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Abstract

This paper investigates biologically plausible video next-001
frame prediction in the domain of high-frequency physi-002
cal interactions. We explore the limitations of PredNet, a003
deep network implementing predictive coding, on a custom004
dataset designed to isolate the spatiotemporal behaviors005
of dynamic objects. To address these limitations, we in-006
troduce DV-PredNet (Dorsal+Ventral PredNet), a disentan-007
gled, two-stream architecture to separately model physical008
dynamics (’where’) and visual appearance (’what’). Our009
model demonstrates improvements in both visual fidelity and010
trajectory tracking. However, we identify a characteristic011
performance degradation during high-impact events, such012
as collisions. Here, the model prioritizes learned visual013
statistics over enforcing physical consistency, resulting in a014
persistent one-frame lag. This reactive behavior reveals a015
fundamental limitation of the predictive coding framework016
with purely implicit physics learning, pointing towards the017
need for stronger physical priors or hybrid architectures to018
achieve physically reliable dynamics.019

1. Introduction020

Machine learning and artificial intelligence have long drawn021
inspiration from the brain’s underlying neuroscience princi-022
ples. Biologically plausible systems offer insight into higher-023
level cognitive capabilities and general intelligence, both024
of which possess potential to substantially improve perfor-025
mance and robustness of current deep learning architectures026
[5]. A key aspect of human cognition is ’intuitive physics,’027
referencing our capacity to make accurate inferences about028
the physical world by running approximate mental simu-029
lations [2]. A central goal in machine learning is to build030
models functionally similar to said intuitive physics engine031
(IPE), enabling them to understand and predict the dynamics032
of their environment.033

A common approach towards this goal is to create physics-034
informed models that explicitly incorporate the physical pri-035

ors. However, despite said models’ remarkable progression 036
in controlled environments, they often struggle to generalize 037
in stochastic, real-world situations, a challenge known as 038
the ’sim-to-real’ gap [11]. Given the limitations of physi- 039
cal priors, this work investigates whether a model with no 040
explicit physics priors can learn the underlying rules of a 041
dynamic system. To borrow from our cognitive system, we 042
implement predictive coding, a biologically plausible compu- 043
tational framework explored in deep learning models [4, 13]; 044
this theory posits that the brain is constantly predicting in- 045
coming sensory input and updating its beliefs based on the 046
prediction’s accuracy [10]. 047

As a first step toward learning in stochastic environments, 048
we pose a more focused question: can a predictive coding 049
model implicitly learn the rules of a controlled, determin- 050
istic, high-frequency physical setting? To test this, we first 051
analyze the performance of PredNet, a prominent implemen- 052
tation of predictive coding that has demonstrated impressive 053
performance in next-frame prediction, particularly in the 054
domain of autonomous driving [9]. However, in these low- 055
frequency scenarios, minor inaccuracies have less impact on 056
the qualitative perception of the prediction, meaning pixel- 057
level reconstruction losses can prove to be effective. We hy- 058
pothesize that this approach will be less physically robust in 059
videos involving low visual complexity and high-frequency 060
dynamics, such as rapidly colliding objects. 061

To test this hypothesis, we designed a simple synthetic 062
dataset involving the interaction of two bouncing balls in 063
an enclosed space. In this work, we first investigate the 064
limitations of the baseline PredNet on this dataset. We then 065
propose DV-PredNet, a novel, disentangled two-stream archi- 066
tecture inspired by humans’ visual processing stream, where 067
a ’what’ pathway is responsible for object representation and 068
a ’where’ pathway is responsible for spatiotemporal dynam- 069
ics, mirroring the ventral and dorsal pathways in the striate 070
cortex respectively [3]. 071

While our modifications exhibit substantial improve- 072
ments, we also identify a noticeable degradation in perfor- 073
mance during moments of dynamic interaction. 074
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2. Methods075

Our model builds upon the PredNet architecture [9], a deep076
recurrent network inspired by the predictive coding inference077
principle. PredNet is a hierarchy of recurrent modules (Con-078
vLSTMs), where each layer generates a top-down prediction079
of the activity in the layer below it. A bottom-up error signal,080
representing the discrepancy between the prediction and ac-081
tual activity, is used to update the recurrent states. We adapt082
this error-propagation mechanism for our two-stream model.083

