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ABSTRACT

Any classifier can be “smoothed out” under Gaussian noise to build a new clas-
sifier that is provably robust to `2-adversarial perturbations, viz., by averaging
its predictions over the noise, namely via randomized smoothing. Under the
smoothed classifiers, the fundamental trade-off between accuracy and (adversar-
ial) robustness has been well evidenced in the literature: i.e., increasing the ro-
bustness of a classifier for an input can be at the expense of decreased accuracy
for some other inputs. In this paper, we propose a simple training method lever-
aging this trade-off for obtaining more robust smoothed classifiers, in particular,
through a sample-wise control of robustness over the training samples. We en-
able this control feasible by investigating the correspondence between robustness
and prediction confidence of smoothed classifiers: specifically, we propose to use
the “accuracy under Gaussian noise” as an easy-to-compute proxy of adversarial
robustness for each input. We differentiate the training objective depending on
this proxy to filter out samples that are unlikely to benefit from the worst-case
(adversarial) objective. Our experiments following the standard benchmarks con-
sistently show that the proposed method, despite its simplicity, exhibits improved
certified robustness upon existing state-of-the-art training methods.

1 INTRODUCTION

Despite these tremendous advances in deep neural networks for a variety of tasks towards artificial
intelligence, e.g., visual recognition (He et al., 2016; Chen et al., 2020), natural language processing
(Vaswani et al., 2017; Brown et al., 2020), and reinforcement learning (Silver et al., 2017; Vinyals
et al., 2019), the broad existence of adversarial examples (Szegedy et al., 2014) is still one of the
most significant aspects that reveals the gap between machine learning systems and humans: for a
given input x (e.g., an image) to a classifier f , say a neural network, f often permits a perturbation
δ that completely flips the prediction f(x+ δ), while δ is too small to change the semantic in x. In
response to this vulnerability, there have been significant efforts in building robust neural network
based classifiers against adversarial examples, either in forms of empirical defenses (Athalye et al.,
2018; Carlini et al., 2019; Tramer et al., 2020), which are largely based on adversarial training
(Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020; Zhang et al., 2020b; Wu et al., 2020), or
certified defenses (Wong & Kolter, 2018; Xiao et al., 2019; Cohen et al., 2019; Zhang et al., 2020a),
depending on whether the robustness claim can be theoretically guaranteed or not.

Randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019), our focus in this paper, is currently
a prominent approach in the context of certified defense, thanks to its scalability to arbitrary neural
network architectures while previous methods have been mostly limited in network sizes or require
strong assumptions on their architectures: specifically, for a given classifier f , it constructs a new
classifier f̂ , where f̂(x) is defined to be the class that f(x + δ) outputs most likely over δ ∼
N (0, σ2I), i.e., the Gaussian noise. Then, it is shown by Lecuyer et al. (2019) that f̂ is certifiably
robust in `2-norm, and Cohen et al. (2019) further tightened the `2-robustness guarantee which is
currently considered as the state-of-the-art in certified defense.

However, even with recent methods for adversarial defense, including randomized smoothing, the
trade-off between robustness and accuracy (Tsipras et al., 2019; Zhang et al., 2019) has been well
evidenced, i.e., increasing the robustness for a specific input can be at the expense of decreased
accuracy for other inputs. For instance, with the current best practices, Salman et al. (2020) report
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that the accuracy of ResNet-50 on ImageNet degrades, e.g., 75.8%→ 63.9%, by an `∞-adversarial
training, i.e., optimizing the classifier to ensure robustness at all the given training samples around
an `∞-ball (of size 4

255 ). In addition, Zhang et al. (2019) have shown that the (empirical) robustness
of a classifier can be further boosted in training by paying more expense in accuracy. A similar trend
can be also observed with certified defenses, e.g., randomized smoothing, as the clean accuracy of
smoothed classifiers are usually less than those one can obtain from the standard training on the
same architecture (Cohen et al., 2019).

