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Abstract
To design rewards that align with human goals,
Reinforcement Learning from Human Feedback
(RLHF) has emerged as a prominent technique
for learning reward functions from human prefer-
ences and optimizing policies via reinforcement
learning algorithms. However, existing RLHF
methods often misinterpret trajectories as being
generated by an optimal policy, causing inaccurate
likelihood estimation and suboptimal learning. In-
spired by Direct Preference Optimization frame-
work which directly learns optimal policy with-
out explicit reward, we propose policy-labeled
preference learning (PPL), to resolve likelihood
mismatch issues by modeling human preferences
with regret, which reflects behavior policy infor-
mation. We also provide a contrastive KL regular-
ization, derived from regret-based principles, to
enhance RLHF in sequential decision making. Ex-
periments in high-dimensional continuous control
tasks demonstrate PPL’s significant improvements
in offline RLHF performance and its effective-
ness in online settings. For more information, visit
our project page: https://jjush.github.
io/PPL/.

1. Introduction
Preference-based reinforcement learning (PbRL), a branch
of RLHF, focuses on learning optimal policies directly from
human preferences, avoiding the needs for explicit, hand-
crafted rewards. Unlike traditional RLHF, which infers nu-
merical rewards, PbRL derives reward signals from prefer-
ence comparisons between trajectory pairs. As RLHF appli-
cations expand into complex domains such as large language
models (LLMs) (Achiam et al., 2023; Touvron et al., 2023;
Ye et al., 2024; Meng et al., 2024; Xiao et al., 2024) and
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robotic manipulation (Christiano et al., 2017; Hwang et al.,
2023), aligning agents with human intentions has become
increasingly important.

Early RLHF research (Lee et al., 2021; Park et al., 2022)
assumed humans prefer trajectories with higher cumulative
rewards, leading to a two-step learning process: (1) training
a reward model to align with human preferences and (2)
applying a RL algorithm to optimize the policy using the
learned reward. Recently, Rafailov et al. (2024b) introduced
Direct Preference Optimization (DPO), which bypasses the
need for an explicit reward function and directly optimizes
the policy based on preferences. This simplification reduces
computational complexity and dependency on potentially
imperfect reward models, improving training stability. DPO
has demonstrated superior performance over reward-based
RLHF methods, particularly in fine-tuning LLMs (Bai et al.,
2022; Stiennon et al., 2020; Ziegler et al., 2019) and offline
RL benchmarks (Hejna & Sadigh, 2024).

While DPO has shown strong performance in LLM fine-
tuning and offline RL benchmarks, its assumptions are
largely shaped by the structure of LLM training. Many
RLHF studies assume contextual bandits or deterministic
Markov decision processes (MDPs), where the next state
is determined solely by the previous state (prompt) and ac-
tion (response), leading to a simplified transition model.
However, in standard RL settings, state transitions involve
environmental stochasticity, introducing additional uncer-
tainty that complicates both policy optimization and MDP
estimation (Yang et al., 2022). Since outcomes depend on
external stochasticity beyond the agent’s control, observed
transitions may not always accurately provide the agent’s
policy performance. Consequently, inferring optimal behav-
ior from observed sequences becomes more challenging.
For example, an agent executing a suboptimal policy might
transition to a preferred state with low probability, whereas
an optimal policy could occasionally lead to an undesirable
state due to environmental randomness. This contrast with
the deterministic nature of LLM training, where responses
are directly mapped from prompts, highlights a key limita-
tion when applying DPO to general RL problems.

This challenge becomes more critical in offline RL, where
learning relies on pre-collected datasets rather than direct
interaction with environment. When data comes from di-
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verse policies but lacks explicit information about the behav-
ior policies, distinguishing whether outcome quality stems
from policy suboptimality or environmental stochasticity be-
comes difficult. Given this ambiguity, a key question arises:

Can preference data generated by diverse policies suffi-
ciently guide sequential decision-making, or is additional
information required?

To address this question, we propose a novel RLHF frame-
work, Policy-labeled Preference Learning (PPL), which
leverages regret-based preference modeling while explic-
itly labeling the behavior policy. Unlike conventional ap-
proaches that rely solely on preferences between trajectory
pairs, PPL incorporates policy information directly into the
learning process, disentangling the effects of environmental
stochasticity and the suboptimality of behavior policies.

To provide theoretical insights, we define a reward equiva-
lence class—a set of reward functions that induce the same
optimal policy—and derive a bijective mapping that allows
regret to be expressed as a function of the optimal policy.
We show that, unlike the partial sum of rewards, regret is
uniquely defined with respect to a given optimal policy, mak-
ing it a well-structured metric that mitigates issues related
to reward sparsity and enhances the stability of learning.
Furthermore, we introduce contrastive KL regularization,
which sequentially aligns policies with preferred trajecto-
ries while explicitly contrasting them against less preferred
ones. Empirically, to consider the fact that real-world of-
fline data often consists of rollouts from diverse policies, we
construct homogeneous and heterogeneous datasets in the
MetaWorld environment and evaluate performance across
various offline datasets.

2. Preliminaries
Maximum Entropy Framework. We define the MDP as
M = (S,A,P, r, γ) characterized by state space S, action
space A, transition kernels P which represents the prob-
ability of the next state s′ given the current state s ∈ S
and action a ∈ A, underlying reward r ∈ [rmin, rmax], and
discount factor γ. For notational simplicity, we denote the
expectation over trajectories τ = (s0, a0, s1, a1, · · · ) gener-
ated by a policy π and the transition kernel P as Eτ∼Pπ [·].

The MaxEnt framework provides an optimal policy which
not only maximizes the expected cumulative return, but also
the entropy for each visited state:

π∗
MaxEnt = argmax

π
Eτ∼Pπ

[∑
t≥0

γt(r(st, at) + αHπ(·|st))
]
,

where Hπ(·|s) = −Eπ[log π(·|s)] is the entropy of policy
π at state s. Here, α is a temperature hyperparameter that
determine the relative importance of entropy and reward.

Table 1: Comparison for different preference models under
PbRL framework.

Algorithm Score Function Direct Preference
Optimization

Likelihood
Matching

PEBBLE
(Lee et al., 2021) rψ(st, at) ✗ ✗

DPO
(Rafailov et al., 2024b) log πψ(y|s)/πref(y|s) ✓ ✗

DPPO
(An et al., 2023) −Ea∼πψ(·|st)[∥a− at∥2] ✓ ✗

CPL
(Hejna et al., 2023) Qπψ(st, at)− V πψ(st) ✓ ✗

PPL
[Ours] −(V πψ(st)−Qπ(st, at)) ✓ ✓

For clarity, we say π∗
MaxEnt as α-optimal. In addition, soft

Q-function Qπ(s, a) is defined as the expected cumulative
return augmented by an entropy terms, expressed as;

Qπ(s, a) = r(s, a) + Eτ∼Pπ
[∑
t>0

γt(r(st, at) + αHπ(·|st))
]
.

Analogously, we can derive soft value function V π(s) and
soft Bellman equation as follows:

V π(s) = Ea∼π[Qπ(s, a)− α log π(a|s)],

Qπ(s, a) = r(s, a) + γEs′∼P

[
V π(s′)]

]
for all state-action pairs (s, a) ∈ S ×A. Note that the inter-
pretation of the value function is modified by involving the
entropy term in the MaxEntRL, i.e., V π(s) ̸= Eπ[Qπ(s, a)].
For an α-optimal policy π∗, Ziebart (2010) derived the re-
lationship between the optimal policy and optimal soft Q-
function Qπ

∗
:

π∗(a|s) = exp
(
α−1(Qπ

∗
(s, a)− V π

∗
(s))

)
,

V π
∗
(s) = α log

∫
a∈A

exp
(
α−1Qπ

∗
(s, a)da

)
.

2.1. Preference-based Reinforcement Learning

Designing a reward function that accurately aligns with
human behaviors is inherently challenging. To address
this, PbRL focuses on learning the optimal policy directly
from human preferences rather than relying on predefined
rewards. In this context, we adopt a reward-free MDP
M \ r within the MaxEnt framework. We define a seg-
ment ζ = (s0, a0, . . . , sk, ak) as a sequence sampled from
a dataset D. Specifically, human annotators or AI systems
are tasked with comparing pairs of trajectory segments
(ζ+, ζ−), where ζ+ is preferred over ζ− (i.e., ζ+ ≻ ζ−).

