#16

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019

020

021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

DV-PredNet: Biologically Plausible Video Next Frame Prediction with
Higher-level Semantics

Anonymous submission

Paper ID 16

Abstract

This paper investigates biologically plausible video next-
frame prediction in the domain of high-frequency physi-
cal interactions. We explore the limitations of PredNet, a
deep network implementing predictive coding, on a custom
dataset designed to isolate the spatiotemporal behaviors
of dynamic objects. To address these limitations, we in-
troduce DV-PredNet (Dorsal+Ventral PredNet), a disentan-
gled, two-stream architecture to separately model physical
dynamics ("where’) and visual appearance ("what’). Our
model demonstrates improvements in both visual fidelity and
trajectory tracking. However, we identify a characteristic
performance degradation during high-impact events, such
as collisions. Here, the model prioritizes learned visual
statistics over enforcing physical consistency, resulting in a
persistent one-frame lag. This reactive behavior reveals a
fundamental limitation of the predictive coding framework
with purely implicit physics learning, pointing towards the
need for stronger physical priors or hybrid architectures to
achieve physically reliable dynamics.

1. Introduction

Machine learning and artificial intelligence have long drawn
inspiration from the brain’s underlying neuroscience princi-
ples. Biologically plausible systems offer insight into higher-
level cognitive capabilities and general intelligence, both
of which possess potential to substantially improve perfor-
mance and robustness of current deep learning architectures
[5]. A key aspect of human cognition is ’intuitive physics,’
referencing our capacity to make accurate inferences about
the physical world by running approximate mental simu-
lations [2]. A central goal in machine learning is to build
models functionally similar to said intuitive physics engine
(IPE), enabling them to understand and predict the dynamics
of their environment.

A common approach towards this goal is to create physics-
informed models that explicitly incorporate the physical pri-

ors. However, despite said models’ remarkable progression
in controlled environments, they often struggle to generalize
in stochastic, real-world situations, a challenge known as
the ’sim-to-real’ gap [11]]. Given the limitations of physi-
cal priors, this work investigates whether a model with no
explicit physics priors can learn the underlying rules of a
dynamic system. To borrow from our cognitive system, we
implement predictive coding, a biologically plausible compu-
tational framework explored in deep learning models [4} [13];
this theory posits that the brain is constantly predicting in-
coming sensory input and updating its beliefs based on the
prediction’s accuracy [[10].

As a first step toward learning in stochastic environments,
we pose a more focused question: can a predictive coding
model implicitly learn the rules of a controlled, determin-
istic, high-frequency physical setting? To test this, we first
analyze the performance of PredNet, a prominent implemen-
tation of predictive coding that has demonstrated impressive
performance in next-frame prediction, particularly in the
domain of autonomous driving [9]. However, in these low-
frequency scenarios, minor inaccuracies have less impact on
the qualitative perception of the prediction, meaning pixel-
level reconstruction losses can prove to be effective. We hy-
pothesize that this approach will be less physically robust in
videos involving low visual complexity and high-frequency
dynamics, such as rapidly colliding objects.

To test this hypothesis, we designed a simple synthetic
dataset involving the interaction of two bouncing balls in
an enclosed space. In this work, we first investigate the
limitations of the baseline PredNet on this dataset. We then
propose DV-PredNet, a novel, disentangled two-stream archi-
tecture inspired by humans’ visual processing stream, where
a’what’ pathway is responsible for object representation and
a ’where’ pathway is responsible for spatiotemporal dynam-
ics, mirroring the ventral and dorsal pathways in the striate
cortex respectively [3].

While our modifications exhibit substantial improve-
ments, we also identify a noticeable degradation in perfor-
mance during moments of dynamic interaction.
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2. Methods

Our model builds upon the PredNet architecture [9], a deep
recurrent network inspired by the predictive coding inference
principle. PredNet is a hierarchy of recurrent modules (Con-
vLSTM:s), where each layer generates a top-down prediction
of the activity in the layer below it. A bottom-up error signal,
representing the discrepancy between the prediction and ac-
tual activity, is used to update the recurrent states. We adapt
this error-propagation mechanism for our two-stream model.