2.1. Disentangled Two-Stream Architecture084

Inspired by the human visual pathway, the core principle of085
our model involves a disentanglement of object representa-086
tion (’what’) and spatiotemporal dynamics (’where’). These087
two parallel pathways are built from the original PredNet088
components as defined in equations (1) to (4) in the original089
paper [9]. These pathways are jointly trained, although each090
is tasked with learning a specialized objective. To create a091
clear hierarchy for our learning objectives, we define the red092
ball as the primary object of interest. The final frame pre-093
diction, x̂t, is generated by a rendering head that convolves094
the concatenated outputs from both the what-stream (Rt

0)095
and the where-stream (Dt

0) to synthesize the final image (see096
Eq. 1).097

To ensure both streams have access to valuable contextual098
information (i.e. environmental features like walls), we intro-099
duce a shared contextual pathway. While canonical models100
propose that only error signals are passed up bottom-up101
[1], we found that providing a direct sensory stream sta-102
bilized learning, especially considering the where-stream103
lacks contextual information otherwise. A lightweight en-104
coder processes the input frame at each timestep which is105
concatenated with the error signal in the bottom-up pass.106
This provides both pathways with an abstract representation107
of the scene.108

2.2. What Pathway109

The ’what’ pathway is responsible for rendering a visually110
accurate prediction of the scene based on the outputs of its111
recurrent modules.112

To move beyond blurry, pixel-level predictions and focus113
on higher-level semantics, we introduce a perceptual loss [7].114
This is done by extracting feature maps from the penultimate115
convolutional layer of a pretrained VGG16 model; a percep-116
tual loss is computed by measuring L1 distance between the117
feature maps of the predicted and ground-truth frames.118

Additionally, we compute a weighted Mean Absolute119
Error (MAE) loss. A segmentation mask of the salient object120
(the red ball) is extracted from the ground truth image; a121
MAE loss is computed across the entire image, but the loss in122
the salient masked region is amplified by a scalar of γ = 15.123
While pixel-wise losses have been shown to produce blurry124
images [6, 12], it has also been shown to act as a valuable125

stabilizer for adversarial or perceptual training objectives [6]. 126
The addition of the mask encourages the model to prioritize 127
high-fidelity construction of the object rather than allocating 128
unnecessary attention to the background. 129

2.3. Where Pathway 130

The ’where’ pathway serves as our model’s implicit physics 131
engine. Its objective is to learn an intuitive understanding of 132
physical interactions and causality without being explicitly 133
programmed with physics equations. 134

The primary objective of the where-stream is to predict 135
the segmentation mask of the primary object at the next 136
time step. The loss is a combination of Dice and Focal loss, 137
which are robust for segmentation tasks and prioritize the 138
accurate prediction of the foreground objects over the static 139
background [8]. 140

A linear coordinate head is attached to the where-stream’s 141
output state and is trained to predict a 6-tuple, ĉt, which rep- 142
resents the normalized 3D coordinates of both balls in world 143
space (see Eq. 2 and Eq. 3). Predicting the coordinates of 144
both objects rather than just the primary ball of interest en- 145
courages the model to develop a higher-level representation 146
of their interaction and resulting dynamics. 147

x̂t = σ
(
Conv

([
Rt

0;D
t
0

]))
(1) 148

st = ReLU(Linear(Flatten(MaxPool(

ReLU(Conv(Dt
0)))))))

(2) 149

ĉt = Linear(st) (3) 150

2.4. Loss Function 151

The model is trained end-to-end by minimizing a composite 152
loss function. The total loss, Ltotal, is a weighted sum of 153
components for state prediction (location Lloc, mask predic- 154
tion Lmask), visual reconstruction (perceptual Lvgg, weighted 155
MAE Lmae), and internal error minimization for each stream 156
(Lerr,Lerr_loc): 157

Ltotal = λlocLloc + λmaskLmask + λmaeLmae

+ λvggLvgg + λerrLerr + λerr_locLerr_loc
(1) 158

The weighting coefficients were empirically determined 159
through hyperparameter tuning to be: λloc = 0.2, λmask = 160
0.7, λerr_loc = 0.1, λmae = 0.4, λvgg = 0.5, λerr = 0.1. 161

Furthermore, we introduce event-based loss weighting. In 162
moments of collision, the loss contributions for all relevant 163
metrics for the current and subsequent timestep are amplified 164
by a scalar factor of γ = 15 (determined by a sign-flip in 165
ground-truth velocity vectors). This forces the model to 166
prioritize learning from these high-impact, physically salient 167
events. 168
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3. Experiments169