Score-based Preference Model. Score-based preference
model is a natural generalization of RLHF for modeling hu-
man preferences through score functions, instead of partial
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sum of rewards (Lee et al., 2021). This approach extends the
Bradley-Terry model (Bradley & Terry, 1952), where pair-
wise comparisons are used to infer relative preferences, by
introducing a score function that evaluates all observed state-
action pairs within a segment. The preference model then
assigns probabilities proportional to the sum of these scores,
aligning with the Bradley-Terry framework. To implement
the preference model using a neural network, the score func-
tion is parametrized as Sψ, and the model is trained by
minimizing the cross-entropy loss between its predictions
and the preference labels derived from the dataset D, as
follows:

PSψ [ζ
+ ≻ ζ−] = σ

(∑
t≥0

Sψ(s
+
t , a

+
t )− Sψ(s−t , a−t )

)
,

L(Sψ;D) = −E(ζ+,ζ−)∼D

[
logPSψ [ζ

+ ≻ ζ−]
]
,

where σ(x) = 1/(1+e−x) and each (s+t , a
+
t ) and (s−t , a

−
t )

is the t-th state and action of preferred segment ζ+ and less
preferred segment ζ−, respectively. For notational simplic-
ity, we abbreviate E(ζ+,ζ−)∼D as ED.

Although it is unclear how humans evaluate their prefer-
ences, preference models can be improved to better align
with human judgment by refining them based on intuitive ex-
amples. If the score function does not align with human pref-
erence evaluation, the model may produce counterintuitive
outcomes. For example, Knox et al. (2022) demonstrated
that using the partial sum of rewards as a score function over-
looks a critical issue in sparse reward MDPs: all segments
that fail to reach the goal are treated as equally preferable,
regardless of their contributions.

As shown in Figure 1, sparse reward MDPs provide little
feedback for the states that do not reach the terminal goal,
leading to meaningless comparison of the preferences in
the early- and mid-stage segments based solely on return
sums. In contrast, regret is more evenly distributed across
timesteps, making it a more effective score for comparing
segment preferences regardless of their position in the trajec-
tory. This highlights the importance of modeling preference
with the score function that aligns with human intuition.
Various approaches to designing such score functions have
been proposed, as summarized in Table 1.

Optimal Advantage-based Preference Model. Hejna
et al. (2023) proposed Contrastive Preference Learning
(CPL), which is based on an optimal advantage-based pref-
erence model (Knox et al., 2022), treating as a regret-based
preference model. The CPL score is defined as the differ-
ence between the value of the action taken and the aver-
age value under the optimal policy, (i.e., Aπ∗(st, at) :=
Qπ

∗
(st, at)− V π

∗
(st) = α log π∗(at|st).) Leveraging the

relationship between the optimal advantage and the optimal
policy within the MaxEnt framework, their objective can

Figure 1: Visualization of 5000 samples in
Bin-Picking-v2 environment. While the ground-
truth reward (left) is sparse and mainly provided upon task
completion, regret (right) is more evenly distributed across
all timesteps, making it a more informative score function
for partial trajectory evaluation.

be reformulated into a policy-based expression, enabling
the optimal policy to be learned directly without relying on
reward:

LCPL(λ)(πψ;D) (1)

= −αED

[
log σ

(∑
t≥0

log πψ(a
+
t |s+t )−λ log πψ(a−t |s−t )

)]
.

However, the standard score-based preference loss is con-
vex but not strictly convex, leading to the existence of
multiple optimal solutions. Hejna et al. (2023) identified
that the shift-invariance property of the loss function (i.e.,
PS(πψ)+C = PS(πψ)) causes out-of-distribution actions to
be overly weighted, deteriorating learning performance. To
mitigate this issue, they introduced an asymmetric regular-
izer λ, which reduces the gradient weight on less preferred
actions, breaking the inherent symmetry and stabilizing the
learning process.

3. Policy-labeled Preference Learning
This section introduces the regret-based preference model
and its distinctions from prior work, with a focus on the issue
of likelihood mismatch, where sampled segments are misin-
terpreted as optimal, leading to suboptimal learning. To ad-
dress this, we propose Policy-labeled Preference Learning
(PPL), which employs a regret-based model to accurately
estimate segment likelihoods. Finally, we present theoretical
results derived from the PPL framework.

3.1. Is Preference Enough for RLHF?

Negative Regret vs Optimal Advantage. In prior work,
Hejna et al. (2023) utilized the optimal advantage as the
score in CPL to introduce a regret-based preference model.
While they presented these two concepts as equivalent, they
differ significantly in their precise definitions and impli-
cations. Optimal advantage refers to the relative benefit
of taking a specific action a under the optimal policy π∗

(i.e., Qπ
∗
(s, a)− V π∗

(s)). In contrast, negative regret cap-
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Likelihood
matched

Policy-labeled Preference Learning

Policy-labeled 
Dataset

Contrastive KL
Regularization

Figure 2: Unlike existing DPO algorithms, PPL aligns segment likelihoods by incorporating behavior policies. It reweights
gradients based on closeness to the optimal policy, forming a contrastive learning framework.

tures the performance difference between the behavior pol-
icy π and the optimal policy π∗ (i.e., Qπ(s, a)− V π∗

(s)).
The key difference between these concepts lies in whether
the behavior policy is incorporated into the score.

From a perspective of regret, the optimal advantage disre-
gards the source of the trajectories and evaluates the actions
taken solely based onQπ

∗
. Consequently, it implicitly treats

all trajectories as if they were generated by the optimal pol-
icy. This raises an important question: what impact does this
assumption – treating all behavior polices as optimal – have
on the regret-based learning process?

Ground-Truth MDP Estimated MDP 
without policy label

Figure 3: Illustration of the likelihood mismatch problem.
Although the behavior policy π differs from the optimal
policy π∗, the learning process incorrectly assumes all data
is generated by π∗. As a result, while π∗ prefers s1, this
misinterpretation leads to the incorrect conclusion that s2 is
preferred, causing suboptimal learning outcomes.

Likelihood Mismatch. Likelihood mismatch occurs
when outcome differences between two segments, which ac-
tually stem from behavior policy differences, are mistakenly
attributed to environmental stochasticity. This misinterpre-
tation leads to incorrect likelihood assignments. Figure 3
illustrates this issue in an offline setting where offline data
from both a suboptimal policy π and an optimal policy π∗

lacks explicit policy labels. In this scenario, all data is mis-
takenly assumed to be generated by the optimal policy π∗,
leading to misinterpretations during learning.

To understand how preference labels are assigned in this
setting, let us first consider the left-side figure. The red
trajectory, generated by the suboptimal policy π, assigns

a higher score (+10) to s2, making it appear more prefer-
able than s1. In contrast, the black trajectory, generated by
the optimal policy π∗, assigns a higher score (+20) to s1,
leading to the opposite preference. These conflicting results
can be properly distinguished when policy labels are avail-
able, allowing the model to infer the suboptimality of π by
evaluating preferences separately for each policy.

Now consider the right-side Figure 3, where the same data
is used but without policy labels. Since all data is incor-
rectly assumed to originate from π∗, the model observes
contradictory outcomes—s2 being preferred in one case and
s1 in another—despite assuming a single policy. Lacking
policy labels, the model misinterprets this discrepancy as
environmental stochasticity rather than differences in poli-
cies, distorting the learned MDP and leading to incorrect
likelihood estimates for trajectories. To mitigate this issue,
it is crucial to explicitly track and incorporate the behavior
policy π for each segment, ensuring accurate interpretation
and proper differentiation of feedback. Thus, replacing opti-
mal advantage with regret, which reflects the suboptimality
of the behavior policy, provides a principled solution.

Regret-based Model Requires the Behavior Policy. In
essence, regret quantifies how much better we could have
done if we had followed the optimal policy instead of the
behavior policy. A larger regret indicates that the behavior
policy is significantly less efficient compared to the optimal
policy. We remark that the regret is the difference between
the expected return under optimal policy and the achieved
return under behavior policy. Based on the conventional
definition of regret, we reformulate negative regret in a
policy-based form within the MaxEnt framework:

− Regππ∗(st, at)

:= − V π
∗
(st)︸ ︷︷ ︸

expected return under π∗

+ Qπ(st, at)︸ ︷︷ ︸
achieved return under π

(2)

(Thm 3.4)
= α

(
log π∗(at|st)︸ ︷︷ ︸
increase likelihood

− D̄KL
(
π||π∗; st, at

)︸ ︷︷ ︸
decrease sequential forward KL

)
.