2.1. Disentangled Two-Stream Architecture

Inspired by the human visual pathway, the core principle of
our model involves a disentanglement of object representa-
tion ("what’) and spatiotemporal dynamics (’where’). These
two parallel pathways are built from the original PredNet
components as defined in equations (1) to (4) in the original
paper [9]. These pathways are jointly trained, although each
is tasked with learning a specialized objective. To create a
clear hierarchy for our learning objectives, we define the red
ball as the primary object of interest. The final frame pre-
diction, 4, is generated by a rendering head that convolves
the concatenated outputs from both the what-stream ()
and the where-stream (D})) to synthesize the final image (see
Eq.[T).

To ensure both streams have access to valuable contextual
information (i.e. environmental features like walls), we intro-
duce a shared contextual pathway. While canonical models
propose that only error signals are passed up bottom-up
[1], we found that providing a direct sensory stream sta-
bilized learning, especially considering the where-stream
lacks contextual information otherwise. A lightweight en-
coder processes the input frame at each timestep which is
concatenated with the error signal in the bottom-up pass.
This provides both pathways with an abstract representation
of the scene.

2.2. What Pathway

The *what’ pathway is responsible for rendering a visually
accurate prediction of the scene based on the outputs of its
recurrent modules.

To move beyond blurry, pixel-level predictions and focus
on higher-level semantics, we introduce a perceptual loss [7].
This is done by extracting feature maps from the penultimate
convolutional layer of a pretrained VGG16 model; a percep-
tual loss is computed by measuring L1 distance between the
feature maps of the predicted and ground-truth frames.

Additionally, we compute a weighted Mean Absolute
Error (MAE) loss. A segmentation mask of the salient object
(the red ball) is extracted from the ground truth image; a
MAE loss is computed across the entire image, but the loss in
the salient masked region is amplified by a scalar of v = 15.
While pixel-wise losses have been shown to produce blurry
images [6}12], it has also been shown to act as a valuable

stabilizer for adversarial or perceptual training objectives [6].
The addition of the mask encourages the model to prioritize
high-fidelity construction of the object rather than allocating
unnecessary attention to the background.

2.3. Where Pathway

The *where’ pathway serves as our model’s implicit physics
engine. Its objective is to learn an intuitive understanding of
physical interactions and causality without being explicitly
programmed with physics equations.

The primary objective of the where-stream is to predict
the segmentation mask of the primary object at the next
time step. The loss is a combination of Dice and Focal loss,
which are robust for segmentation tasks and prioritize the
accurate prediction of the foreground objects over the static
background [8]].

A linear coordinate head is attached to the where-stream’s
output state and is trained to predict a 6-tuple, ¢;, which rep-
resents the normalized 3D coordinates of both balls in world
space (see Eq.[2]and Eq.[3). Predicting the coordinates of
both objects rather than just the primary ball of interest en-
courages the model to develop a higher-level representation
of their interaction and resulting dynamics.

Ty =0 (Conv ([Ré; Dé])) (1)

st = ReLU(Linear(Flatten(MaxPool( )
ReLU(Conv(Dy)))))))

¢ = Linear(s) 3)

2.4. Loss Function

The model is trained end-to-end by minimizing a composite
loss function. The total loss, Ly, is a weighted sum of
components for state prediction (location £, mask predic-
tion Lask), visual reconstruction (perceptual Lyg,, weighted
MAE L), and internal error minimization for each stream

(Acerra Eerr_loc):

‘Ctotal = )\locﬁloc + )\maskﬁmask + )\maeﬁmae

+ )\vggﬁvgg + )\errﬁerr + )\errflocﬁerrfloc (1)
The weighting coefficients were empirically determined
through hyperparameter tuning to be: Ajoc = 0.2, Apask =
0.7, Xerr_toc = 0.1, Apae = 0.4, Aygg = 0.5, Aerr = 0.1.
Furthermore, we introduce event-based loss weighting. In
moments of collision, the loss contributions for all relevant
metrics for the current and subsequent timestep are amplified
by a scalar factor of v = 15 (determined by a sign-flip in
ground-truth velocity vectors). This forces the model to
prioritize learning from these high-impact, physically salient
events.
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3. Experiments