3.1. Custom Dataset170

We generated a synthetic dataset in Unity to test intuitive171
physics learning; in each scene, two balls, one red and one172
of random color, were initialized in an enclosed box with a173
random velocity and position.The primary object was desig-174
nated a red color to ensure a clean and consistent segmenta-175
tion mask extraction via HSV thresholding. This mask was176
then dilated to emphasize the object’s boundary, ensuring177
that the object is contained within the mask and is not con-178
structed outside of it. This approach intentionally simplifies179
the segmentation task to provide a near-perfect, noise-free180
ground truth signal for the ’where’ stream. By removing181
segmentation error, our experiments are tasked to focus ex-182
clusively on evaluating the core contribution of this work:183
the effectiveness of the disentangled predictive architecture,184
particularly the ’where’ stream, in learning high-frequency185
dynamics. To ensure consistent physical behavior, all rigid-186
bodies were assigned a dynamic friction coefficient of 0.4,187
a static friction coefficient of 0.6, and a bounciness (elas-188
ticity) coefficient of 0.9. Variability in other factors (e.g.189
texture, lighting) were eliminated. The dataset consists of190
300 simulations (128x128, 150 frames each) which was191
processed with a sliding window and randomly partitioned192
into 7549 training and 200 validation clips of 15 frames each.193
Ground-truth position and velocity vectors of both balls were194
recorded for each frame.195

3.2. Training Details196

The model was trained for 80 epochs using the Adam opti-197
mizer (initial LR 10−3, decaying to 10−4 in the latter half of198
training) with a batch size of 16 and ’clipnorm’ of 1.0. Ex-199
periments were conducted on a single NVIDIA A100 GPU200
via Google Colab. Each 80-epoch training run took approxi-201
mately one to two hours to complete. The first two timesteps202
of each sequence were omitted from the loss calculation as203
a meaningful physics-based prediction requires at least two204
initial frames to infer trajectory and velocity.205

4. Results & Discussion206

We evaluated our model against the baseline on a challenging207
sequence involving multiple collisions and a brief occlusion.208
The baseline PredNet suffered from several qualitative issues:209
blurriness, shape inconsistency, vanishing objects, position210
inaccuracies, and poor semantic understanding of the scene.211
This can be attributed to over-reliance on L1 pixel loss, which212
leads to blurry images and phases out high-frequency dy-213
namic details in favor of reconstructing the static background214
[6], as well as a poor understanding of spatiotemporality.215

Our augmented DV-PredNet, however, demonstrates216
quantitative improvement in understanding of the scene’s217
physics. A low validation location loss of 0.0148 (MAE)218

Model Perceptual Loss ↓ SSIM ↑ PSNR ↑
PredNet 0.596 0.979 34.14
DV-PredNet 0.138 0.988 38.59
DV-PredNet(LCentroid) 0.159 0.981 35.01

Table 1. Quantitative comparison of baseline PredNet vs. our
proposed DV-PredNet. DV-PredNet shows significant

improvements across all metrics. Lower is better for Perceptual
Loss; higher is better for SSIM and PSNR.

indicates the model is accurately tracking object trajectories. 219
This is further supported by superior performance on stan- 220
dard benchmarks (SSIM, PSNR) and a significantly lower 221
perceptual loss (see Table 1). 222

Qualitatively, the predictions exhibit high fidelity recon- 223
struction of both objects. However, as shown in Figure 224
1b, which displays the predicted segmentation masks, the 225
model’s performance degrades at key physical events. At 226
t = 9, the red ball bounces off the wall, and at t = 10, it 227
collides with the other ball. In both instances, the model 228
fails to anticipate the sharp change in trajectory, resulting in 229
a noticeable one-frame lag. The prediction at the time of col- 230
lision reflects the pre-collision trajectory, and the model only 231
corrects its course in the subsequent frame. This suggests 232
that while the model has learned the dynamics, its predictive 233
mechanism is more corrective than anticipatory. 234

4.1. Ablation Study 235

An ablation study was conducted to weigh the contribution 236
of newly introduced components (see Table 2). As expected, 237
ablating the ’what’ stream and its perceptual objectives re- 238
sulted in a catastrophic degradation across all metrics, con- 239
firming its essential role in rendering a visually coherent 240
scene. Similarly, removing the shared context encoder also 241
harmed performance, indicating that providing a direct, ab- 242
stract representation of the scene is critical for stabilizing 243
the learning of both pathways. 244

