

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS IDENTIFIABLE LATENT ADDITIVE NOISE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Causal representation learning (CRL) offers the promise of uncovering the underlying causal model by which observed data was generated, but the practical applicability of existing methods remains limited by the strong assumptions required for identifiability and by challenges in applying them to real-world settings. Most current approaches are applicable only to relatively restrictive model classes, such as linear or polynomial models, which limits their flexibility and robustness in practice. One promising approach to this problem seeks to address these issues by leveraging changes in causal influences among latent variables. In this vein we propose a more general and relaxed framework than typically applied, formulated by imposing constraints on the function classes applied. Within this framework, we establish partial identifiability results under weaker conditions, including scenarios where only a subset of causal influences change. We then extend our analysis to a broader class of latent post-nonlinear models. Building on these theoretical insights, we develop a flexible method for learning latent causal representations. We demonstrate the effectiveness of our approach on synthetic and semi-synthetic datasets, and further showcase its applicability in a case study on human motion analysis, a complex real-world domain that also highlights the potential to broaden the practical reach of identifiable CRL models.

1 INTRODUCTION

Causal representation learning (CRL) aims to recover the latent variables and causal structures that give rise to high-dimensional observations, offering a principled perspective on modeling complex systems (Schölkopf et al., 2021; Ahuja et al., 2023). By explicitly capturing underlying generative mechanisms, CRL enhances interpretability and supports robust generalization across environments, particularly under distribution shifts induced by interventions (Peters et al., 2017; Pearl, 2000). Such capabilities make CRL particularly valuable in domains such as reinforcement learning and self-supervised learning, where uncovering latent causal factors can facilitate more general yet effective representations and enable more effective planning (Mitrovic et al., 2021; Zeng et al., 2024). While CRL holds clear advantages over correlation-based methods, yielding representations that are more robust and transferable, it remains difficult to realize these benefits in practice. This is largely due to the strong assumptions required for identifiability and the challenges associated with deploying existing models in realistic environments (Bing et al., 2024; Yao et al., 2025).

Leveraging changes in causal influences among latent variables has emerged as a promising strategy to enhance identifiability and improve estimation quality. Recent work in this direction has focused on developing theoretically grounded frameworks for identifiability, alongside practical methods tailored for real-world applications (Squires et al., 2023; Liu et al., 2022; Buchholz et al., 2023; Liu et al., 2024; Von Kügelgen et al., 2021; Brehmer et al., 2022; Ahuja et al., 2023; Varici et al., 2023; von Kügelgen et al., 2023). Underlying these methods is the core intuition that changes in causal influences introduce asymmetries, e.g., pre- and post-change behaviors, into the system, which provides valuable signals that help achieve identifiability. Based on this idea, prior works have established various identifiability results for restricted function classes over latent variable models, including, but not limited to linear Gaussian models (Liu et al., 2022; Buchholz et al., 2023), linear additive noise models (Squires et al., 2023; Chen et al., 2024; Jin & Syrgkanis, 2024), and polynomial models (Liu et al., 2024). More related work can be found in Sec. A. A deeper comparison with polynomial models in Liu et al. (2024) is provided in Sec. P.

054 **Remaining Challenges.** Despite this progress, several limitations pose difficulties for broader
 055 applicability. Theoretically, many existing identifiability results rely on strong assumptions, such
 056 as specific functional forms or distributional constraints, which may not hold in complex or poorly
 057 understood real-world systems. Empirically, due to the relatively strong assumption required for
 058 changes in causal influences in latent space, real-world applications that conform to these assumptions
 059 remain limited. As a result, many identifiability results are primarily evaluated on synthetic datasets,
 060 typically Causal3DIdent (Von Kügelgen et al., 2021). Although there have been promising attempts to
 061 adapt these identifiability results into effective methods for real-world data, particularly in biological
 062 data (Squires et al., 2023; Zhang et al., 2023) and climate data (Yao et al., 2024), further efforts are
 063 needed to extend CRL to a wider range of real-world scenarios.

064 **Contributions.** In this work, we aim to advance the study of leveraging changes in causal influences
 065 by contributing to both theory and practical applications. *On the theoretical side*, we introduce
 066 a nonparametric condition that characterizes changes in causal influences between latent causal
 067 variables. Under this condition and standard assumptions from nonlinear ICA (Hyvärinen & Morioka,
 068 2016; Hyvärinen et al., 2019; Khemakhem et al., 2020), we show that general latent additive noise
 069 models can be identified up to permutation and scaling. We further extend this result to a more
 070 realistic setting where only a subset of the latent causal variables undergoes changes, resulting in
 071 partial identifiability. **Notably, our analysis shows that the proposed nonparametric condition is both
 072 necessary and sufficient for identifiability under the nonlinear ICA framework, without additional
 073 constraints.** We also generalize these results to latent post-nonlinear models, which include additive
 074 noise models as a special case. *On the practical side*, we explore a novel real-world application:
 075 learning causal representations from human motion data. In this setting, the underlying latent causal
 076 system can be interpreted as dynamic motor control modules that govern human motion across
 077 different tasks (Gallego et al., 2017; Doyon & Benali, 2005; Taylor et al., 2006). This opens a new
 078 potential application for applying causal representation learning to complex human-centered data.

079 2 LATENT ADDITIVE NOISE MODELS WITH CHANGE IN CAUSAL INFLUENCES

080 We consider a general class of latent additive noise models, where the observed data \mathbf{x} is generated
 081 from a set of latent causal variables $\mathbf{z} \in \mathbb{R}^\ell$. These latent causal variables are causally influenced
 082 by latent noise terms $\mathbf{n} \in \mathbb{R}^\ell$, and their causal relationships are represented by a directed acyclic
 083 graph (DAG). Importantly, we do not assume a fixed graph structure over the latent causal variables,
 084 allowing for flexible modeling of their dependencies and applicability across different settings. To
 085 account for the change of causal influences between latent causal variables \mathbf{z} , which may arise from
 086 environmental or contextual factors, we introduce a surrogate variable \mathbf{u} . This variable plays a central
 087 role in capturing how changes in external conditions are reflected in the observed data $\mathbf{x} \in \mathbb{R}^\ell$. The
 088 interpretation of \mathbf{u} is application-dependent. In domain adaptation or generalization tasks, it may
 089 represent environmental factors that vary across domains. In time series forecasting (Mudelsee, 2019),
 090 \mathbf{u} can capture temporal indices reflecting evolving trends. In remote sensing (Rußwurm et al., 2020),
 091 it may encode geographic attributes such as longitude and latitude that influence observations.

092 **Data Generation Process.** More specifically, we parameterize the latent causal generative models by
 093 assuming \mathbf{n} follows an exponential family distribution given \mathbf{u} , and \mathbf{z} and \mathbf{x} are generated as follows:

$$094 p_{(\mathbf{T}, \eta)}(\mathbf{n} | \mathbf{u}) := \prod_i \frac{\exp(\sum_j T_{i,j}(n_i) \eta_{i,j}(\mathbf{u}))}{Z_i(\mathbf{u})}, \quad (1) \quad z_i := g_i^{\mathbf{u}}(\text{pa}_i) + n_i, \quad (2) \quad \mathbf{x} := \mathbf{f}(\mathbf{z}) + \boldsymbol{\varepsilon}. \quad (3)$$

095 In Eq. (1): $Z_i(\mathbf{u})$ is the normalizing constant, and $T_{i,j}(n_i)$ is the sufficient statistic for n_i , with its
 096 natural parameter $\eta_{i,j}(\mathbf{u})$ dependent on \mathbf{u} . We assume a two-parameter exponential family, following
 097 the formulation in Sorrenson et al. (2020). In Eq. (2): The term $g_i^{\mathbf{u}}(\text{pa}_i)$ shows how \mathbf{u} influences the
 098 mapping of parents pa_i to z_i . Specifically, \mathbf{u} modulates the function g_i , e.g., if g_i is modeled by a
 099 multilayer perceptron (MLP), \mathbf{u} adjusts the weights of the MLP. In Eq. (3): \mathbf{f} represents a nonlinear
 100 mapping from \mathbf{z} to \mathbf{x} , where $\boldsymbol{\varepsilon}$ is independent noise with density function $p_{\boldsymbol{\varepsilon}}(\boldsymbol{\varepsilon})$, with $\boldsymbol{\varepsilon} \in \mathbb{R}^\ell$.

101 The surrogate variable \mathbf{u} captures distributional shifts in the latent noise variables, as reflected by
 102 changes in the natural parameters across \mathbf{u} in Eq.(1). This enables the adaptation of identifiability
 103 results from nonlinear ICA. More importantly, \mathbf{u} also models changes in the underlying causal
 104 influences from parent variables to each latent causal variable. In particular, as shown in Eq.(2), \mathbf{u}
 105 modulates the functional form $g_i^{\mathbf{u}}$, effectively characterizing how the parents pa_i influence z_i . By

108 imposing appropriate constraints on g_i^u , we can identify a sufficient **and necessary** condition for
 109 changes in the causal influences among latent variables (see assumption (iv)), under nonlinear ICA.
 110

111 3 IDENTIFIABILITY RESULTS OF LATENT ADDITIVE NOISE MODELS

114 In this section, we analyze identifiability in latent additive noise models by leveraging changes in
 115 causal influences across environments. We first present the complete identifiability result in Section 3.1,
 116 then extend to partial identifiability result in Section 3.2, addressing more general and realistic
 117 scenarios in which only a subset of causal influences among latent variables undergo change. Finally,
 118 we generalize both complete and partial results to latent post-nonlinear models in Section 3.3.

119 3.1 COMPLETE IDENTIFIABILITY RESULT OF LATENT ADDITIVE NOISE MODELS

121 We explicitly introduce the surrogate variable u as described in the data generation process defined
 122 by Eqs. (1)–(3). This mechanism allows us to formulate key identifiability conditions in terms of u .
 123 We now present the main identifiability result as follows:

124 **Theorem 3.1.** *Suppose latent causal variables z and the observed variable x follow the causal data
 125 generative models defined in Eqs. (1) - (3). Assume the following holds:*

- 127 (i) *The noise probability density function $p_\varepsilon(\varepsilon)$ does not depend on u and is always finite. The
 128 set $\{x \in \mathcal{X} | \varphi_\varepsilon(x) = 0\}$ has measure zero (i.e., has at most countable number of elements),
 129 where φ_ε is the characteristic function of the density p_ε ,*
- 130 (ii) *The function f in Eq. (3) is smooth and invertible,*
- 132 (iii) *There exist $2\ell + 1$ values of u , i.e., $u_0, u_1, \dots, u_{2\ell}$, such that the matrix*

$$133 \quad \mathbf{L} = (\eta(u = u_1) - \eta(u = u_0), \dots, \eta(u = u_{2\ell}) - \eta(u = u_0)) \quad (4)$$

135 *of size $2\ell \times 2\ell$ is invertible, where $\eta(u) = [\eta_{i,j}(u)]_{i,j}$,*

- 137 (iv) *The function class of g_i^u satisfies the following condition: there exists u_i , such that, for all
 138 parent nodes $z_j \in \text{pa}_i$ of z_i , $\frac{\partial g_i^{u=u_i}(p_{a_i})}{\partial z_j} = 0$.*

140 *Then each true latent variable z_i is linearly related to exactly one estimated latent variable \hat{z}_j , as
 141 $z_i = s_j \hat{z}_j + c_i$, for some constants s_j and c_i , where all \hat{z}_j are learned by matching the true data
 142 distribution $p(x | u)$.*

144 **Proof sketch** First, we show that the latent noise variables are identifiable up to scaling and
 145 permutation, leveraging recent progress in nonlinear ICA (supported by assumptions (i)–(iii)) and
 146 the structure of additive noise models (Eq. 2, Lemma B.2). Second, building on this, the true latent
 147 causal variables z are related to the estimated ones through an invertible map that is independent
 148 of the auxiliary variable u , by the additive noise model structure (Lemma B.1). Finally, using the
 149 changes in causal influences among z (assumption (iv)), this invertible map reduces to permutation
 150 and scaling. Full details are provided in Appendix C.

151 Assumptions (i)–(iii) are originally developed by nonlinear ICA (Hyvärinen & Morioka, 2016;
 152 Hyvärinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020), and have also been adopted
 153 in several recent works on CRL (may with different forms) Liu et al. (2022; 2024); Zhang et al.
 154 (2024); Ng et al. (2025). It is worth noting that the polynomial setting in Liu et al. (2024) can be seen
 155 as a special case of our *additive noise models*, with assumption (iv) providing the key identifiability
 156 condition (See Appendix P for a detailed comparison).. We here unitize these assumptions considering
 157 the following two main reasons. 1) These assumptions have been verified to be practicable in diverse
 158 real-world application scenarios (Kong et al., 2022; Xie et al., 2022b; Wang et al., 2022). 2) By
 159 extending the results of Sorrenson et al. (2020) to our setting¹, we can identify the latent noise
 160 variables up to permutation and scaling, which in turn facilitates the identifiability of the latent causal

161 ¹This extension requires addressing a technical gap introduced by Eq. (2), specifically ensuring that (i) the
 162 mapping from n to x remains invertible, and (ii) u does not compromise the identifiability of n .

variables. it suffices to know that the number of environments exceeds $2\ell + 1$, which is somewhat more lenient than requiring the exact number, as is the case in some prior works.

Assumption (iv), originally introduced by this work, provides a condition that characterizes the types of change in causal influences contributing to identifiability. Loosely speaking, this assumption ensures that the causal influence from parent nodes does not include components that remain invariant across \mathbf{u} , as such invariance would lead to unidentifiability (See Remark 3.2 for more details). This is achieved by constraining the gradient of $g_i^{\mathbf{u}}$ with respect to z_j vanished at the point \mathbf{u}_i , thereby preventing the invariance. From a high-level perspective, this closely aligns with the notion of perfect interventions discussed in prior works (von Kügelgen et al., 2023; Buchholz et al., 2023; Wendong et al., 2023), thereby ensuring no terms that link z_i and its parent node remain unchanged.

Assumption (iv), for instance, could arise in the analysis of cell imaging data (i.e., \mathbf{x}), where various batches of cells are exposed to different small-molecule compounds (i.e., \mathbf{u}). each latent variable (i.e., z_i) represents the concentration level of a distinct group of proteins, with protein-protein interactions (e.g., causal influences among z_i) playing a significant role (Chandrasekaran et al., 2021). Research has revealed that the mechanisms of action of small molecules exhibit variations in selectivity (Scott et al., 2016), which can profoundly affect protein-protein interactions (i.e., $g_i^{\mathbf{u}}$). The assumption (iv) requires the existence of a specific $\mathbf{u} = \mathbf{u}_i$, such that the original causal influences can be disconnected. This parallels cases where small molecule compounds disrupt or inhibit protein-protein interactions (PPIs), effectively causing these interactions to cease (Arkin & Wells, 2004). Such molecules are commonly referred to as inhibitors of PPIs. Developing small molecule inhibitors for PPIs is a key focus in drug discovery (Lu et al., 2020; Bojadzic et al., 2021). Additionally, gene editing technologies like CRISPR/Cas9 can effectively 'knock out' a protein or gene, leading to complete inhibition. Similarly, receptor antagonists can achieve full inhibition by completely blocking the activity of a receptor.

We emphasize that assumption (iv) is our key contribution, formulating changes in causal influence as constraints on the function class and thus distinguishing our work from previous studies. Specifically,

Remark 3.2 (Types of Changes in Causal Influences That Facilitate Identifiability). *Not all changes in causal influences lead to identifiability. Assumption (iv) specifies the types of changes in causal influences among latent causal variables contributing to identifiability.*

To clarify this point, consider the following example.

Example 3.3. Let $z_2 := \text{MLP}^{\mathbf{u}}(z_1) + n_2$, where $\text{MLP}^{\mathbf{u}}(z_1)$ can be decomposed as $\text{MLP}^{\mathbf{u}}(z_1) = \text{MLP}_1^{\mathbf{u}}(z_1) + \text{MLP}_2(z_1)$, with $\text{MLP}_1^{\mathbf{u}}(z_1)$ being the \mathbf{u} -dependent component and $\text{MLP}_2(z_1)$ being a z_1 -dependent term invariant across \mathbf{u} . Both $\text{MLP}^{\mathbf{u}}$ and $\text{MLP}_1^{\mathbf{u}}$ belong to the same function class.

In this example, if assumption (iv) is violated, z_2 becomes unidentifiable. While the causal influence from z_1 to z_2 changes across \mathbf{u} due to the \mathbf{u} -dependent term $\text{MLP}_1^{\mathbf{u}}(z_1)$, the invariant term $\text{MLP}_2(z_1)$ induces a invariant causal link between z_1 and z_2 across \mathbf{u} , which leads to unidentifiable result. Specifically, the invariant $\text{MLP}_2(z_1)$ can be absorbed into the generative mapping \mathbf{f} , resulting in an alternative representation $z'_2 := \text{MLP}_1^{\mathbf{u}}(z_1) + n_2$, which would generate the same observational data. That is, the original data generation process can be equivalently written as $\mathbf{x} = \mathbf{f}(z_1, z_2) = \mathbf{f} \circ \mathbf{f}_1(z_1, z'_2)$ ², where $\mathbf{f}_1(z_1, z'_2) = [z_1, z'_2 + \text{MLP}_2(z_1)]$. Consequently, the model remains unidentifiable. A formal statement of this result is given in Theorem 3.4(b). The reason of this unidentifiability is the presence of the invariant $\text{MLP}_2(z_1)$, which maintains a constant causal influence of z_1 on z_2 across \mathbf{u} . Assumption (iv) mitigates this issue by eliminating such invariant component. It does so by constraining the function class satisfies: $\partial \text{MLP}^{\mathbf{u}=\mathbf{u}_2}(z_1) / \partial z_1 = 0$ and $\partial \text{MLP}_1^{\mathbf{u}=\mathbf{u}_2}(z_1) / \partial z_1 = 0$. As a result, $\text{MLP}_2(z_1) / \partial z_1 = 0$, which implies that $\text{MLP}_2(z_1)$ must be a constant, removing z_1 -dependent term and thus ensuring identifiability.

3.2 PARTIAL IDENTIFIABILITY RESULT OF LATENT ADDITIVE NOISE MODELS

In practice, satisfying assumption (iv) for every causal influence from parent nodes to each child node can be challenging. When this assumption is violated for some nodes, full identifiability may not be achievable. Nevertheless, we can still derive partial identifiability results, as detailed below:

²For simplicity, we here omit the noise term ε . This omission does not affect the following analysis.

216 **Theorem 3.4.** Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal
 217 generative models defined in Eqs. (1) - (3), and the assumptions (i)-(iii) are satisfied, for each z_i ,
 218

219 (a) if condition (iv) is satisfied, then the true z_i is related to the recovered one \hat{z}_j , obtained
 220 by matching the true marginal data distribution $p(\mathbf{x}|\mathbf{u})$, by the following relationship:
 221 $z_i = s_j \hat{z}_j + c_j$, where s_j denotes scaling, c_j denotes a constant,
 222 (b) if condition (iv) is not satisfied, then z_i is unidentifiable.

