ○ h
u
)
−1
(x)∣u)∣detJ(f̂○ĥu)−1(x)∣1X (x), (24)

on the left hand side, and similarly on the right hand side.

• in Eq. (20), we used ∗ for the convolution operator.

• in Eq. (21), we used F [.] to designate the Fourier transform.

• in Eq. 22, we dropped φε from both sides as it is non-zero almost everywhere (by assumption
((i))).

By taking the logarithm on both sides of Eq. 23, we have:

log ∣detJf−1(x)∣+ log ∣detJ(hu)−1(z)∣ + log p(T,η)(n∣u)

= log ∣detJ(f̂○ĥu)−1(x)∣ + log p(T̂,η̂)(n̂∣u), (25)

where we assume an alternative solution exists such that x = f̂(ẑ) = f̂(ĥu(n̂)). By using the
exponential family as defined in Eq. (1), we have:

log ∣detJf−1(x)∣ + log ∣detJ(hu)−1(z)∣ +T
T
(n)η(u) − log∏

i

Zi(u) = (26)

log ∣detJ(f̂○ĥu)−1(x)∣ + T̂
T
(n̂)η̂(u) − log∏

i

Ẑi(u), (27)

By using Lemma B.2, we have: ∣detJ(hu)∣ = 1. Further, since both hu and ĥu must to be the same
function class, we also have: ∣detJĥ−1 ∣ = 1. Given the above, Eqs. (26)-(27) can be reduced to:

log ∣detJf−1(x)∣ +T
T
(n)η(u) − log∏

i

Zi(u) =

log ∣detJf̂−1(x)∣ + T̂
T
(n̂)η̂(u) − log∏

i

Ẑi(u). (28)

Then by expanding the above at points ul and u0, then using Eq. (28) at point ul subtract Eq. (28) at
point u0, we find:

⟨T(n), η̄(u)⟩ +∑
i

log
Zi(u0)

Zi(ul)
= ⟨T̂(n̂), ¯̂η(u)⟩ +∑

i

log
Ẑi(u0)

Ẑi(ul)
. (29)
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Here η̄(ul) = η(ul) − η(u0). By assumption (iii), and combining the 2ℓ expressions into a single
matrix equation, we can write this in terms of L from assumption (iii),

LTT(n) = L̂T T̂(n̂) + b. (30)

Since LT is invertible, we can multiply this expression by its inverse from the left to get:

T(n) =AT̂(n̂) + c, (31)

Where A = (LT )−1L̂T . According to lemma 3 in (Khemakhem et al., 2020) that there exist k distinct
values n1

i to nk
i such that the derivative T ′(n1

i ), ..., T
′(nk

i ) are linearly independent, and the fact that
each component of Ti,j is univariate, we can show that A must be full rank.

Since we assume the noise to be two-parameter exponential family members as defined in Eq. (1),
Eq. (31) can be re-expressed as:

(
T1(n)
T2(n)

) =A(
T̂1(n̂)

T̂2(n̂)
) + c, (32)

Then, we re-express T2 in term of T1, e.g., T2(ni) = t(T1(ni)) where t is a nonlinear mapping. As
a result, we have from Eq. (32) that: (a) T1(ni) can be linear combination of T̂1(n̂) and T̂2(n̂), and
(b) t(T1(ni)) can also be linear combination of T̂1(n̂) and T̂2(n̂). This implies the contradiction
that both T1(ni) and its nonlinear transformation t(T1(ni)) can be expressed by linear combination
of T̂1(n̂) and T̂2(n̂). This contradiction leads to that each true latent noise variable ni is related
to exactly one estimated latent variable n̂j (See APPENDIX C in (Sorrenson et al., 2020) for more
details), as:

ni = Ai,j n̂j + ci. (33)

Note that this result holds for two-parameter Gaussian, inverse Gaussian, Beta, Gamma, and Inverse
Gamma (See Table 1 in (Sorrenson et al., 2020)).

For simplicity, in the following we neglect the noise term ε in Eq (3). As a result, we can express
Eq. (33) in vector form as:

n = Pn̂ + c, (34)

where P is a permutation with scaling matrix. Note that this simplification is for convenience only,
the identifiability result still holds even when the noise term is included. In the case where the noise
term is included, the only difference is that the definition of n̂ in Eq. (34) becomes a subset of that
in Eq. (32), thus involving a slight abuse of notation.