Contribution. In this paper, we develop a novel training method for randomized smoothing,
coined Confidence-Aware Training for Randomized Smoothing (CAT-RS), which incorporates a
sample-wise control of target robustness on-the-fly motivated by the accuracy-robustness trade-off in
smoothed classifiers. Intuitively, a natural approach one can consider in response to the trade-off in
robust training is to appropriately lower the robustness requirement for “hard-to-classify” samples
while maintaining those for the remaining (“easier”) samples: here, the challenges are (a) which
samples we should choose for it during training and (b) how to control their target robustness.

To implement this idea, we focus on the direct correspondence from prediction confidence to adver-
sarial robustness that smoothed classifiers offer: due to its local-Lipschitzness (Salman et al., 2019),
achieving a high confidence at x from a smoothed classifier also implies a high (certified) robustness
at x. Inspired by this, we propose to use the sample-wise confidence (of smoothed classifiers) as an
efficient proxy of the certified robustness, and defines two new losses, namely bottom-K and worst-
case Gaussian training, each of those targets different levels of confidence so that the overall training
can be more informed sample-wise for better robustness by preventing low-confident samples from
being enforced to increase their robustness.

We verify the effectiveness of our proposed method through an extensive comparison with existing
robust training methods for smoothed classifiers, including the state-of-the-arts, on a wide range of
established benchmarks on MNIST and CIFAR-10 datasets. Our experimental results constantly
show that the proposed method can significantly improve the previous state-of-the-art results on
certified robustness achievable from a given neural network architecture, by (a) maximizing the
robust radii of high-confidence samples while (b) reducing the risk of deteriorating the accuracy at
low-confidence samples. Our extensive ablation study further confirms that each of both proposed
components has an individual effect on improving certified robustness, and can effectively control
the accuracy-robustness trade-off with the hyperparameter between the two proposed losses.

2 PRELIMINARIES

Adversarial robustness. Consider a labeled dataset D = {(xi, yi)}ni=1 from a certain distribution
P , where x ∈ Rd and y ∈ Y := {1, · · · ,K}, which forms a classification problem with K classes.
Let f : Rd → Y be a classifier. Notice that f is a discrete and non-differentiable, so that one
can additionally consider a differentiable F : Rd → ∆K−1 to allow a gradient-based optimization
assuming f(x) := arg maxk∈Y Fk(x), where ∆K−1 is probability simplex in RK . The standard
framework of empirical risk minimization to optimize f assumes that the samples in D are i.i.d.
from P and expect f to perform well given that the future samples also follow the i.i.d. assumption.

However, in the context of adversarial robustness (and for other notions of robustness as well),
the i.i.d. assumption on the future samples does not hold anymore: instead, it additionally assumes
that the samples can be arbitrarily perturbed up to a certain restriction, e.g., a bounded `2-ball, and
focuses on the worst-case performance over the perturbed samples. One possible way to quantify
this scenario is to consider the average minimum-distance of adversarial perturbation (Moosavi-
Dezfooli et al., 2016; Carlini & Wagner, 2017; Carlini et al., 2019), namely:

R(f ;P ) := E(x,y)∼P

[
min

f(x′)6=y
||x′ − x||2

]
. (1)

In this respect, we aim to find f that maximizes R(f ;P ) while maintaining the performance on P .

Randomized smoothing. The essential challenge in achieving adversarial robustness in neural
networks, however, stems from that directly evaluating (1) (and further optimizing it) is usually
computationally infeasible, e.g., under the standard practice that F is modeled by a complex, high-
dimensional neural network. Randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019)
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Figure 1: Existing `2-robustness guar-
antees with respect to the confidence of
smoothed classifiers at σ = 1.0.

