Intermediate Layers Can Be Self-Hard Negative Generator For Large Language Model Based Recommendation

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032 033 034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

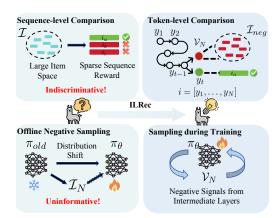
Large language models (LLMs) have gained significant attention for their usage in recommender systems. One typical method to adapt LLMs for recommendation is Supervised Fine-tuning (SFT), and subsequent studies introduce preference learning to incorporate negative samples into the training process. However, the negative samples used in existing preference learning methods are sampled at the sequence-level in an offline process, making them less discriminative and informative when adapting LLMs to recommendation tasks with large negative item spaces. To address these challenges, we propose **ILRec**, a novel preference finetuning framework for LLM-based recommender systems, which utilizes self-hard negative signals extracted from intermediate layers to enhance preference learning for LLMs. Specifically, we first extract self-hard negative tokens from intermediate layers, which serve as fine-grained negative signals and dynamically reflect the model's preference learning process. To incorporate these negative signals into training, we devise a fine-tuning framework consisting of two components: cross-layer preference optimization and cross-layer preference distillation, which enables the model to effectively distinguish the negative signals and enhance the informativeness of negatives generated by intermediate layers. Additionally, we introduce a small collaborative filtering model to assign reward to each penalized token, preventing potential over-penalization of false negatives. Extensive experiments on three datasets demonstrate ILRec's effectiveness in enhancing the performance of LLM-based recommender systems. The source code is available at https://anonymous.4open.science/r/ILRec-6FFE.

1 Introduction

Sequential recommendation aims to predict the next item a user will likely interact with based on the historical interaction sequence (Kang & McAuley, 2018; Hidasi et al., 2016). Recently, as large language models (LLMs) have shown remarkable capabilities in text understanding and generation (Clusmann et al., 2023), enhancing recommender systems with LLMs has received widespread attention (Bao et al., 2023b; Geng et al., 2022). As one typical paradigm, LLMs are leveraged to directly generating the identifier (*i.e.*, a sequence of tokens) of the item for recommendation (Liao et al., 2024b; Bao et al., 2023a).

To adapt LLMs for recommendation, early work (Zhang et al., 2023; Zheng et al., 2024) adopts Supervised Fine-Tuning (SFT), formatting interacted item sequences as text-based instructions and takes the identifiers of ground-truth items as responses for training. Considering the importance of negative samples in recommendation tasks, some studies (Chen et al., 2024; Liao et al., 2024a; Gao et al., 2024) further utilize DPO-based (Rafailov et al., 2024) preference alignment techniques to incorporate both positive and negative items in training, enabling LLMs to learn user ranking preferences. In particular, they propose to extract negative items via random sampling (Chen et al., 2024) or self-generation (Liao et al., 2024a; Gao et al., 2024), and design specific training objectives like uncertainty-based DPO (Liao et al., 2024a) and self-play learning (Gao et al., 2024) to better leverage information from negative samples.

Despite remarkable progress, existing methods exhibit limitations in both the discriminativeness and informativeness of sampled negatives. As illustrated in Figure 1, these limitations manifest in two



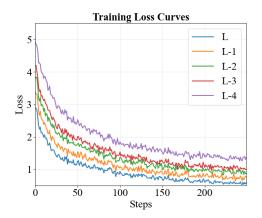


Figure 1: Limitations of traditional negative sampling methods and solutions provided by ILRec, aiming at extracting more fine-grained and informative negative signals.

Figure 2: Training loss curves of different layers in LLaMA3.1-8B on Instrument dataset using LC-Rec. L denotes the final layer, while L-k denotes the k-th layer before the final layer.

primary ways: First, current approaches compare ground-truth items against a few negative items and assign rewards to the entire sequence of tokens in responses. Learning from these sparse and coarse-grained rewards makes it challenging for LLMs to capture fine-grained token patterns and user preferences, especially considering large amounts of items as potential candidates in full ranking tasks. Second, the quality of these negative samples is often uninformative to guide the model's optimization. Most existing methods predominantly rely on negative samples collected offline from outdated policy models before further training. As a result, these negative samples struggle to keep pace with the distributional changes of the current updated policy model (Guo et al., 2024; Levine et al., 2020), and do not represent the most informative or worth-learning negatives. This mismatch hinders the model's ability to distinguish hard negatives during training, ultimately leading to suboptimal performance. In addition, the additional preference alignment stage and the increased number of negative samples both introduce extra training and sampling costs, thereby reducing the efficiency of adapting LLMs for recommendation tasks.

To address these limitations, our main idea is to dynamically self-generate and utilize fine-grained negative samples during the training process. Recent studies (Li et al., 2022; Sang et al., 2024) have shown that the outputs of expert models can be optimized by contrasting them with those of non-expert models, since the predictions of non-expert models often contain erroneous patterns or suboptimal choices. This observation provides a valuable perspective for negative sampling strategies. Considering the internal structure of LLMs, the intermediate layers can also be viewed as models with enough predictive capabilities but weaker than the final output layer, as illustrated in Figure 2. This makes them highly promising of dynamically generating appropriately-hard negatives for model optimization during training. Therefore, we propose to utilize the intermediate layers of LLMs as negative generators during training, and extract tokens with high generated probabilities from the intermediate layers' outputs as negative signals. These negative signals offer three primary merits: First, these negatives are extracted in token-level instead of sequence-level. This implicitly extends the negative space and provides LLMs with an accurate and fine-grained comparison between the positive item and various negative items, adapting the model to large candidate-item spaces effectively. Second, since the intermediate layers are jointly optimized during training, the negative signals can dynamically reflect the current preference learning process of the model. They are informative enough to be distinguished and penalized in the final output. Third, the extraction of negative signals from intermediate layers can be seamlessly integrated into SFT within one forward process, which is efficient for adapting LLMs for recommendation.