Step II:By Lemma B.2, we can denote z and ẑ by:

z = hu
(n), (35)

ẑ = ĥu
(n̂), (36)

where h is defined in B.2. Replacing n and n̂ in Eq. (34) by Eq. (35) and Eq. (36), respectively, we
have:

(hu
)
−1
(z) = P(ĥu

)
−1
(ẑ) + c, (37)

where h (as well as ĥ) are invertible supported by Lemma B.2. We can rewrite Eq. (37) as:

z = hu
(P(ĥu

)
−1
(ẑ) + c). (38)

Denote the composition by Φ, we have:

z =Φ(ẑ). (39)

Note that Φ must also satisfy the condition of being independent of u, as demonstrated by Lemma
B.1. Consequently, Φ in Eq. (39) is independent of u.

Step III Next, replacing z and ẑ in Eq. (39) by Eqs. 34, 35, and 36:
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hu
(Pn̂ + c) =Φ(ĥu

(n̂)) (40)

By differentiating Eq. (40) with respect to n̂

JhuP = JΦJĥu . (41)

As mentioned in Lemma B.2, without loss of generality, we can assume a causal order z1 ≺ z2 ≺ ⋅ ⋅ ⋅ ≺
zℓ so that the Jacobian Jhu is lower triangular with ones on the diagonal. Similarly, Jĥu can be made
to follow the same lower-triangular structure, consistent with the constraints of the function class.
Once this causal order is fixed, the matrix P is diagonal, which we label as s1,1, s2,2, s3,3, . . . for
convenience.

Next, under Assumption (iv), we show that the Jacobian JΦ must reduce to the same diagonal form
as P. Consequently, the mapping Φ in Eq. (39) is a component-wise linear transformation. To this
end, we examine Eq. (41) entry-wise. Matrix equality requires element-wise equality, so every entry
of must match.

Elements above the diagonal of matrix JΦ Since the product of lower-triangular matrices is itself
lower-triangular, and Jhu and Jĥu are a lower triangular matrices while P is a diagonal matrix, JΦ

must be a lower triangular matrix.

Then by expanding the left side of Eq. (41), we have:

JhuP =

⎛
⎜
⎜
⎜
⎜
⎝

s1,1 0 0 ...

s1,1
∂hu

2 (n1,n2)
∂n1

s2,2 0 ...

s1,1
∂hu

3 (n1,n2,n3)
∂n1

s2,2
∂hu

3 (n1,n2,n3)
∂n2

s3,3 ...
. . . ...

⎞
⎟
⎟
⎟
⎟
⎠

, (42)

by expanding the right side of Eq. (41), we have:

JΦJĥu =

⎛
⎜
⎜
⎜
⎜
⎝

JΦ1,1 0 0 ...

JΦ2,1 + JΦ2,2

∂ĥu
2 (n1,n2)
∂n1

JΦ2,2 0 ...

JΦ3,1 +∑
3
i=2 JΦ3,i

∂ĥu
i (n1,...,ni)

∂n1
JΦ3,2 + JΦ3,3

∂ĥu
3 (n1,...,n3)

∂n2
JΦ3,3 ...

. . . ...

⎞
⎟
⎟
⎟
⎟
⎠

. (43)

The diagonal of matrix JΦ By comparison between Eq. (42) and Eq. (43), we have JΦi,i = si,i.

Elements below the diagonal of matrix JΦ By comparison between Eq. (42) and Eq. (43), and
Lemma B.3, for all i > j we have JΦi,j = 0. For example, given the fact that the equality of two
matrices implies element-wise equality, by comparing the corresponding elements of the two matrices
Eq. (42) and Eq. (43), e.g., we have

s2,2
∂hu

3 (n1, n2, n3)

∂n2
= JΦ3,2 + JΦ3,3

∂ĥu
3 (n1, ..., n3)

∂n2
. (44)

By Lemma B.3, under Assumption (iv), the gradient ∂h
u=ui
3 (n1,n2,n3)

∂n2
= 0.