(3)
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In summary, the regret for the preferred segment can be
decomposed into two components: First, it increases the
likelihood of actions taken in preferred segments, aligning
the behavior policy with human preferences. Second, it re-
duces the sequential forward KL divergence, correcting for
likelihood mismatch by considering long-term differences
between the behavior policy and the optimal policy. Analo-
gously, for the less preferred segment, the regret exhibits the
opposite tendencies. Based on Equation (3), our objective
can be formulated as follows:

LPPL(πψ;D) =

− ED

[
log σ

(
−

∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−

πψ
(s−t , a

−
t )

)]
where the policy label for the preferred and less preferred
segments are denoted as π+ and π−, respectively. The de-
tailed derivation of this formulation will be introduced in
the next section and Appendix B.1.

3.2. Theoretical Analysis

Consider a triplet (π∗, (ζ+, π+), (ζ−, π−)), where the seg-
ments ζ+ and ζ− are generated by policies π+ and π−,
respectively. The (unknown) optimal policy π∗ serves as the
basis for determining the underlying reward and ensuring
consistent preferences. During the learning process, we as-
sume that each segment is labeled by its behavior policy.
Under this setup, the policy-labeled preference model is
expressed as:

P
(π+,π−)
π∗ = σ

(∑
t≥0

[
V π

∗
(s−t )− V π

∗
(s+t )

]
︸ ︷︷ ︸

At(π∗)

+
[
Qπ

+

(s+t , a
+
t )−Qπ

−
(s−t , a

−
t )

]
︸ ︷︷ ︸

Bt(π∗,π+,π−)

)
.

This expression is decomposed into two components: (i)
At(π

∗), which depends solely on Qπ
∗

(note that V π
∗
(s) =

Ea∼π∗ [Qπ
∗
(s, a)] + αHπ∗

(·|s)), and (ii) Bt(π∗, π+, π−),
which involves Qπ

+

and Qπ
−

.

The main theoretical challenge in performing a direct policy
update is expressing the soft optimal Q-function and soft Q-
function of a given policy π in closed-form with respect to
the optimal policy π∗. Before proceeding, we introduce the
concept of equivalence classes within the MaxEnt frame-
work to analyze the reward structures that make a given
policy optimal.

Definition 3.1. The set of reward functions where π∗ is
α-optimal is defined as (α, π∗)-equivalence class of reward
function, denoted by Rα,π∗ . For every policy π, the set
of Qπ-function generated by any reward function rα,π∗ ∈

Rα,π∗ is defined as the (α, π∗)-equivalence class of Qπ-
function, denoted by Qπα,π∗ .

Definition 3.1 indicates that a reward function class R or
a Qπ-function class Qπ can be partitioned based on the
α-optimal policy π∗. For notational simplicity, we denote
the ground truth reward function corresponding to the α-
optimal policy π∗ as r∗ and the Qπ-function induced by r∗
as Qπ∗ , simplifying the subscript to ∗.
Lemma 3.2 (Structural Condition for α-optimality). A re-
ward function and a soft optimal Q-function where π∗(·|s)
is α-optimal have a one-to-one correspondence with a state-
dependent function β : S → R, defined as follows:

Rα,π∗ = {r∗(s, a) = α log π∗(a|s) + β(s)− γEP[β(s
′)]}

Qπ
∗

α,π∗ = {Qπ
∗

∗ (s, a) = α log π∗(a|s) + β(s)}

for all s ∈ S and a ∈ A.

Lemma 3.2 demonstrates that the (α, π∗)-equivalence class
of soft optimal Q-functions can be uniquely expressed as
the sum of a log-probability term, α log π∗(a|s), and a state-
dependent function, β(s). This result improves upon the
prior lemma of Rafailov et al. (2024b), which established
only a surjection from reward functions to optimal policies.
By contrast, we ensure a bijection, rigorously defining the
equivalence class of reward functions. Furthermore, Lemma
3.2 refines the concept of policy invariance introduced by
Ng et al. (1999); Gleave et al. (2020) by specifying that the
action-dependent term must be α log π∗(a|s) to guarantee
π∗ is the α-optimal policy.

Lemma 3.3 (Unique Fixed Point of Soft Bellman
π-operator). Let π∗ be α-optimal. For a given policy π
and Q-function QπA ∈ Qπ for any (s, a) ∈ S × A, define
the Bellman π-operator T π∗ : Qπ → Qπ where

T π∗ QπA(s, a) := Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ

∗
(·|s′)−Hπ(·|s′)

)
+Eπ∗ [Qπ

∗

∗ (s′, a′)]− Eπ[QπA(s′, a′)]
]
.

Then, T π∗ has a unique fixed point Qπ∗ .

Lemma 3.3 describes an operator that links the soft Q-
function of a given policy π to the optimal soft Q-function
Qπ

∗

∗ , identifying Qπ∗ as its unique fixed point. Notably, this
relationship is established without requiring explicit knowl-
edge of the reward function r∗. From the novel design of
the soft Bellman π-operator, we now derive the following
important theorem.

Theorem 3.4 (Policy Deviation Theorem). If a policy π∗ is
α-optimal, then for any policy π,

Qπ
∗

∗ (s, a)−Qπ∗ (s, a) = αD̄KL(π||π∗; s, a)
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where the sequential forward KL divergence is defined as

D̄KL(π||π′; s, a) := Eτ∼Pπs,a

[∑
l>0

γlDKL(π(·|sl)||π′(·|sl))

]
.

Here, Pπs,a is the distribution of trajectories τ =
(s0, a0, · · · , sl, al, · · · ) generated by policy π and the tran-
sition P, starting at (s0, a0) = (s, a).

Theorem 3.4 establishes that the difference between the soft
Q-function of any policy π and the optimal soft Q-function
is constant and can be expressed as the sequential forward
KL divergence. Intuitively, D̄KL(π||π∗; s, a) represents the
discounted sum of the forward KL divergence between π
and π∗ over the states visited during a rollout starting from
(s, a). This property is particularly valuable, as it quantifies
the performance gap using only π and π∗.

While related results were proposed by Shaikh et al. (2024)
and Zeng et al. (2024), their proofs were restricted to contex-
tual bandits and token-level MDPs with deterministic transi-
tions, respectively. Moreover, their formulation depends on
a KL-regularized objective that explicitly incorporates a ref-
erence policy. In contrast, Theorem 3.4, formulated within
the MaxEnt framework, does not require a reference policy
to be well-defined, making it more broadly applicable.

Corollary 3.5. For a given (α, π∗) and a policy π,
Regππ∗(·, ·) is uniquely determined regardless of β(s).

Since regret is invariant to transformations of β(s), it does
not require additional variance reduction techniques (Schul-
man et al., 2015) to ensure stable learning. For a detailed
explanation, refer to Appendix B.2.

Corollary 3.6. Maximizing the MaxEnt objective with neg-
ative regret as the reward is equivalent to minimizing the
sequential forward KL divergence between the learned pol-
icy and the behavior policy for each preferred state-action
pair in the dataset, i.e.,

argmax
πψ

(
Eζ+∼D[−Regπ

+

πψ
(s+, a+)− α log πψ(a

+|s+)]
)

≡ argmin
πψ

(
Eζ+∼D[D̄KL(π

+||πψ; s+, a+)]
)
. (4)

Theorem 3.6 implies that regret-based RLHF operates by ag-
gregating behavior policies from preferred segments, align-
ing the learned policy toward preferred actions. Notably, if
all preferred segments are assumed to be generated by the
optimal policy, the formulation reduces to the standard CPL
objective, highlighting its connection to prior methods. For
a more detailed analysis, see Appendix B.3.

3.3. Practical Algorithm and Implementation Details

In this section, we present PPL, a practical algorithm that
leverages the policy label to solve the likelihood mismatch.

Our setting follows the classical DPO, but with the differ-
ence that we manage preference queries by labeling the
behavior policy for each trajectory in the dataset. Due to
page limitations, see Appendix C for the pseudocode.

Pseudo-labels. In general RL settings, the behavior policy
that generated a trajectory is typically known or accessible,
making policy labeling relatively inexpensive. However,
in offline datasets, the behavior policy is often unknown.
To address this, we assign pseudo-labels as an alternative,
assuming each segment was generated by a deterministic
policy that executed the observed actions.