To this end, we propose **ILRec**, an effective fine-tuning framework for LLM-based recommender systems, which utilizes self-hard negative signals extracted from intermediate layers to enhance preference learning for LLMs. Specifically, we combine intermediate layers with additional prediction layers to get token prediction distributions, from which we select high-probability tokens, excluding the ground-truth token, as self-hard negative signals. This method provides dynamically generated

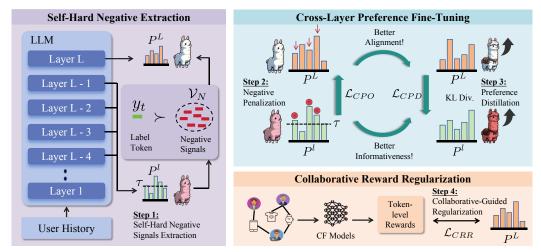


Figure 3: The overall framework of ILRec.

fine-grained negative signals, which enables LLMs to effectively distinguish highly informative negatives from a vast candidate item space. To optimize the generation and utilization of these negative signals, we focus on two points, namely *cross-layer preference optimization* and *cross-layer preference distillation*. Cross-layer preference optimization integrates self-hard negative signals as fine-grained penalty coefficients into the cross-entropy loss, thereby penalizing the corresponding negative tokens in final layer's output. Cross-layer preference distillation employs the output layer as a teacher to supervise the token generation of intermediate layers, which ensures that the self-hard negative signals are reliable and informative enough through training. Furthermore, to address the potential false negatives in extracted tokens, we introduce a small collaborative filtering (CF) model to assign a reward to each penalized token. This helps prevent over-penalization and incorporates CF information during training.

The main contributions of this paper are as follows:

- We present ILRec, a novel LLM-based recommendation framework that extracts fine-grained self-hard negative signals from intermediate layers for preference optimization.
- We propose the cross-layer preference optimization and cross-layer preference distillation for better generalization and utilization of self-hard negative signals during LLM fine-tuning. We also employ collaborative reward regularization to mitigate over-penalization.
- Empirical evaluations on various datasets and scenarios demonstrate the effectiveness of ILRec.

2 METHODOLOGY

2.1 OVERVIEW OF OUR APPROACH

Problem Formulation. Given the item set \mathcal{I} , let $S=[i_1,\ldots,i_n]$ denotes the user's historical interactions in chronological order. The goal of traditional sequential recommendation is to predict the next item i_{n+1} for the user based on historical interactions. For LLM-based sequential recommendation, the task is reformulated to an instruction-following paradigm. Given a prompt X—containing task descriptions and the sequence of item identifiers in S, the LLM is trained to generate the identifier of the next item Y via cross-entropy loss as follows, where $y_{< t}$ denotes tokens before y_t in Y:

$$\mathcal{L}_{sft} = -\sum_{t=1}^{|Y|} \log(P(y_t|X, y_{< t})). \tag{1}$$

Limitations of Negatives used in DPO-based Recommendation Methods. Large Language Model Based Sequential Recommendation requires LLMs to generate the identifier (*i.e.*, a sequence of tokens) of the item for prediction. In traditional NLP tasks, the response can be highly diverse and

163

164

165

166

167

168 169

170

171

172

173

174

175

176

177

179

181

182

183

185

186

187

188

189

190

191

192

193 194

195 196

197

199

200

201

202

203

204

205

206

207 208

209

210

211

212

213 214 215

only a few key tokens are critical for conveying the meaning. However, in LLMRec tasks, the token generation process closely resembles a search process in the item space. Each previously generated token plays a crucial role, as it progressively narrows down the possible items and directly influences the final prediction. This makes the generation in LLMRec tasks much more sensitive to training samples. While DPO brings the benefits of leveraging negative samples to LLMRec, there are still certain limitations of applying the extracted negative samples, especially when the negative item space is extremely large (As shown in Figure 1): • Indiscriminativeness: The DPO-based methods align the LLMs using a few of sequencelevel negative items, which can be regarded as providing sparse and coarse-grained rewards during training. When facing a large negative item space, these methods make it difficult for LLMs to capture fine-grained token-level patterns and user preferences. • Uninformativeness: Current Approaches sample negatives by random sampling (Chen et al., 2024) or from old policies before optimization. Due to distributional shifts that occur during training, the previously sampled negatives may not be informative or challenging for LLMs to distinguish, leading to suboptimal performances (As shown in Table 1).

Solution Overview. To address the challenges posed by large candidate-item spaces and sparse positive feedback in recommendation tasks, we propose a novel framework that leverages finegrained self-hard negative signals extracted from intermediate layers of LLMs to guide model optimization. Our approach consists of three key components. (1) Self-Hard Negative Extraction from Intermediate Layers leverages intermediate layers of the LLM to extract self-hard negative signals. Specifically, high-probability tokens (excluding ground-truth tokens) from these layers are selected as token-level negatives, enabling the model to better align with fine-grained user preferences and effectively handle large negative-item spaces during training. (2) Cross-Layer Preference Fine-tuning introduces a framework comprising Cross-layer Preference Optimization (CPO) and Cross-layer Preference Distillation (CPD). CPO penalizes negative signals in the output logits by adding a penalty coefficient to the cross-entropy loss, while CPD improves the quality of negative signals by distilling knowledge from the final output layer to intermediate layers. Jointly training with both modules enhances the model's ability to learn from negative signals. (3) Collaborative Reward Regularization employs a lightweight collaborative filtering (CF) model to assign token-level rewards to penalized tokens, preventing excessive penalization and incorporates CF information into the training process. The overall framework of the proposed approach is shown in Figure 3.

SELF-HARD NEGATIVE EXTRACTION FROM INTERMEDIATE LAYERS

To resolve the indiscriminative and uninformative problem of current negative sampling strategies, we seek to dynamically self-generate and utilize fine-grained negative samples during the training process. Recent studies (Li et al., 2022; Sang et al., 2024) have shown that the outputs of expert models can be optimized by contrasting them with those of non-expert models, since the predictions of nonexpert models often contain erroneous patterns or suboptimal choices. This observation provides a valuable perspective for negative sampling strategies. Considering the internal structure of LLMs, the intermediate layers can also be viewed as models with enough predictive capabilities but weaker than the final output layer, as illustrated in Figure 2. This makes them well-suited of dynamically generating appropriately-hard negatives for model optimization during training. Therefore, we propose a new negative extraction method that extracts token-level self-hard negative signals from the intermediate layers. The extraction process primarily consists of two parts: (1) Acquiring Ensemble Logits from Intermediate Layers, and (2) Extracting Self-hard Negative Signals from Ensemble Logits.