For later use, we first show that both h3 and ĥ3 must belong to the same function class in environment
ui. Under Assumption (iv), note that in environment ui, the corresponding z3 has no parent
contribution, and thus equals its own latent noise term n3 under additive noise models, i.e., z3 = n3.
Now suppose, toward a contradiction, that ĥ3 is not in the same function class as h3 in environment
ui, i.e., it has parent nodes. In this case, the corresponding ẑ3 would necessarily mix at least two
latent noise sources (its own latent noise and the latent noise from its parent node). This directly
contradicts the identifiability of n3 up to linear scaling, as established in Step I: z3 = n3 and should
be identifiable, while ẑ3 would mix at least two latent noise sources and thus cannot correspond to n3

alone. Therefore, both h3 and ĥ3 must belong to the same function class in environment ui.
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Since both h3 and ĥ3 belong to the same function class and satisfy Assumption (iv), this constraint

on the partial derivative naturally holds for both, i.e., ∂ĥ
u=ui
3 (n1,n2,n3)

∂n2
= 0. This is not an additional

assumption, but a property of the function class itself, analogous to how specifying an exponential
family for the latent noise variables constrains all noise variables within that family (as in Eq. (25)).
As a result, we have JΦ3,2 = 0. By similar reasoning, this argument extends to all elements JΦi,j

with i > j, establishing that all entries below the diagonal of JΦ are zero.

As a result, the Jacobian matrix JΦ in Eq. (41) must coincide with the permutation matrix P. This
shows that the mapping Φ has a constant Jacobian equal to the permutation matrix P, and therefore
the transformation in Eq. (39) reduces to the following form:

z = Pẑ + c′. (45)
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D THE PROOF OF THEOREM 3.4

Theorem 3.4. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. (1) - (3), under the condition that the assumptions (i)-(iii) are
satisfied, for each zi,

(a) if it is a root node or condition (iv) is satisfied, then the true zi is related to the recovered
one ẑj , obtained by matching the true marginal data distribution p(x∣u), by the following
relationship: zi = sj ẑj + cj , where sj denotes scaling, cj denotes a constant,

(b) if condition (iv) is not satisfied, then zi is unidentifiable.

Proof. Since the proof process in Steps I and II in Appendix C do not depend on the assumption (iv),
the results in both Eq. (42) and Eq. (43) hold. Then consider the following two cases.

• In cases assumption (iv) holds true for zi, by using Lemma B.3, and by comparison between
Eq. (42) and Eq. (43), we have: for all j < i we have JΦi,j = 0, which implies that we can
obtain that zi = si,iẑi + ci.

• In cases where assumption (iv) does not hold for zi, such as when we compare Eq. (42)
with Eq. (43), we are unable to conclude that the i-th row of the Jacobian matrix JΦ

contains only one element. For example, consider i = 2, and by comparing Eq. (42) with

Eq. (43), we can derive the following equation: s1,1
∂hu

2 (n1,n2)
∂n1

= JΦ2,1 + JΦ2,2

∂ĥu
2 (n1,n2)
∂n1

.
In this case, if assumption (iv) does not hold (thus Lemma B.3 does not hold too), then

once JΦ2,1 = s1,1
∂hu

2 (n1,n2)
∂n1

− JΦ2,2

∂ĥu
2 (n1,n2)
∂n1

holds true, we can match the true marginal
data distribution p(x∣u). This implies that JΦ2,1 does not necessarily need to be zero, and
thus can be nonzero. Consequently, z2 can be represented as a combination of ẑ1 and
ẑ2, resulting in unidentifiability. Note that this unidentifiability result also show that the
necessity of condition (iv) for achieving complete identifiability, by the contrapositive, i.e.,
if zi is identifiable, then condition (iv) is satisfied.

E THE PROOF OF COROLLARY 3.8

Corollary 3.8. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Assume that conditions (i) - (iv) in Theorem 3.1
hold, then each true latent variable z̄i is related to exactly one estimated latent variable ˆ̄zj , which
is learned by matching the true marginal data distribution p(x∣u), by the following relationship:
z̄i =Mj(ˆ̄zj)+cj , where Mj and cj denote a invertible nonlinear mapping and a constant, respectively.