224 **Proof sketch** As outlined in the proof sketch for Theorem 3.1, in the second step, without invoking
 225 assumption (iv), we can establish an invertible mapping between the true latent causal variables \mathbf{z}
 226 and the estimated ones. Building on this mapping, when the condition in (a) is satisfied, we can
 227 directly prove (a). Conversely, for (b), we can establish the proof of (b), by removing the terms
 228 corresponding to the unchanged causal influences, as illustrated in Example 3.3. Full details are
 229 provided in Appendix D.

230 **Remark 3.5.** [Sufficiency and Necessity of condition (iv)] The contrapositive of Theorem 3.4 (b),
 231 which asserts that if z_i is identifiable, then condition (iv) is satisfied, serves to establish the necessity
 232 of condition (iv) for achieving complete identifiability. This insight, coupled with Theorem 3.1,
 233 underscores that condition (iv) is not only sufficient but also necessary for the identifiability result,
 234 under assumptions (i)-(iii), without additional assumptions.

235 **Remark 3.6** (Parent nodes do not impact children). The implications of Theorem 3.4 ((a) and (b))
 236 suggest that z_i remains identifiable, even when its parent nodes are unidentifiable. This is primarily
 237 because regardless of whether assumption (iv) is met, assumptions (i)-(iii) ensure that latent noise
 238 variables \mathbf{n} can be identified. In the context of additive noise models (or post-nonlinear models
 239 discussed in the next section), the mapping from \mathbf{n} to \mathbf{z} is invertible. Therefore, with identifiable noise
 240 variables, all necessary information for recovering \mathbf{z} is contained within \mathbf{n} . Furthermore, assumption
 241 (iv) is actually transformed into relations between each node and the noise of its parent node, as stated
 242 in Lemma B.3. As a result, z_i could be identifiable, even when its parent nodes are unidentifiable.

243 **Remark 3.7** (Subspace identifiability). The implications of Theorem 3.4 suggest the theoretical
 244 possibility of partitioning the entire latent space into two distinct subspaces: latent invariant space
 245 containing *invariant* latent causal variables and latent *variant* space comprising variant latent causal
 246 variables. This insight could be particularly valuable for applications that prioritize learning invariant
 247 latent variables to adapt to changing environments, such as domain adaptation or generalization (Kong
 248 et al., 2022). While similar findings have been explored in latent polynomial models in (Liu et al.,
 249 2024), this work demonstrates that such results also apply to more flexible additive noise models.

250 **Summary** This work decomposes causal mechanisms in latent space into two components: one
 251 associated with latent noise variables and the other capturing causal influences from parent nodes. By
 252 analyzing the changes of the distributions of latent noise variables, formalized by assumption (iii) in
 253 Theorem 3.1, we show that the latent noise variables \mathbf{n} can be identified. However, identifying \mathbf{n} alone
 254 does not ensure component-wise identifiability of the latent causal variables \mathbf{z} , as demonstrated by
 255 Theorem 3.4 (b). To address this, we further examine changes in the causal influences. Specifically, g_i^u
 256 in Eq. (2), assumption (iv) has been proven to be a sufficient and necessary condition for component-
 257 wise identifiability of \mathbf{z} , supported by Theorem 3.1 and Theorem (a), under assumptions (i)-(iii).
 258 Finally, we extend our theory to a more practical setting where only a subset of the latent variables
 259 satisfies assumption (iv). In this case, we achieve partial identifiability, as shown in Theorem 3.4 (a).

260 3.3 EXTENSION TO LATENT POST-NONLINEAR MODELS

262 While latent additive noise models, as defined in Eq. (2), are general, their capacities are still limited,
 263 e.g., requiring additive noise. In this section, we generalize latent additive noise models to latent
 264 post-nonlinear models (Zhang & Hyvärinen, 2009; Uemura et al., 2022; Keropyan et al., 2023), which
 265 generally offer more powerful expressive capabilities than latent additive noise models. To this end,
 266 we replace Eq. (2) by the following:

$$\bar{z}_i := \bar{g}_i(z_i) = \bar{g}_i(g_i^u(p_{a_i}) + n_i), \quad (5)$$

267 where \bar{g}_i denotes a invertible post-nonlinear mapping. It includes the latent additive noise models Eq.
 268 (2) as a special case in which the nonlinear distortion \bar{g}_i does not exist. Based on this, we can identify
 269 $\bar{\mathbf{z}}$ up to component-wise invertible nonlinear transformation as follows:

270 **Corollary 3.8.** Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal
 271 generative models defined in Eqs. (1), (5) and (3). Assume that conditions (i) - (iv) in Theorem 3.1
 272 hold, then each true latent variable \bar{z}_i is related to exactly one estimated latent variable \hat{z}_j , which
 273 is learned by matching the true marginal data distribution $p(\mathbf{x}|\mathbf{u})$, by the following relationship:
 274 $\bar{z}_i = M_j(\hat{z}_j) + c_j$, where M_j and c_j denote a invertible nonlinear mapping and a constant, respectively.
 275
 276

277 **Proof sketch** The proof proceeds intuitively as follows. Since each function \bar{g}_i in Eq. (5) is
 278 invertible, we can define a new invertible function by composing \mathbf{f} with $\bar{\mathbf{g}}$, component-wise via \bar{g}_i .
 279 This composition preserves invertibility and allows us to directly apply Theorem 3.1, yielding the
 280 stated identifiability result. Full details are provided in Appendix E..
 281
 282

Similar to Theorem 3.4, we have partial identifiability result:

283 **Corollary 3.9.** Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal
 284 generative models defined in Eqs. (1), (5) and (3). Under the condition that the assumptions (i)-(iii)
 285 are satisfied, for each \bar{z}_i , (a) if it is a root node or condition (iv) is satisfied, then the true \bar{z}_i is related
 286 to the recovered one \hat{z}_j , obtained by matching the true marginal data distribution $p(\mathbf{x}|\mathbf{u})$, by the
 287 following relationship: $\bar{z}_i = M_j(\hat{z}_j) + c_j$, where M_j denotes a invertible mapping, c_j denotes a
 288 constant, (b) if condition (iv) is not satisfied, then \bar{z}_i is unidentifiable.
 289

290 **Proof sketch** Again, since the function \bar{g}_i is invertible defined in Eq. (5) and \mathbf{f} is invertible in
 291 theorem 3.4, we can use the result of theorem 3.4 (b) to conclude the proof. Refer to Appendix F.

292 **Remark 3.10** (Sharing Properties). Corollary 3.9 establishes that the properties outlined in Theorem
 293 3.4, including remark 3.5 to 3.7, remain applicable in latent post-nonlinear causal models.
 294

4 LEARNING LATENT ADDITIVE NOISE MODELS

295 In this section, we translate our theoretical findings into a novel method for learning latent causal
 296 models. Our primary focus is on learning additive noise models, as extending the method to latent
 297 post-nonlinear models is straightforward, simply involving the utilization of invertible nonlinear
 298 mappings. Following previous work in (Liu et al., 2022), due to permutation indeterminacy in latent
 299 space, we can naturally enforce a causal order $z_1 > z_2 > \dots > z_\ell$ without specific semantic information.
 300 This does not imply that we require knowledge of the true causal order, refer to Appendix G for more
 301 details. With guarantee from Theorem 3.1, each variable z_i can be imposed to learn the corresponding
 302 latent variables in the correct causal order. As a result, we formulate a prior model as follows:
 303

$$304 p(\mathbf{z}|\mathbf{u}) = \prod_{i=1}^{\ell} p(z_i|\mathbf{z}_{<i} \odot \mathbf{m}_i(\mathbf{u}), \mathbf{u}), = \prod_{i=1}^{\ell} \mathcal{N}(\mu_{z_i}(\mathbf{z}_{<i} \odot \mathbf{m}_i(\mathbf{u}), \mathbf{u}), \delta_{z_i}^2(\mathbf{z}_{<i} \odot \mathbf{m}_i(\mathbf{u}), \mathbf{u})), \quad (6)$$

305 where we focus on latent Gaussian noise variables, to satisfy the exponential family assumption
 306 in Eq. (1) and naturally allow the implementation of the reparameterization trick. Moreover, we
 307 introduce additional vectors $\mathbf{m}_i(\mathbf{u})$, by enforcing sparsity on $\mathbf{m}_i(\mathbf{u})$ and the component-wise product
 308 \odot , which aligns with assumption (iv) and facilitates learning the latent causal graph structure. In our
 309 implementation, we impose the L1 norm, though other methods may also be flexible, e.g., sparsity
 310 priors (Carvalho et al., 2009; Liu et al., 2019). We employ a variational posterior to approximate the
 311 true posterior $p(\mathbf{z}|\mathbf{x}, \mathbf{u})$:
 312

$$313 q(\mathbf{z}|\mathbf{u}, \mathbf{x}) = \prod_{i=1}^{\ell} q(z_i|\mathbf{z}_{<i} \odot \mathbf{m}_i, \mathbf{u}, \mathbf{x}), = \prod_{i=1}^{\ell} \mathcal{N}(\mu_{z_i}(\mathbf{z}_{<i} \odot \mathbf{m}_i(\mathbf{u}), \mathbf{u}, \mathbf{x}), \delta_{z_i}^2(\mathbf{z}_{<i} \odot \mathbf{m}_i(\mathbf{u}), \mathbf{u}, \mathbf{x})), \quad (7)$$

314 where the variational posterior shares the same parameter \mathbf{m}_i to limit both the prior and the variational
 315 posterior, maintaining the same latent causal graph structure. In addition, we enforce a Gaussian
 316 posterior conditioned on the parent nodes, to align with the prior model and model assumption in
 317 Eqs. (1) and (2). Finally, we arrive at the objective:
 318

$$319 \max \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \mathbf{u})}(\log p(\mathbf{x}|\mathbf{z}, \mathbf{u})) - D_{KL}(q(\mathbf{z}|\mathbf{x}, \mathbf{u})||p(\mathbf{z}|\mathbf{u})) - \gamma \sum_i \|\mathbf{m}_i(\mathbf{u})\|_1^1, \quad (8)$$

320 where D_{KL} denotes the KL divergence, γ denotes a hyperparameters to control the sparsity of latent
 321 causal structure. The objective is known as the evidence lower bound (ELBO), which serves as a
 322

lower bound of the log-likelihood. Under certain conditions, it can match the true data distribution, which is one of the requirements for our identifiability guarantee in Theorem 3.1. Moreover, the variational estimator is consistent in the sense that, as the number of data samples grows, the learned variational posterior converges to the true posterior³, ensuring reliable recovery of the underlying latent variables. Implementation details can be found in Appendix J.

5 EXPERIMENTS

Synthetic Data We first conduct experiments on synthetic data, generated by the following process: we divide latent noise variables into M segments, where each segment corresponds to one value of \mathbf{u} as the segment label. Within each segment, the location and scale parameters are respectively sampled from uniform priors. After generating latent noise variables, we generate latent causal variables, and finally obtain the observed data samples by an invertible nonlinear mapping on the causal variables. Details can be found in H.

We evaluate our proposed method, implemented with multilayer perceptrons (MLPs) and hence referred to as MLPs, to model the causal relations among latent causal variables, against established models: vanilla VAE (Kingma & Welling, 2013), β -VAE (Higgins et al., 2017), identifiable VAE (iVAE) (Khemakhem et al., 2020), and latent polynomial models (Polynomials) (Liu et al., 2024). Notably, the iVAE demonstrates the capability to identify true independent noise variables, subject to certain conditions, with permutation and scaling. Polynomials, while sharing similar assumptions with our proposed method, are prone to certain limitations. Specifically, they may suffer from numerical instability and face challenges due to the exponential growth in the number of terms. While the β -VAE is popular in disentanglement tasks due to its emphasis on independence among recovered variables, it lacks robust theoretical backing. Our evaluation focuses on two metrics: the Mean of the Pearson Correlation Coefficient (MPC) to assess performance, and the Structural Hamming Distance (SHD) to gauge the accuracy of the latent causal graphs. The result for iVAE is obtained by applying the method from (Huang et al., 2020) to the latent variables estimated by iVAE. Figure 1 illustrates the comparative performances of various methods, e.g., VAE and iVAE, across different models, e.g., models with different dimensions of latent variables. Based on MPC, the proposed method demonstrates satisfactory results, thereby supporting our identifiability claims. Additionally, Figure 2 presents how the proposed method performs when condition (iv) is not met. It is evident that condition (iv) is a sufficient **and necessary** condition characterizing the types of distribution shifts for identifiability in the context of latent additive noise models. These empirical findings align with our partial identifiability results. More results on high-dimensional synthetic image data can be found in Appendix L.

Post-Nonlinear Models In the above experiments, we obtain the observed data samples as derived from a random invertible nonlinear mapping applied to the latent causal variables. The nonlinear mapping can be conceptualized as a combination of an invertible transformation and the specific invertible mapping, \bar{g}_i . From this perspective, the results depicted in Figures 1 and 2 also demonstrate the effectiveness of the proposed method in recovering the variables z_i in latent post-nonlinear models Eq. (5), as well as the associated latent causal structures. Consequently, these results also serve to corroborate the assertions in Corollary 3.8 and 3.9, particularly given that \bar{g}_i are invertible.

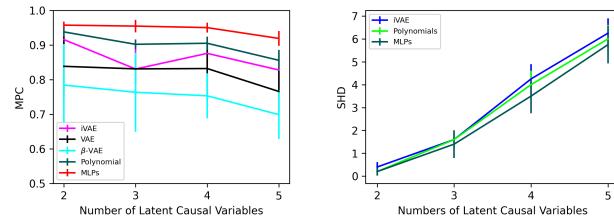


Figure 1: Performance comparison under latent additive Gaussian noise. Left: MPC scores for different methods, where the proposed MLPs method achieves the best performance, supporting our theoretical results. Right: SHD scores of the proposed method, Polynomials (Liu et al., 2024), and iVAE combined with the method from Huang et al. (2020).

³More strictly, this holds under the assumption that the variational posterior has sufficient capacity to represent the true posterior, and in the limit of the optimal ELBO solution. Note that the sparsity regularization term with weight γ may introduce bias, therefore, strict consistency holds when γ is sufficiently small, such that the regularized solution remains close to the unregularized ELBO optimum.

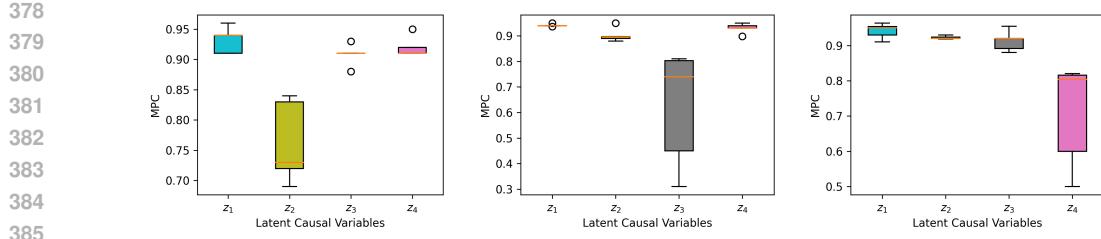


Figure 2: Performance of the proposed method under scenarios where condition (iv) is not satisfied regarding the causal influence of $z_1 \rightarrow z_2$ (consequently, $z_2 \rightarrow z_3$, and $z_3 \rightarrow z_4$). The results are in agreement with partial identifiability in Theorem 3.4, i.e., roughly speaking, latent variables that satisfy Condition (iv) are identifiable, while those that do not are not identifiable.

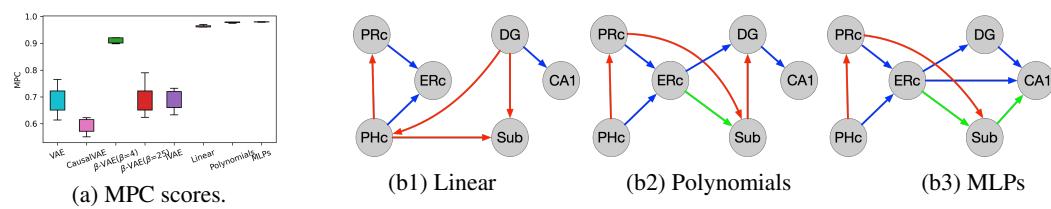


Figure 3: (a) MPC scores achieved by different methods. Notably, the proposed MLPs achieve an outstanding average MPC of 0.981, outperforming polynomials (0.977) and linear models (0.965). (b) Recovered latent causal structures using (b1) latent linear models, (b2) latent polynomials, and (b3) latent MLPs. Results for linear models and polynomials are sourced from (Liu et al., 2024). Blue edges align with known anatomical connectivity, red edges violate anatomical constraints, and green edges are reversed directions.

Semi-Synthetic fMRI Data Building on the works in Liu et al. (2022; 2024), we extended the application of the proposed method to the fMRI hippocampus dataset (Laumann & Poldrack, 2015). This dataset comprises signals from six distinct brain regions: perirhinal cortex (PRC), parahippocampal cortex (PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and CA3/Dentate Gyrus (DG). These signals, recorded during resting states, span 84 consecutive days from a single individual. Each day's data contributes to an 84-dimensional vector, e.g., \mathbf{u} . Our focus is on uncovering latent causal variables, therefore, we treat these six brain signals as such. Specifically, we assume that they undergo a random nonlinear mapping into the observable space, after which suitable methods can be applied to recover them.

Figure 3 presents the comparative results yielded by the proposed method alongside various other methods. Notably, the VAE, β -VAE, and iVAE models presume the independence of latent variables, rendering them incapable of discerning the underlying latent causal structure. Conversely, other methods, including latent linear models, latent polynomials, and latent MLPs, are able to accurately recover the latent causal structure with guarantees. We also include CausalVAE Yang et al. (2021) as a baseline. Among these, the MLP models outperform the others in terms of MPC. In the study by Liu et al. (2024), it is noted that linear relationships among the examined signals tend to be more prominent than nonlinear ones. This observation might lead to the presumption that linear models would be effective. However, this is not necessarily the case, as these models can still yield suboptimal outcomes. In contrast, MLPs demonstrate superior performance in term of MPC, particularly when compared to polynomial models, which are prone to instability and exponential growth issues. The effectiveness of MLPs is further underscored by their impressive average MPC score of 0.981. It is important to emphasize that while the improvement in MPC over the proposed method (also achieving 0.981) may appear marginal, compared to prior methods such as linear models (MPC 0.965) and polynomial models (MPC 0.977), this seemingly "slight" gain in MPC corresponds to a substantial difference in the recovered graph structures, which is visually illustrated in Figure 3 (b3). Moreover, we found that CausalVAE consistently produces fully connected graphs across all different random seeds, resulting in an SHD of 9.0 ± 0.0 . MLP-based model achieves an SHD of 4.75 ± 0.22 , outperforming the polynomial model (5.5 ± 0.25) and the linear model (5.0 ± 0.28). Here, we note that although the polynomial model may underperform the linear model on average, in this particular example its ability to capture non-linear relationships allows it to achieve a lower SHD.

432
433
434
435
436
437
438
439

Figure 4: Some sample examples of the data we used.