Contrastive KL Regularization. As previously dis-
cussed, the regret is decomposed into two components. In
particular, the sequential KL divergence plays a pivotal role
in aligning the learned policy with the preferred policy while
diverging from the less preferred policy:

−
∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−

πψ
(s−t , a

−
t )

= α
∑
t≥0

(
log

πψ(a
+
t |s+t )

πψ(a
−
t |s−t )

−D̄KL(π
+||πψ; s+t , a+t ) + D̄KL(π

−||πψ; s−t , a−t )
]

︸ ︷︷ ︸
contrastive KL regularization R(πψ; π+,π−)

)
.

We call this term as contrastive KL regularization, which
requires performing rollouts for each (st, at) with respect to
π+ or π−. This regularization term ensures that the learned
policy πψ aligns more closely with the preferred policy π+

while pushing away from the less preferred policy π−.

In practice, implementing contrastive KL regularization can
result in a computational overhead, as it requires multiple
rollouts with each state-action pair as the initial point at
every timestep until the terminal is reached. This approach
can also increase memory usage as it requires additional
timesteps outside of the sampled segment. To address these
technical challenges, we replace the discounted sum with an
L-horizon undiscounted sum. We normalize the contrastive
KL regularization to balance their scale, and the process is
further simplified by reusing segments ζ+, ζ− as a single
rollout of policy π+, π−, respectively.

R(πψ; π+, π−)

≈ 1

L

L∑
l=1

[
− log

π+(a+t+l|s
+
t+l)

πψ(a
+
t+l|s

+
t+l)

+ log
π−(a−t+l|s

−
t+l)

πψ(a
−
t+l|s

−
t+l)

]
.

Here, L corresponds to the step of look-ahead during roll-
outs. When L = 0, the framework fully reduces to CPL,
which does not account rollout for sequential planning. An-
other interesting observation is that if we assume the seg-
ments in the offline dataset were generated by the refer-
ence policy (i.e., π+, π− = πref), the framework recovers
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Table 2: Success rates of all methods across six tasks on the MetaWorld benchmark on different datasets. Each score is
reported with the maximum average performance across four seeds over 200 episode evaluation window.

Bin Picking Button Press Door Open Drawer Open Plate Slide Sweep Into

Homogeneous
Dense

SFT 39.7 ± 19.2 71.5 ± 3.3 48.0 ± 15.6 56.2 ± 1.8 64.8 ± 0.8 70.0 ± 6.5
P-IQL 62.0 ± 4.4 72.3 ± 1.0 47.7 ± 5.1 58.0 ± 5.7 70.5 ± 6.1 65.8 ± 1.3
CPL 22.7 ± 5.5 64.3 ± 1.4 29.0 ± 4.3 54.0 ± 4.3 65.5 ± 3.1 69.8 ± 3.3
PPL 83.5 ± 4.4 79.8 ± 4.8 39.3 ± 2.0 69.2 ± 5.5 64.7 ± 2.0 72.8 ± 4.8

Homogenous
Sparse

SFT 33.5 ± 5.4 67.4 ± 1.5 31.3 ± 2.1 54.9 ± 2.7 67.1 ± 3.7 78.3 ± 2.5
P-IQL 72.4 ± 6.6 74.5 ± 0.0 58.5 ± 1.4 51.4 ± 4.6 76.3 ± 1.6 79.0 ± 2.6
CPL 26.5 ± 1.0 63.7 ± 1.3 28.5 ± 5.8 50.1 ± 4.5 65.1 ± 2.8 72.9 ± 6.1
PPL 87.2 ± 3.5 87.3 ± 2.8 49.3 ± 6.5 68.5 ± 5.3 64.0 ± 6.4 73.9 ± 3.5

Heterogeneous
Dense

SFT 18.5 ± 23.8 63.7 ± 12.2 26.0 ± 12.5 32.0 ± 5.7 62.8 ± 1.6 53.0 ± 9.1
P-IQL 51.2 ± 5.3 62.5 ± 4.9 32.0 ± 3.5 41.8 ± 3.8 67.0 ± 3.0 59.3 ± 3.7
CPL 1.2 ± 0.8 49.7 ± 3.0 17.3 ± 2.5 26.0 ± 2.2 59.2 ± 7.7 51.2 ± 3.0
PPL 59.7 ± 18.6 73.8 ± 3.3 25.8 ± 2.0 58.5 ± 3.8 69.8 ± 2.3 57.3 ± 8.6

Heterogeneous
Sparse

SFT 12.2 ± 1.0 63.7 ± 4.7 17.8 ± 0.8 38.7 ± 3.0 70.7 ± 3.8 60.7 ± 2.5
P-IQL 48.0 ± 5.6 71.0 ± 6.6 44.1 ± 3.2 47.5 ± 3.0 72.0 ± 4.0 64.3 ± 1.0
CPL 18.0 ± 6.1 50.8 ± 0.8 18.5 ± 3.0 32.1 ± 1.6 67.3 ± 5.5 55.5 ± 3.3
PPL 83.8 ± 3.8 83.5 ± 1.8 34.3 ± 7.6 60.8 ± 7.3 71.2 ± 1.9 63.3 ± 4.2

the original DPO formulation, i.e., forward KL-constrained
RLHF implicitly minimizes regret.

4. Experiments
In our experiments, we aim to answer the following ques-
tions: (1) Can PPL effectively learn in offline settings com-
posed of heterogeneous data generated by diverse policies?
(2) Does incorporating policy labels improve learning perfor-
mance? (3) Can PPL be effectively applied to online RLHF
algorithm? A full report for each question is provided in the
Appendix F, G and H.

4.1. Experimental Setup

For a fair comparison, we first evaluate the performance of
PPL on six robotic manipulation tasks in MetaWorld (Yu
et al., 2020), using the same rollout data provided by Hejna
et al. (2023). Results from the reproducibility check are in-
cluded in Appendix E.3. To evaluate performance on offline
datasets generated from diverse policies, we aimed to follow
CPL’s preference dataset generation procedure. However,
there are two key differences in our implementation of the
critic. First, we utilize raw rollout data without any trajec-
tory truncation. Second, whereas CPL applies a specific
technique to reduce TD-error by re-training the critic with
all rollout data added to the replay buffer, we generated pref-
erence labels without such retraining. As a result, our labels
may be noisier than those in CPL. Nevertheless, to ensure a
fair comparison, all algorithms were trained using the same
set of labels. For further details, please see Appendix E.4.

Baselines. We consider CPL as our primary baseline,
where the key distinction between PPL and CPL lies in
whether the label of the behavior policy is utilized. For ad-

ditional baselines, we include supervised fine-tuning (SFT)
and Preference-based Implicit Q-Learning (P-IQL). Specif-
ically, SFT first trains a policy via behavior cloning on all
preferred segments in the preference dataset. P-IQL (Hejna
& Sadigh, 2024) is a reward-based RLHF algorithm that
first learns a reward function from preference data and then
derives an optimal policy using the Implicit Q-Learning
(IQL) algorithm (Kostrikov et al., 2021). Notably, P-IQL
is expected to achieve higher performance, as it not only
learns a policy but also simultaneously optimizes a reward
function, Q-function, and value function.

Implementation Details. To generate preference queries
without human supervision, we pretrain an SAC model as
an oracle that achieves a 100% success rate. Using this pre-
trained model as a critic, we uniformly sampled segments
of length 64 and assigned labels based on estimated regret.
To evaluate performance in heterogeneous datasets, we fur-
ther construct an additional offline dataset by rolling out
suboptimal policies with 20% and 50% success rates and
combining them. For preference datasets, we conduct exper-
iments under two settings: Dense, where comparisons are
made between all segment pairs, and Sparse, where only
one comparison is made per segment.

4.2. Can PPL be effectively trained on both
homogeneous/heterogeneous offline dataset?

In the previous works, the evaluation of offline datasets has
been conducted under homogeneous conditions. However,
in practice, offline datasets are more commonly generated
by a multiple different policies. Thus, we investigate the
following question:
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Figure 4: Distribution of returns in homogeneous vs hetero-
geneous offline dataset in Button-Press-v2.

How would PPL and the baselines perform if the offline
dataset were heterogeneous?