Proof. The proof can be done from the following: since in Theorem 3.1, the only constraint imposed
on the function f is that the function f is invertible , as mentioned in condition (ii). Consequently, we
can create a new function f̃ by composing f with function ḡ, in which each component is defined by
the function ḡi. Since ḡi in invertible as defined in Eq. (5), f̃ remains invertible. As a result, we can
utilize the proof from Appendix C to obtain that z can be identified up to permutation and scaling,
i.e., Eq. (45) holds. Finally, given the existence of a component-wise invertible nonlinear mapping
between z̄ and z as defined in Eq. (5), i.e.,

z̄ = ḡ(z). (46)

we can also obtain estimated ˆ̄z by enforcing a component-wise invertible nonlinear mapping on the
recovered ẑ

ˆ̄z = ˆ̄g(ẑ). (47)
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Replacing z and ẑ in Eq. (45) by Eq. (46) and Eq. (47), respectively, we have

ḡ−1(z̄) = Pˆ̄g
−1
(ˆ̄z) + c′. (48)

As a result, we conclude the proof.

F THE PROOF OF COROLLARY 3.9

Corollary 4.9. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Under the condition that the assumptions (i)-(iii) are
satisfied, for each z̄i, (a) if condition (iv) is satisfied, then the true latent variable z̄i is related to
one estimated latent variable ˆ̄zj , which is learned by matching the true marginal data distribution
p(x∣u), by the following relationship: z̄i =Mj(ˆ̄zj) + cj , (b) if condition (iv) is not satisfied, then z̄i
is unidentifiable.

Proof. Again, since in Theorem 3.1, the only constraint imposed on the function f is that the function
f is invertible, as mentioned in condition (ii). Consequently, we can create a new function f̃ by
composing f with function ḡ, in which each component is defined by the function ḡi. Since ḡi is
invertible as defined in Eq. (5), f̃ remains invertible. Given the above, the results in both Eq. (42) and
Eq. (43) hold. Then consider the following two cases.

• In cases where zi represents a root node or assumption (iv) holds true for zi, using the
proof in Appendix D we can obtain that zi = si,iẑi + ci. Then, given the existence of a
component-wise invertible nonlinear mapping between z̄i and zi as defined in Eq. (5), we
can proof that there is a invertible mapping between the recovered ˆ̄zi and the true z̄i.

• In cases where assumption (iv) does not hold for zi, using the proof in Appendix D zi is
unidentifiable, we can directly conclude that z̄i is also unidentifiable.

G UNDERSTANDING ENFORCING CAUSAL ORDER IN THE INFERENCE MODEL

In the inference model, we naturally enforce a causal order z1 ≻ z2 ≻ ⋅ ⋅ ⋅ ≻ zℓ without requiring
specific semantic information. This does not imply that we need to know the true causal order a prior.
Instead, we leverage the permutation indeterminacy in latent space, as demonstrated in (Liu et al.,
2022).

For instance, suppose the underlying latent causal variables correspond to properties such as the size
(z1) and color (z2) of an object. Permutation indeterminacy implies that we cannot guarantee whether
the recovered latent variable ẑ1 represents the size or the color. This ambiguity in the latent space,
however, offers an advantage: by predefining a causal order, we enforce that ẑ1 causes ẑ2, without
explicitly specifying the semantic meaning of these variables.

Due to the identifiability guarantee, ẑ1, as the first node in the predefined causal order, will learn the
semantic information of the first node in the true underlying causal order, e.g., the size. Similarly, ẑ2,
as the second node in the predefined causal order, will be assigned to learn the semantic feature of
the second node (e.g., color). As a result, we can naturally establish a causal fully-connected graph
by pre-defining causal order, ensuring the estimation of a directed acyclic graph (DAG) in inference
model and avoiding DAG constraints, such as those proposed by (Zheng et al., 2018).