(a) Low-confidence samples (b) High-confidence samples

Figure 2: Illustration of the two proposed losses, i.e.,
bottom-K and worst-case Gaussian training, under dif-
ferent confidence conditions in randomized smoothing.

bypasses this difficulty by constructing a new classifier f̂ from f instead of letting f to directly model
the robustness: specifically, it transforms the base classifier f with a certain smoothing measure,
where in this paper we focus on the case of Gaussian distributions N (0, σ2I):

f̂(x) := arg max
c∈Y

Pδ∼N (0,σ2I) (f(x+ δ) = c) . (2)

Then, the robustness of f̂ at (x, y), namely R(f̂ ;x, y), can be explicitly lower-bounded in terms
of the certified radius R(f̂ , x, y), e.g., Cohen et al. (2019) showed that the following bound holds
which is tight for `2-adversary, e.g., it is the optimal for linear classifiers:

R(f̂ ;x, y) ≥ σ · Φ−1(pf (x, y)) =: R(f̂ , x, y) (3)
where pf (x, y) := Pδ(f(x+ δ) = y), (4)

provided that f̂(x) = y, otherwise R(f̂ ;x, y) := 0.1 Here, we remark that the formula for certified
radius (3) is essentially a function of pf (4), which represents the prediction confidence of f̂ at x,
or equivalently, the accuracy of f(x + δ) over δ ∼ N (0, σ2I). In other words, unlike standard
neural networks, smoothed classifiers can guarantee a correspondence from prediction confidence
to adversarial robustness - which is the key motivation of our method in this paper. Figure 1 plots
this relationship shown by Cohen et al. (2019) as well as by some prior works (Lecuyer et al., 2019;
Li et al., 2019) which also attempt to lower-bound the robustness of smoothed classifiers.

3 CONFIDENCE-AWARE TRAINING FOR RANDOMIZED SMOOTHING

We aim to develop a new training method to maximize the certified robustness of f̂ , considering the
trade-off relationship between robustness and accuracy (Zhang et al., 2019): even though random-
ized smoothing can be applied for any classifier f , the actual robustness of f̂ depends how much f
classifies well under presence of Gaussian noise, i.e., by pf (x, y) as in (3). A simple way to train f
for a robust f̂ , therefore, is to minimize the standard cross-entropy loss (denoted by CE below) with
Gaussian augmentation as in Cohen et al. (2019):

min
F

E (x,y)∼P
δ∼N (0,σ2I)

[CE(F (x+ δ), y)] . (5)

In this paper, we extend this basic form of training to incorporate a confidence-aware strategy to
decide which noise samples δ ∼ N (0, σ2I) should be focused on sample-wise during training of f .
Recall Figure 1 that plots mappings from the (smoothed) confidence pf (4) to a certified radius, e.g.,
those derived by Cohen et al. (2019) (at the blue line). Ideally, one may wish to obtain a classifier
f that achieves pf (x, y) ≈ 1 for every (x, y) ∼ P to maximize its certified robustness. In practice,
however, such a case is highly unlikely, and there usually exists a sample x that pf (x, y) should
be quite lower than 1 to maintain the discriminativity with other samples: in other words, these

1Φ denotes the cumulative distribution function of the standard normal distribution.
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samples can be actually “beneficial” to be misclassified at some (hard) Gaussian noises, otherwise
the classifier has to memorize the noises to correctly classify them. On the other hand, for the
samples which can indeed achieve pf (x, y) ≈ 1, the current Gaussian training in (5) may not be able
to provide enough samples of δ for x throughout the training, as pf (x, y) ≈ 1 implies that f(x+ δ)
must be correctly classified for “almost every” possibility of δ ∼ N (0, σ2I). Also, considering that
the radius certifiable at x rapidly increases as pf (x, y)→ 1 as shown in Figure 1, it is important for
an overall robustness of f̂ to increase pf (x, y), especially when it can be close to 1 at the end.