To investigate this, we examine the distribution of segment
returns for both types of datasets, as shown in Figure 4. Com-
pared to the homogeneous dataset, the heterogeneous dataset
includes rollout data from a policy with a 20% success rate,
leading to a higher density of lower-return segments.

In Table 2, we report the impact of diverse behavior poli-
cies on performance. PPL consistently outperforms other
methods across various dataset conditions in the MetaWorld
benchmark, particularly in challenging scenarios with pref-
erence sparsity and policy diversity. Interestingly, unlike
baseline algorithms, PPL achieves higher performance in
Sparse settings compared to Dense settings. This im-
plies that PPL benefits more from datasets with broader
state-action coverage rather than relying on dense pairwise
comparisons across all segments. Furthermore, PPL exhibits
greater robustness in heterogeneous datasets, outperforming
or matching P-IQL despite utilizing only about 6.3% of its
parameters. This highlights PPL as an efficient algorithm
that maintains strong performance while incurring lower
computational costs.

One possible explanation for CPL’s lower performance on
our dataset is the absence of the retraining technique to
reduce TD-error—a method uniquely applied within CPL
and not commonly adopted in standard practice. However,
since all algorithms were trained using the same labels, we
attribute this performance gap primarily to CPL’s sensitivity
to label noise. This sensitivity appears to arise from an
implicit assumption within CPL that all training trajectories
are generated by an optimal policy.

4.3. Does incorporating policy labels improve learning
performance?

In this experiment, we examine how the presence and
accuracy of policy labels affect performance. Since the
offline dataset are fixed and behavior policies are typi-
cally unknown, we ablate a pseudo-label setting, assum-
ing each segment was executed deterministically based
on the observed actions. Specifically, we introduce PPL-
deterministic, where the behavior policy for each segment

Figure 5: Ablation on deterministic pseudo-labeling. We
compare the average performance of PPL and PPL-
deterministic across six environments in MetaWorld. The
dashed line indicates the point where BC pretraining stops.

is assumed to be fully deterministic (See Lines 4-5 of Algo-
rithm 1). We then compare its performance with PPL.

As shown in Figure 5, comparing PPL with CPL reveals that
when behavior policy information is not incorporated into
learning, distinguishing environmental stochasticity from
behavior policy suboptimality becomes more difficult, re-
sulting in a significant performance gap. As an alternative,
using deterministic pseudo-labels for training on offline
data without policy labels proves to be a viable approach in
homogeneous datasets, causing only a slight performance
drop. However, in heterogeneous datasets, their effective-
ness decreases, leading to a substantial performance gap.
This result suggests that as the dataset becomes more di-
verse in behavior policies, incorporating policy labels into
learning becomes increasingly important.

4.4. Can PPL be effectively applied to an online RLHF
algorithm?

Figure 6: Online learning curves across five MetaWorld
tasks, comparing PPL and PEBBLE.

In the online setting, rollouts are directly executed, provid-
ing explicit access to policy labels. Leveraging this advan-
tage, we conducted experiments to evaluate whether PPL
can effectively serve as an online DPO algorithm. The ex-
periments were conducted from scratch, without any pre-
training. Unlike the offline setting, we did not apply the
asymmetric regularizer in Eq. 1, as out-of-distribution is-
sues were mitigated by the iterative data collection process.
We used PEBBLE (Lee et al., 2021) as an oracle because
it employs a learned policy trained with unsupervised pre-
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training, which accelerates learning. Further implementation
details are provided in Appendix E.5.

Figure 6 illustrates the average success rates across five
MetaWorld tasks. Notably, despite learning from scratch,
the online version of PPL achieves performance compa-
rable to PEBBLE, which leverages unsupervised pretrain-
ing. Furthermore, since PPL does not require learning a
reward model or a critic, it uses only 8.8% of the parameters
compared to PEBBLE, yet still achieves comparable perfor-
mance. This demonstrates that PPL can serve as a highly
efficient online RLHF algorithm.

5. Conclusions
In this work, we introduced PPL, a novel DPO frame-
work that incorporates information from the behavior policy
through regret-based modeling. We highlighted the issue
of likelihood mismatch and addressed it by proposing con-
trastive KL regularization. Furthermore, we theoretically es-
tablished that minimizing regret is fundamentally equivalent
to optimizing the forward KL-constrained RLHF problem.
Empirically, PPL demonstrated strong performance across
offline datasets containing rollouts from diverse policies,
showcasing its robustness to dataset variations. In online
setting, policy labels can be obtained more easily than in the
offline case, and PPL effectively learned as an online DPO
algorithm. However, we observed that online RLHF method
is quite sensitive to the sampling of queries from preference
data, suggesting that a more refined analysis is needed for
future research.
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A. Main Proof
Lemma (3.2). (Structural Condition for α-optimality) A reward function and a soft optimal Q-function where π∗(·|s) is
α-optimal have a one-to-one correspondence with a state-dependent function β : S → R as follows,

Rα,π∗ = {r∗(s, a) = α log π∗(a|s) + β(s)− γEP[β(s
′)], ∀s ∈ S, a ∈ A| α ≥ 0, β : S → R}

Qπ
∗

α,π∗ = {Qπ
∗

∗ (s, a) = α log π∗(a|s) + β(s), ∀s ∈ S, a ∈ A| α ≥ 0, β : S → R}

Proof. (π∗ is α-optimal⇐⇒ Qπ
∗

∗ (s, a) = α log π∗(a|s) + β(s) for some β : S → R.)

Remark that the policy π∗ is α-optimal, if and only if there exists the optimal soft Q-function satisfies the following relation:

π∗(a|s) = exp
( 1

α
(Qπ

∗
(s, a)− V π

∗
(s))

)
, V π

∗
(s) = α log

∫
a∈A

exp
( 1

α
Qπ

∗
(s, a)da

)
.

Since V π
∗

is merely a partition function, letting X(s, a) = exp
(

1
αQ

π∗
(s, a)

)
, we can derive

π∗(a|s) = X(s, a)∫
a∈AX(s, a)da

⇐⇒ X(s, a) = d(s)π∗(a|s) for some d : S → R

⇐⇒ Qπ
∗
(s, a) = α log π∗(a|s) + β(s) for some β : S → R,

where β is defined as β(s) = log d(s).

(π∗ is α-optimal Qπ
∗

∗ (s, a) = α log π∗(a|s) + β(s) for some β : S → R.) Using the soft Bellman equation, consider a
reward function for any state-dependent function β : S → R and substitute the expression of Qπ

∗
(s, a). Then, we have:

r(s, a) := Qπ
∗
(s, a)− γEP[V

π∗
(s′)]

= α
(
log π∗(a|s) + β(s)− γEP[β(s

′)]
)

where π∗ and P are given. By the definition of optimal soft Q-function, we recursively substitute the soft Bellman equation
and sum over timesteps:

Qπ
∗
(s, a) = r(s, a) + Eτ∼Pπ∗

[∑
t>0

γt(r(st, at) + αHπ
∗
(·|st))

∣∣∣s0 = s, a0 = a
]

= α log π∗(a|s) + β(s)− γEP[β(s1)]

+ Eτ∼Pπ∗

[∑
t>0

γt(β(st)− γEP[β(st+1)])
∣∣∣s0 = s, a0 = a

]
= α log π∗(a|s) + β(s)− γ2Eτ∼Pπ∗ [β(s2)]

+ Eτ∼Pπ∗

[∑
t>1

γt(β(st)− γEP[β(st+1)])
∣∣∣s0 = s, a0 = a

]
...

= α log π∗(a|s) + β(s).

■

Lemma (3.3). (Unique Fixed Point of Soft Bellman π-operator) Let π∗ is α-optimal. For a given policy π and Q-function
QπA ∈ Qπ for any (s, a) ∈ S ×A, define the Bellman π-operator T π∗ : Qπ → Qπ where

T π∗ QπA(s, a) := Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ

∗
(·|s′)−Hπ(·|s′)

)
+Eπ∗ [Qπ

∗

∗ (s′, a′)]− Eπ[QπA(s′, a′)]
]
.