H DATA DETAILS

Synthetic Data In our experimental results using synthetic data, we utilize 50 segments, with each
segment containing a sample size of 1000. Furthermore, we explore latent causal or noise variables
with dimensions of 2, 3, 4, and 5, respectively. Specifically, our analysis centers around the following
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structural causal model:

ni ∶∼ N(α,β), (49)
z1 ∶= n1, (50)
z2 ∶= λ1,2(u) sin(z1) + n2, (51)
z3 ∶= λ2,3(u) cos(z2) + n3, (52)

z4 ∶= λ3,4(u) log(z
2
3) + n4, (53)

z5 ∶= λ3,5(u) exp(sin(z
2
3)) + n5. (54)

In this context, both α and β for Gaussian noise are drawn from uniform distributions within the
ranges of [−2.0,2.0] and [0.1,3.0], respectively. The values of λi,j(u) are sampled from a uniform
distribution spanning [−2.0,−0.1] ∪ [0.1,2.0]. After sampling the latent variables, we use a random
three-layer feedforward neural network as the mixing function, as described in (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Khemakhem et al., 2020).

Synthetic Data for Partial Identifiability In our experimental results, which utilized synthetic
data to explore partial identifiability, we modified the Eqs (49)-(53) by

żi ∶= zi + zi−1. (55)

In this formulation, for each i, there exists a zi−1 that remains unaffected by u, thereby violating
condition (iv).

Image Data In our experimental results using image data, we consider the following latent structural
causal model:

ni ∶∼ N(α,β), (56)
z1 ∶= n1 (57)
z2 ∶= λ1,2(u)(sin(z1) + z1) + n2, (58)
z3 ∶= λ2,3(u)(cos(z2) + z2) + n3, (59)

where both α and β for Gaussian noise are drawn from uniform distributions within the ranges of
[−2.0,2.0] and [0.1,3.0], respectively. The values of λi,j(u) are sampled from a uniform distribution
spanning [−2.0,−0.1] ∪ [0.1,2.0].
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I LATENT CAUSAL GRAPH STRUCTURE

Our identifiability result, as presented in Theorem 3.1, establishes the identifiability of latent causal
variables, thereby ensuring the unique recovery of the corresponding latent causal graph. This result
builds upon the intrinsic identifiability of nonlinear additive noise models, as demonstrated in prior
work (Hoyer et al., 2008; Peters et al., 2014), and holds regardless of any scaling applied to z.
Moreover, while linear Gaussian models are unidentifiable in a single environment (Shimizu et al.,
2006), identifiability can be achieved in multiple environments (e.g., across different values of u),
supported by the principle of independent causal mechanisms (Huang et al., 2020; Ghassami et al.,
2018; Liu et al., 2022).

J IMPLEMENTATION FRAMEWORK

We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory. Figure 8
illustrates our proposed method for learning latent nonlinear models with additive Gaussian noise.
In our experiments with synthetic and fMRI data, we implemented the encoder, decoder, and MLPs
using three-layer fully connected networks, complemented by Leaky-ReLU activation functions.
For optimization, the Adam optimizer was employed with a learning rate of 0.001. In the case of
image data experiments, the prior model also utilized a three-layer fully connected network with
Leaky-ReLU activation functions. The encoder and decoder designs were adopted from (Liu et al.,
2024) and are detailed in Table 1 and Table 2, respectively.

Layer Output / Activation

Conv2d(3, 32, 4, stride=2, padding=1) Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
Linear(32×32×4 + size(u), 30) Leaky-ReLU
Linear(30, 30) Leaky-ReLU
Linear(30, 3*2) -

Table 1: Encoder for the image data.

Layer Output / Activation

Linear(3, 30) Leaky-ReLU
Linear(30, 30) Leaky-ReLU
Linear(30, 32×32×4) Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1) Leaky-ReLU
ConvTranspose2d(32, 3, 4, stride=2, padding=1) -

Table 2: Decoder for the image data.

Figure 8: Implementation Framework to learn latent nonlinear models (i.e., MLP) with Gaussian noise. In this
example, we demonstrate the method using 3 latent variables, however, our approach is versatile and can be
effectively generalized to accommodate much larger graphs.
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K RESULTS ON SYNTHETIC HIGH-DIMENSION DATA

In this section, we present additional experimental results on synthetic data to evaluate the effective-
ness of the proposed method in scenarios with a large number of latent variables. The performance in
these cases is shown in Figure 9. Compared to the polynomial-based approach in (Liu et al., 2024),
the proposed method, such as MLP, achieves significantly better MCC scores, demonstrating its
advantages over polynomials. This superiority becomes particularly evident as the number of latent
variables increases. MLPs, being highly flexible, can effectively adapt to the growing complexity.
In contrast, when the number of latent variables increases, the number of parent nodes also tends
to grow, requiring polynomial-based approaches to incorporate additional nonlinear components to
capture the complex relationships among latent variables, which becomes increasingly challenging.