Real Human Motion Dataset In the final experiment, we apply the proposed method to a potential real-world application: human motion analysis. The human nervous system adapts flexibly to different motor tasks (e.g., walking, running, lifting, or fine hand manipulation). In this setting, the observed data, i.e., human skeleton poses captured via motion capture (i.e., \mathbf{x}), is influenced by different motor tasks \mathbf{u} (Cappellini et al., 2006; Yuan et al., 2015). It is natural to consider that human motion is governed by a set of underlying latent variables (i.e., \mathbf{z}) (Schmidt et al., 2018; Svoboda & Li, 2018; Taylor et al., 2006; Gallego et al., 2017). Each latent variable z_i capture patterns analogous to motor neuron activation dynamics (Gallego et al., 2017). The interactions among these latent variables capture the coordination dynamics between control modules involved in executing the task. Crucially, previous studies demonstrate that these interactions are task-dependent and reconfigurable (i.e., $g_i^{\mathbf{u}}$) (Doyon & Benali, 2005; Bizzi et al., 2008; d’Avella et al., 2003; Rehme et al., 2013).

For example, compared to gait velocity in the single-task condition, the networks associated with gait velocity in the dual-task condition were associated with greater functional connectivity in supplementary motor and prefrontal regions (Yuan et al., 2015). Dynamic causal modeling was applied for neuronal states of the regions of interest the motor task time series to estimate endogenous and context-dependent effective connectivity (Rehme et al., 2013). Therefore, modeling human motion with latent variables whose interaction strengths vary across motor tasks offers a biologically plausible framework for capturing the flexibility and task-specific nature of human motor control.

We use the Human3.6M dataset, which provides a diverse set of 17 motion tasks such as discussion, smoking, taking photos, and talking on the phone. Following pre-processing steps from prior works (see Appendix M.1), we construct a filtered subset comprising 7 subjects and 15 motion tasks, resulting in a total of 105 distinct values of the condition variable \mathbf{u} . For each condition, we obtain 1,040 samples. Each sample is represented as a 2×16 matrix, where 2 denotes the spatial coordinates, and 16 corresponds to skeletal keypoints, such as joints of the head, shoulders, elbows, and knees. Figure 4 shows some samples we used in experiments after preprocessing.

Due to the absence of ground-truth semantics for latent variables, we evaluate the proposed method by intervening on each latent variable and observing the corresponding changes in the output data. This allows us to infer the potential semantic meaning associated with each latent factor. We emphasize that precisely disentangling latent variables remains a challenging task, even in synthetic settings. Therefore, our focus is on identifying dominant changes in the observed data. Together with the estimated adjacency matrix in Figure 5, we can observe from Figures 6 and 7 that the proposed method obtains potential latent causal relations, including from the shoulder joint to the wrist joint, and from the elbow to the wrist joint. Such results tend to be plausible, as they are closely aligned with the dynamic model of intersegmental limb interactions. For example, it has been demonstrated that the nervous system predicts and compensates for interaction torques arising from shoulder and elbow movements to adjust wrist muscle activity

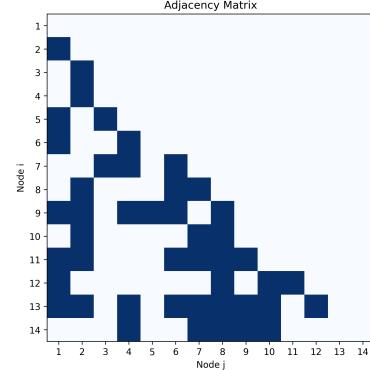
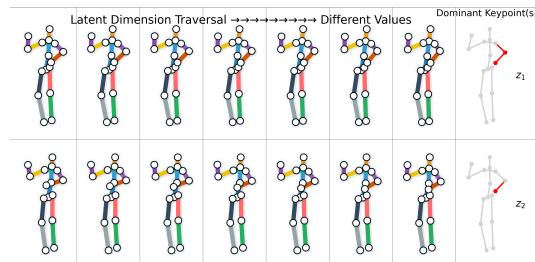


Figure 5: The estimated adjacency matrix by the proposed method.

Figure 6: Intervention results for z_1 and z_2 , which provide evidence of the causal relationship from the elbow to the wrist in the right hand.

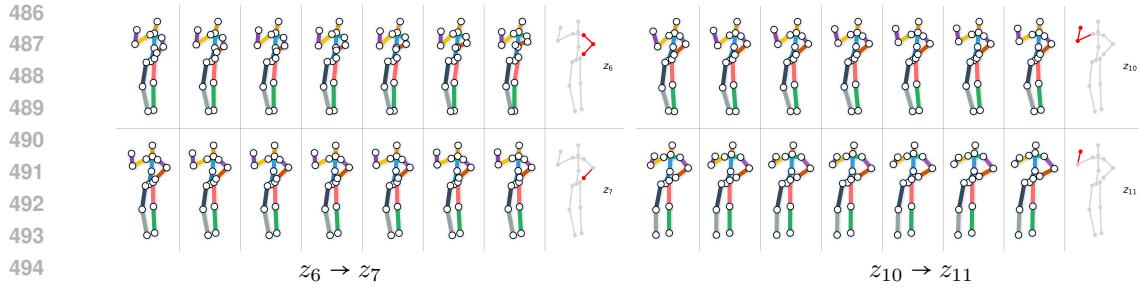


Figure 7: Visualization of selected latent variable interventions. Intervention on z_6 leads to changes from the shoulder joint to the wrist joint, whereas intervention on z_7 affects only the wrist joint, indicating the causal relationship from the shoulder to the wrist. The right reveals the causal relationship from the elbow to the wrist.

reflexively, reflecting an internal model of limb dynamics (Kurtzer et al., 2008). In particular, they showed that elbow muscle activity precedes and modulates wrist muscle responses, indicating that the nervous system integrates information about elbow joint dynamics to coordinate distal muscle control effectively. See Appendix M for details.

6 CONCLUSION

This study makes a significant contribution by establishing a precise condition for identifying the types of distribution shifts necessary for the identifiability of latent additive noise models. We also introduce partial identifiability, applicable in cases where only a subset of distribution shifts satisfies this condition. Furthermore, we extend the results to latent post-nonlinear causal models, thereby broadening the theoretical scope. These theoretical insights are translated into a practical method, and we conduct extensive empirical testing across a wide range of datasets. Importantly, we demonstrate a promising application in learning causal representations for human motion data. We hope that this work paves the way for the development of practical methods for learning causal representations.

7 LIMITATIONS AND DISCUSSIONS

It should be noted that our framework relies on the Assumptions (i)-(iv), as well as the generative model defined in Eqs. (1)–(3), which are inherently untestable in practice. This limitation is not unique to our work but is a common challenge across the causal representation learning community. Precisely because of this, there is strong motivation to continue relaxing such assumptions and extending the scope of current theoretical results, which is what this work aims to do. In addition, empirical evaluations on real data provide evidence that our approach is effective, demonstrating that the insights derived from our theoretical analysis can meaningfully guide practical modeling, despite the untestable nature of the underlying assumptions.

540 **Ethics Statement.** This work follows the ICLR Code of Ethics. We have carefully considered
 541 potential ethical implications. No sensitive data or identifiable information is used, and we believe
 542 the societal risks are minimal.

543
 544 **Reproducibility Statement.** Our experimental setup, hyperparameters, and implementation details
 545 are described in the appendix. We will release code and preprocessed data for replication after
 546 publication.

547
 548 **REFERENCES**

550 Jeffrey Adams, Niels Hansen, and Kun Zhang. Identification of partially observed linear causal
 551 models: Graphical conditions for the non-gaussian and heterogeneous cases. In *NeurIPS*, 2021.

552 Kartik Ahuja, Jason S Hartford, and Yoshua Bengio. Weakly supervised representation learning with
 553 sparse perturbations. *Advances in Neural Information Processing Systems*, 35:15516–15528, 2022.

554
 555 Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representation
 556 learning. In *ICML*, pp. 372–407. PMLR, 2023.

557
 558 Animashree Anandkumar, Daniel Hsu, Adel Javanmard, and Sham Kakade. Learning linear bayesian
 559 networks with latent variables. In *ICML*, pp. 249–257, 2013.

560
 561 Michelle R Arkin and James A Wells. Small-molecule inhibitors of protein–protein interactions:
 562 progressing towards the dream. *Nature reviews Drug discovery*, 3(4):301–317, 2004.

563
 564 Simon Bing, Tom Hochsprung, Jonas Wahl, Urmi Ninad, and Jakob Runge. Invariance & causal
 565 representation learning: Prospects and limitations. *Transactions on Machine Learning Research*,
 566 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=1pOC6s4BcM>.

567
 568 Emilio Bizzi, Vincent CK Cheung, Andrea d’Avella, Philippe Saltiel, and Matthew Tresch. Combining
 569 modules for movement. *Brain research reviews*, 57(1):125–133, 2008.

570
 571 Damir Bojadzic, Oscar Alcazar, Jinshui Chen, Sung-Ting Chuang, Jose M Condor Capcha, Lina A
 572 Shehadeh, and Peter Buchwald. Small-molecule inhibitors of the coronavirus spike: Ace2 protein–
 573 protein interaction as blockers of viral attachment and entry for sars-cov-2. *ACS infectious diseases*,
 574 7(6):1519–1534, 2021.

575
 576 Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco Cohen. Weakly supervised causal representa-
 577 tion learning. *arXiv preprint arXiv:2203.16437*, 2022.

578
 579 Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, and
 580 Pradeep Ravikumar. Learning linear causal representations from interventions under general
 581 nonlinear mixing. *arXiv preprint arXiv:2306.02235*, 2023.

582
 583 Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, and Kun Zhang. Triad constraints for learning
 584 causal structure of latent variables. In *NeurIPS*, 2019.

585
 586 Germana Cappellini, Yuri P Ivanenko, Richard E Poppele, and Francesco Lacquaniti. Motor patterns
 587 in human walking and running. *Journal of neurophysiology*, 95(6):3426–3437, 2006.

588
 589 Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling sparsity via the horseshoe. In
 590 *Artificial intelligence and statistics*, pp. 73–80. PMLR, 2009.

591
 592 Srinivas Niranj Chandrasekaran, Hugo Ceulemans, Justin D Boyd, and Anne E Carpenter. Image-
 593 based profiling for drug discovery: due for a machine-learning upgrade? *Nature Reviews Drug
 594 Discovery*, 20(2):145–159, 2021.

595
 596 Tianyu Chen, Kevin Bello, Francesco Locatello, Bryon Aragam, and Pradeep Ravikumar. Identifying
 597 general mechanism shifts in linear causal representations. *Advances in Neural Information
 598 Processing Systems*, 37:42405–42429, 2024.

599
 600 Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi. Combinations of muscle synergies in the
 601 construction of a natural motor behavior. *Nature neuroscience*, 6(3):300–308, 2003.

594 Julien Doyon and Habib Benali. Reorganization and plasticity in the adult brain during learning of
 595 motor skills. *Current opinion in neurobiology*, 15(2):161–167, 2005.
 596

597 Benjamin Frot, Preetam Nandy, and Marloes H Maathuis. Robust causal structure learning with some
 598 hidden variables. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 81
 599 (3):459–487, 2019.

600 Juan A Gallego, Matthew G Perich, Lee E Miller, and Sara A Solla. Neural manifolds for the control
 601 of movement. *Neuron*, 94(5):978–984, 2017.
 602

603 AmirEmad Ghassami, Negar Kiyavash, Biwei Huang, and Kun Zhang. Multi-domain causal structure
 604 learning in linear systems. *NeurIPS*, 31, 2018.

605 I. Higgins, Loïc Matthey, A. Pal, Christopher P. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed,
 606 and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
 607 framework. In *ICLR*, 2017.

608

609 Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, Bernhard Schölkopf, et al. Nonlinear
 610 causal discovery with additive noise models. In *NeurIPS*, volume 21, pp. 689–696. Citeseer, 2008.

611 B. Huang, K. Zhang, J. Zhang, J. Ramsey, R. Sanchez-Romero, C. Glymour, and B. Schölkopf.
 612 Causal discovery from heterogeneous/nonstationary data. *JMLR*, 21(89), 2020.

613

614 Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, and Kun Zhang. Latent hierarchical
 615 causal structure discovery with rank constraints. *NeurIPS*, 35:5549–5561, 2022.

616

617 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
 618 and nonlinear ica. *NeurIPS*, 29, 2016.

619

620 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
 621 generalized contrastive learning. In *The 22nd International Conference on Artificial Intelligence
 622 and Statistics*, pp. 859–868. PMLR, 2019.

623

624 Jikai Jin and Vasilis Syrgkanis. Learning linear causal representations from general environments:
 625 Identifiability and intrinsic ambiguity. In *The Thirty-eighth Annual Conference on Neural
 626 Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=db99jjwx3h>.

627

628 Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan Bauer,
 629 Danilo Rezende, Yoshua Bengio, Michael Mozer, and Christopher Pal. Systematic evaluation of
 630 causal discovery in visual model based reinforcement learning. *arXiv preprint arXiv:2107.00848*,
 2021.

631

632 Grigor Keropyan, David Strieder, and Mathias Drton. Rank-based causal discovery for post-nonlinear
 633 models. In *International Conference on Artificial Intelligence and Statistics*, pp. 7849–7870.
 634 PMLR, 2023.

635

636 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoencoders
 637 and nonlinear ica: A unifying framework. In *AISTAS*, pp. 2207–2217. PMLR, 2020.

638

639 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 640 arXiv:1312.6114*, 2013.

641

642 Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor
 643 Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In *ICML*, pp.
 644 11455–11472. PMLR, 2022.

645

646 Isaac L Kurtzer, J Andrew Pruszynski, and Stephen H Scott. Long-latency reflexes of the human arm
 647 reflect an internal model of limb dynamics. *Current biology*, 18(6):449–453, 2008.

648

649 Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre
 650 Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A
 651 new principle for nonlinear ica. *arXiv preprint arXiv:2107.10098*, 2021.

648 Timothy O. Laumann and Russell A. Poldrack, 2015. URL <https://openfmri.org/dataset/ds000031/>.

649

650

651 Zijian Li, Yifan Shen, Kaitao Zheng, Ruichu Cai, Xiangchen Song, Mingming Gong, Guangyi
652 Chen, and Kun Zhang. On the identification of temporal causal representation with instantaneous
653 dependence. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
654 <https://openreview.net/forum?id=2efNHgYRvM>.

655 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Efstratios Gavves.
656 Causal representation learning for instantaneous and temporal effects in interactive systems. In
657 *The Eleventh International Conference on Learning Representations*, 2022a.

658 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Stratis Gavves. Citris:
659 Causal identifiability from temporal intervened sequences. In *ICML*, pp. 13557–13603. PMLR,
660 2022b.

661

662 Yuhang Liu, Wenyong Dong, Lei Zhang, Dong Gong, and Qinfeng Shi. Variational bayesian dropout
663 with a hierarchical prior. In *CVPR*, 2019.

664 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun
665 Zhang, and Javen Qinfeng Shi. Identifying weight-variant latent causal models. *arXiv preprint*
666 *arXiv:2208.14153*, 2022.

667 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun
668 Zhang, and Javen Qinfeng Shi. Identifiable latent polynomial causal models through the lens of
669 change. In *The Twelfth International Conference on Learning Representations*, 2024.

670

671 Haiying Lu, Qiaodan Zhou, Jun He, Zhongliang Jiang, Cheng Peng, Rongsheng Tong, and Jianyou
672 Shi. Recent advances in the development of protein–protein interactions modulators: mechanisms
673 and clinical trials. *Signal transduction and targeted therapy*, 5(1):213, 2020.

674 Jovana Mitrovic, Brian McWilliams, Jacob C Walker, Lars Holger Buesing, and Charles Blundell.
675 Representation learning via invariant causal mechanisms. In *International Conference on Learning
676 Representations*, 2021. URL <https://openreview.net/forum?id=9p2ekP904Rs>.

677

678 Manfred Mudelsee. Trend analysis of climate time series: A review of methods. *Earth-science
679 reviews*, 190:310–322, 2019.

680 Ignavier Ng, Shaoan Xie, Xinshuai Dong, Peter Spirtes, and Kun Zhang. Causal representation
681 learning from general environments under nonparametric mixing. In *International Conference on
682 Artificial Intelligence and Statistics*, 2025.

683 J. Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge University Press, Cambridge,
684 2000.

685

686 Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
687 continuous additive noise models. *JMLR*, 15(58):2009–2053, 2014.

688 Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. *Elements of Causal Inference: Foundations
689 and Learning Algorithms*. The MIT Press, 2017.

690

691 Anne K Rehme, Simon B Eickhoff, and Christian Grefkes. State-dependent differences between
692 functional and effective connectivity of the human cortical motor system. *Neuroimage*, 67:237–246,
693 2013.

694 Marc Rußwurm, Sherrie Wang, Marco Korner, and David Lobell. Meta-learning for few-shot land
695 cover classification. In *Proceedings of the ieee/cvf conference on computer vision and pattern
696 recognition workshops*, pp. 200–201, 2020.

697 Richard A Schmidt, Timothy D Lee, Carolee Winstein, Gabriele Wulf, and Howard N Zelaznik.
698 *Motor control and learning: A behavioral emphasis*. Human kinetics, 2018.

699

700 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
701 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the
IEEE*, 109(5):612–634, 2021.

702 Duncan E Scott, Andrew R Bayly, Chris Abell, and John Skidmore. Small molecules, big targets:
 703 drug discovery faces the protein–protein interaction challenge. *Nature Reviews Drug Discovery*,
 704 15(8):533–550, 2016.

705 Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
 706 non-gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(10),
 707 2006.

708 Shohei Shimizu, Patrik O Hoyer, and Aapo Hyvärinen. Estimation of linear non-gaussian acyclic
 709 models for latent factors. *Neurocomputing*, 72(7-9):2024–2027, 2009.

710 Ricardo Silva, Richard Scheines, Clark Glymour, Peter Spirtes, and David Maxwell Chickering.
 711 Learning the structure of linear latent variable models. *JMLR*, 7(2), 2006.

712 Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ica with general
 713 incompressible-flow networks (gin). *arXiv preprint arXiv:2001.04872*, 2020.

714 Chandler Squires, Anna Seigal, Salil S Bhate, and Caroline Uhler. Linear causal disentanglement via
 715 interventions. In *International conference on machine learning*, pp. 32540–32560. PMLR, 2023.

716 Stefan G Stark, Joanna Ficek, Francesco Locatello, Ximena Bonilla, Stéphane Chevrier, Franziska
 717 Singer, Tumor Profiler Consortium, Gunnar Rätsch, and Kjøng-Van Lehmann. Scim: universal
 718 single-cell matching with unpaired feature sets. *Bioinformatics*, 36, 12 2020.

719 Karel Svoboda and Nuo Li. Neural mechanisms of movement planning: motor cortex and beyond.
 720 *Current opinion in neurobiology*, 49:33–41, 2018.

721 Graham W Taylor, Geoffrey E Hinton, and Sam Roweis. Modeling human motion using binary latent
 722 variables. *Advances in neural information processing systems*, 19, 2006.