Then, T π∗ has a unique fixed point Qπ∗ .
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Proof. Consider QπA, Q
π
B ∈ Qπ . Then

sup
s,a

∣∣∣T π∗ QπA(s, a)− T π∗ QπB(s, a)∣∣∣ ≤ sup
s,a

∣∣∣γEP

[
Eπ[QπA(s′, a′)]− Eπ[QπB(s′, a′)]

]∣∣∣
= γ sup

s′,a′

∣∣∣QπA(s′, a′)−QπB(s′, a′)∣∣∣
Hence, T π∗ is a γ-contraction for any QπA, Q

π
B ∈ Qπ. Since Qπ is a complete metric space, by using Banach fixed point

theorem, T π∗ has a unique fixed point.

Notice that Qπ
∗

∗ and Qπ∗ satisfies soft Bellman equation respectively, i.e.,

Qπ
∗

∗ (s, a) = EP

[
r∗(s, a) + γEπ∗ [Qπ

∗

∗ (s′, a′) + αHπ
∗
(·|s′)]

]
,

Qπ∗ (s, a) = EP

[
r∗(s, a) + γEπ[Qπ∗ (s′, a′) + αHπ(·|s′)]

]
∀(s, a) ∈ S ×A.

Then,

T π∗ Qπ∗ (s, a)

= Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ

∗
(·|s′)−Hπ(·|s′)

)
+ Eπ∗ [Qπ

∗

∗ (s′, a′)]− Eπ[Qπ∗ (s′, a′)]
]

= Qπ
∗

∗ (s, a)− γEP

[
αHπ

∗
(·|s′) + Eπ∗ [Qπ

∗

∗ (s′, a′)]−
(
αHπ(·|s′) + Eπ[Qπ∗ (s′, a′)]

)]
= EP

[
r∗(s, a) + γEπ[Qπ∗ (s′, a′) + αHπ(·|s′)]

]
= Qπ∗ (s, a) ∀(s, a) ∈ S ×A.

Hence, Qπ∗ is a unique fixed point of T π∗ . ■

Theorem (3.4). If a policy π∗ is α-optimal, then for any policy π,

Qπ
∗

∗ (s, a)−Qπ∗ (s, a) = αD̄KL(π||π∗; s, a)

where the sequential forward KL divergence is defined as

D̄KL(π||π′; s, a) := Eτ∼Pπs,a

[∑
l>0

γlDKL(π(·|sl)||π′(·|sl))
]
.

Here, Pπs,a is the distribution of trajectories τ = (s0, a0, · · · , sl, al, · · · ) generated by policy π and the transition P, starting
at (s0, a0) = (s, a).

Proof. Let Q̃π∗ (s, a) = Qπ
∗

∗ (s, a) − α
∑
t>0 γ

tEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]

for all (s, a) ∈ S × A.
Then

T π∗ Q̃π∗ (s, a)

= Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ

∗
(·|s′)−Hπ(·|s′)

)
+ Eπ∗ [Qπ

∗

∗ (s′, a′)]− Eπ[Q̃π∗ (s′, a′)]
]

= Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ

∗
(·|s′)−Hπ(·|s′)

)
+ Eπ∗ [α log π∗(s′, a′) + β(s′)]

− Eπ
[
Qπ

∗

∗ (s′, a′)− α
∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

]∣∣∣s0 = s′, a0 = a′
]]

= Qπ
∗

∗ (s, a)− γEP

[
β(s′)− αHπ(·|s′)− Eπ[Qπ

∗

∗ (s′, a′)]

+ αEπ
[∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

]∣∣∣s0 = s′, a0 = a′
]]

13
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= Qπ
∗

∗ (s, a)− αγEP

[
DKL(π(·|s′)||π∗(·|s′))

]
− α

∑
t>1

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]

= Qπ
∗

∗ (s, a)− α
∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]

= Q̃π∗ (s, a)

which implies that Q̃π∗ is a unique fixed point of T π∗ . In Lemma 3.3, we observe that T π∗ has a unique fixed point Qπ∗ . Hence,

Qπ∗ (s, a) = Qπ
∗

∗ (s, a)− α
∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]

■

B. Further Theoretical Analysis & Discussion
B.1. Mathematical derivation of PPL framework

We recall the PPL model and objective:

P (π+,π−)
πψ

[ζ+ ≻ ζ−] = σ

(
−

∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−

πψ
(s−t , a

−
t )

)
,

LPPL(πψ;D) = −E(ζ+,ζ−,y,p)∼D

[
log σ

(
−
∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−

πψ
(s−t , a

−
t )

)]
where

−Regππ∗(st, at) := −(V π
∗

∗ (st)−Qπ∗ (st, at)).

Here, a negative regret at (st, at) can be decomposed into two components:

−Regππ∗(st, at) = α
(
log π∗(at|st)︸ ︷︷ ︸
increase likelihood

−Eτ∼Pπst,at

[∑
l>0

γlDKL(π(·|sl)||π∗(·|sl))
]

︸ ︷︷ ︸
decrease sequential forward KL divergence

)

Proof. By the definition of regret,

−Regππ∗(st, at) := −(V π
∗

∗ (st)−Qπ∗ (st, at)).

= −
(
Eπ∗ [Qπ

∗

∗ (st, a)− α log π∗(·|st)]
)
+Qπ

∗

∗ (st, at)− αD̄KL(π||π∗; st, at)

=����−β(st) + α log π∗(at|st) +�
��β(st)− αD̄KL(π||π∗; st, at)

= α
(
log π∗(at|st)− D̄KL(π||π∗; st, at)

)
(5)

■

B.2. Regret is invariant under policy-invariant transformations (Corollary 3.5)

As noted in Lemma 3.2, any policy-invariant transformation can be expressed as a combination of a state-dependent function
β(s) and a scaled log-likelihood term α log π(a|s), where α represents the temperature parameter in the MaxEnt framework.
Specifically, for any transformation of the reward function that preserves the optimal policy, we can rewrite the modified
reward as:

r(s, a) = α log π(a|s) + β(s).

14
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This formulation extends the classical reward shaping result of Ng et al. (1999) by explicitly incorporating the policy-
dependent term α log π(a|s), which accounts for transformations in the likelihood space. This insight allows us to generalize
policy-invariant transformations and directly integrate them into preference-based learning objectives.

Using this representation, we can reformulate the sequential DPO objective with a policy-invariant transformation as follows:

LDPO(β)(πψ;D) = −ED

[
log σ

(∑
t≥0

{
log

πψ(a
+
t |s+t )

πref(a
+
t |s+t )

+ β(s+t )− γEs′t∼P(·|s+t ,a
+
t )[β(s

′
t)]

}
−
{
log

πψ(a
−
t |s−t )

πref(a
−
t |s−t )

+ β(s+t )− γEs′t∼P(·|s−t ,a
−
t )[β(s

′
t)]

})]
. (6)

The existence of multiple objectives that preserve the optimal policy through reward shaping has been explored in previous
work, particularly in the variance reduction schemes of policy gradient methods. Schulman et al. (2015) introduced the
generalized advantage estimate (GAE) as a method to reduce the variance of policy gradient estimates, effectively selecting
an appropriate β(s) to improve stability and efficiency in learning. Similarly, in Equation 6, the standard DPO framework
assumes β(s) = 0, but optimizing β(s) to minimize the variance of gradient estimates could lead to more stable training.

In contrast, as shown in Equation 5, regret-based formulations naturally eliminate β(s) by definition, avoiding the challenges
associated with policy-invariant transformations. This property ensures that regret serves as a unique and well-defined
objective function, making it inherently robust without requiring explicit variance reduction techniques.