While much of the current work on causal representation learning focuses on foundational identifia-
bility theory, optimization challenges in the latent space remain underexplored. We hope this work
not only provides a general theoretical result but also inspires further research on inference methods
in the latent space.

Figure 9: Performances of the proposed method on a large number of latent variables.
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L EXPERIMENTS ON HIGH-DIMENSIONAL SYNTHETIC IMAGE DATA

Figure 10: Samples generated by using a modified version of the chemistry dataset originally presented in (Ke
et al., 2021). In this adaptation, the objects’ colors (representing different states) change in accordance with a
specified causal graph, e.g., ‘diamond’ causes ‘triangle’, and ‘triangle’ causes ’square’.

We further validate our proposed identifiability results and methodology using images from the
chemistry dataset introduced by (Ke et al., 2021). This dataset is representative of chemical reactions
where the state of one element can influence the state of another. The images feature multiple objects
with fixed positions, but their colors, representing different states, change according to a predefined
causal graph. To align with our theoretical framework, we employ a nonlinear model with additive
Gaussian noise for generating latent variables that correspond to the colors of these objects. The
established latent causal graph within this context indicates that the ‘diamond’ object (denoted as
z1) influences the ‘triangle’ (z2), which in turn affects the ‘square’ (z3). Figure 10 provides a visual
representation of these observational images, illustrating the causal relationships in a tangible format.

Figure 12 presents MPC outcomes as derived from various methods. Among these, the proposed
method demonstrates superior performance. In addition, both the proposed method (MLPs) and Poly-
nomials can accurately learn the causal graph with guarantee. However, Polynomial encounters issues
such as numerical instability and exponential growth in terms, which compromises its performance
in MPC, as seen in Figure 12. This superiority of MLPs is further evidenced in the intervention
results, as depicted in Figure 11, compared with results of Polynomial shown in Figure 13. Additional
traversal results concerning the learned latent variables from other methodologies are detailed in
Figure 14 (VAE), Figure 15 (β-VAE) and Figure 16 (iVAE). For these methods without identifiability,
traversing any learned variable results in a change in color across all objects.

Figure 11: From left to right, the interventions are applied to the causal representations z1, z2, and z3 learned by
the proposed method (MLPs), respectively. The vertical axis represents different samples, while the horizontal
axis represents the enforcement of various values on the learned causal representation.
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Figure 12: MPC obtained by different methods on the image dataset. From top to bottom and left to right:
VAE, β-VAE, iVAE, Polynomials, and the proposed method (MLPs). The proposed method performs better than
others, which is not only in line with our identifiability claims but also highlights the flexibility of MLPs.

Figure 13: From left to right, the interventions are applied to the causal representations z1, z2, and
z3 learned by Polynomials, respectively. The vertical axis represents different samples, while the
horizontal axis represents the enforcement of various values on the learned causal representation.

Traversals on z1 Traversals on z2 Traversals on z3

Figure 14: The traversal results achieved using VAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z1) influences the ‘triangle’ variable
(z2), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.
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Traversals on z1 Traversals on z2 Traversals on z3

Figure 15: The traversal results achieved using β-VAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z1) influences the ‘triangle’ variable
(z2), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.

Traversals on z1 Traversals on z2 Traversals on z3

Figure 16: The traversal results achieved using iVAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z1) influences the ‘triangle’ variable
(z2), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.
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M DETAILS AND MORE RESULTS OF EXPERIMENTS ON HUMAN MOTION
DATA

M.1 PREPROCESSING

We adopt a two-stage preprocessing pipeline to construct 2D pose sequences from the Human3.6M
dataset. First, we extract ground-truth 3D joint positions provided in the dataset. Each 3D pose is
transformed from world coordinates into the camera coordinate frame using the associated extrinsic
parameters (rotation and translation). Subsequently, we apply a perspective projection using the intrin-
sic parameters (focal length and principal point), and the resulting 2D coordinates are converted into
image-space pixel positions based on the camera resolution. This process follows the implementation
provided by https://github.com/facebookresearch/VideoPose3D/blob/main/
data/prepare_data_h36m.py. Corrupted sequences (e.g., Directions for subject S11)
are excluded, and only valid data is retained. The final output is stored as structured 2D keypoint
arrays indexed by subject, action, and camera.