Surprisingly, however, the variant without the ’where’ 245
stream’s objectives achieved a slight improvement in quan- 246
titative metrics, with a lower Perceptual Loss (0.129 vs. 247
0.138) and a higher PSNR (39.13 vs. 38.59). This counter- 248
intuitive result indicates that the spatial signal from the 249
’where’ stream, while essential for physical accuracy (as 250
shown in Figure 2a), can act as a subtly conflicting prior 251
that slightly degrades the final render quality. Taken to- 252
gether, these ablations confirm that while all components 253
contribute meaningfully, the primary challenge lies not in the 254
architectural disentanglement itself, but in designing special- 255
ized objectives that are fully compatible and do not create 256
counter-productive interference. 257
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(a) Qualitative comparison of predictions (t=7 to t=14). Top: Ground Truth. Middle: Baseline. Bottom: DV-PredNet.

(b) Predicted segmentation masks from DV-PredNet (t=7 to t=14), showing a one-frame lag at collisions (t=9, t=10).

Figure 1. Overall visual results. (a) shows DV-PredNet’s significant improvement in object fidelity. (b) reveals the model’s reactive lag
during collisions.

Variant Perceptual Loss ↓ SSIM ↑ PSNR ↑
DV-PredNet 0.138 0.988 38.59
No ’Where’ Stream 0.129 0.988 39.13
No ’What Stream’ 1.34 0.742 15.16
No Context Encoder 0.210 0.982 35.51

Table 2. Ablation study results. The "No ’Where’ Stream" variant
shows a slight improvement in visual fidelity metrics, highlighting

an objective misalignment challenge.

4.2. Physically Plausible Prediction258

To further investigate the interplay between the ’what’ and259
’where’ streams, we analyzed a model configuration trained260
with a heavily-weighted centroid loss and an amplified261
weight for the masked prediction loss (λmask = 1.1). This262
configuration resulted in worse quantitative performance (see263
Table 1) and a noticeable degradation in visual fidelity, pro-264

ducing rendering artifacts near the pink ball and worse shape 265
accuracy; however, it was the only configuration out of exten- 266
sive experimentation to successfully anticipate the collision 267
and produce a physically plausible rebound, overcoming the 268
one-frame lag present in our quantitatively superior models. 269

This finding provides strong evidence for an inherent 270
trade-off between visual fidelity and physical dynamic ro- 271
bustness in our model. The aggressive, location-based ob- 272
jective provided the necessary corrective "pull" to overcome 273
the reactive tendencies of the predictive coding model, but 274
did so at the expense of visual coherence. 275

5. Conclusion 276

In this work, we investigated the performance of a 277
biologically-inspired, predictive coding model for learning 278
intuitive physics in a deterministic environment. We in- 279
troduced a disentangled, two-stream model that separates 280
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(a) Qualitative comparison of DV-PredNet with heavy focus on ’where’ stream (t=7 to t=14). Top: Ground Truth. Bottom: DV-PredNet with centroid loss and
amplified λmask(λmask = 1.1).

(b) Predicted segmentation masks from DV-PredNet with heavy focus on ’where’ stream (t=7 to t=14)

Figure 2. Overall visual results. In subfigure (a) at t=9, the red ball is visibly detached from the wall, indicating a successful rebound off the
wall, though visual fidelity is reduced. Similarly, the mask at t=9 in subfigure (b) is more closely aligned vertically to the GT mask compared

to the prediction of DV-PredNet in 1a.

learning appearance and dynamics. Despite achieving sub-281
stantial improvements in object fidelity and location tracking,282
our central finding was the identification of a key limitation:283
a reactive one-frame lag during non-linear collisions.284

Our analysis further revealed a fundamental trade-off be-285
tween visual fidelity and physical accuracy in our model’s286
implementation. A model configuration with a heavily-287
weighted physical objective was the only one to produce288
an anticipatory, physically plausible rebound, but at the cost289
of significant visual degradation. This conflict was verified290
by ablation studies where removing the physical objective291
paradoxically improved visual metrics. These findings pro-292
vide a clear case study demonstrating that purely implicit,293
data-driven approaches can struggle to learn true causal dy-294
namics.295

Our work argues that the future of physically reliable296
world models lies in a "middle ground." Purely implicit phys-297
ical models may prove to be insufficient in outputting a con-298
sistent, robust understanding of dynamics and causality, and299
therefore motivating hybrid, physics-guided architectures300
that integrate learned representations with explicit physical301

priors. However, there still remains potential in purely im- 302
plicit models, and future works can further explore deeper 303
avenues of disentanglement for robust physical reasoning 304
without explicit priors. 305
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