3.1. Custom Dataset

We generated a synthetic dataset in Unity to test intuitive
physics learning; in each scene, two balls, one red and one
of random color, were initialized in an enclosed box with a
random velocity and position.The primary object was desig-
nated a red color to ensure a clean and consistent segmenta-
tion mask extraction via HSV thresholding. This mask was
then dilated to emphasize the object’s boundary, ensuring
that the object is contained within the mask and is not con-
structed outside of it. This approach intentionally simplifies
the segmentation task to provide a near-perfect, noise-free
ground truth signal for the where’ stream. By removing
segmentation error, our experiments are tasked to focus ex-
clusively on evaluating the core contribution of this work:
the effectiveness of the disentangled predictive architecture,
particularly the where’ stream, in learning high-frequency
dynamics. To ensure consistent physical behavior, all rigid-
bodies were assigned a dynamic friction coefficient of 0.4,
a static friction coefficient of 0.6, and a bounciness (elas-
ticity) coefficient of 0.9. Variability in other factors (e.g.
texture, lighting) were eliminated. The dataset consists of
300 simulations (128x128, 150 frames each) which was
processed with a sliding window and randomly partitioned
into 7549 training and 200 validation clips of 15 frames each.
Ground-truth position and velocity vectors of both balls were
recorded for each frame.

3.2. Training Details

The model was trained for 80 epochs using the Adam opti-
mizer (initial LR 10~3, decaying to 10~% in the latter half of
training) with a batch size of 16 and ’clipnorm’ of 1.0. Ex-
periments were conducted on a single NVIDIA A100 GPU
via Google Colab. Each 80-epoch training run took approxi-
mately one to two hours to complete. The first two timesteps
of each sequence were omitted from the loss calculation as
a meaningful physics-based prediction requires at least two
initial frames to infer trajectory and velocity.

4. Results & Discussion

We evaluated our model against the baseline on a challenging
sequence involving multiple collisions and a brief occlusion.
The baseline PredNet suffered from several qualitative issues:
blurriness, shape inconsistency, vanishing objects, position
inaccuracies, and poor semantic understanding of the scene.
This can be attributed to over-reliance on L1 pixel loss, which
leads to blurry images and phases out high-frequency dy-
namic details in favor of reconstructing the static background
[6], as well as a poor understanding of spatiotemporality.
Our augmented DV-PredNet, however, demonstrates
quantitative improvement in understanding of the scene’s
physics. A low validation location loss of 0.0148 (MAE)

Model Perceptual Loss | SSIM 1T PSNR 1
PredNet 0.596 0.979 34.14
DV-PredNet 0.138 0.988 38.59
DV-PredNet(Lcentroid) 0.159 0.981 35.01

Table 1. Quantitative comparison of baseline PredNet vs. our
proposed DV-PredNet. DV-PredNet shows significant
improvements across all metrics. Lower is better for Perceptual
Loss; higher is better for SSIM and PSNR.

indicates the model is accurately tracking object trajectories.
This is further supported by superior performance on stan-
dard benchmarks (SSIM, PSNR) and a significantly lower
perceptual loss (see Table T)).

Qualitatively, the predictions exhibit high fidelity recon-
struction of both objects. However, as shown in Figure
[Tb} which displays the predicted segmentation masks, the
model’s performance degrades at key physical events. At
t = 9, the red ball bounces off the wall, and at ¢ = 10, it
collides with the other ball. In both instances, the model
fails to anticipate the sharp change in trajectory, resulting in
a noticeable one-frame lag. The prediction at the time of col-
lision reflects the pre-collision trajectory, and the model only
corrects its course in the subsequent frame. This suggests
that while the model has learned the dynamics, its predictive
mechanism is more corrective than anticipatory.

4.1. Ablation Study

An ablation study was conducted to weigh the contribution
of newly introduced components (see Table[2). As expected,
ablating the *what’ stream and its perceptual objectives re-
sulted in a catastrophic degradation across all metrics, con-
firming its essential role in rendering a visually coherent
scene. Similarly, removing the shared context encoder also
harmed performance, indicating that providing a direct, ab-
stract representation of the scene is critical for stabilizing
the learning of both pathways.