In the second stage, for each unique (subject, action) pair, we keep only the sequence from the first
camera view. A unique one-hot vector is assigned to each pair, which is then concatenated to the
2D joint coordinates of every frame across all joints. To ensure balanced representation among all
subject-action categories, we uniformly sample the same number of frames from each sequence based
on the shortest available sequence length. This balanced and encoded dataset is then prepared for
subsequent training tasks. As a result, we obtain a final dataset comprising 140 contexts i.e.,u, each
containing 1040 frames, with each frame represented by 2D coordinates of 16 joints.

M.2 MORE RESULTS

In our implementation, we empirically set the number of latent variables to 14. The model is trained
using the Adam optimizer with a learning rate of 1e-3 for 7000 epochs. We use the encoder designed
to effectively encode 2D keypoint sequences. We employ an encoder to effectively encode 2D
keypoints, where each input frame consists of 2 × 14 keypoint coordinates augmented with a subject-
action condition vector u. The input is first projected via a linear layer into a higher-dimensional
feature space, enhancing its representational capacity. This is followed by a stack of Mixer layers,
which alternate between mixing information across spatial (e.g., keypoint) and feature dimensions,
thereby capturing complex dependencies both spatially and channel-wise. After all Mixer blocks,
a layer normalization is applied to stabilize training. The used decoder applies multiple Mixer
layers to iteratively mix spatial and channel information, followed by layer normalization for stable
training. Finally, a linear layer projects the hidden features back to the keypoint coordinate dimension,
producing an output that matches the original input shape of 2×14 keypoint coordinates, representing
the reconstructed 2D coordinates. This decoder architecture symmetrically complements the encoder
by reversing the compositional token embedding process, enabling effective recovery of keypoint
positions from latent representations.

Figures 17–19 illustrate the results of intervention on each learned latent variables by our method.
As discussed in the main manuscript, and supported by the estimated adjacency matrix shown in
Figure 5, we observe that certain latent variables—specifically z1 and z2, z6 and z7, as well as z10
and z11—exhibit potential causal relationships. These include plausible dependencies such as from
the shoulder to the wrist joint, and from the elbow to the wrist. Such findings are consistent with
biomechanical principles of intersegmental limb dynamics.

For comparison, we also implemented the latent polynomial models proposed by (Liu et al., 2024). As
shown in Figures 20–22, the learned latent representations in this baseline tend to be more entangled,
lacking the interpretable structure observed in our approach.

N ACKNOWLEDGMENT OF LLMS USAGE

We acknowledge that large language models (LLMs) were used in this work only for word-level
tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,
results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and
conclusions presented in this manuscript are solely the work of the authors.
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Figure 17: Complete Results of Intervention on the Estimated Latent Variables z1 to z5 by the Proposed
Method.

O CLARIFICATION ON CAUSAL ORDER ASSUMPTION

In the proofs (e.g., Lemma B.3 and Step III in the proof of Theorem 3.1), we assume a causal order
among the latent variables z1 ≺ z2 ≺ ⋅ ⋅ ⋅ ≺ zℓ. This is a relabeling rather than requiring known the true
latent causal order.

To illustrate, consider an example with three latent variables corresponding to semantic attributes of
objects: zcolor (color), zsize (size), and zshape (shape), with a true causal DAG zcolor → zsize → zshape
(the DAG can be arbitrary). In the proof, we can always relabel the latent variables according to the
coordinate indices used in the proof:

zcolor ↦ z1, zsize ↦ z2, zshape ↦ z3.
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Figure 18: Complete Results of Intervention on the Estimated Latent Variables z6 to z10 by the Proposed
Method.

Here, z1, z2, z3 denote the first, second, and third nodes in the causal order of the relabeled coordinates,
corresponding to color, size, and shape, respectively. This relabeling is purely for convenience in
proof and does not require knowledge of the true topological order of the latent variables.