723 Kento Uemura, Takuya Takagi, Kambayashi Takayuki, Hiroyuki Yoshida, and Shohei Shimizu. A
 724 multivariate causal discovery based on post-nonlinear model. In *Conference on Causal Learning
 725 and Reasoning*, pp. 826–839. PMLR, 2022.

726 Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-based
 727 causal representation learning with interventions. *arXiv preprint arXiv:2301.08230*, 2023.

728 Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, and Ali Tajer. General identifiability
 729 and achievability for causal representation learning. In *International Conference on Artificial
 730 Intelligence and Statistics*, pp. 2314–2322. PMLR, 2024.

731 Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, and Ali Tajer. Linear causal representation
 732 learning from unknown multi-node interventions. In *The Thirty-eighth Annual Conference on
 733 Neural Information Processing Systems*, 2024. URL [https://openreview.net/forum?
 734 id=weemASPtzg](https://openreview.net/forum?id=weemASPtzg).

735 Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-based
 736 causal representation learning: Linear and general transformations. *Journal of Machine Learning
 737 Research*, 26(112):1–90, 2025.

738 Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 739 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 740 isolates content from style. In *NeurIPS*, 2021.

741 Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Barein-
 742 boim, David Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal representations
 743 from unknown interventions. *Advances in Neural Information Processing Systems*, 36, 2023.

744 Xinyi Wang, Michael Saxon, Jiachen Li, Hongyang Zhang, Kun Zhang, and William Yang Wang.
 745 Causal balancing for domain generalization. *arXiv preprint arXiv:2206.05263*, 2022.

746 Liang Wendong, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi
 747 Gresele, and Bernhard Schölkopf. Causal component analysis. *Advances in Neural Information
 748 Processing Systems*, 36:32481–32520, 2023.

756 Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, and Kun Zhang. Generalized
 757 independent noise condition for estimating latent variable causal graphs. In *NeurIPS*, 2020.
 758

759 Feng Xie, Biwei Huang, Zhengming Chen, Yangbo He, Zhi Geng, and Kun Zhang. Identification of
 760 linear non-gaussian latent hierarchical structure. In *ICML*, pp. 24370–24387. PMLR, 2022a.
 761

762 Shaoan Xie, Lingjing Kong, Mingming Gong, and Kun Zhang. Multi-domain image generation and
 763 translation with identifiability guarantees. In *The Eleventh International Conference on Learning
 764 Representations*, 2022b.
 765

766 Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
 767 Structured causal disentanglement in variational autoencoder. In *CVPR*, 2021.
 768

769 Dingling Yao, Caroline Muller, and Francesco Locatello. Marrying causal representation learning
 770 with dynamical systems for science. *arXiv preprint arXiv:2405.13888*, 2024.
 771

772 Dingling Yao, Dario Rancati, Riccardo Cadei, Marco Fumero, and Francesco Locatello. Unifying
 773 causal representation learning with the invariance principle. In *The Thirteenth International
 774 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=1k2Qk5xjeu>.
 775

776 Weiran Yao, Yuwen Sun, Alex Ho, Changyin Sun, and Kun Zhang. Learning temporally causal
 777 latent processes from general temporal data. *arXiv preprint arXiv:2110.05428*, 2021.
 778

779 Weiran Yao, Guangyi Chen, and Kun Zhang. Learning latent causal dynamics. *arXiv preprint
 780 arXiv:2202.04828*, 2022.
 781

782 Jennifer Yuan, Helena M Blumen, Joe Verghese, and Roee Holtzer. Functional connectivity associated
 783 with gait velocity during walking and walking-while-talking in aging: A resting-state fmri study.
 784 *Human brain mapping*, 36(4):1484–1493, 2015.
 785

786 Yan Zeng, Ruichu Cai, Fuchun Sun, Libo Huang, and Zhifeng Hao. A survey on causal reinforcement
 787 learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.
 788

789 Jiaqi Zhang, Chandler Squires, Kristjan Greenewald, Akash Srivastava, Karthikeyan Shanmugam,
 790 and Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions.
 791 *arXiv preprint arXiv:2307.06250*, 2023.
 792

793 K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In *Proceedings
 794 of the 25th Conference on Uncertainty in Artificial Intelligence*, Montreal, Canada, 2009.
 795

796 Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal representation learning from multiple
 797 distributions: A general setting. *arXiv preprint arXiv:2402.05052*, 2024.
 798

799 Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P Xing. Dags with no tears: Continuous
 800 optimization for structure learning. In *NeurIPS*, 2018.
 801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

Appendix

Table of Contents

817

A Related Work	17
B Definition and Lemmas	18
C The Proof of Theorem 3.1	20
D The Proof of Theorem 3.4	25
E The Proof of Corollary 3.8	25
F The Proof of Corollary 3.9	26
G Understanding Enforcing Causal Order in the Inference Model	26
H Data Details	26
I Latent Causal Graph Structure	28
J Implementation Framework	28
K Results on Synthetic High-Dimension Data	29
L Experiments on High-Dimensional Synthetic Image Data	30
M Details and More Results of Experiments on Human Motion Data	33
M.1 Preprocessing	33
M.2 More Results	33
N Acknowledgment of LLMs Usage	33
O Clarification on Causal Order Assumption	34
P Relationship to the Work of (Liu et al., 2024)	35
Q Comparison to Interventional CRL	37

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865

A RELATED WORK

866
867
868
Given the challenges associated with identifiability in causal representation learning, numerous
existing works tackle this issue by introducing specific assumptions. We categorize these related
works into three primary parts based on the nature of these assumptions.869
870
871
872
873
874
875
876
877
878
879
Special graph structure Some progress in achieving identifiability centers around the imposition of
specific graphical structure constraints (Silva et al., 2006; Shimizu et al., 2009; Anandkumar et al.,
2013; Frot et al., 2019; Cai et al., 2019; Xie et al., 2020; 2022a; Lachapelle et al., 2021). Essentially,
these graph structure assumptions reduce the space of possible latent causal representations or
structures, by imposing specific rules for how variables are connected in the graph. One popular
special graph structure assumption is the presence of two pure children nodes for each causal variable
(Xie et al., 2020; 2022a; Huang et al., 2022). Very recently, the work in (Adams et al., 2021)
provides a viewpoint of sparsity to understand previous various graph structure constraints. However,
any complex causal graph structures may appear in real-world scenarios, beyond the pure sparsity
assumption. In contrast, our approach adopts a model-based representation for latent variables,
allowing arbitrary underlying graph structures.880
881
882
883
884
885
886
Temporal Information The temporal constraint that the effect cannot precede the cause has been
applied in causal representation learning (Yao et al., 2021; Lippe et al., 2022b; Yao et al., 2022;
Lippe et al., 2022a; Li et al., 2025). The success of utilizing temporal information to identify causal
representations can be attributed to its innate ability to establish causal direction through time delay.
By tracking the sequence of events over time, we gain the capacity to infer latent causal variables.
In contrast to these approaches, our focus lies on discovering instantaneous causal relations among
latent variables.887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
Changes in Causal Influences Recent advances have significantly developed the use of changes in
causal influences within latent space as a means for identifying causal representations (Von Kügelgen
et al., 2021; Liu et al., 2022; 2024; Brehmer et al., 2022; Ahuja et al., 2023; Squires et al., 2023;
Buchholz et al., 2023; Varici et al., 2023; von Kügelgen et al., 2023; Ahuja et al., 2022; Varici et al.,
2024; Varici et al., 2024). Several of these works leverage such changes in conjunction with model
constraints on the mapping from latent to observed space, such as assuming linear or polynomial
(Squires et al., 2023; Varici et al., 2023; Ahuja et al., 2023; Zhang et al., 2023; Varici et al., 2024;
Jin & Syrgkanis, 2024). In contrast, our approach allows for flexibility by employing MLPs for
this mapping. In addition, some works focus on imposing model assumptions on the latent causal
variables, such as linear Gaussian models (Buchholz et al., 2023; Liu et al., 2022), linear additive
noise models (Squires et al., 2023; Chen et al., 2024), and polynomial additive noise models (Liu
et al., 2024). In contrast, our work considers both additive noise models and the more general
post-nonlinear models, thereby broadening the scope of identifiable causal structures. Furthermore,
prior work often relies on paired data before and after random, unknown interventions (Ahuja et al.,
2022; Brehmer et al., 2022), a requirement that has been relaxed in recent work (Varici et al., 2025)
to using data from two uncoupled intervention environments, whereas our method operates on fully
unpaired data, a more realistic setting for applications such as biology (Squires et al., 2023; Stark
et al., 2020). Additionally, some approaches require single-node interventions (von Kügelgen et al.,
2023; Buchholz et al., 2023), whereas our framework allows interventions on one node while other
nodes may also be simultaneously affected. In contrast to Ng et al. (2025), our framework imposes
exponential-family assumptions on the latent noise variables and achieves identifiability with fewer
environments in certain settings, whereas theirs relies on nonparametric assumptions and typically
requires a larger number of diverse environments.908
909
910
911
912
913
914
915
916
917

918 **B DEFINITION AND LEMMAS**
 919

920 For ease of exposition in the following sections, we first introduce the following definition and
 921 lemmas.

922 **Definition B.1.** [Recursive Structural Mapping $\mathbf{h}^{\mathbf{u}}$] Assume the latent causal variables follow the
 923 causal ordering $z_1 < z_2 < \dots < z_\ell$ (See justification in Sec. O). Together with additive noise model
 924 assumption in Eq. 2, we have:

926
$$z_j = g_j^{\mathbf{u}}(z_{1:j-1}) + n_j, \quad j = 1, \dots, \ell. \quad (9)$$

 927

928 Then the mapping $\mathbf{h}^{\mathbf{u}} : \mathbf{n} \mapsto \mathbf{z}$ induced by these equations is defined recursively by

929
$$h_1^{\mathbf{u}}(n_1) := n_1, \quad (10)$$

 930

931 and, for each $j \geq 2$,

932
$$h_j^{\mathbf{u}}(n_{1:j}) := g_j^{\mathbf{u}}(h_1^{\mathbf{u}}(n_1), h_2^{\mathbf{u}}(n_{1:2}), \dots, h_{j-1}^{\mathbf{u}}(n_{1:j-1})) + n_j. \quad (11)$$

 933

934 The overall mapping is

935
$$\mathbf{h}^{\mathbf{u}}(\mathbf{n}) := [h_1^{\mathbf{u}}(n_1), h_2^{\mathbf{u}}(n_{1:2}), \dots, h_\ell^{\mathbf{u}}(n_{1:\ell})]. \quad (12)$$

 936

938 **Lemma B.1.** *The mapping, between the latent causal variables \mathbf{z} and the recovered latent variables
 939 $\hat{\mathbf{z}}$ by matching the true marginal data distribution $p(\mathbf{x} | \mathbf{u})$, does not depend on \mathbf{u} .*

941 *Proof.* Consider Eq. (3) and assume that the function \mathbf{f} is smooth and invertible, as stated in Assumption
 942 (ii). Suppose there exists an alternative solution such that $\mathbf{x} = \hat{\mathbf{f}}(\hat{\mathbf{z}})$, where $\hat{\mathbf{f}}$ is also invertible.
 943 By equating the likelihoods, we obtain:

945
$$\hat{\mathbf{z}} = \hat{\mathbf{f}}^{-1}(\mathbf{f}(\mathbf{z}, \varepsilon)). \quad (13)$$

 946

947 Since ε is independent of \mathbf{u} (as per assumption (i)), and both \mathbf{f} and $\hat{\mathbf{f}}$ do not depend on \mathbf{u} , it follows
 948 that the mapping between \mathbf{z} and $\hat{\mathbf{z}}$ is also invariant with \mathbf{u} . \square
 949

950 **Illustrative Example for Lemma B.1.** Consider the following structural equations:

952
$$\begin{aligned} z_1 &= n_1, \\ 953 \quad z_2 &= \lambda(\mathbf{u}) \cdot z_1 + n_2, \\ 954 \quad x_1 &= z_1, \\ 955 \quad x_2 &= z_2^3 + z_1, \end{aligned}$$

 956

957 Here we neglect noise ε for simplify. In this example, although the latent causal variable z_2 explicitly
 958 depends on \mathbf{u} through $\lambda(\mathbf{u})$, the observed variables $\mathbf{x} = (x_1, x_2)$ are deterministic functions of
 959 $\mathbf{z} = (z_1, z_2)$, and this functional mapping does not involve \mathbf{u} .

960 Now suppose we attempt to recover latent variables $\hat{\mathbf{z}} = (\hat{z}_1, \hat{z}_2)$ from \mathbf{x} . Since $x_1 = z_1$, we have
 961 $\hat{z}_1 = x_1$. Given that $x_2 = z_2^3 + z_1 = z_2^3 + x_1$, we can rearrange and solve for z_2 as:

963
$$\hat{z}_2 = (x_2 - x_1)^{1/3}.$$

 964

965 Hence, the inverse mapping:

966
$$\hat{\mathbf{z}} = (x_1, (x_2 - x_1)^{1/3})$$

 967

968 do not dependent of $\lambda(\mathbf{u})$, despite the fact that $\lambda(\mathbf{u})$ affects the distribution of \mathbf{z} . Moreover, since the
 969 mapping from \mathbf{z} to \mathbf{x} is also independent of $\lambda(\mathbf{u})$, it follows that the overall mapping between $\hat{\mathbf{z}}$ and
 970 \mathbf{z} does not depend on $\lambda(\mathbf{u})$ either.

971 **Lemma B.2.** *Let $\mathbf{h}^{\mathbf{u}}$ denote the mapping from \mathbf{n} to \mathbf{z} as defined in Definition B.1. Then, \mathbf{h} is
 972 invertible, and its Jacobian determinant is equal to 1, i.e., $|\det \mathbf{J}_{\mathbf{h}}| = 1$.*

972 *Proof.* The result follows directly from the structural form of the generative process. According to
 973 Eq. (2), each variable z_i depends only on its parents and the corresponding noise variable n_i . This
 974 allows us to recursively express each z_i in terms of its ancestral noise variables and n_i .

975 According to the definition of $\mathbf{h}^{\mathbf{u}}$ in Definition B.1, we have:

$$\begin{aligned}
 z_1 &= \underbrace{n_1}_{h_1^{\mathbf{u}}(n_1)}, \\
 z_2 &= g_2^{\mathbf{u}}(z_1) + n_2 = \underbrace{g_2^{\mathbf{u}}(n_1)}_{h_2^{\mathbf{u}}(n_1, n_2)} + n_2, \\
 z_3 &= \underbrace{g_3^{\mathbf{u}}(n_1, g_2^{\mathbf{u}}(n_1) + n_2)}_{h_3^{\mathbf{u}}(n_1, n_2, n_3)} + n_3, \\
 &\vdots
 \end{aligned} \tag{14}$$

987 Due to the structure of the additive noise model and the acyclicity of the underlying causal graph
 988 (DAG), the mapping $\mathbf{h}^{\mathbf{u}}$ is invertible. Moreover, its Jacobian matrix is lower triangular with ones on
 989 the diagonal, which directly implies that $|\det \mathbf{J}_{\mathbf{h}^{\mathbf{u}}}| = 1$.

□

990
 991 **Lemma B.3.** *Under Assumption (iv) in Theorem 3.1, consider the recursive mapping defined in
 992 Eq. (14). Let $n_{i'}$ denote the latent noise variable corresponding to a parent node $z_{i'} \in \text{pa}_i$ of z_i ,
 993 where $i' < i$. Then, the partial derivative of $h_i^{\mathbf{u}}$ with respect to $n_{i'}$ vanishes at $\mathbf{u} = \mathbf{u}_i$, i.e.,*

$$\frac{\partial h_i^{\mathbf{u}=\mathbf{u}_i}(n_1, \dots, n_i)}{\partial n_{i'}} = 0.$$

994
 995 *Proof.* From Eq. (14), the recursive mapping is

$$h_i^{\mathbf{u}}(n_1, \dots, n_i) = g_i^{\mathbf{u}}(z_1, \dots, z_{i-1}) + n_i.$$

1001 Applying the chain rule gives

$$\frac{\partial h_i^{\mathbf{u}}}{\partial n_{i'}} = \sum_{z_j \in \text{pa}_i} \frac{\partial g_i^{\mathbf{u}}}{\partial z_j} \cdot \frac{\partial z_j}{\partial n_{i'}}.$$

1002 By Assumption (iv), there exists a parameter \mathbf{u}_i such that for all parent nodes $z_j \in \text{pa}_i$,

$$\frac{\partial g_i^{\mathbf{u}=\mathbf{u}_i}}{\partial z_j} = 0.$$

1003 Therefore, each term in the sum above vanishes, yielding

$$\frac{\partial h_i^{\mathbf{u}=\mathbf{u}_i}}{\partial n_{i'}} = \sum_{z_j \in \text{pa}_i} 0 \cdot \frac{\partial z_j}{\partial n_{i'}} = 0.$$

1004
 1005 This completes the proof. □

1026 **C THE PROOF OF THEOREM 3.1**
 1027
 1028

1029 **Theorem 3.1.** Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal
 1030 generative models defined in Eqs. (1) - (3). Assume the following holds:
 1031

1032 (i) *The noise probability density function $p_\varepsilon(\varepsilon)$ does not depend on \mathbf{u} and is always finite; The
 1033 set $\{\mathbf{x} \in \mathcal{X} | \varphi_\varepsilon(\mathbf{x}) = 0\}$ has measure zero (i.e., has at most countable number of elements),
 1034 where φ_ε is the characteristic function of the density p_ε ,*

1035
 1036 (ii) *The function \mathbf{f} in Eq. (3) is smooth and invertible,*

1037
 1038 (iii) *There exist $2\ell + 1$ values of \mathbf{u} , i.e., $\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{2\ell}$, such that the matrix*

1039
 1040
 1041
$$\mathbf{L} = (\eta(\mathbf{u} = \mathbf{u}_1) - \eta(\mathbf{u} = \mathbf{u}_0), \dots, \eta(\mathbf{u} = \mathbf{u}_{2\ell}) - \eta(\mathbf{u} = \mathbf{u}_0)) \quad (15)$$

1042
 1043
 1044
 1045 of size $2\ell \times 2\ell$ is invertible. Here $\eta(\mathbf{u}) = [\eta_{i,j}(\mathbf{u})]_{i,j}$,

1046
 1047 (iv) *The function class of $g_i^{\mathbf{u}}$ satisfies the following condition: there exists \mathbf{u}_i , such that, for all
 1048 parent nodes z_j of z_i , $\frac{\partial g_i^{\mathbf{u}=\mathbf{u}_i}(\mathbf{p}_{\mathbf{a}_i})}{\partial z_j} = 0$.*

1049
 1050
 1051 Then each true latent variable z_i is linearly related to exactly one estimated latent variable \hat{z}_j , as
 1052 $z_i = s_j \hat{z}_j + c_i$, for some constants s_j and c_i , where all \hat{z}_j are learned by matching the true marginal
 1053 data distribution $p(\mathbf{x} | \mathbf{u})$.
 1054

1055
 1056
 1057
 1058
 1059
 1060 *Proof.* The proof of Theorem 3.1 unfolds in three distinct steps. Initially, Step I shows
 1061 how the nonlinear ICA identifiability result (Khemakhem et al., 2020; Sorrenson et al., 2020) holds
 1062 in our context. Specifically, it confirms that each true latent noise variable n_i is related to exactly
 1063 one estimated latent variable \hat{n}_j , e.g., $n_i = A_{i,j} \hat{n}_j + c_i$, for some constant $A_{i,j}$ and c_i . Building on
 1064 this, Step II demonstrates a linkage between the estimated latent causal variables $\hat{\mathbf{z}}$ and the true \mathbf{z} ,
 1065 formulated as $\mathbf{z} = \Phi(\hat{\mathbf{z}})$. Finally, Step III utilizes Lemma B.3 to illustrate that the transformation Φ ,
 1066 introduced in Step II, essentially simplifies to a combination of permutation and scaling, articulated
 1067 as $\mathbf{z} = \mathbf{P}\hat{\mathbf{z}} + \mathbf{c}$.