Acquiring Ensemble Logits from Intermediate Layers. To get the negative signals from intermediate layers, we first need to obtain the logits from each intermediate layer. Given the input token y_t at step t, the embedding layer together with the transformer layers will generate the corresponding hidden vector h^l at the l-th layer. Then, we apply the additional prediction layer $\phi(\cdot)$ to convert the hidden vector h^l into the logits P^l to formulate the LLM's generated values over the vocabulary \mathcal{V} :

$$P^{l} = \phi(\mathbf{h}^{l}) \in \mathbb{R}^{|\mathcal{V}|},\tag{2}$$

where $|\mathcal{V}|$ denotes the total size of the vocabulary set \mathcal{V} . Subsequently, we propose to ensemble the logits of intermediate layers for the extraction of negative signals. Since there is a significant gap between the shallow layers and the deep layers in LLMs, the information provided by shallow layers are not sufficiently informative for generating challenging negative signals of recommendation tasks. Hence, we select consecutive intermediate layers preceding the final output layer as candidate layers. Specifically, We calculate the average value of each layer's logits to form the ensemble logits \hat{P} :

$$\hat{P} = \frac{\sum_{l=L-k-1}^{L-1} P^l}{k},\tag{3}$$

where L denotes the final output layer and k indicates the number of candidate layers before L.

Extracting Self-hard Negative Signals from Ensemble Logits. Subsequent to acquiring the ensemble logits from intermediate layers, our purpose is to extract the predicted tokens as fine-grained negative signals from non-expert intermediate layers. Hence, we propose selecting those tokens that have high generated probabilities as self-hard negative signals. We set a threshold τ for selecting these signals, which is positively correlated with the generated probability of the ground-truth token. In this way, our approach can dynamically select self-hard negative signals according to the accuracy of prediction in the ensemble logits. The calculation of threshold τ is as follows:

$$\tau = \alpha \hat{p}(y_t),\tag{4}$$

where y_t denotes the ground-truth token at step t and $\hat{p}(y_t)$ denotes the probability for y_t in the ensemble logits \hat{P} . α is the hyperparameter that controls the threshold for selecting tokens. Then, the set of self-hard negative signals \mathcal{V}_N at each step is as follows:

$$\mathcal{V}_N = \{ v | v \neq y_t, v \in \mathcal{V}, \hat{p}(v) \ge \tau \}.$$
 (5)

Compared to DPO-based methods, which leverage a limited number of sequence-level negative items for preference optimization, the extraction of token-level negative signals in ILRec offers three key advantages. First, our negative signals involve the large candidate token space, which aligns better with the large negative item space in recommendation scenarios. In specific, by learning to distinguish between the ground-truth tokens and these negative signals, the generation probabilities for items prefixed with those negative signals will be reduced to some extent. This enables the LLM to explore the large candidate space more stably and learn the preference paradigm more effectively. Second, these negative signals are dynamically self-sampled during the training process, which are informative enough to provide consistently challenging negative signals for model optimization. Third, our negative signals are generated within the SFT training process and do not require additional training or sampling, serving as a stable and efficient preference alignment method for recommendation.

2.3 Cross-Layer Preference Fine-Tuning

After extracting negative signals from intermediate layers, we propose incorporating them within the fine-tuning of LLMs. Since the quality of negative samples are crucial for model optimization, we propose a self-evolving fine-tuning method, simultaneously optimizing the generation and utilization of negative signals. It enables the model to effectively learn from negative signals, while continuously enhancing the informativeness of extracted negative signals. Our proposed framework consists of two components: (1) Cross-Layer Preference Optimization and (2) Cross-Layer Preference Distillation.

Cross-Layer Preference Optimization. The core idea of preference optimization in recommendation is to learn the comparison between preferred positive items and less preferred negative items. Therefore, we directly integrate negative signals into the cross-entropy loss for fine-grained preference learning. First, we design a penalizing weight w_v for each token v as follows:

$$w_v = \begin{cases} \frac{\exp(\hat{p}(v))}{\sum_{v_n \in \mathcal{V}_N} \exp(\hat{p}(v_n))} & \text{if } v \in \mathcal{V}_N \\ 0 & \text{if } v \notin \mathcal{V}_N \end{cases} . \tag{6}$$

For those tokens that are not involved in V_N , we set their weight as 0 since they have already been well distinguished by the model.

Then, we reformulate the cross-entropy loss in the original SFT objective. For greater clarity and conciseness, we focus on the training process of single predicted logits instead of the total response. The reformulated cross-entropy loss is as follows:

$$\mathcal{L}_{CPO} = -\log \frac{\exp(p^L(y_t))}{\sum_{v \in \mathcal{V}} \exp(p^L(v)(1 + \beta w_v))},\tag{7}$$

where $p^L(v)$ denotes the generated probability of token v by the final output layer at step t, while β is the hyperparameter that controls the degree of penalization for each token. Based on Equation 6, the penalizing weight is positively correlated with the value of the corresponding token in P^L . This means that challenging negative signals for the model to distinguish from positive samples will be penalized more in the final output logits, helping model effectively optimize its comprehension of user preferences during SFT stage. Additionally, since these negative samples are dynamically self-generated within the model during training, there is no need for external negative samples or repeated iterative learning, thus achieving an efficient self-learning and optimization process.

Cross-Layer Preference Distillation. At the beginning of the training process, since there exists a significant capability gap between intermediate layers and the final output layer (Luo & Specia, 2024), the ensemble logits generated by intermediate layers may not provide informative and worth-learning negatives for training the model. To dynamically improve the recommendation ability of intermediate layers, we treat them as student models and the final output layer as the teacher model. Then, we leverage the teacher model to supervise the token probabilities generated by student models via distillation, allowing student models to adapt quickly to tasks. Specifically, we calculate the sum of KL Divergence between each student layer's output distribution and the final layer's output distribution:

$$\mathcal{L}_{CPD} = \sum_{l=L-k-1}^{L-1} KL(g(P^l)||g(P^L)), \tag{8}$$

where $g(\cdot)$ denotes the softmax function that output a probability distribution from logits P. By distilling the token patterns of the final output layer P^L to each intermediate layer, these layers can quickly adapt to the recommendation tasks and provide informative negative signals that have to be distinguished by the model's output layer.