B.3. Reformulating the MaxEnt objective with negative regret as the reward (Theorem 3.6)

Corollary (3.6). Maximizing the MaxEnt objective with negative regret as the reward is equivalent to minimizing the
sequential forward KL divergence between the learned policy and the behavior policy for each preferred state-action pair in
the dataset, i.e.,

argmax
πψ

(
Eζ+∼D[−Regπ

+

πψ
(s+, a+)− α log πψ(a

+|s+)]
)

≡ argmin
πψ

(
Eζ+∼D[D̄KL(π

+||πψ; s+, a+)]
)
. (7)

Proof. Consider a dataset D and a set of sampled preferred segments {ζ+i }Ni=1 which are generated by behavior policy
π+
i respectively. To avoid notation ambiguity, we emphasize that the subscript i in this proof denotes the index of each

individual samples. When defining the reward function as the negative regret, the optimal policy of Maxent objective π∗
Reg

can be reformulated as:

π∗
reg := argmax

πψ

( 1

N

N∑
i=1

[
− Regπ

+
i
πψ (s

+
i , a

+
i )− α log πψ(a

+
i |s

+
i )

])
= argmax

πψ

( 1

N

N∑
i=1

[
Q
π+
i
πψ (s

+
i , a

+
i )− V

πψ
πψ (s+i )− α log πψ(a

+
i |s

+
i )

])
= argmax

πψ

( 1

N

N∑
i=1

[
α log πψ(a

+
i |s

+
i )− αD̄KL(π||πψ; s+i , a

+
i )− α log πψ(a

+
i |s

+
i )

])
= argmin

πψ

( 1

N

N∑
i=1

D̄KL(π
+
i ||πψ; s

+
i , a

+
i )

)
■

Notably, the minimum is achieved if and only if πψ(a+i |s
+
i ) = π(a+i |s

+
i ) for each i ∈ [N ]. This formulation demonstrates

that maximizing the MaxEnt objective with a regret-based reward is fundamentally equivalent to minimizing the sequential
forward KL divergence for each segment.
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Discussion. The regret-based DPO framework can be reinterpreted as a process that aggregates the behavior policies
underlying the given dataset, aligning the learned policy to preferred actions by reducing the sequential forward KL
divergence. If, as assumed in CPL, the behavior policies of all preferred segments in dataset D correspond to the optimal
policy π∗ (or can be constructed as such), then PPL is guaranteed to converge to the optimal policy.

However, in practical RLHF settings, such an assumption rarely holds. Unlike standard reinforcement learning, where an
agent maximizes a predefined reward function, RLHF optimizes for policy alignment rather than absolute optimality. In the
DPO framework, the reward function is implicitly constructed to make the aligned policy the optimal one within the given
preference dataset. As a result, the optimal policy under the learned reward function is already the policy obtained through
alignment, making it unnecessary to perform an additional RL algorithm to reach the optimal policy.

To achieve further improvements, it is crucial to expand the dataset by rolling out new policies and incorporating additional
preference data. This process enhances dataset coverage while enabling the learned reward function to extrapolate more
effectively. Without such iterative expansion, RLHF remains constrained by the limitations of the static dataset, preventing
meaningful policy improvements beyond the scope of the initially collected preferences.

C. Pseudocode

Algorithm 1 Policy-labeled Preference Learning (PPL)
Input: number of queries N , trajectory dataset E , minibatch size D

1: Initialize policy parameters ψ
2: for n = 1, · · · , N do
3: Sample ζ, ζ ′ ∼ E
4: if policy label π(at|st), π(a′t|s′t) unknown then
5: π(·|st)← δat π(·|s′t)← δa′t
6: end if
7: Label the behavior policy p = (π, π′)
8: Instruct the preference label y = (y(0), y(1))
9: Store preference D ← D ∪ {(ζ, ζ ′, y, p)} // Create Policy-labeled Preference Queries

10: end for
11: for t = 1 to T do
12: Sample minibatch {(ζ, ζ ′, y, p)d}Dd=1 ∼ D
13: ψ ← argminψ LPPL(πψ;D) // Policy Learning
14: end for
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D. Variants of PPL and Baselines
BC: BC (Behavior Cloning) is the initial stage in RLHF, where the policy is trained to maximize the likelihood of the
demonstrated actions given the corresponding states:

LBC(πψ;D) = −Eζ∼D

[∑
t≥0

log πψ(at|st)
]

SFT: SFT (Supervised Fine Tuning) is trained to maximize the likelihood of the demonstrated actions given the corre-
sponding states in preferred segments:

LSFT(πψ;D) = −Eζ+∼D

[∑
t≥0

log πψ(a
+
t |s+t )

]
CPL: CPL (Hejna et al., 2023) is our primary baseline, where the optimal advantage is defined as the score function:

SCPL(πψ; ζ
+)− SCPL(πψ; ζ

−) =
∑
t≥0

log
πψ(a

+
t |s+t )

πψ(a
−
t |s−t )

.

The objective is to minimize the following loss function:

LCPL(πψ;D) = −E(ζ+,ζ−)∼D

[
log σ

(
SCPL(πψ; ζ

+)− SCPL(πψ; ζ
−)

)]
A key issue raised in CPL is assigning high weights to OOD actions while still maintaining the same optimal policy. This
leads to extrapolation too much into unseen states, ultimately degrading performance. To mitigate this, an asymmetric
regularizer is introduced:

SCPL(λ)(πψ; ζ
+)− SCPL(λ)(πψ; ζ

−) = SCPL(πψ; ζ
+)− λSCPL(πψ; ζ

−) =
∑
t≥0

log
πψ(a

+
t |s+t )

πψ(a
−
t |s−t )λ

PPL: Based on policy deviation lemma in Theorem 3.4, PPL extends CPL by incorporating entropy regularization and KL
divergence-based constraints, making preference learning more structured. The score function includes multiple terms:

SPPL(πψ; ζ
+, π+)− SPPL(πψ; ζ

−, π−)

=
∑
t≥0

[
log

πψ(a
+
t |s+t )

πψ(a
−
t |s−t )

+
1

L

L∑
l=1

(
−DKL(π

+(·|s+t+l)||πψ(·|s
+
t+l)) +DKL(π

−(·|s−t+l)||πψ(·|s
−
t+l))

)]
,

and the objective function is:

LPPL(πψ;D) = −E(ζ+,ζ−)∼D

[
log σ

(
SPPL(πψ; ζ

+)− SPPL(πψ; ζ
−)

)]
The score function of PPL with the same asymmetric regularizer as CPL is given by:

SPPL(λ)(πψ; ζ
+, π+)− SPPL(λ)(πψ; ζ

−, π−) = SPPL(πψ; ζ
+, π+)− λSPPL(πψ; ζ

−, π−)

=
∑
t≥0

[
log

πψ(a
+
t |s+t )

πψ(a
−
t |s−t )λ

+
1

L

L∑
l=1

(
−DKL(π

+(·|s+t+l)||πψ(·|s
+
t+l)) + λDKL(π

−(·|s−t+l)||πψ(·|s
−
t+l))

)]
,

PPL-deterministic: If policy-label is unknown, we apply deterministic pseudo-labels by assuming that each segment was
generated by a deterministic policy that executed the observed action.

SPPL-d(πψ; ζ
+)− SPPL-d(πψ; ζ

−) =
∑
t≥0

[
log

πψ(a
+
t |s+t )

πψ(a
−
t |s−t )

+
1

L

L∑
l=1

log
πψ(a

+
t+l|s

+
t+l)

πψ(a
−
t+l|s

−
t+l)

]
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E. Implementation Details
E.1. Hyperparameter Setting

Table 3: Hyperparameter settings for offline implementation.

Hyperparameter State

Total Training Steps 500k
Pre-training Steps (except P-IQL) 200k
Batch Size 96
Segment Size 64
Fixed log std -1.5
Actor Dropout 0.0 (0.25 for CPL reproduce)
Architecture [256, 256] MLP Gaussian

Table 4: Hyperparameters for online implementation

Hyperparameter State

Total Environment Steps 1m
Segment Size 32
Fixed log std -1.0
Query Frequency(steps) 1000
Policy update Frequency(steps) 1000
Episode Length 250
Learning rates 3e-4
Temperature α 0.1
Asymmetric regularizer λ 1.0
BC weights 0
γ 1
Actor Dropout 0.0
Architecture [256, 256] MLP Gaussian

Table 5: Hyperparameters for PPL, CPL, SFT, and P-IQL

Hyperparameter PPL CPL SFT P-IQL

Learning rates 1e-4 1e-4 1e-4 1e-4
Temperature α 0.1 0.1 0.1 0.1
Asymmetric regularizer λ 0.5 0.5 - -
BC weights 0 0 0 0
γ 1 1 1 1
Number of Parameters 76k 76k 76k 859k
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E.2. MetaWorld Benchmark

Our experiments were conducted on six MetaWorld environments: Bin-Picking, Button-Press, Door-Open,
Drawer-Open, Plate-Slide, and Sweep-Into. Each task requires precise control of a robotic arm to interact
with objects in a structured environment. The diverse task set includes object relocation, pushing, pulling, and fine-grained
manipulation, making it a suitable testbed for reinforcement learning from preference-based feedback.

Figure 7: Visualization of the MetaWorld Benchmark Tasks.