Thus, we claim: without loss of generality, we can consider a causal order z1 ≺ z2 ≺ ⋅ ⋅ ⋅ ≺ zℓ, where
the indices 1,2, . . . , ℓ correspond to an relabeling of the latent variables. That is, the assumed causal
order in the proof is purely notational and does not require knowledge of the true topological order
of the original latent variables. Thus, all claims that follow from this assumed order hold without
assuming access to the true causal order.

P RELATIONSHIP TO THE WORK OF (LIU ET AL., 2024)
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Figure 19: Complete Results of Intervention on the Estimated Latent Variables z11 to z14 by the Proposed
Method.

We briefly clarify the relationship between our setting and the polynomial latent causal model studied
in Liu et al. (2024). As already discussed in the Introduction, Related Work, and throughout our
experiments, Liu et al. (2024) focuses on polynomial structural equations, whereas our work considers
a more general class of additive noise models. Polynomial models may suffer from numerical
instability and rapidly growing magnitudes for high-degree terms, while additive noise models avoid
these issues and naturally support non-parametric instantiations (e.g., MLPs or Transformers). The
polynomial setting can in fact be viewed as a special case of our formulation.

Both works build upon identifiability results from nonlinear ICA. The main conceptual difference
lies in how changes in causal influences across conditions are modeled. Liu et al. (2024) specifies
these changes through variations in polynomial coefficients, whereas we introduce a non-parametric
conditional mechanism that captures more general forms of variation. This generalization requires
substantially different proof techniques from those used in the polynomial case.

Finally, our work investigates a real-world application of causal representation learning, highlighting
the practical relevance of general additive noise models beyond the polynomial setting.
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Figure 20: Complete Results of Intervention on the Estimated Latent Variables z1 to z5 by Latent Polynomial
Model.

Q COMPARISON TO INTERVENTIONAL CRL

This section clarifies the distinct position of our work within the field of CRL, particularly in
comparison to existing methods that rely on explicit interventional information (e.g., (Ahuja et al.,
2022; Brehmer et al., 2022)).

We acknowledge that the condition formalized in Assumption (iv) is conceptually equivalent to
perfect intervention at the level of the mechanism change. However, our core contribution is not in
proposing the concept of intervention, but in integrating this condition into Nonlinear ICA framework,
thereby achieving a significant generalization of the strict data labeling requirements of prior work.

Traditional interventional CRL methods typically leverage changes in causal mechanisms to achieve
latent variable identifiability. To secure component-wise identifiability result, these methods often rely
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Figure 21: Complete Results of Intervention on the Estimated Latent Variables z6 to z10 by Latent Polynomial
Model.

on such supervised data, characterized by the following: Many methods require prior knowledge of
the specific latent node that has been intervened upon (i.e., the intervention label). Some approaches
require access to paired observations (Before/After pairs) corresponding to the intervention event
to isolate the "difference" signal for identifiability. This reliance on intervention labels represents a
limitation for applying this research line in practical settings.

Our work successfully breaks these limitations by fusing the theoretical power of Nonlinear ICA.
Consequently, our method theoretically achieves identifiability without requiring prior knowledge of
which node was intervened upon or the specific semantic value of the intervention. As illustrated in
Figure 23, our work resides at the intersection of two critical theoretical paradigms.

• Path 1 (Interventional CRL): Starting from the conceptual requirements of interventional
data, we generalize the reliance on explicit labeling, mitigating data restrictions.
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Figure 22: Complete Results of Intervention on the Estimated Latent Variables z11 to z14 by Latent Polynomial
Model.

• Path 2 (Nonlinear ICA): Utilizing the statistical properties of non-stationary data, we
enable the decoupling of the latent noise n.

These two paths converge in the proposed assumption (iv), which serves as the crucial theoretical
bridge, ensuring the ultimate identifiability of the latent causal variables.
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This Work
(Assumption IV as Bridge)

Interventional
Data

Interventional CRL
(e.g., Known In-
tervention Node)

Non-
Stationary

Data

Nonlinear ICA
( Environment Variation)

Figure 23: Comparison of previous interventional CRL and this work. Assumption (iv) serves as the
crucial theoretical bridge.
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