The final loss of this module is then the sum of the optimization loss in Equation 7 and the distillation loss in Equation 8:

$$\mathcal{L}_{CPT} = \mathcal{L}_{CPO} + \lambda \mathcal{L}_{CPD}, \tag{9}$$

where λ is a hyperparameter that controls the weight of the cross-layer preference distillation loss.

2.4 COLLABORATIVE REWARD REGULARIZATION

While our fine-tuning method leverages extracted negative signals, it has potential issues. First, some extracted negatives may be false negatives. Over-penalizing them may distort the true preference distribution. Second, the training process does not incorporate collaborative information, potentially leading to recommendation bias. Therefore, we employ a collaborative filtering (CF) model to assign a reward score to each penalized token and reduce the penalty for those with higher rewards.

Firstly, we denote the probability of the CF model recommending item $i \in \mathcal{I}$ to the user as R(i). Then, the reward for each token v within item i at that step can be formulated as follows:

$$r_v = \frac{\sum_{i \in \mathcal{I}_{\leq v}} R(i)}{\sum_{i \in \mathcal{I}_{< v}} R(i)},\tag{10}$$

where $\mathcal{I}_{< v}$ denotes the set of items that take tokens before v as the prefix, while $\mathcal{I}_{\le v}$ denotes the set of items using tokens before v together with v as the prefix. This reward function approximates the reward that LLM can receive by generating a specific token from perspectives of CF models. If a token v has a higher v, it is more likely a false negative token that has been incorrectly penalized. We utilize these rewards as the soft label to optimize the cross-entropy loss in SFT stage:

$$\mathcal{L}_{CRR} = -\sum_{v \in \mathcal{H}} \frac{\exp(r_v)}{\sum_{v_i \in \mathcal{H}} \exp(r_{v_i})} \log \frac{\exp(p^L(v))}{\sum_{v_i \in \mathcal{V}} \exp(p^L(v_i))},\tag{11}$$

Table 1: The overall performance comparisons between different baseline methods and ILRec. The best and second-best results are highlighted in bold and underlined font, respectively.

Methods	Instrument			Art			Game					
	Hit@5	Hit@10	NDCG@5	NDCG@10	Hit@5	Hit@10	NDCG@5	NDCG@10	Hit@5	Hit@10	NDCG@5	NDCG@10
Caser	0.0502	0.0583	0.0287	0.0334	0.0324	0.0524	0.0208	0.0271	0.0217	0.0423	0.0152	0.0179
GRU4Rec	0.0675	0.0773	0.0516	0.0554	0.0652	0.0786	0.0436	0.0577	0.0406	0.0517	0.0289	0.0365
SASRec	0.0619	0.0698	0.0474	0.0502	0.0682	0.0845	0.0541	0.0593	0.0422	0.0598	0.0312	0.0396
BIGRec	0.0786	0.1004	0.0742	0.0799	0.0801	0.0979	0.0704	0.0768	0.0502	0.0677	0.0433	0.0481
+RosePO	0.0772	0.0983	0.0733	0.0786	0.0771	0.0927	0.0668	0.0732	0.0478	0.0655	0.0408	0.0471
+SDPO	0.0793	0.1016	0.0745	0.0806	0.0795	0.0981	0.0693	0.0762	0.0496	0.0665	0.0420	0.0477
+SPRec	<u>0.0801</u>	<u>0.1021</u>	<u>0.0751</u>	<u>0.0808</u>	<u>0.0810</u>	0.0991	<u>0.0722</u>	<u>0.0784</u>	0.0507	<u>0.0683</u>	<u>0.0437</u>	<u>0.0486</u>
+ILRec	0.0844	0.1091	0.0788	0.0856	0.0856	0.1045	0.0764	0.0852	0.0529	0.0709	0.0455	0.0511
LC-Rec	0.0888	0.1062	0.0776	0.0832	0.0862	0.1045	0.0725	0.0778	0.0674	0.0984	0.0470	0.0561
+RosePO	0.0861	0.1006	0.0760	0.0807	0.0870	0.1053	0.0731	0.0783	0.0632	0.0927	0.0441	0.0526
+SDPO	<u>0.0894</u>	<u>0.1069</u>	<u>0.0781</u>	<u>0.0836</u>	0.0868	0.1049	0.0727	0.0779	0.0668	0.0975	0.0456	0.0547
+SPRec	0.0888	0.1041	0.0775	0.0825	<u>0.0875</u>	<u>0.1065</u>	0.0730	<u>0.0786</u>	<u>0.0681</u>	<u>0.0996</u>	<u>0.0475</u>	<u>0.0569</u>
+ILRec	0.0966	0.1143	0.0832	0.0889	0.0922	0.1118	0.0757	0.0821	0.0711	0.1075	0.0489	0.0600

where $\mathcal{H} = \mathcal{V}_N \bigcup \{y_t\}$ denotes the set of penalized tokens and the ground-truth token. This loss function can be seen as a K-category cross-entropy loss. The soft labels are calculated by the tokens' rewards and a softmax function. By aggregating the CPT loss in Equation 9 and CRR loss in Equation 11, the final loss of ILRec is as follows:

$$\mathcal{L} = \mathcal{L}_{CPT} + \mu \mathcal{L}_{CRR},\tag{12}$$

where μ is the hyperparameter that controls the degree of the soft-label rewarding process.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Datasets. We conducted extensive experiments on three subsets of Amazon Review Data (Ni et al., 2019), *i.e.*, "Musical Instruments", "Arts, Crafts and Sewing" and "Video Games". For data preprocessing, we remove unpopular users and items with less than five interactions through five-core filtering. The detailed statistics of preprocessed datasets are presented in Table 3.

Baseline Models. We compare our method with the following baselines, including traditional sequential recommendation models, like Caser (Tang & Wang, 2018), GRU4Rec (Hidasi et al., 2016) and SASRec (Kang & McAuley, 2018); LLM-based recommendation models, like BIGRec (Bao et al., 2023a), LC-Rec (Zheng et al., 2024), SDPO (Chen et al., 2024), RosePO (Liao et al., 2024a) and SPRec (Gao et al., 2024). Details are shown in Appendix A.3.