Surprisingly, however, the variant without the *where’
stream’s objectives achieved a slight improvement in quan-
titative metrics, with a lower Perceptual Loss (0.129 vs.
0.138) and a higher PSNR (39.13 vs. 38.59). This counter-
intuitive result indicates that the spatial signal from the
"where’ stream, while essential for physical accuracy (as
shown in Figure [Za), can act as a subtly conflicting prior
that slightly degrades the final render quality. Taken to-
gether, these ablations confirm that while all components
contribute meaningfully, the primary challenge lies not in the
architectural disentanglement itself, but in designing special-
ized objectives that are fully compatible and do not create
counter-productive interference.
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t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14
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(a) Qualitative comparison of predictions (t=7 to t=14). Top: Ground Truth. Middle: Baseline. Bottom: DV-PredNet.

t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14

(b) Predicted segmentation masks from DV-PredNet (t=7 to t=14), showing a one-frame lag at collisions (t=9, t=10).

Figure 1. Overall visual results. (a) shows DV-PredNet’s significant improvement in object fidelity. (b) reveals the model’s reactive lag
during collisions.

Variant Perceptual Loss | SSIM T PSNR 1
DV-PredNet 0.138 0.988 38.59
No "Where’ Stream 0.129 0.988 39.13
No *What Stream’ 1.34 0.742 15.16
No Context Encoder 0.210 0.982 35.51

Table 2. Ablation study results. The "No "Where’ Stream" variant
shows a slight improvement in visual fidelity metrics, highlighting
an objective misalignment challenge.

4.2. Physically Plausible Prediction

To further investigate the interplay between the *what’ and
where’ streams, we analyzed a model configuration trained
with a heavily-weighted centroid loss and an amplified
weight for the masked prediction loss (Apask = 1.1). This
configuration resulted in worse quantitative performance (see
Table[T) and a noticeable degradation in visual fidelity, pro-

ducing rendering artifacts near the pink ball and worse shape
accuracy; however, it was the only configuration out of exten-
sive experimentation to successfully anticipate the collision
and produce a physically plausible rebound, overcoming the
one-frame lag present in our quantitatively superior models.

This finding provides strong evidence for an inherent
trade-off between visual fidelity and physical dynamic ro-
bustness in our model. The aggressive, location-based ob-
jective provided the necessary corrective "pull” to overcome
the reactive tendencies of the predictive coding model, but
did so at the expense of visual coherence.

5. Conclusion

In this work, we investigated the performance of a
biologically-inspired, predictive coding model for learning
intuitive physics in a deterministic environment. We in-
troduced a disentangled, two-stream model that separates
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(a) Qualitative comparison of DV-PredNet with heavy focus on *where’ stream (t=7 to t=14). Top: Ground Truth. Bottom: DV-PredNet with centroid loss and
amplified Apask (Amask = 1.1).

t=10

t=7 t=8 t=9

t=11

t=12 t=13 t=14

(b) Predicted segmentation masks from DV-PredNet with heavy focus on *where’ stream (t=7 to t=14)

Figure 2. Overall visual results. In subfigure (a) at t=9, the red ball is visibly detached from the wall, indicating a successful rebound off the
wall, though visual fidelity is reduced. Similarly, the mask at t=9 in subfigure (b) is more closely aligned vertically to the GT mask compared
to the prediction of DV-PredNet in@

learning appearance and dynamics. Despite achieving sub-
stantial improvements in object fidelity and location tracking,
our central finding was the identification of a key limitation:
a reactive one-frame lag during non-linear collisions.

Our analysis further revealed a fundamental trade-off be-
tween visual fidelity and physical accuracy in our model’s
implementation. A model configuration with a heavily-
weighted physical objective was the only one to produce
an anticipatory, physically plausible rebound, but at the cost
of significant visual degradation. This conflict was verified
by ablation studies where removing the physical objective
paradoxically improved visual metrics. These findings pro-
vide a clear case study demonstrating that purely implicit,
data-driven approaches can struggle to learn true causal dy-
namics.

Our work argues that the future of physically reliable
world models lies in a "middle ground." Purely implicit phys-
ical models may prove to be insufficient in outputting a con-
sistent, robust understanding of dynamics and causality, and
therefore motivating hybrid, physics-guided architectures
that integrate learned representations with explicit physical

priors. However, there still remains potential in purely im-
plicit models, and future works can further explore deeper
avenues of disentanglement for robust physical reasoning
without explicit priors.
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