1068 **Notation** Suppose we have two sets of parameters $\theta = (\mathbf{f}, \mathbf{T}, \mathbf{h}^{\mathbf{u}}, \boldsymbol{\eta})$ (e.g., parameters for generative
 1069 model) and $\hat{\theta} = (\hat{\mathbf{f}}, \hat{\mathbf{T}}, \hat{\mathbf{h}}^{\mathbf{u}}, \hat{\boldsymbol{\eta}})$ (e.g., parameters for the estimated model) corresponding to the same
 1070 conditional probabilities, i.e., $p_{(\mathbf{f}, \mathbf{T}, \mathbf{h}^{\mathbf{u}}, \boldsymbol{\eta})}(\mathbf{x} | \mathbf{u}) = p_{(\hat{\mathbf{f}}, \hat{\mathbf{T}}, \hat{\mathbf{h}}^{\mathbf{u}}, \hat{\boldsymbol{\eta}})}(\mathbf{x} | \mathbf{u})$ for all pairs (\mathbf{x}, \mathbf{u}) , where \mathbf{T}
 1071 denotes the sufficient statistics of the latent noise variables \mathbf{n} , and \mathbf{f} corresponds to the mapping
 1072 from latent causal variables to observed variables, both are defined in the causal generative model
 1073 in Eqs. (1)–(3). The mapping $\mathbf{h}^{\mathbf{u}}$, defined in Definition B.1, maps latent noise \mathbf{n} to latent causal
 1074 variables \mathbf{z} according to the assumed causal order and additive noise structure. $\hat{\mathbf{f}}, \hat{\mathbf{T}}, \hat{\mathbf{h}}^{\mathbf{u}}, \hat{\boldsymbol{\eta}}$ correspond
 1075 to the analogous mappings and parameters in the estimated model.

1076 **Step I:** According to the Notation above, using $p_{(\mathbf{f}, \mathbf{T}, \mathbf{h}^{\mathbf{u}}, \boldsymbol{\eta})}(\mathbf{x} | \mathbf{u}) = p_{(\hat{\mathbf{f}}, \hat{\mathbf{T}}, \hat{\mathbf{h}}^{\mathbf{u}}, \hat{\boldsymbol{\eta}})}(\mathbf{x} | \mathbf{u})$ for all pairs
 1077 (\mathbf{x}, \mathbf{u}) , we can leverage the technique from Step I in the proof of B.2.2 in Khemakhem et al. (2020) to
 1078 conclude that if the observed distributions coincide after adding noise, then the underlying noise-free
 1079 distributions must also coincide. Specifically,

$$\begin{aligned}
& \int p_{(\mathbf{T}, \boldsymbol{\eta})}(\mathbf{n}|\mathbf{u}) p_{(\mathbf{f}, \mathbf{h}^{\mathbf{u}})}(\mathbf{x}|\mathbf{n}) d\mathbf{n} = \int p_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}})}(\mathbf{z}|\mathbf{u}) p_{(\hat{\mathbf{f}}, \hat{\mathbf{h}}^{\mathbf{u}})}(\mathbf{x}|\mathbf{n}) d\mathbf{n} \quad (16) \\
\Rightarrow & \int p_{(\mathbf{T}, \boldsymbol{\eta})}(\mathbf{n}|\mathbf{u}) p_{\varepsilon}(\mathbf{x} - \mathbf{f} \circ \mathbf{h}^{\mathbf{u}}(\mathbf{n})) d\mathbf{n} = \int p_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}})}(\mathbf{n}|\mathbf{u}) p_{\varepsilon}(\mathbf{x} - \hat{\mathbf{f}} \circ \hat{\mathbf{h}}(\mathbf{n})) d\mathbf{n} \quad (17) \\
\Rightarrow & \int p_{(\mathbf{T}, \boldsymbol{\eta})}((\mathbf{f} \circ \mathbf{h}^{\mathbf{u}})^{-1}(\bar{\mathbf{x}})|\mathbf{u}) |\det \mathbf{J}_{(\mathbf{f} \circ \mathbf{h}^{\mathbf{u}})^{-1}}(\mathbf{x})| p_{\varepsilon}(\mathbf{x} - \bar{\mathbf{x}}) d\bar{\mathbf{x}} \\
& = \int p_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}})}((\hat{\mathbf{f}} \circ \hat{\mathbf{h}}^{\mathbf{u}})^{-1}(\bar{\mathbf{x}}|\mathbf{u})) |\det \mathbf{J}_{(\hat{\mathbf{f}} \circ \hat{\mathbf{h}}^{\mathbf{u}})^{-1}}(\mathbf{x})| p_{\varepsilon}(\mathbf{x} - \bar{\mathbf{x}}) d\bar{\mathbf{x}} \quad (18) \\
\Rightarrow & \int \tilde{p}_{(\mathbf{T}, \boldsymbol{\eta}, \mathbf{f}, \mathbf{h}^{\mathbf{u}}, \mathbf{u})}(\bar{\mathbf{x}}) p_{\varepsilon}(\mathbf{x} - \bar{\mathbf{x}}) d\bar{\mathbf{x}} = \int \tilde{p}_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}}, \hat{\mathbf{f}}, \hat{\mathbf{h}}^{\mathbf{u}}, \mathbf{u})}(\bar{\mathbf{x}}) p_{\varepsilon}(\mathbf{x} - \bar{\mathbf{x}}) d\bar{\mathbf{x}} \quad (19) \\
\Rightarrow & (\tilde{p}_{(\mathbf{T}, \boldsymbol{\eta}, \mathbf{f}, \mathbf{h}^{\mathbf{u}}, \mathbf{u})} * p_{\varepsilon})(\mathbf{x}) = (\tilde{p}_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}}, \hat{\mathbf{f}}, \hat{\mathbf{h}}^{\mathbf{u}}, \mathbf{u})} * p_{\varepsilon})(\mathbf{x}) \quad (20) \\
\Rightarrow & F[\tilde{p}_{(\mathbf{T}, \boldsymbol{\eta}, \mathbf{f}, \mathbf{h}^{\mathbf{u}}, \mathbf{u})}](\omega) \varphi_{\varepsilon}(\omega) = F[\tilde{p}_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}}, \hat{\mathbf{f}}, \hat{\mathbf{h}}^{\mathbf{u}}, \mathbf{u})}](\omega) \varphi_{\varepsilon}(\omega) \quad (21) \\
\Rightarrow & F[\tilde{p}_{(\mathbf{T}, \boldsymbol{\eta}, \mathbf{f}, \mathbf{h}^{\mathbf{u}}, \mathbf{u})}](\omega) = F[\tilde{p}_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}}, \hat{\mathbf{f}}, \hat{\mathbf{h}}^{\mathbf{u}}, \mathbf{u})}](\omega) \quad (22) \\
\Rightarrow & \tilde{p}_{(\mathbf{T}, \boldsymbol{\eta}, \mathbf{f}, \mathbf{h}^{\mathbf{u}}, \mathbf{u})}(\mathbf{x}) = \tilde{p}_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}}, \hat{\mathbf{f}}, \hat{\mathbf{h}}^{\mathbf{u}}, \mathbf{u})}(\mathbf{x}) \quad (23)
\end{aligned}$$

where:

- in Eq. (18), We made the change of variable $\bar{\mathbf{x}} = \mathbf{f} \circ \mathbf{h}^{\mathbf{u}}(\mathbf{n})$ on the left hand side, and $\bar{\mathbf{x}} = \hat{\mathbf{f}} \circ \hat{\mathbf{h}}^{\mathbf{u}}(\mathbf{n})$ on the right hand side. Note that, here \mathbf{f} and $\mathbf{h}^{\mathbf{u}}$ are invertible, due to assumption (ii) and Lemma B.2.
- in Eq. (19), we introduced:

$$\tilde{p}_{(\mathbf{T}, \boldsymbol{\eta}, \mathbf{f}, \mathbf{h}^{\mathbf{u}}, \mathbf{u})}(\mathbf{x}) = p_{(\mathbf{T}, \boldsymbol{\eta})}((\mathbf{f} \circ \mathbf{h}^{\mathbf{u}})^{-1}(\mathbf{x})|\mathbf{u}) |\det \mathbf{J}_{(\hat{\mathbf{f}} \circ \hat{\mathbf{h}}^{\mathbf{u}})^{-1}}(\mathbf{x})| \mathbf{1}_{\mathcal{X}}(\mathbf{x}), \quad (24)$$

on the left hand side, and similarly on the right hand side.

- in Eq. (20), we used $*$ for the convolution operator.
- in Eq. (21), we used $F[\cdot]$ to designate the Fourier transform.
- in Eq. 22, we dropped φ_{ε} from both sides as it is non-zero almost everywhere (by assumption (i)).

By taking the logarithm on both sides of Eq. 23, we have:

$$\begin{aligned}
& \log |\det \mathbf{J}_{\mathbf{f}^{-1}}(\mathbf{x})| + \log |\det \mathbf{J}_{(\mathbf{h}^{\mathbf{u}})^{-1}}(\mathbf{z})| + \log p_{(\mathbf{T}, \boldsymbol{\eta})}(\mathbf{n}|\mathbf{u}) \\
& = \log |\det \mathbf{J}_{(\hat{\mathbf{f}} \circ \hat{\mathbf{h}}^{\mathbf{u}})^{-1}}(\mathbf{x})| + \log p_{(\hat{\mathbf{T}}, \hat{\boldsymbol{\eta}})}(\hat{\mathbf{n}}|\mathbf{u}),
\end{aligned} \quad (25)$$

where we assume an alternative solution exists such that $\mathbf{x} = \hat{\mathbf{f}}(\hat{\mathbf{z}}) = \hat{\mathbf{f}}(\hat{\mathbf{h}}^{\mathbf{u}}(\hat{\mathbf{n}}))$. By using the exponential family as defined in Eq. (1), we have:

$$\log |\det \mathbf{J}_{\mathbf{f}^{-1}}(\mathbf{x})| + \log |\det \mathbf{J}_{(\mathbf{h}^{\mathbf{u}})^{-1}}(\mathbf{z})| + \mathbf{T}^T(\mathbf{n}) \boldsymbol{\eta}(\mathbf{u}) - \log \prod_i Z_i(\mathbf{u}) = \quad (26)$$

$$\log |\det \mathbf{J}_{(\hat{\mathbf{f}} \circ \hat{\mathbf{h}}^{\mathbf{u}})^{-1}}(\mathbf{x})| + \hat{\mathbf{T}}^T(\hat{\mathbf{n}}) \hat{\boldsymbol{\eta}}(\mathbf{u}) - \log \prod_i \hat{Z}_i(\mathbf{u}), \quad (27)$$

By using Lemma B.2, we have: $|\det \mathbf{J}_{(\mathbf{h}^{\mathbf{u}})}| = 1$. Further, since both $\mathbf{h}^{\mathbf{u}}$ and $\hat{\mathbf{h}}^{\mathbf{u}}$ must to be the same function class, we also have: $|\det \hat{\mathbf{f}}_{\mathbf{h}^{-1}}| = 1$. Given the above, Eqs. (26)-(27) can be reduced to:

$$\begin{aligned}
& \log |\det \mathbf{J}_{\mathbf{f}^{-1}}(\mathbf{x})| + \mathbf{T}^T(\mathbf{n}) \boldsymbol{\eta}(\mathbf{u}) - \log \prod_i Z_i(\mathbf{u}) = \\
& \log |\det \mathbf{J}_{\hat{\mathbf{f}}^{-1}}(\mathbf{x})| + \hat{\mathbf{T}}^T(\hat{\mathbf{n}}) \hat{\boldsymbol{\eta}}(\mathbf{u}) - \log \prod_i \hat{Z}_i(\mathbf{u}).
\end{aligned} \quad (28)$$

Then by expanding the above at points \mathbf{u}_l and \mathbf{u}_0 , then using Eq. (28) at point \mathbf{u}_l subtract Eq. (28) at point \mathbf{u}_0 , we find:

$$\langle \mathbf{T}(\mathbf{n}), \boldsymbol{\eta}(\mathbf{u}) \rangle + \sum_i \log \frac{Z_i(\mathbf{u}_0)}{Z_i(\mathbf{u}_l)} = \langle \hat{\mathbf{T}}(\hat{\mathbf{n}}), \hat{\boldsymbol{\eta}}(\mathbf{u}) \rangle + \sum_i \log \frac{\hat{Z}_i(\mathbf{u}_0)}{\hat{Z}_i(\mathbf{u}_l)}. \quad (29)$$

1134 Here $\bar{\eta}(\mathbf{u}_l) = \eta(\mathbf{u}_l) - \eta(\mathbf{u}_0)$. By assumption (iii), and combining the 2ℓ expressions into a single
 1135 matrix equation, we can write this in terms of \mathbf{L} from assumption (iii),
 1136

$$\mathbf{L}^T \mathbf{T}(\mathbf{n}) = \hat{\mathbf{L}}^T \hat{\mathbf{T}}(\hat{\mathbf{n}}) + \mathbf{b}. \quad (30)$$

1137 Since \mathbf{L}^T is invertible, we can multiply this expression by its inverse from the left to get:
 1139

$$\mathbf{T}(\mathbf{n}) = \mathbf{A} \hat{\mathbf{T}}(\hat{\mathbf{n}}) + \mathbf{c}, \quad (31)$$

1142 Where $\mathbf{A} = (\mathbf{L}^T)^{-1} \hat{\mathbf{L}}^T$. According to lemma 3 in (Khemakhem et al., 2020) that there exist k distinct
 1143 values n_i^1 to n_i^k such that the derivative $T'(n_i^1), \dots, T'(n_i^k)$ are linearly independent, and the fact that
 1144 each component of $T_{i,j}$ is univariate, we can show that \mathbf{A} must be full rank.
 1145

1146 Since we assume the noise to be two-parameter exponential family members as defined in Eq. (1),
 1147 Eq. (31) can be re-expressed as:

$$\begin{pmatrix} \mathbf{T}_1(\mathbf{n}) \\ \mathbf{T}_2(\mathbf{n}) \end{pmatrix} = \mathbf{A} \begin{pmatrix} \hat{\mathbf{T}}_1(\hat{\mathbf{n}}) \\ \hat{\mathbf{T}}_2(\hat{\mathbf{n}}) \end{pmatrix} + \mathbf{c}, \quad (32)$$

1151 Then, we re-express \mathbf{T}_2 in term of \mathbf{T}_1 , e.g., $T_2(n_i) = t(T_1(n_i))$ where t is a nonlinear mapping. As
 1152 a result, we have from Eq. (32) that: (a) $T_1(n_i)$ can be linear combination of $\hat{\mathbf{T}}_1(\hat{\mathbf{n}})$ and $\hat{\mathbf{T}}_2(\hat{\mathbf{n}})$, and
 1153 (b) $t(T_1(n_i))$ can also be linear combination of $\hat{\mathbf{T}}_1(\hat{\mathbf{n}})$ and $\hat{\mathbf{T}}_2(\hat{\mathbf{n}})$. This implies the contradiction
 1154 that both $T_1(n_i)$ and its nonlinear transformation $t(T_1(n_i))$ can be expressed by linear combination
 1155 of $\hat{\mathbf{T}}_1(\hat{\mathbf{n}})$ and $\hat{\mathbf{T}}_2(\hat{\mathbf{n}})$. This contradiction leads to that each true latent noise variable n_i is related
 1156 to exactly one estimated latent variable \hat{n}_j (See APPENDIX C in (Sorrenson et al., 2020) for more
 1157 details), as:

$$n_i = A_{i,j} \hat{n}_j + c_i. \quad (33)$$

1158 Note that this result holds for two-parameter Gaussian, inverse Gaussian, Beta, Gamma, and Inverse
 1159 Gamma (See Table 1 in (Sorrenson et al., 2020)).

1160 ~~For simplicity, in the following we neglect the noise term \mathbf{c} in Eq (3).~~ As a result, we can express
 1161 Eq. (33) in vector form as:

$$\mathbf{n} = \mathbf{P} \hat{\mathbf{n}} + \mathbf{c}, \quad (34)$$

1162 where \mathbf{P} is a permutation with scaling matrix. ~~Note that this simplification is for convenience only,
 1163 the identifiability result still holds even when the noise term is included. In the case where the noise
 1164 term is included, the only difference is that the definition of $\hat{\mathbf{n}}$ in Eq. (34) becomes a subset of that
 1165 in Eq. (32), thus involving a slight abuse of notation.~~

1166 **Step II:** By Lemma B.2, we can denote \mathbf{z} and $\hat{\mathbf{z}}$ by:
 1167

$$\mathbf{z} = \mathbf{h}^{\mathbf{u}}(\mathbf{n}), \quad (35)$$

$$\hat{\mathbf{z}} = \hat{\mathbf{h}}^{\mathbf{u}}(\hat{\mathbf{n}}), \quad (36)$$

1168 where \mathbf{h} is defined in B.2. Replacing \mathbf{n} and $\hat{\mathbf{n}}$ in Eq. (34) by Eq. (35) and Eq. (36), respectively, we
 1169 have:

$$(\mathbf{h}^{\mathbf{u}})^{-1}(\mathbf{z}) = \mathbf{P}(\hat{\mathbf{h}}^{\mathbf{u}})^{-1}(\hat{\mathbf{z}}) + \mathbf{c}, \quad (37)$$

1170 where \mathbf{h} (as well as $\hat{\mathbf{h}}$) are invertible supported by Lemma B.2. We can rewrite Eq. (37) as:
 1171

$$\mathbf{z} = \mathbf{h}^{\mathbf{u}}(\mathbf{P}(\hat{\mathbf{h}}^{\mathbf{u}})^{-1}(\hat{\mathbf{z}}) + \mathbf{c}). \quad (38)$$

1172 Denote the composition by Φ , we have:
 1173

$$\mathbf{z} = \Phi(\hat{\mathbf{z}}). \quad (39)$$

1174 Note that Φ must also satisfy the condition of being independent of \mathbf{u} , as demonstrated by Lemma
 1175 B.1. Consequently, Φ in Eq. (39) is independent of \mathbf{u} .
 1176

1177 **Step III** Next, replacing \mathbf{z} and $\hat{\mathbf{z}}$ in Eq. (39) by Eqs. 34, 35, and 36:

1188

1189

1190

$$\mathbf{h}^u(\mathbf{P}\hat{\mathbf{n}} + \mathbf{c}) = \Phi(\hat{\mathbf{h}}^u(\hat{\mathbf{n}})) \quad (40)$$

1191

1192

By differentiating Eq. (40) with respect to $\hat{\mathbf{n}}$

1193

1194

$$\mathbf{J}_{\mathbf{h}^u}\mathbf{P} = \mathbf{J}_\Phi \mathbf{J}_{\hat{\mathbf{h}}^u}. \quad (41)$$

1195

1196

1197

1198

1199

1200

As mentioned in Lemma B.2, without loss of generality, we can assume a causal order $z_1 < z_2 < \dots < z_\ell$ so that the Jacobian $\mathbf{J}_{\mathbf{h}^u}$ is lower triangular with ones on the diagonal. Similarly, $\mathbf{J}_{\hat{\mathbf{h}}^u}$ can be made to follow the same lower-triangular structure, consistent with the constraints of the function class. Once this causal order is fixed, the matrix \mathbf{P} is diagonal, which we label as $s_{1,1}, s_{2,2}, s_{3,3}, \dots$ for convenience.