Evaluation Settings and Implementation Details. We employ top-K Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) to evaluate model performances, with K set to 5 and 10. Following prior studies (Kang & McAuley, 2018), we apply the *leave-one-out* strategy to split training, validation, and test sets. Furthermore, to avoid bias introduced by sampling, we conduct full ranking evaluation over the entire item set. More details can be found in Appendix A.4.

3.2 Overall Performance

Table 1 summarizes the overall performance of ILRec. Compared to traditional recommendation models, LLM-based systems demonstrate consistently superior and stable results across all three datasets, consistent with findings from BIGRec and LC-Rec. This highlights the advantage of leveraging LLMs' abilities of language understanding to capture semantic item features.

Among DPO-based methods, SPRec and SDPO generally outperform RosePO under all-ranking settings, which can be attributed to the increased number of negative samples and the penalization of diverse self-hard samples across iterations, which helps the model better explore large candidate spaces. Compared to SFT-based baselines, SPRec achieves relatively stable gains, showing the effectiveness of integrating the Self-Play Mechanism into LLMRec training.

Our proposed ILRec consistently surpasses all baselines on every metric and dataset, achieving notable improvements over BIGRec and LC-Rec. Unlike prior fine-tuning and post-training methods, ILRec extracts fine-grained self-hard negative signals from intermediate layers and employs cross-

Table 2: Ablation study of our method.

		BIG	Rec		LC-Rec			
Methods	Instrument		Art		Instrument		Art	
	Hit@10	NDCG@10	Hit@10	NDCG@10	Hit@10	NDCG@10	Hit@10	NDCG@10
ILRec	0.1091	0.0856	0.1045	0.0852	0.1143	0.0889	0.1118	0.0821
w/o \mathcal{L}_{CPO}	0.1068	0.0813	0.0987	0.0801	0.1111	0.0852	0.1078	0.0794
w/o \mathcal{L}_{CPD}	0.1051	0.0805	0.1020	0.0805	0.1124	0.0869	0.1092	0.0805
w/o \mathcal{L}_{CRR}	0.1078	0.0848	0.1029	0.0838	0.1136	0.0875	0.1112	0.0813
w/o \mathcal{L}_{CPT}	0.0996	0.0795	0.0982	0.0783	0.1067	0.0843	0.1057	0.0780
w/o CNS	0.1059	0.0839	0.1015	0.0799	0.1115	0.0860	0.1097	0.0808

layer preference fine-tuning techniques. This enables the model to dynamically learn from its own fine-grained errors, leading to significant performance enhancements.

3.3 ABLATION STUDY

To assess the contribution of each ILRec module, we conduct ablation studies on the Instrument and Art datasets using BIGRec and LC-Rec training paradigms. Table 2 shows results of five variants: (1) $w/o \mathcal{L}_{CPO}$ eliminates the Cross-layer Preference Optimization module (Equation 7), resulting in overall performance decline and highlighting its necessity for distinguishing ground-truth from cross-layer negatives. (2) $w/o \mathcal{L}_{CPD}$ removes the distillation process from the final output layer to intermediates layers (Equation 8), also degrading performance and confirming the benefit of teacher-forced distillation for improving negative signal quality. (3) $w/o \mathcal{L}_{CRR}$ omits token-level collaborative prefer-

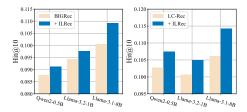


Figure 4: Performance Comparison w.r.t. Different Model Backbones on the Instrument dataset with BIGRec and LC-Rec.

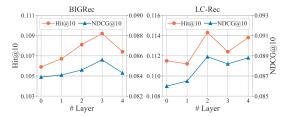
ence adjustment (Equation 11), showing limited model performance and validating the importance of fine-grained collaborative signals. (4) $\underline{w/o}$ \mathcal{L}_{CPT} without both the \mathcal{L}_{CPO} and \mathcal{L}_{CPD} . This variant results in a significant drop in model performances, verifying that both optimization and distillation loss are indispensable for achieving optimal performance. (5) $\underline{w/o}$ $\underline{Cross-layer}$ $\underline{Negative}$ $\underline{Signals}$ $\underline{(CNS)}$ directly extracts and penalizes negative signals in the final output logits. While keeping the distillation and reward modules, negative signals extracted from the ensemble of intermediate layers provide better optimization performance compared to those extracted from the final output layer. This verifies the rationality and effectiveness of leveraging intermediate layers for negative extraction.

3.4 FURTHER ANALYSIS

Performance Comparison w.r.t. Numbers of Intermediate Layers. ILRec relies on extracting fine-grained self-hard signals from multiple intermediate layers. To assess the impact of the layer count, we vary the number of intermediate layers from 0 (only final layer) to 4, with 0 layer indicating directly extracting and penalizing negative signals in the final output layer. As shown in Figure 5, using few layers yields limited gains due to insufficient usage of diverse and valuable negative signals encapsulated within different layers. Furthermore, incorporating too many lower layers degrades performance, likely due to their weak recommendation capabilities and introduction of noise. Thus, selecting an appropriate number of layers is crucial for optimal performance.

Applying ILRec on Different Model Backbones. To evaluate the generalizability of ILRec across different models, we apply ILRec to two relatively small but effective models, Llama-3.2-1B (Dubey et al., 2024) and Qwen2-0.5B (Yang et al., 2024), and train them on the Instrument dataset with BIGRec and LC-Rec paradigms respectively. The results shown in Figure 4 indicate that ILRec can consistently enhance recommendation performance across various models, highlighting the generalizability of our method.

Applying ILRec on Other Recommendation Tasks. Apart from full ranking paradigms like BIGRec and LC-Rec, we evaluate ILRec on candidate ranking tasks, where LLMs select from a limited set of items, as in (Chen et al., 2024; Liao et al., 2024a). In this case, the negative space for LLM generation is relatively small, so that DPO-based methods (Chen et al., 2024; Liao et al., 2024a) tend to get a relatively stable performance rather than used in full ranking tasks. We follow the processed LastFM dataset provided in SDPO and also construct Instrument dataset in the same format. The results of



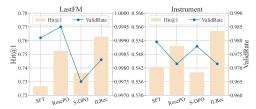


Figure 5: Performance Comparison w.r.t. Numbers of Intermediate Layers on the Instrument dataset with both BIGRec and LC-Rec paradigms.