Each environment is designed with a handcrafted reward function tailored to its objective. Instead of human annotations, we
trained a critic using SAC to assign labels. During our experiments, we observed that return did not always align well with
success rates. In case of Door-Open, despite achieving the highest return, PPL exhibited a relatively low success rate. This
implies that the environment allows reward exploitation due to the imprecise design of the reward function.

E.3. Reproducibility Check

For a fair comparison, we first verified the reproducibility of CPL using the Metaworld State Dense and State
Sparse datasets provided by Hejna et al. (2023) and evaluated the performance of PPL on these datasets. We used the official
CPL implementation (https://github.com/jhejna/cpl) without modifications and ensured reproducibility by
fixing the random seed ([123,231,312,321]). The figure below presents the PPL performance alongside the reproduced
CPL results. The horizontal dashed line represents the scores reported in CPL, confirming the reproducibility of the algorithm.
The vertical dashed line indicates the point where behavior cloning (BC) training stops.

In all environments except Plate-Slide-v2, the reproduced CPL performance closely matches the reported values, with
deviations attributed to seed variability. Across the provided datasets, PPL exhibits comparable overall performance to CPL.

Table 6: Success rates of all methods on six tasks from the MetaWorld across different datasets from Hejna et al. (2023).
Each score is reported as the highest average performance across four seeds over a 200-episode evaluation window.

Bin Picking Button Press Door Open Drawer Open Plate Slide Sweep Into

State
2.5k Dense

CPL(Reported) 80.0 ± 2.5 24.5 ± 2.1 80.0 ± 6.8 83.6 ± 1.6 61.1 ± 3.0 70.4 ± 3.0
CPL(Reproduced) 76.0 ± 4.1 24.9 ± 4.7 75.5 ± 6.0 87.6 ± 2.8 45.3 ± 10.4 74.5 ± 3.4
PPL 77.7 ± 2.6 30.2 ± 7.8 76.7 ± 7.1 84.2 ± 2.4 41.7 ± 3.2 79.2 ± 5.5

State
20k Sparse

CPL(Reported) 83.2 ± 3.5 29.8 ± 1.8 77.9 ± 9.3 79.1 ± 5.0 56.4 ± 3.9 81.2 ± 1.6
CPL(Reproduced) 69.1 ± 21.4 25.5 ± 5.3 74.4 ± 3.5 80.9 ± 4.5 41.1 ± 4.9 80.5 ± 2.8
PPL 83.0 ± 3.7 25.4 ± 2.8 72.2 ± 1.7 79.0 ± 4.0 42.9 ± 1.6 76.0 ± 2.0
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Figure 8: Reproducibility check on State Dense dataset

Figure 9: Reproducibility check on State Sparse dataset
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E.4. Offline dataset generation and its distribution

We construct a heterogeneous dataset by incorporating various policies, following the dataset generation method used in
Hejna et al. (2023). Specifically, we load suboptimal SAC checkpoints with success rates of 20% and 50% using the same
approach. During rollouts, we introduce Gaussian noise with a standard deviation of 0.3 and rolling out 20,000 episodes,
each lasting 250 steps, using their suboptimal soft actor-critic (SAC) (Haarnoja et al., 2018) checkpoints, which achieved an
approximate 50% success rate.

While following this data generation procedure, we found a step in the reference code where transitions following a success
signal were explicitly truncated. This truncation was intended to prevent segments from being overly dominated by successful
transitions. However, we opted to retain the raw data without truncation. As a result, the distribution of our 50% success rate
dataset differs from that of Hejna et al. (2023). To highlight this difference, we provide a visualization of the data distribution
across environments.

Figure 10: Comparison of return distributions across environments for different dataset configurations. The histograms
illustrate the distribution of the partial returns for segments with 20% and 50% success rates generated using our method
(red and blue) and the 50% success rate dataset from Hejna et al. (2023) (gray).

For our experiments, we generated the following four datasets: Homogeneous Dense, Homogeneous Sparse,
Hetereogeneous Dense, and Heterogeneous Sparse. In the additional experimental setting, we kept all as-
pects—such as the hyperparameters of all algorithms, the SAC critic, and the label generation method—identical to the
original setup, modifying only the dataset. Interestingly, CPL exhibited significant performance variations depending on the
dataset, whereas PPL demonstrated robust performance across diverse datasets. The robustness of PPL’s performance can be
attributed to its ability to adjust the magnitude of feedback for diverse policies and accurately reflect the likelihood of each
segment.
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E.5. Online Implementation

In the online setting, we use a Gaussian actor with a fixed standard deviation to maintain consistency with the offline setting.
The model is trained from scratch without any pretraining. The online learning process consists of three phases. First,
rollouts are conducted in the environment for a fixed number of steps to generate trajectory data. Next, preference queries
and labels are constructed from segments of these trajectories. Finally, the policy is updated using the generated preference
query data.

During the rollout phase, actions are sampled from a stochastic policy without additional exploration strategies. In the query
generation phase, two policies are selected for comparison, with one always being the most recent and the other randomly
chosen from the last 25 policies. Segments from the most recent policy are first over-sampled at three times the required
number, then ranked based on their regret scores relative to the current policy. The top-ranked segments are retained, while
segments from the other policy are sampled uniformly at random. Preference labels are assigned according to the method
described in Appendix D.2 of Hejna et al. (2023).

In the policy update phase, stochastic gradient updates are applied over a fixed number of epochs using all preference query
data collected up to that point. Unlike reward-based preference learning methods, which predominantly generate preference
queries early in training and subsequently optimize policies using a learned reward function and an RL algorithm, the online
PPL algorithm continuously collects preference queries throughout the entire training process. This ensures sustained policy
improvement over time.

To reproduce the online baseline PEBBLE algorithm, we utilized the official B-Pref implementation
(https://github.com/rll-research/BPref) and adhered to the hyperparameter settings and random
seeds reported in the original paper. Our online experiments were performed on five tasks from the MetaWorld benchmark:
Button Press, Door Open, Drawer Open, Plate Slide, and Sweep Into. All hyperparameters
were kept consistent across tasks, except for the total number of preference queries, which was set to match the values
specified for each environment in the PEBBLE paper.
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F. Experimental Results on Homogeneous/ Heterogeneous Datasets (Section 4.2)
F.1. Homogeneous Dense Offline Dataset

Figure 11: Performance comparison of different methods on the Homogeneous Dense dataset across six MetaWorld
tasks. The top row shows the success rate over training iterations, while the bottom row presents the corresponding return
values.
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F.2. Homogeneous Sparse Offline Dataset

Figure 12: Performance comparison of different methods on the Homogeneous Sparse dataset across six MetaWorld
tasks.

24



Policy-labeled Preference Learning: Is Preference Enough for RLHF?

F.3. Heterogeneous Dense Offline Dataset

Figure 13: Performance comparison of different methods on the Heterogeneous Dense dataset across six MetaWorld
tasks.

25



Policy-labeled Preference Learning: Is Preference Enough for RLHF?

F.4. Heterogeneous Sparse Offline Dataset

Figure 14: Performance comparison of different methods on the Heterogeneous Sparse dataset across six MetaWorld
tasks.
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G. Comparison with Deterministic Pseudo-labels (Section 4.3)
G.1. Homogeneous Dense Offline Dataset

Figure 15: Comparison of PPL and PPL-deterministic on the Homogeneous Dense Offline Dataset.

G.2. Heterogeneous Dense Offline Dataset

Figure 16: Comparison of PPL and PPL-deterministic on the Heterogeneous Dense Offline Dataset.
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H. Experimental Results on Online Implementation (Section 4.4)
H.1. Online Learning Curves

We evaluated the performance of PPL in an online setting across five MetaWorld tasks. The number of preference queries
(#Pref) varied for each environment based on the quantities used in PEBBLE, and these differences are illustrated in each
plot.

Figure 17: PPL and PEBBLE learning curves in online learning.

H.2. Ablation on Preference Query Count

We evaluate the performance of PPL over iterations with different numbers of preference queries (#Pref). Overall, increasing
the number of preference queries leads to improved performance, demonstrating the benefit of richer preference feedback in
online learning.

Figure 18: Effect of preference query count in online learning.
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H.3. Ablation on Rollout Length

We analyze the impact of different rollout lengths L on the performance of PPL in an online RLHF setting across five
MetaWorld tasks. Each plot compares the success rate over training iterations for three rollout lengths: L = {5, 10, 20}.

Figure 19: Effect of rollout length in online learning.

29