1201

1202

1203

1204

Next, under Assumption (iv), we show that the Jacobian \mathbf{J}_Φ must reduce to the same diagonal form as \mathbf{P} . Consequently, the mapping Φ in Eq. (39) is a component-wise linear transformation. To this end, we examine Eq. (41) entry-wise. Matrix equality requires element-wise equality, so every entry of \mathbf{J}_Φ must match.

1205

1206

1207

1208

Elements above the diagonal of matrix \mathbf{J}_Φ Since the product of lower-triangular matrices is itself lower-triangular, and $\mathbf{J}_{\mathbf{h}^u}$ and $\mathbf{J}_{\hat{\mathbf{h}}^u}$ are lower triangular matrices while \mathbf{P} is a diagonal matrix, \mathbf{J}_Φ must be a lower triangular matrix.

1209

Then by expanding the left side of Eq. (41), we have:

1210

1211

1212

1213

1214

$$\mathbf{J}_{\mathbf{h}^u}\mathbf{P} = \begin{pmatrix} s_{1,1} & 0 & 0 & \dots \\ s_{1,1} \frac{\partial h_2^u(n_1, n_2)}{\partial n_1} & s_{2,2} & 0 & \dots \\ s_{1,1} \frac{\partial h_3^u(n_1, n_2, n_3)}{\partial n_1} & s_{2,2} \frac{\partial h_3^u(n_1, n_2, n_3)}{\partial n_2} & s_{3,3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad (42)$$

1215

1216

by expanding the right side of Eq. (41), we have:

1217

1218

1219

1220

1221

$$\mathbf{J}_\Phi \mathbf{J}_{\hat{\mathbf{h}}^u} = \begin{pmatrix} J_{\Phi_{1,1}} & 0 & 0 & \dots \\ J_{\Phi_{2,1}} + J_{\Phi_{2,2}} \frac{\partial \hat{h}_2^u(n_1, n_2)}{\partial n_1} & J_{\Phi_{2,2}} & 0 & \dots \\ J_{\Phi_{3,1}} + \sum_{i=2}^3 J_{\Phi_{3,i}} \frac{\partial \hat{h}_3^u(n_1, \dots, n_i)}{\partial n_1} & J_{\Phi_{3,2}} + J_{\Phi_{3,3}} \frac{\partial \hat{h}_3^u(n_1, \dots, n_3)}{\partial n_2} & J_{\Phi_{3,3}} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \quad (43)$$

1222

1223

The diagonal of matrix \mathbf{J}_Φ By comparison between Eq. (42) and Eq. (43), we have $J_{\Phi_{i,i}} = s_{i,i}$.

1224

1225

1226

1227

Elements below the diagonal of matrix \mathbf{J}_Φ By comparison between Eq. (42) and Eq. (43), and Lemma B.3, for all $i > j$ we have $J_{\Phi_{i,j}} = 0$. For example, given the fact that the equality of two matrices implies element-wise equality, by comparing the corresponding elements of the two matrices Eq. (42) and Eq. (43), e.g., we have

1228

1229

1230

1231

$$s_{2,2} \frac{\partial h_3^u(n_1, n_2, n_3)}{\partial n_2} = J_{\Phi_{3,2}} + J_{\Phi_{3,3}} \frac{\partial \hat{h}_3^u(n_1, \dots, n_3)}{\partial n_2}. \quad (44)$$

1232

1233

By Lemma B.3, under Assumption (iv), the gradient $\frac{\partial h_3^u(n_1, n_2, n_3)}{\partial n_2} = 0$.

1234

1235

1236

1237

1238

1239

1240

1241

For later use, we first show that both h_3 and \hat{h}_3 must belong to the same function class in environment \mathbf{u}_i . Under Assumption (iv), note that in environment \mathbf{u}_i , the corresponding z_3 has no parent contribution, and thus equals its own latent noise term n_3 under additive noise models, i.e., $z_3 = n_3$. Now suppose, toward a contradiction, that \hat{h}_3 is not in the same function class as h_3 in environment \mathbf{u}_i , i.e., it has parent nodes. In this case, the corresponding \hat{z}_3 would necessarily mix at least two latent noise sources (its own latent noise and the latent noise from its parent node). This directly contradicts the identifiability of n_3 up to linear scaling, as established in **Step I**: $z_3 = n_3$ and should be identifiable, while \hat{z}_3 would mix at least two latent noise sources and thus cannot correspond to n_3 alone. Therefore, both h_3 and \hat{h}_3 must belong to the same function class in environment \mathbf{u}_i .

1242 Since both h_3 and \hat{h}_3 belong to the same function class and satisfy Assumption (iv), this constraint
 1243 on the partial derivative naturally holds for both, i.e., $\frac{\partial \hat{h}_3^{\mathbf{u}=\mathbf{u}_i}(n_1, n_2, n_3)}{\partial n_2} = 0$. This is not an additional
 1244 assumption, but a property of the function class itself, analogous to how specifying an exponential
 1245 family for the latent noise variables constrains all noise variables within that family (as in Eq. (25)).
 1246 As a result, we have $J_{\Phi_{3,2}} = 0$. By similar reasoning, this argument extends to all elements $J_{\Phi_{i,j}}$
 1247 with $i > j$, establishing that all entries below the diagonal of \mathbf{J}_Φ are zero.
 1248

1249 As a result, the Jacobian matrix \mathbf{J}_Φ in Eq. (41) must coincide with the permutation matrix \mathbf{P} . This
 1250 shows that the mapping Φ has a constant Jacobian equal to the permutation matrix \mathbf{P} , and therefore
 1251 the transformation in Eq. (39) reduces to the following form:
 1252

$$\mathbf{z} = \mathbf{P}\hat{\mathbf{z}} + \mathbf{c}' \quad (45)$$

□

1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **D THE PROOF OF THEOREM 3.4**
12971298 **Theorem 3.4.** Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal
1299 generative models defined in Eqs. (1) - (3), under the condition that the assumptions (i)-(iii) are
1300 satisfied, for each z_i ,
13011302 (a) if it is a root node or condition (iv) is satisfied, then the true z_i is related to the recovered
1303 one \hat{z}_j , obtained by matching the true marginal data distribution $p(\mathbf{x}|\mathbf{u})$, by the following
1304 relationship: $z_i = s_j \hat{z}_j + c_j$, where s_j denotes scaling, c_j denotes a constant,
1305 (b) if condition (iv) is not satisfied, then z_i is unidentifiable.
13061307 *Proof.* Since the proof process in Steps I and II in Appendix C do not depend on the assumption (iv),
1308 the results in both Eq. (42) and Eq. (43) hold. Then consider the following two cases.
13091310 • In cases assumption (iv) holds true for z_i , by using Lemma B.3, and by comparison between
1311 Eq. (42) and Eq. (43), we have: for all $j < i$ we have $J_{\Phi_{i,j}} = 0$, which implies that we can
1312 obtain that $z_i = s_{i,i} \hat{z}_i + c_i$.
1313 • In cases where assumption (iv) does not hold for z_i , such as when we compare Eq. (42)
1314 with Eq. (43), we are unable to conclude that the i -th row of the Jacobian matrix \mathbf{J}_{Φ}
1315 contains only one element. For example, consider $i = 2$, and by comparing Eq. (42) with
1316 Eq. (43), we can derive the following equation: $s_{1,1} \frac{\partial h_2^u(n_1, n_2)}{\partial n_1} = J_{\Phi_{2,1}} + J_{\Phi_{2,2}} \frac{\partial h_2^u(n_1, n_2)}{\partial n_1}$.
1317 In this case, if assumption (iv) does not hold (thus Lemma B.3 does not hold too), then
1318 once $J_{\Phi_{2,1}} = s_{1,1} \frac{\partial h_2^u(n_1, n_2)}{\partial n_1} - J_{\Phi_{2,2}} \frac{\partial h_2^u(n_1, n_2)}{\partial n_1}$ holds true, we can match the true marginal
1319 data distribution $p(\mathbf{x}|\mathbf{u})$. This implies that $J_{\Phi_{2,1}}$ does not necessarily need to be zero, and
1320 thus can be nonzero. Consequently, z_2 can be represented as a combination of \hat{z}_1 and
1321 \hat{z}_2 , resulting in unidentifiability. Note that this unidentifiability result also show that the
1322 necessity of condition (iv) for achieving complete identifiability, by the contrapositive, i.e.,
1323 if z_i is identifiable, then condition (iv) is satisfied.
13241325 \square
13261327 **E THE PROOF OF COROLLARY 3.8**
13281329 **Corollary 3.8.** Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal
1330 generative models defined in Eqs. 1, 5 and 3. Assume that conditions (i) - (iv) in Theorem 3.1
1331 hold, then each true latent variable \bar{z}_i is related to exactly one estimated latent variable \hat{z}_j , which
1332 is learned by matching the true marginal data distribution $p(\mathbf{x}|\mathbf{u})$, by the following relationship:
1333 $\bar{z}_i = M_j(\hat{z}_j) + c_j$, where M_j and c_j denote a invertible nonlinear mapping and a constant, respectively.
13341335 *Proof.* The proof can be done from the following: since in Theorem 3.1, the only constraint imposed
1336 on the function f is that the function f is invertible, as mentioned in condition (ii). Consequently, we
1337 can create a new function \tilde{f} by composing f with function \bar{g}_i , in which each component is defined by
1338 the function \bar{g}_i . Since \bar{g}_i is invertible as defined in Eq. (5), \tilde{f} remains invertible. As a result, we can
1339 utilize the proof from Appendix C to obtain that \mathbf{z} can be identified up to permutation and scaling,
1340 i.e., Eq. (45) holds. Finally, given the existence of a component-wise invertible nonlinear mapping
1341 between $\bar{\mathbf{z}}$ and \mathbf{z} as defined in Eq. (5), i.e.,
1342

1343
$$\bar{\mathbf{z}} = \bar{g}(\mathbf{z}). \quad (46)$$

1344 we can also obtain estimated $\hat{\mathbf{z}}$ by enforcing a component-wise invertible nonlinear mapping on the
1345 recovered $\hat{\mathbf{z}}$

1346
$$\hat{\mathbf{z}} = \hat{g}(\hat{\mathbf{z}}). \quad (47)$$

Replacing \mathbf{z} and $\hat{\mathbf{z}}$ in Eq. (45) by Eq. (46) and Eq. (47), respectively, we have

$$\bar{\mathbf{g}}^{-1}(\bar{\mathbf{z}}) = \mathbf{P}\hat{\mathbf{g}}^{-1}(\hat{\mathbf{z}}) + \mathbf{c}'.$$
 (48)

As a result, we conclude the proof. \square

F THE PROOF OF COROLLARY 3.9

Corollary 4.9. Suppose latent causal variables \mathbf{z} and the observed variable \mathbf{x} follow the causal generative models defined in Eqs. 1, 5 and 3. Under the condition that the assumptions (i)-(iii) are satisfied, for each \bar{z}_i , (a) if condition (iv) is satisfied, then the true latent variable \bar{z}_i is related to one estimated latent variable \hat{z}_j , which is learned by matching the true marginal data distribution $p(\mathbf{x}|\mathbf{u})$, by the following relationship: $\bar{z}_i = M_j(\hat{z}_j) + c_j$, (b) if condition (iv) is not satisfied, then \bar{z}_i is unidentifiable.

Proof. Again, since in Theorem 3.1, the only constraint imposed on the function \mathbf{f} is that the function \mathbf{f} is invertible, as mentioned in condition (ii). Consequently, we can create a new function $\tilde{\mathbf{f}}$ by composing \mathbf{f} with function $\bar{\mathbf{g}}$, in which each component is defined by the function \bar{g}_i . Since \bar{g}_i is invertible as defined in Eq. (5), $\tilde{\mathbf{f}}$ remains invertible. Given the above, the results in both Eq. (42) and Eq. (43) hold. Then consider the following two cases.

- In cases where z_i represents a root node or assumption (iv) holds true for z_i , using the proof in Appendix D we can obtain that $z_i = s_{i,i}\hat{z}_i + c_i$. Then, given the existence of a component-wise invertible nonlinear mapping between \bar{z}_i and z_i as defined in Eq. (5), we can proof that there is a invertible mapping between the recovered \hat{z}_i and the true \bar{z}_i .
- In cases where assumption (iv) does not hold for z_i , using the proof in Appendix D z_i is unidentifiable, we can directly conclude that \bar{z}_i is also unidentifiable.

\square

G UNDERSTANDING ENFORCING CAUSAL ORDER IN THE INFERENCE MODEL

In the inference model, we naturally enforce a causal order $z_1 > z_2 > \dots > z_\ell$ without requiring specific semantic information. This does not imply that we need to know the true causal order a prior. Instead, we leverage the permutation indeterminacy in latent space, as demonstrated in (Liu et al., 2022).

For instance, suppose the underlying latent causal variables correspond to properties such as the size (z_1) and color (z_2) of an object. Permutation indeterminacy implies that we cannot guarantee whether the recovered latent variable \hat{z}_1 represents the size or the color. This ambiguity in the latent space, however, offers an advantage: by predefining a causal order, we enforce that \hat{z}_1 causes \hat{z}_2 , without explicitly specifying the semantic meaning of these variables.

Due to the identifiability guarantee, \hat{z}_1 , as the first node in the predefined causal order, will learn the semantic information of the first node in the true underlying causal order, e.g., the size. Similarly, \hat{z}_2 , as the second node in the predefined causal order, will be assigned to learn the semantic feature of the second node (e.g., color). As a result, we can naturally establish a causal fully-connected graph by pre-defining causal order, ensuring the estimation of a directed acyclic graph (DAG) in inference model and avoiding DAG constraints, such as those proposed by (Zheng et al., 2018).

H DATA DETAILS

Synthetic Data In our experimental results using synthetic data, we utilize 50 segments, with each segment containing a sample size of 1000. Furthermore, we explore latent causal or noise variables with dimensions of 2, 3, 4, and 5, respectively. Specifically, our analysis centers around the following

1404 structural causal model:

1405

$$n_i \sim \mathcal{N}(\alpha, \beta), \quad (49)$$

1406

$$z_1 := n_1, \quad (50)$$

1407

$$z_2 := \lambda_{1,2}(\mathbf{u}) \sin(z_1) + n_2, \quad (51)$$

1408

$$z_3 := \lambda_{2,3}(\mathbf{u}) \cos(z_2) + n_3, \quad (52)$$

1409

$$z_4 := \lambda_{3,4}(\mathbf{u}) \log(z_3^2) + n_4, \quad (53)$$

1410

$$z_5 := \lambda_{3,5}(\mathbf{u}) \exp(\sin(z_3^2)) + n_5. \quad (54)$$

1411

In this context, both α and β for Gaussian noise are drawn from uniform distributions within the ranges of $[-2.0, 2.0]$ and $[0.1, 3.0]$, respectively. The values of $\lambda_{i,j}(\mathbf{u})$ are sampled from a uniform distribution spanning $[-2.0, -0.1] \cup [0.1, 2.0]$. After sampling the latent variables, we use a random three-layer feedforward neural network as the mixing function, as described in (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020).

1412

Synthetic Data for Partial Identifiability In our experimental results, which utilized synthetic data to explore partial identifiability, we modified the Eqs (49)-(53) by

1413

$$\dot{z}_i := z_i + z_{i-1}. \quad (55)$$

1414

In this formulation, for each i , there exists a z_{i-1} that remains unaffected by \mathbf{u} , thereby violating condition (iv).

1415

Image Data In our experimental results using image data, we consider the following latent structural causal model:

1416

$$n_i \sim \mathcal{N}(\alpha, \beta), \quad (56)$$

1417

$$z_1 := n_1 \quad (57)$$

1418

$$z_2 := \lambda_{1,2}(\mathbf{u})(\sin(z_1) + z_1) + n_2, \quad (58)$$

1419

$$z_3 := \lambda_{2,3}(\mathbf{u})(\cos(z_2) + z_2) + n_3, \quad (59)$$

1420

where both α and β for Gaussian noise are drawn from uniform distributions within the ranges of $[-2.0, 2.0]$ and $[0.1, 3.0]$, respectively. The values of $\lambda_{i,j}(\mathbf{u})$ are sampled from a uniform distribution spanning $[-2.0, -0.1] \cup [0.1, 2.0]$.

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458 **I LATENT CAUSAL GRAPH STRUCTURE**
 1459

1460 Our identifiability result, as presented in Theorem 3.1, establishes the identifiability of latent causal
 1461 variables, thereby ensuring the unique recovery of the corresponding latent causal graph. This result
 1462 builds upon the intrinsic identifiability of nonlinear additive noise models, as demonstrated in prior
 1463 work (Hoyer et al., 2008; Peters et al., 2014), and holds regardless of any scaling applied to \mathbf{z} .
 1464 Moreover, while linear Gaussian models are unidentifiable in a single environment (Shimizu et al.,
 1465 2006), identifiability can be achieved in multiple environments (e.g., across different values of \mathbf{u}),
 1466 supported by the principle of independent causal mechanisms (Huang et al., 2020; Ghassami et al.,
 1467 2018; Liu et al., 2022).

1468 **J IMPLEMENTATION FRAMEWORK**
 1469

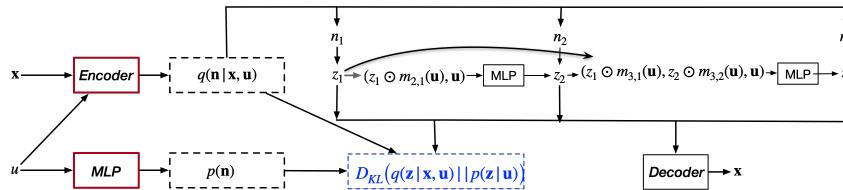
1470 We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory. Figure 8
 1471 illustrates our proposed method for learning latent nonlinear models with additive Gaussian noise.
 1472 In our experiments with synthetic and fMRI data, we implemented the encoder, decoder, and MLPs
 1473 using three-layer fully connected networks, complemented by Leaky-ReLU activation functions.
 1474 For optimization, the Adam optimizer was employed with a learning rate of 0.001. In the case of
 1475 image data experiments, the prior model also utilized a three-layer fully connected network with
 1476 Leaky-ReLU activation functions. The encoder and decoder designs were adopted from (Liu et al.,
 1477 2024) and are detailed in Table 1 and Table 2, respectively.