Figure 6: Performance Comparison on Candidate-Ranking tasks on the LastFM and Instrument Datasets with different paradigms.

our experiments are presented in Figure 6. We can see that ILRec still achieves higher performance in ranking-candidate tasks, indicating the effectiveness of our proposed method.

In addition, we conduct more detailed explorations, including applying different CF models (Appendix A.5), hyperparameter sensitivity analysis (Appendix A.7), and efficiency analysis (Appendix A.6).

4 RELATED WORK

Sequential Recommendation. Sequential recommendation aims to predict the next item for a user based on chronological interaction sequence. With the development of deep neural networks, early methods utilized complicated model architectures to better characterize user preferences, including convolutional neural networks (Tang & Wang, 2018), recurrent neural networks (Hidasi et al., 2016) and graph neural networks (Fan et al., 2019; Wu et al., 2022). More recently, self-attention and Transformer architectures (Vaswani, 2017) have been adopted for extracting implicit recommendation features, achieving improved performance (Kang & McAuley, 2018; Sun et al., 2019; Xie et al., 2022). Moreover, some studies also exploited pre-trained language models to enhance recommendation (Wu et al., 2021; Liu et al., 2023). In ILRec, we further optimize LLM-based recommendation systems on item semantic information and refine with collaborative signals from traditional models.

LLMs for Recommendation. Large language models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. Existing studies combined LLMs with recommendation systems by leveraging LLMs to generate auxiliary information to enhance traditional recommendation models (Xi et al., 2024; Wei et al., 2024; Ren et al., 2024), or by simulating the virtual users in the recommendation environment (Wang et al., 2023; Zhang et al., 2024). Recently, using LLMs to recommend items directly has gained significant attentions. A widely adopted approach for recommendation adaptation is via fine-tuning paradigms (Bao et al., 2023b; Liao et al., 2024b), while some other studies attempted to optimize item representations and integrate collaborative information in LLM-based recommendation models (Liao et al., 2024b; Bao et al., 2024). Furthermore, to introduce negative samples in the training stage, recent work made usage of post-training methods, such as Direct Preference Optimization(DPO) (Rafailov et al., 2024), to align LLMs with user preferences (Liao et al., 2024a; Chen et al., 2024; Gao et al., 2024). However, DPO-based methods do not perform well especially as the negative spaces enlarge. We propose to leverage cross-layer fine-grained negative signals to enhance preference learning for LLM-based recommendation.

5 Conclusion

In this paper, we proposed **ILRec**, a novel fine-tuning framework to better align LLM-based recommender systems to user preference. Different from previous alignment tuning methods, we generated self-hard negatives from intermediate layers and incorporated them into SFT, which is both effective and efficient for adapting LLMs as recommender systems. We penalized the corresponding negative tokens by integrating fine-grained penalty coefficients into the cross-entropy loss. To enhance the informativeness and reliability of provided negative signals, we also employed the output layer to supervise the token generation of intermediate layers. Additionally, we devised a collaborative reward regularization module to instill collaborative information and prevent potential false negatives from being overly penalized. Extensive experiments and in-depth analysis on three benchmarks demonstrated the superiority of our proposed ILRec framework. As future work, we aim to extend this fine-tuning approach to adapt LLMs to more diverse personalized tasks, while exploring more lightweight fine-tuning methods for efficient training.

6 REPRODUCIBILITY STATEMENT

All results presented in this work are fully reproducible. Implementation details and Hyperparameter selections are provided in Appendix A.4. The source code is available at https://anonymous.4open.science/r/ILRec-6FFE.

REFERENCES

- Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang, Zhengyi Yang, Yancheng Luo, Fuli Feng, Xiangnan He, and Qi Tian. A bi-step grounding paradigm for large language models in recommendation systems. *CoRR*, abs/2308.08434, 2023a. doi: 10.48550/ARXIV.2308.08434. URL https://doi.org/10.48550/arXiv.2308.08434.
- Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An effective and efficient tuning framework to align large language model with recommendation. In Jie Zhang, Li Chen, Shlomo Berkovsky, Min Zhang, Tommaso Di Noia, Justin Basilico, Luiz Pizzato, and Yang Song (eds.), *Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023*, pp. 1007–1014. ACM, 2023b. doi: 10.1145/3604915.3608857. URL https://doi.org/10.1145/3604915.3608857.
- Keqin Bao, Jizhi Zhang, Yang Zhang, Xinyue Huo, Chong Chen, and Fuli Feng. Decoding matters: Addressing amplification bias and homogeneity issue for llm-based recommendation. *arXiv* preprint arXiv:2406.14900, 2024.
- Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and Tat-Seng Chua. On softmax direct preference optimization for recommendation. *CoRR*, abs/2406.09215, 2024. doi: 10.48550/ARXIV.2406.09215. URL https://doi.org/10.48550/arXiv. 2406.09215.
- Jan Clusmann, Fiona R Kolbinger, Hannah Sophie Muti, Zunamys I Carrero, Jan-Niklas Eckardt, Narmin Ghaffari Laleh, Chiara Maria Lavinia Löffler, Sophie-Caroline Schwarzkopf, Michaela Unger, Gregory P Veldhuizen, et al. The future landscape of large language models in medicine. *Communications medicine*, 3(1):141, 2023.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.
- Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for social recommendation. In *The world wide web conference*, pp. 417–426, 2019.
- Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, and Xiangnan He. Sprec: Leveraging self-play to debias preference alignment for large language model-based recommendations. *CoRR*, abs/2412.09243, 2024. doi: 10.48550/ARXIV.2412.09243. URL https://doi.org/10.48550/arXiv.2412.09243.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as language processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5). In Jennifer Golbeck, F. Maxwell Harper, Vanessa Murdock, Michael D. Ekstrand, Bracha Shapira, Justin Basilico, Keld T. Lundgaard, and Even Oldridge (eds.), *RecSys* '22: *Sixteenth ACM Conference on Recommender Systems, Seattle, WA, USA, September 18 - 23, 2022*, pp. 299–315. ACM, 2022. doi: 10.1145/3523227.3546767. URL https://doi.org/10.1145/3523227.3546767.

- Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Ramé, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct language model alignment from online AI feedback. *CoRR*, abs/2402.04792, 2024. doi: 10.48550/ARXIV. 2402.04792. URL https://doi.org/10.48550/arXiv.2402.04792.
- Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommendations with recurrent neural networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.06939.
- Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In *IEEE International Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018*, pp. 197–206. IEEE Computer Society, 2018. doi: 10.1109/ICDM.2018.00035. URL https://doi.org/10.1109/ICDM.2018.00035.
- Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. *CoRR*, abs/2005.01643, 2020. URL https://arxiv.org/abs/2005.01643.
- Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization. *arXiv preprint arXiv:2210.15097*, 2022.
- Jiayi Liao, Xiangnan He, Ruobing Xie, Jiancan Wu, Yancheng Yuan, Xingwu Sun, Zhanhui Kang, and Xiang Wang. Rosepo: Aligning Ilm-based recommenders with human values. *CoRR*, abs/2410.12519, 2024a. doi: 10.48550/ARXIV.2410.12519. URL https://doi.org/10.48550/arXiv.2410.12519.
- Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan He. Llara: Large language-recommendation assistant. In Grace Hui Yang, Hongning Wang, Sam Han, Claudia Hauff, Guido Zuccon, and Yi Zhang (eds.), *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024, Washington DC, USA, July 14-18, 2024*, pp. 1785–1795. ACM, 2024b. doi: 10.1145/3626772.3657690. URL https://doi.org/10.1145/3626772.3657690.
- Peng Liu, Lemei Zhang, and Jon Atle Gulla. Pre-train, prompt, and recommendation: A comprehensive survey of language modeling paradigm adaptations in recommender systems. *Transactions of the Association for Computational Linguistics*, 11:1553–1571, 2023.
- Haoyan Luo and Lucia Specia. Tuning language models by mixture-of-depths ensemble. *arXiv* preprint arXiv:2410.13077, 2024.
- Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In *Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP)*, pp. 188–197, 2019.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36, 2024.
- Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao Huang. Representation learning with large language models for recommendation. In *Proceedings of the ACM on Web Conference 2024*, pp. 3464–3475, 2024.

Jitao Sang, Yuhang Wang, Jing Zhang, Yanxu Zhu, Chao Kong, Junhong Ye, Shuyu Wei, and Jinlin Xiao. Improving weak-to-strong generalization with scalable oversight and ensemble learning. *arXiv preprint arXiv:2402.00667*, 2024.

- Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (eds.), *Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019*, pp. 1441–1450. ACM, 2019. doi: 10.1145/3357384.3357895. URL https://doi.org/10.1145/3357384.3357895.
- Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence embedding. In Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (eds.), *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018*, pp. 565–573. ACM, 2018. doi: 10.1145/3159652.3159656. URL https://doi.org/10.1145/3159652.3159656.
- A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
- Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan, Xiaojiang Huang, Yanbin Lu, and Yingzhen Yang. Recmind: Large language model powered agent for recommendation. *arXiv preprint arXiv:2308.14296*, 2023.
- Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao Huang. Llmrec: Large language models with graph augmentation for recommendation. In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pp. 806–815, 2024.
- Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Empowering news recommendation with pre-trained language models. In *Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval*, pp. 1652–1656, 2021.
- Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems: a survey. *ACM Computing Surveys*, 55(5):1–37, 2022.
- Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang, Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge augmentation from large language models. In *Proceedings of the 18th ACM Conference on Recommender Systems*, pp. 12–22, 2024.
- Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin Cui. Contrastive learning for sequential recommendation. In 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022, pp. 1259–1273. IEEE, 2022. doi: 10.1109/ICDE53745.2022.00099. URL https://doi.org/10.1109/ICDE53745.2022.00099.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024. doi: 10.48550/ARXIV.2407.10671. URL https://doi.org/10.48550/arXiv.2407.10671.
- Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong Wen. Recommendation as instruction following: A large language model empowered recommendation approach. *CoRR*, abs/2305.07001, 2023. doi: 10.48550/ARXIV.2305.07001. URL https://doi.org/10.48550/arXiv.2305.07001.

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun, Julian McAuley, Wayne Xin Zhao, Leyu Lin, and Ji-Rong Wen. Agentcf: Collaborative learning with autonomous language agents for recommender systems. In *Proceedings of the ACM on Web Conference 2024*, pp. 3679–3689, 2024.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms. In proceedings of the 30th acm international conference on information & knowledge management, pp. 4653–4664, 2021.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen. Adapting large language models by integrating collaborative semantics for recommendation. In 40th IEEE International Conference on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024, pp. 1435–1448. IEEE, 2024. doi: 10.1109/ICDE60146.2024.00118. URL https://doi.org/10.1109/ICDE60146.2024.00118.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In accordance with the conference guidelines regarding the use of Large Language Models, we declare that LLMs were utilized solely as general-purpose assistive tools for language editing and polishing of the manuscript. No LLMs were involved in the design or development of research methods, experiments, or results. All scientific contributions, including methodological innovations, were conceived and executed entirely by the authors. The authors take full responsibility for the content of this paper.

A.2 DATASETS STATISTICS

Table 3: Statistics of the processed datasets.

Datasets	#Users	#Items	#Interactions	Sparsity
Instrument	24,773	9,923	206,153	99.92%
Art	45,142	20,957	390,832	99.96%
Game	50,547	16,860	452,989	99.95%

We conducted extensive experiments on three subsets of Amazon Review Data ((Ni et al., 2019)), *i.e.*, "Musical Instruments", "Arts, Crafts and Sewing" and "Video Games". Each of these datasets comprises user review data spanning from May 1996 to October 2018. For data preprocessing, we first remove unpopular users and items with less than five interactions through five-core filtering. Then, we create a historical interaction sequence sorted by timestamp for each. For fair comparison, the maximum item sequence length is uniformly set to 20 for all compared models. The statistics of datasets after preprocessing are shown in Table 3.

A.3 BASELINE MODELS

We employ the following baselines:

(1) Traditional sequential recommendation models:

- Caser (Tang & Wang, 2018) is a method that modeling user behaviors through horizontal and vertical convolutional neural networks.
- **GRU4Rec** (Hidasi et al., 2016) is an RNN-based method that uses GRU to model the user behavior via encoding the item sequence.
- SASRec (Kang & McAuley, 2018) is the first sequential recommender based on the unidirectional self-attention mechanism.

(2) LLM-based recommendation models:

- **BIGRec** (Bao et al., 2023a) serves as an instruction-tuning LLM framework for sequential recommendations and generate recommended items based on embedding grounding.
- LC-Rec (Zheng et al., 2024) is a LLM-based sequential recommender that introduces semantic IDs to uniquely identify items.
- **SDPO** (Chen et al., 2024) introduces DPO into LRSs by sampling multiple negative items as rejected responses and incorporates a softmax loss over multiple negative samples.
- **RosePO** (Liao et al., 2024a) is a preference optimization framework that combines negative sampling strategies and personalized uncertainty to achieve fairness, unbiasedness, and robustness.
- **SPRec** (Gao et al., 2024) proposes a self-play fine-tuning method that consists of a SFT stage and a DPO stage in each training iteration, aiming at debiasing the preference alignment process.

A.4 IMPLEMENTATION DETAILS

For all the LLM-based methods, we leverage Llama3.1-8B as the backbone LLM. For SFT-based baselines, we strictly follow the training settings of BIGRec (Bao et al., 2023a) and LC-Rec (Zheng et al., 2024) respectively. For DPO-based baselines, as these methods are not originally tested on allranking settings with the full datasets, we adjust the data format for the sake of rigorous comparison. Specifically, for RosePO (Liao et al., 2024a) and SDPO (Chen et al., 2024), we remove the list of candidate items in the prompt. We generate one self-hard negative samples from the SFT stage for RosePO, while randomly select 5 negative samples for SDPO. As for SPRec (Gao et al., 2024), as the dataset in our all-ranking settings are much larger than those sampled in SPRec, we set 3 iterations for training. For α in our method ILRec, which controls the threshold for selecting negative tokens, is tuned in the range $\{0.1, 0.5, 0.8, 1, 1.2\}$. For β in ILRec, which controls the degree of penalization for each token, is tuned in the range $\{0.005, 0.01, 0.05, 0.1, 0.2\}$. For λ and μ , which serve as the coefficients for distillation loss and reward loss respectively, are tuned in the range {0.0005, 0.001, 0.005, 0.01,0.05,0.1. For the collaborative model used in Section 2.4, we select SASRec (Kang & McAuley, 2018) to generate token-level reward. Given the high cost of tuning LLMs, we first identify the general scale of a hyper-parameter and then adjust it within a more limited range. For inference, we strictly follow the methods demonstrated in each paper. All experiments were carried out on eight A100 GPUs, each with 40GB of VRAM. We implement all traditional sequential recommendation models based on RecBole (Zhao et al., 2021). To ensure fair comparison, we set the embedding dimension of all models to 128 and obtain the best performance through hyperparameter grid search.

A.5 PERFORMANCE COMPARISON W.R.T. DIFFERENT COLLABORATIVE FILTERING MODELS

Table 4: Performance Comparison w.r.t. Different Collaborative Filtering Models on the Instrument dataset.

Methods	В	IGRec	LC-Rec		
Wethods	Hit@10	NDCG@10	Hit@10	NDCG@10	
SASRec	0.1091	0.0856	0.1143	0.0889	
GRU4Rec	0.1085	0.0850	0.1136	0.0878	
BERT4Rec	0.1089	0.0851	0.1142	0.0885	

To verify the generalizability and effectiveness of utilizing collaborative filtering models in our approach, we further leverage some traditional collaborative filtering models to score tokens on the Instrument dataset. In details, we conduct experiments on SASRec (Kang & McAuley, 2018), GRU4Rec (Hidasi et al., 2016) and BERT4Rec (Sun et al., 2019). The results are shown in Tabel 4. These results indicate that various models are able to prevent over-penalty and integrate collaborative information in our method, while SASRec (Kang & McAuley, 2018) achieves the highest performance among them.

A.6 EFFICIENCY ANALYSIS

In this section, we further investigate the efficiency of the proposed method. As shown in Table 5, we demonstrate the training time, the number of training epochs (SFT + DPO * Iteration), and the

Table 5: Efficiency of different Methods.

Methods	Instrument			Art		
	Time	Epoch	Sample	Time	Epoch	Sample
S-DPO	7.25 h	8(5 + 3)	1	10.25 h	8(5 + 3)	1
RosePO	6.6 h	8(5 + 3)	1	9.53 h	8(5 + 3)	1
SPRec	7.8 h	11(5+3*2)	3	11.5 h	11(5 + 3 * 2)	3
ILRec	4.2 h	5	0	7.46 h	5	0

number of sampling processes. Since ILRec integrate negative sampling and preference learning within the SFT Stage, there's no need for extra preference alignment processes or multiple forward calculation for different negative samples. The results demonstrate that ILRec does not introduce excessive training time costs compared to baseline methods, while achieving significant performance gains.

A.7 HYPERPARAMETER SENSITIVITY ANALYSIS

Table 6: Hyperparameter Sensitivity Analysis with α and β on Instrument and Art datasets.

Hyperparameter	Inst	trument	Art		
Tryperparameter	Hit@10 NDCG@10		Hit@10	NDCG@10	
baseline	0.1062	0.0832	0.1045	0.0778	
$\alpha = 0.1$	0.1128	0.0882	0.1102	0.0799	
$\alpha = 0.5$	0.1138	0.0867	0.1084	0.0801	
$\alpha = 0.8$	0.1143	0.0889	0.1110	0.0807	
$\alpha = 1.0$	0.1115	0.0872	0.1118	0.0821	
$\alpha = 1.2$	0.1120	0.0883	0.1098	0.0799	
$\beta = 0.005$	0.1102	0.0857	0.1092	0.0795	
$\beta = 0.01$	0.1124	0.0880	0.1107	0.0799	
$\beta = 0.05$	0.1119	0.0881	0.1118	0.0821	
$\beta = 0.1$	0.1143	0.0889	0.1110	0.0813	
$\beta = 0.2$	0.1111	0.0869	0.1112	0.0807	

We introduce some hyperparameters in ILRec. To evaluate the sensitivity of our method to these hyperparameters, we vary their values while keeping all other settings fixed and optimal, and observe the resulting impact on model performance. In Table 6, we present the effects of two key hyperparameters, α and β , which control the negative-signal selection penalization, on model performance across two datasets. These results indicate that ILRec achieves consistent improvements in a relatively stable range of hyperparameters, and achieves robustness of hyperparameter selection toward different datsets.