Layer	Output / Activation
Conv2d(3, 32, 4, stride=2, padding=1)	Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1)	Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1)	Leaky-ReLU
Conv2d(32, 32, 4, stride=2, padding=1)	Leaky-ReLU
Linear(32×32×4 + size(\mathbf{u}), 30)	Leaky-ReLU
Linear(30, 30)	Leaky-ReLU
Linear(30, 3*2)	-

1488 Table 1: Encoder for the image data.
 1489

Layer	Output / Activation
Linear(3, 30)	Leaky-ReLU
Linear(30, 30)	Leaky-ReLU
Linear(30, 32×32×4)	Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1)	Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1)	Leaky-ReLU
ConvTranspose2d(32, 32, 4, stride=2, padding=1)	Leaky-ReLU
ConvTranspose2d(32, 3, 4, stride=2, padding=1)	-

1500 Table 2: Decoder for the image data.
 1501

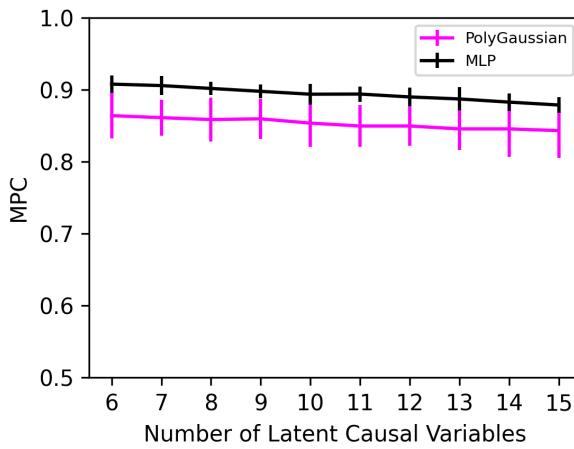


1502 Figure 8: Implementation Framework to learn latent nonlinear models (i.e., MLP) with Gaussian noise. In this
 1503 example, we demonstrate the method using 3 latent variables, however, our approach is versatile and can be
 1504 effectively generalized to accommodate much larger graphs.
 1505

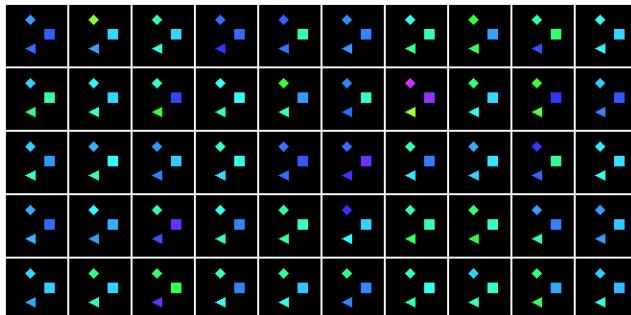
1512 **K RESULTS ON SYNTHETIC HIGH-DIMENSION DATA**
 1513

1514 In this section, we present additional experimental results on synthetic data to evaluate the effectiveness
 1515 of the proposed method in scenarios with a large number of latent variables. The performance in
 1516 these cases is shown in Figure 9. Compared to the polynomial-based approach in (Liu et al., 2024),
 1517 the proposed method, such as MLP, achieves significantly better MCC scores, demonstrating its
 1518 advantages over polynomials. This superiority becomes particularly evident as the number of latent
 1519 variables increases. MLPs, being highly flexible, can effectively adapt to the growing complexity.
 1520 In contrast, when the number of latent variables increases, the number of parent nodes also tends
 1521 to grow, requiring polynomial-based approaches to incorporate additional nonlinear components to
 1522 capture the complex relationships among latent variables, which becomes increasingly challenging.

1523 While much of the current work on causal representation learning focuses on foundational identifiability
 1524 theory, optimization challenges in the latent space remain underexplored. We hope this work
 1525 not only provides a general theoretical result but also inspires further research on inference methods
 1526 in the latent space.



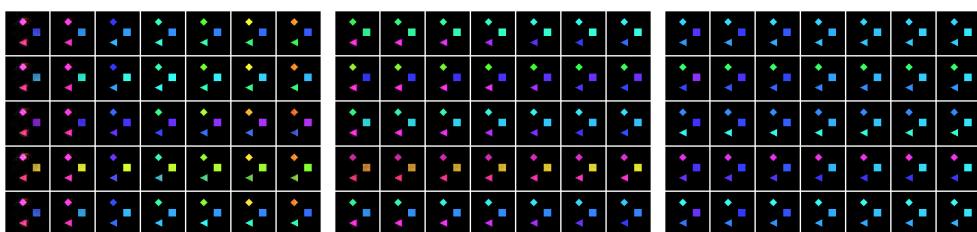
1543 Figure 9: Performances of the proposed method on a large number of latent variables.
 1544

1566 L EXPERIMENTS ON HIGH-DIMENSIONAL SYNTHETIC IMAGE DATA
1567

1579 Figure 10: Samples generated by using a modified version of the chemistry dataset originally presented in (Ke
1580 et al., 2021). In this adaptation, the objects’ colors (representing different states) change in accordance with a
1581 specified causal graph, e.g., ‘diamond’ causes ‘triangle’, and ‘triangle’ causes ‘square’.

1582
1583 We further validate our proposed identifiability results and methodology using images from the
1584 chemistry dataset introduced by (Ke et al., 2021). This dataset is representative of chemical reactions
1585 where the state of one element can influence the state of another. The images feature multiple objects
1586 with fixed positions, but their colors, representing different states, change according to a predefined
1587 causal graph. To align with our theoretical framework, we employ a nonlinear model with additive
1588 Gaussian noise for generating latent variables that correspond to the colors of these objects. The
1589 established latent causal graph within this context indicates that the ‘diamond’ object (denoted as
1590 z_1) influences the ‘triangle’ (z_2), which in turn affects the ‘square’ (z_3). Figure 10 provides a visual
1591 representation of these observational images, illustrating the causal relationships in a tangible format.

1592 Figure 12 presents MPC outcomes as derived from various methods. Among these, the proposed
1593 method demonstrates superior performance. In addition, both the proposed method (MLPs) and Poly-
1594 nomials can accurately learn the causal graph with guarantee. However, Polynomial encounters issues
1595 such as numerical instability and exponential growth in terms, which compromises its performance
1596 in MPC, as seen in Figure 12. This superiority of MLPs is further evidenced in the intervention
1597 results, as depicted in Figure 11, compared with results of Polynomial shown in Figure 13. Additional
1598 traversal results concerning the learned latent variables from other methodologies are detailed in
1599 Figure 14 (VAE), Figure 15 (β -VAE) and Figure 16 (iVAE). For these methods without identifiability,
1600 traversing any learned variable results in a change in color across all objects.



1601
1602
1603
1604
1605
1606
1607
1608
1609 Figure 11: From left to right, the interventions are applied to the causal representations z_1 , z_2 , and z_3 learned by
1610 the proposed method (MLPs), respectively. The vertical axis represents different samples, while the horizontal
1611 axis represents the enforcement of various values on the learned causal representation.

1612
1613
1614
1615
1616
1617
1618
1619

1620	z_1	z_2	z_3	\hat{z}_1	z_2	z_3	\hat{z}_1	z_2	z_3		
1621	0.089	0.094	0.857	0.067	0.582	0.628	0.095	0.631	0.683		
1622	\hat{z}_2	0.606	0.620	0.070	\hat{z}_2	0.958	0.065	0.046	\hat{z}_2		
1623	\hat{z}_3	0.811	0.681	0.042	\hat{z}_3	0.117	0.429	0.765	\hat{z}_3		
1624											
1625											
1626											
1627				z_1	z_2	z_3	z_1	z_2	z_3		
1628				\hat{z}_1	0.862	0.281	0.003	\hat{z}_1	0.912	0.501	0.024
1629				\hat{z}_2	0.553	0.868	0.123	\hat{z}_2	0.162	0.893	0.101
1630				\hat{z}_3	0.225	0.312	0.918	\hat{z}_3	0.089	0.139	0.948
1631											
1632											

Figure 12: MPC obtained by different methods on the image dataset. From top to bottom and left to right: VAE, β -VAE, iVAE, Polynomials, and the proposed method (MLPs). The proposed method performs better than others, which is not only in line with our identifiability claims but also highlights the flexibility of MLPs.

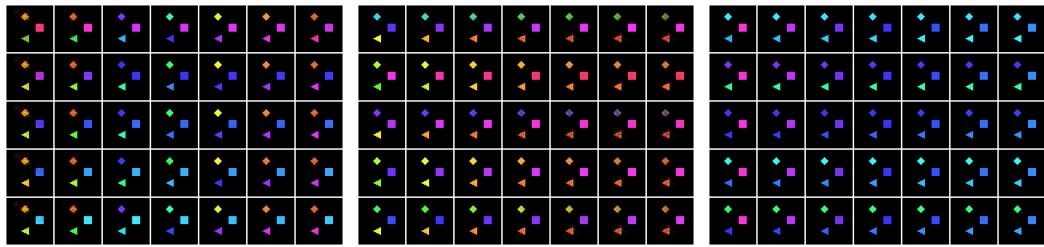


Figure 13: From left to right, the interventions are applied to the causal representations z_1 , z_2 , and z_3 learned by Polynomials, respectively. The vertical axis represents different samples, while the horizontal axis represents the enforcement of various values on the learned causal representation.

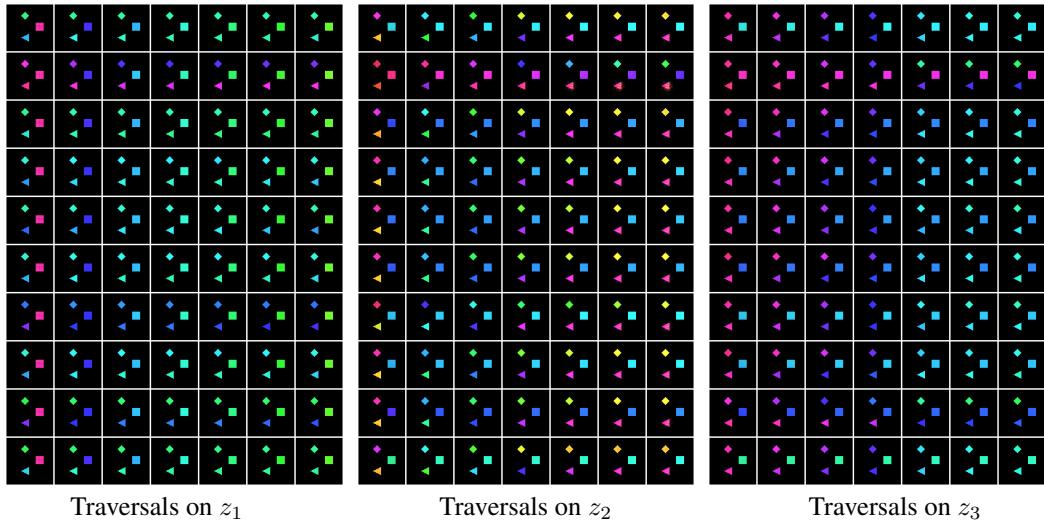
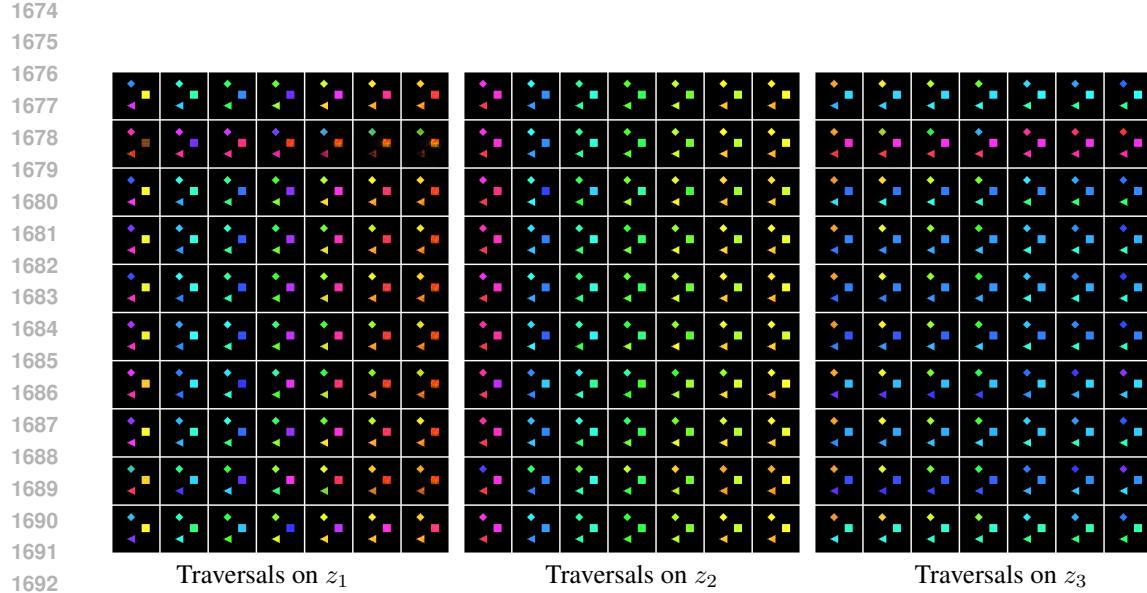
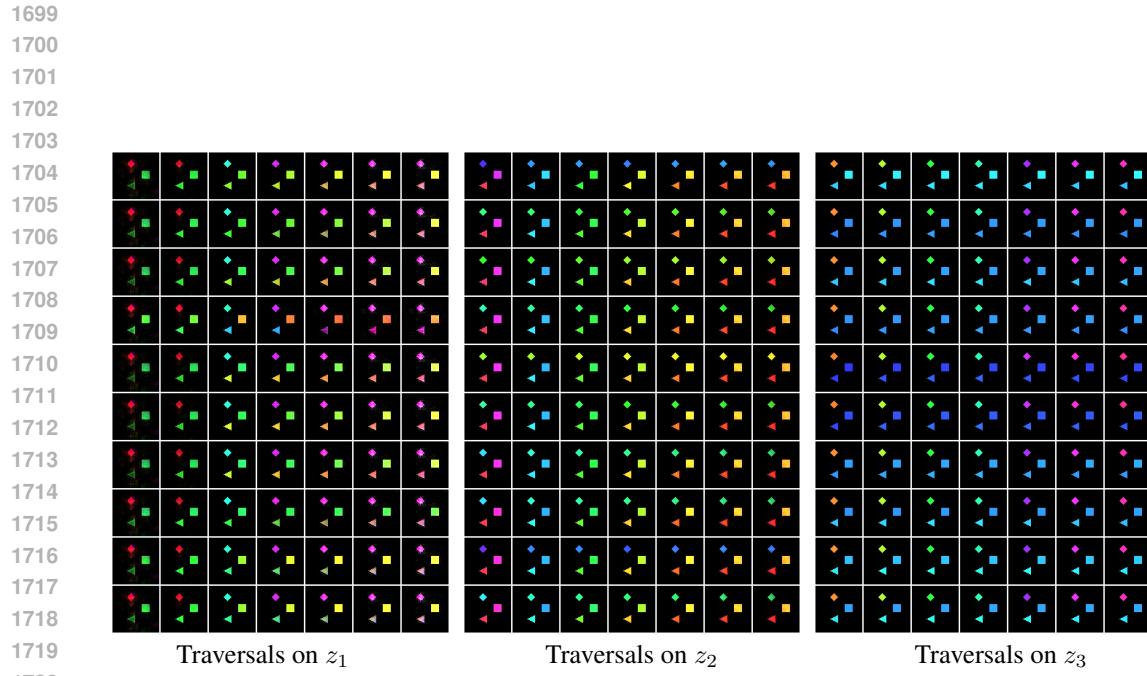


Figure 14: The traversal results achieved using VAE on image datasets are depicted. On this representation, the vertical axis corresponds to different data samples, while the horizontal axis illustrates the impact of varying values on the identified causal representation. According to the latent causal graph's ground truth, the 'diamond' variable (denoted as z_1) influences the 'triangle' variable (z_2), which in turn affects the 'square' variable (z_3). Notably, modifications in each of the learned variables lead to observable changes in the color of all depicted objects.



1693 Figure 15: The traversal results achieved using β -VAE on image datasets are depicted. On this
 1694 representation, the vertical axis corresponds to different data samples, while the horizontal axis
 1695 illustrates the impact of varying values on the identified causal representation. According to the latent
 1696 causal graph's ground truth, the 'diamond' variable (denoted as z_1) influences the 'triangle' variable
 1697 (z_2), which in turn affects the 'square' variable (z_3). Notably, modifications in each of the learned
 1698 variables lead to observable changes in the color of all depicted objects.



1720 Figure 16: The traversal results achieved using iVAE on image datasets are depicted. On this
 1721 representation, the vertical axis corresponds to different data samples, while the horizontal axis
 1722 illustrates the impact of varying values on the identified causal representation. According to the latent
 1723 causal graph's ground truth, the 'diamond' variable (denoted as z_1) influences the 'triangle' variable
 1724 (z_2), which in turn affects the 'square' variable (z_3). Notably, modifications in each of the learned
 1725 variables lead to observable changes in the color of all depicted objects.

1726
 1727

1728 **M DETAILS AND MORE RESULTS OF EXPERIMENTS ON HUMAN MOTION**
 1729 **DATA**
 1730

1731 **M.1 PREPROCESSING**
 1732

1733 We adopt a two-stage preprocessing pipeline to construct 2D pose sequences from the Human3.6M
 1734 dataset. First, we extract ground-truth 3D joint positions provided in the dataset. Each 3D pose is
 1735 transformed from world coordinates into the camera coordinate frame using the associated extrinsic
 1736 parameters (rotation and translation). Subsequently, we apply a perspective projection using the intrinsic
 1737 parameters (focal length and principal point), and the resulting 2D coordinates are converted into
 1738 image-space pixel positions based on the camera resolution. This process follows the implementation
 1739 provided by [https://github.com/facebookresearch/VideoPose3D/blob/main/
 1740 data/prepare_data_h36m.py](https://github.com/facebookresearch/VideoPose3D/blob/main/data/prepare_data_h36m.py). Corrupted sequences (e.g., Directions for subject S11)
 1741 are excluded, and only valid data is retained. The final output is stored as structured 2D keypoint
 1742 arrays indexed by subject, action, and camera.
 1743

1744 In the second stage, for each unique (subject, action) pair, we keep only the sequence from the first
 1745 camera view. A unique one-hot vector is assigned to each pair, which is then concatenated to the
 1746 2D joint coordinates of every frame across all joints. To ensure balanced representation among all
 1747 subject-action categories, we uniformly sample the same number of frames from each sequence based
 1748 on the shortest available sequence length. This balanced and encoded dataset is then prepared for
 1749 subsequent training tasks. As a result, we obtain a final dataset comprising 140 contexts *i.e.*, \mathbf{u} , each
 1750 containing 1040 frames, with each frame represented by 2D coordinates of 16 joints.
 1751

1752 **M.2 MORE RESULTS**
 1753

1754 In our implementation, we empirically set the number of latent variables to 14. The model is trained
 1755 using the Adam optimizer with a learning rate of 1e-3 for 7000 epochs. We use the encoder designed
 1756 to effectively encode 2D keypoint sequences. We employ an encoder to effectively encode 2D
 1757 keypoints, where each input frame consists of 2×14 keypoint coordinates augmented with a subject-
 1758 action condition vector \mathbf{u} . The input is first projected via a linear layer into a higher-dimensional
 1759 feature space, enhancing its representational capacity. This is followed by a stack of Mixer layers,
 1760 which alternate between mixing information across spatial (e.g., keypoint) and feature dimensions,
 1761 thereby capturing complex dependencies both spatially and channel-wise. After all Mixer blocks,
 1762 a layer normalization is applied to stabilize training. The used decoder applies multiple Mixer
 1763 layers to iteratively mix spatial and channel information, followed by layer normalization for stable
 1764 training. Finally, a linear layer projects the hidden features back to the keypoint coordinate dimension,
 1765 producing an output that matches the original input shape of 2×14 keypoint coordinates, representing
 1766 the reconstructed 2D coordinates. This decoder architecture symmetrically complements the encoder
 1767 by reversing the compositional token embedding process, enabling effective recovery of keypoint
 1768 positions from latent representations.
 1769

1770 Figures 17–19 illustrate the results of intervention on each learned latent variables by our method.
 1771 As discussed in the main manuscript, and supported by the estimated adjacency matrix shown in
 1772 Figure 5, we observe that certain latent variables—specifically z_1 and z_2 , z_6 and z_7 , as well as z_{10}
 1773 and z_{11} —exhibit potential causal relationships. These include plausible dependencies such as from
 1774 the shoulder to the wrist joint, and from the elbow to the wrist. Such findings are consistent with
 1775 biomechanical principles of intersegmental limb dynamics.
 1776

1777 For comparison, we also implemented the latent polynomial models proposed by (Liu et al., 2024). As
 1778 shown in Figures 20–22, the learned latent representations in this baseline tend to be more entangled,
 1779 lacking the interpretable structure observed in our approach.
 1780

1781 **N ACKNOWLEDGMENT OF LLMs USAGE**
 1782

1783 We acknowledge that large language models (LLMs) were used in this work only for word-level
 1784 tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,
 1785 results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and
 1786 conclusions presented in this manuscript are solely the work of the authors.
 1787

Figure 17: Complete Results of Intervention on the Estimated Latent Variables z_1 to z_5 by the Proposed Method.

O CLARIFICATION ON CAUSAL ORDER ASSUMPTION

In the proofs (e.g., Lemma B.3 and Step III in the proof of Theorem 3.1), we assume a causal order among the latent variables $z_1 < z_2 < \dots < z_\ell$. This is a *relabelling* rather than requiring known the true latent causal order.

To illustrate, consider an example with three latent variables corresponding to semantic attributes of objects: z_{color} (color), z_{size} (size), and z_{shape} (shape), with a true causal DAG $z_{\text{color}} \rightarrow z_{\text{size}} \rightarrow z_{\text{shape}}$ (the DAG can be arbitrary). In the proof, we can always relabel the latent variables according to the coordinate indices used in the proof:

$$z_{\text{color}} \mapsto z_1, \quad z_{\text{size}} \mapsto z_2, \quad z_{\text{shape}} \mapsto z_3.$$

Figure 18: Complete Results of Intervention on the Estimated Latent Variables z_6 to z_{10} by the Proposed Method.

Here, z_1, z_2, z_3 denote the first, second, and third nodes in the causal order of the relabeled coordinates, corresponding to color, size, and shape, respectively. *This relabeling is purely for convenience in proof and does not require knowledge of the true topological order of the latent variables.*

Thus, we claim: without loss of generality, we can consider a causal order $z_1 < z_2 < \dots < z_\ell$, where the indices $1, 2, \dots, \ell$ correspond to a relabeling of the latent variables. That is, the assumed causal order in the proof is purely notational and does not require knowledge of the true topological order of the original latent variables. Thus, all claims that follow from this assumed order hold without assuming access to the true causal order.

P RELATIONSHIP TO THE WORK OF (LIU ET AL., 2024)

Figure 19: Complete Results of Intervention on the Estimated Latent Variables z_{11} to z_{14} by the Proposed Method.

We briefly clarify the relationship between our setting and the polynomial latent causal model studied in Liu et al. (2024). As already discussed in the Introduction, Related Work, and throughout our experiments, Liu et al. (2024) focuses on polynomial structural equations, whereas our work considers a more general class of additive noise models. Polynomial models may suffer from numerical instability and rapidly growing magnitudes for high-degree terms, while additive noise models avoid these issues and naturally support non-parametric instantiations (e.g., MLPs or Transformers). The polynomial setting can in fact be viewed as a special case of our formulation.

Both works build upon identifiability results from nonlinear ICA. The main conceptual difference lies in how changes in causal influences across conditions are modeled. Liu et al. (2024) specifies these changes through variations in polynomial coefficients, whereas we introduce a non-parametric conditional mechanism that captures more general forms of variation. This generalization requires substantially different proof techniques from those used in the polynomial case.

Finally, our work investigates a real-world application of causal representation learning, highlighting the practical relevance of general additive noise models beyond the polynomial setting.

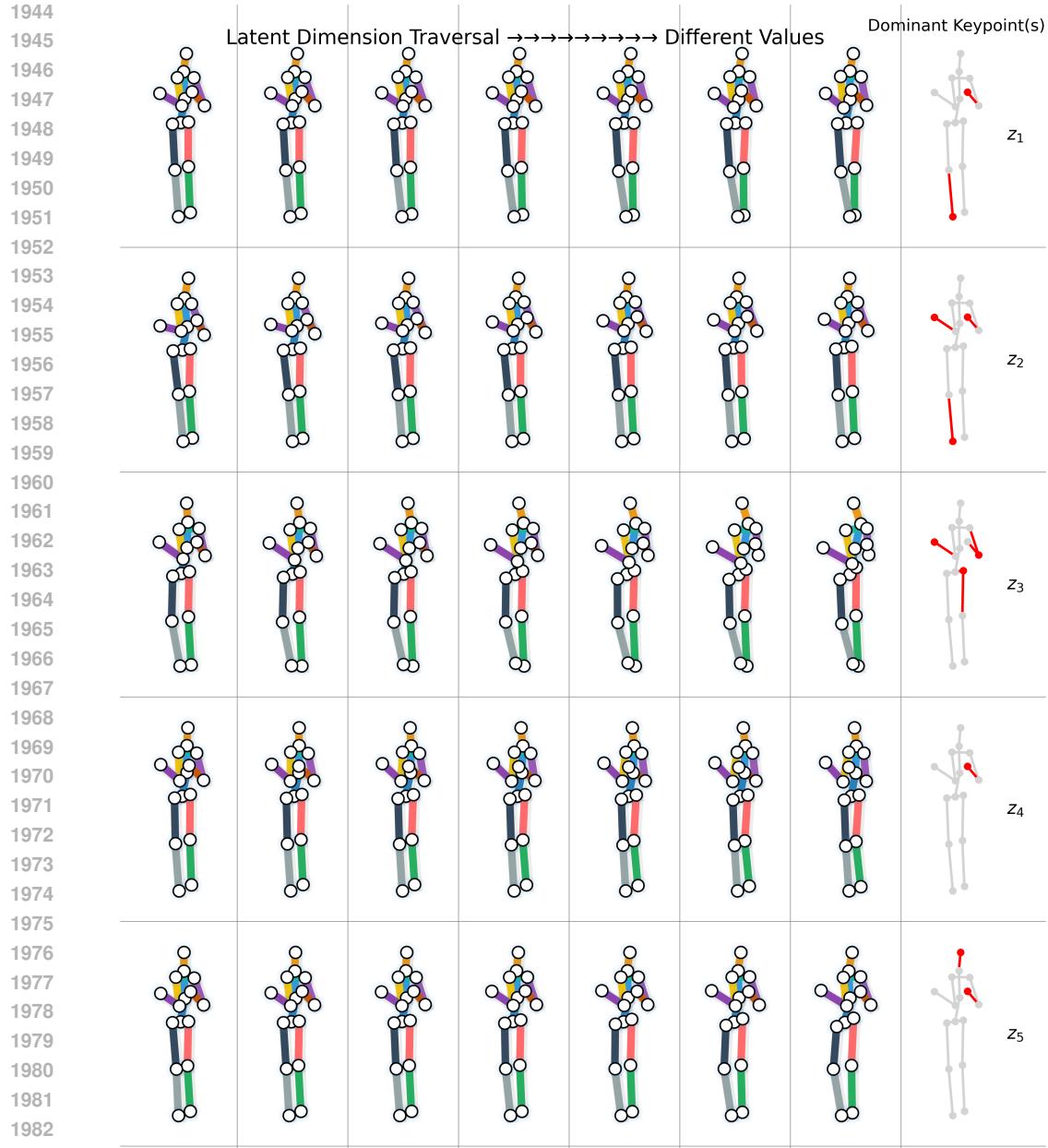


Figure 20: Complete Results of Intervention on the Estimated Latent Variables z_1 to z_5 by Latent Polynomial Model.

Q COMPARISON TO INTERVENTIONAL CRL

This section clarifies the distinct position of our work within the field of CRL, particularly in comparison to existing methods that rely on explicit interventional information (e.g., (Ahuja et al., 2022; Brehmer et al., 2022)).

We acknowledge that the condition formalized in Assumption (iv) is conceptually equivalent to perfect intervention at the level of the mechanism change. However, our core contribution is not in proposing the concept of intervention, but in integrating this condition into Nonlinear ICA framework, thereby achieving a significant generalization of the strict data labeling requirements of prior work.

Traditional interventional CRL methods typically leverage changes in causal mechanisms to achieve latent variable identifiability. To secure component-wise identifiability result, these methods often rely

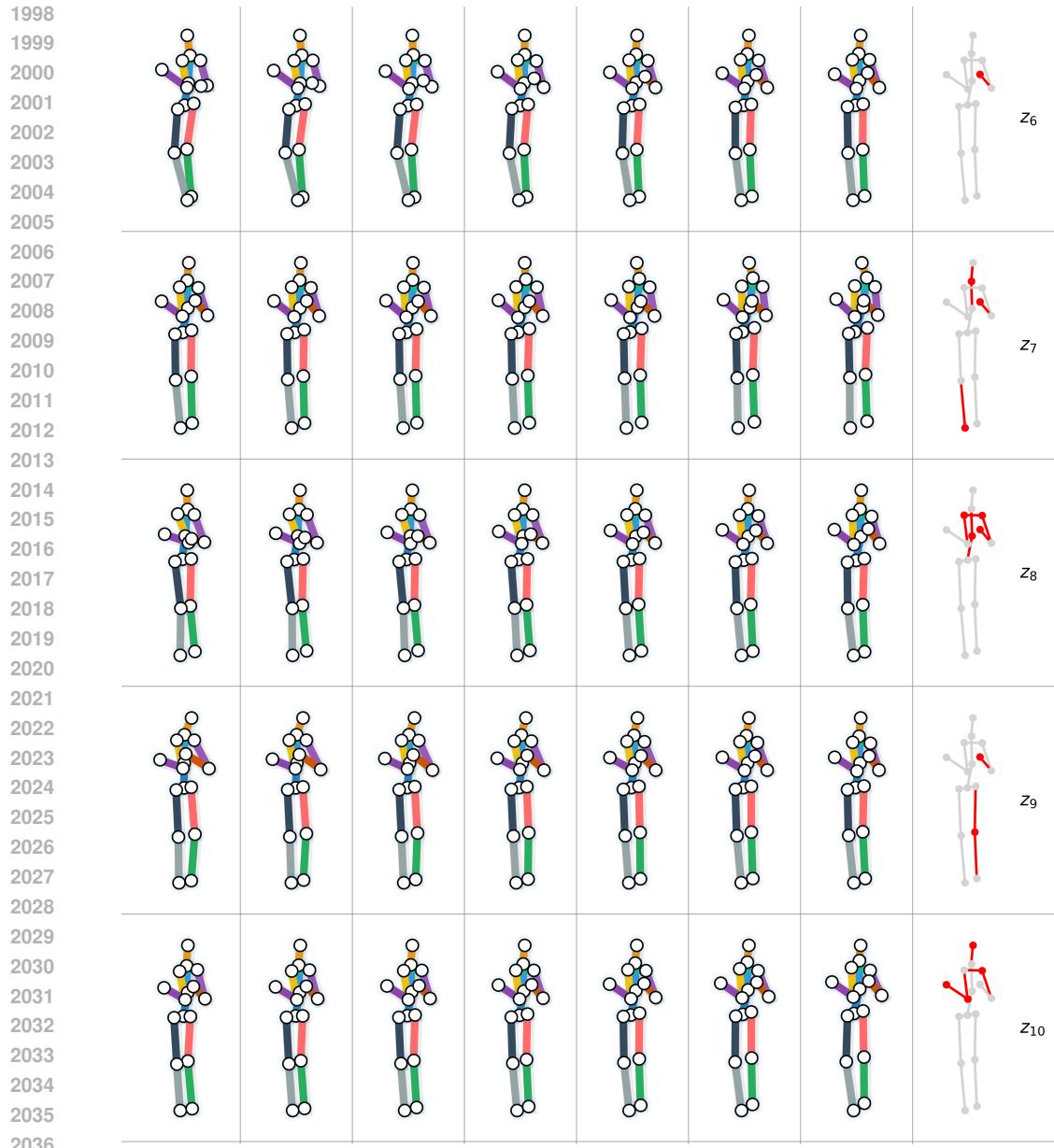


Figure 21: Complete Results of Intervention on the Estimated Latent Variables z_6 to z_{10} by Latent Polynomial Model.

on such supervised data, characterized by the following: Many methods require prior knowledge of the specific latent node that has been intervened upon (i.e., the intervention label). Some approaches require access to paired observations (Before/After pairs) corresponding to the intervention event to isolate the "difference" signal for identifiability. This reliance on intervention labels represents a limitation for applying this research line in practical settings.

Our work successfully breaks these limitations by fusing the theoretical power of Nonlinear ICA. Consequently, our method theoretically achieves identifiability without requiring prior knowledge of which node was intervened upon or the specific semantic value of the intervention. As illustrated in Figure 23, our work resides at the intersection of two critical theoretical paradigms.

- **Path 1 (Interventional CRL):** Starting from the conceptual requirements of interventional data, we generalize the reliance on explicit labeling, mitigating data restrictions.

Figure 22: Complete Results of Intervention on the Estimated Latent Variables z_{11} to z_{14} by Latent Polynomial Model.

- **Path 2 (Nonlinear ICA):** Utilizing the statistical properties of non-stationary data, we enable the decoupling of the latent noise \mathbf{n} .

These two paths converge in the proposed assumption (iv), which serves as the crucial theoretical bridge, ensuring the ultimate identifiability of the latent causal variables.

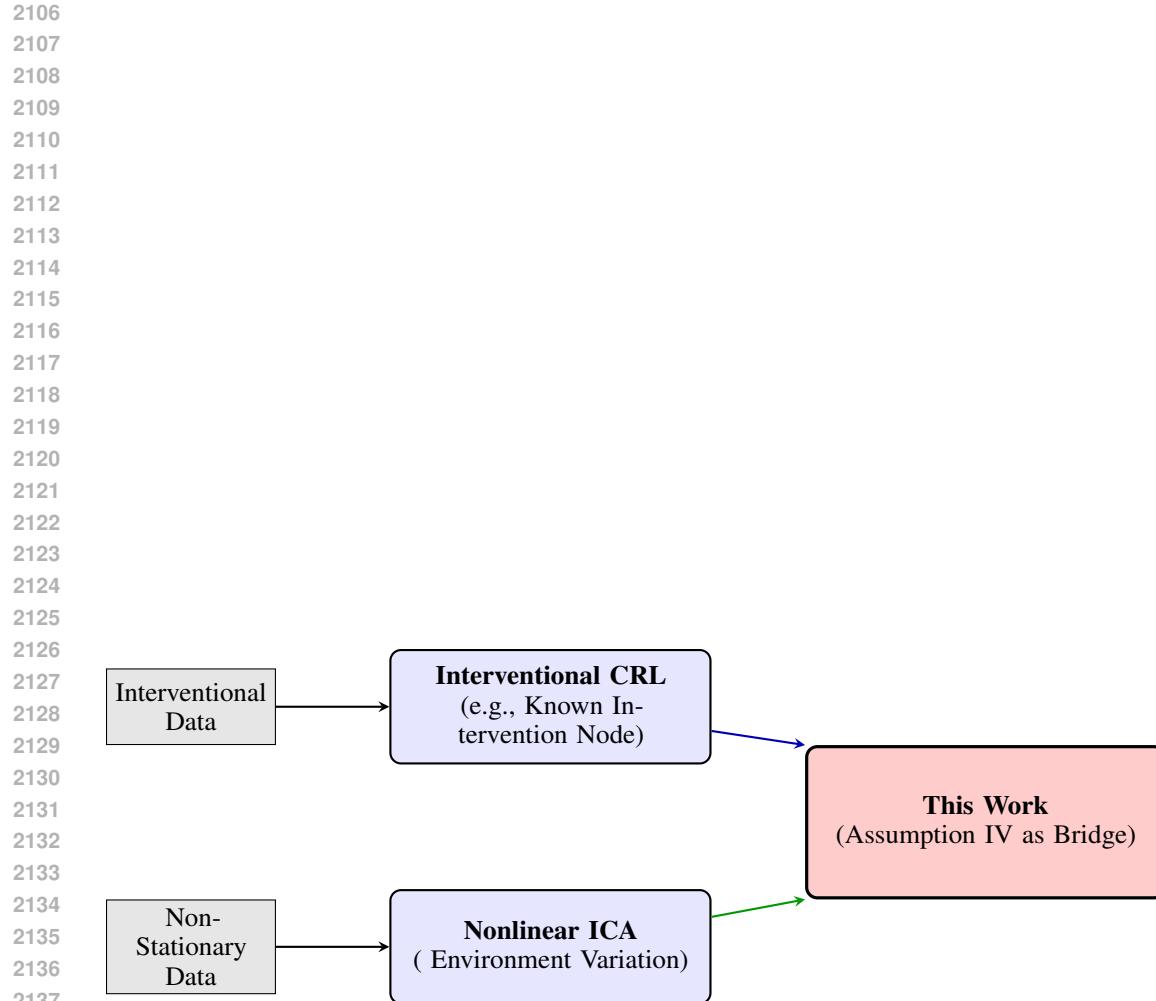


Figure 23: Comparison of previous interventional CRL and this work. Assumption (iv) serves as the crucial theoretical bridge.