In these respects, we propose two different variants of Gaussian training (5) that address each of the
possible cases, i.e., whether (a) pf (x, y) < 1 or (b) pf (x, y) ≈ 1, namely with (a) bottom-K and
(b) worst-case Gaussian training, respectively. During training, the method first estimates pf (x, y)
for each sample by simply computing their accuracy over M random samples of δ ∼ N (0, σ2I),
and applies different forms of loss depending on the value. In the following two sections, i.e.,
Section 3.1 and 3.2, we provide the details on each of the proposed losses, and Section 3.3 describes
how to combine the two losses and defines the overall training scheme.

3.1 BOTTOM-K GAUSSIAN TRAINING: LOSS FOR LOW-CONFIDENCE SAMPLES

Consider a base classifier f and a training sample (x, y) ∈ D, and suppose that pf (x, y) = p � 1,
e.g., f̂ has a low-confidence at x. Figure 2(a) visualizes this scenario: in this case, by definition of
pf (x, y) in (4), f(x + δ) would be correctly classified to y only with probability p over δ, and this
can imply either that (a) x + δ has not yet been adequately exposed to f during the training, or (b)
x+ δ may be indeed hard to be correctly classified for some noise samples δ, so that minimizing the
training loss at these noises could harm the classifier. The design goal of our proposed bottom-K
Gaussian training is to modify the standard Gaussian training (5) to reduce the optimization burden
from (b) while minimally retaining its ability to cover enough noise samples during training for (a).

To this end, we first consider M random i.i.d. samples of δ, namely δ1, δ2, · · · , δM ∼ N (0, σ2I).
Then, one can notice that the random variables 1[f(x + δi) = y]’s are also i.i.d., each of which
follows the Bernoulli distribution of probability p, given that pf (x, y) = p. This means that, if the
current pf (x, y) is the value one attempts to keep instead of further increasing it, the number of
noise samples that should be correctly classified, which can be defined as

∑
i 1[f(x + δi) = y],

would follow the binomial distribution, namely K ∼ Bin(M,p), and this motivates us to consider
the following loss that only minimizes the K-smallest cross-entropy losses out of from M samples:

Llow :=
1

M

K∑
i=1

CE(F (x+ δπ(i)), y), where K ∼ Bin(M,pf (x, y)). (6)

Here, π(i) denotes the noise index with the i-th smallest loss value in the M samples.

Yet, the loss defined in (6) may not handle the cold-start problem on pf (x, y), e.g., at the early stage
of the training where x + δ has not been adequately exposed to f , so that Llow can be minimized
too early with an under-estimated p̂f . We found that, however, a simple trick of clamping K with
1 can bypass the issue: i.e., we always allow the “easiest” noise among the M samples to be fed
into f throughout the training. In addition, we also found that it is still beneficial to constrain the
samples that are not within K, i.e., the “harder” ones, to ensure that they still have a certain level
of confidence for the class y even if they are misclassified: here, as a simple design, we propose to
truncate the cross entropy loss with log p0 so that Fy(x+ δ) can be at least p0, e.g., p0 = 1

20 as done
in our experiments. In these respects, we re-define the loss in (6) as in the followings:

Llow :=
1

M

K+∑
i=1

CE(F (x+ δπ(i)), y) +

M∑
i=K++1

[
CE(F (x+ δπ(i)), y) + log p0

]+ , (7)

where K ∼ Bin(M,p), K+ := max(1,K), [·]+ := max(0, ·), and p0 ∈ (0, 1] is a hyperparameter.
Note that the loss becomes the standard Gaussian training as p0 → 1 and returns to (6) as p0 → 0.

3.2 WORST-CASE GAUSSIAN TRAINING: LOSS FOR HIGH-CONFIDENCE SAMPLES

Next, we focus on the case when pf (x, y) ≈ 1, i.e., f̂ has a high confidence at x, as illustrated
in Figure 2(b). In contrast to the previous scenario in Section 3.1 (and Figure 2(a)), now the major
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drawback of Gaussian training (5) does not come from the abundance of hard noises during training,
but from the sparseness of such noises: considering that one can only present a limited number of
noise samples to f throughout its training, naı̈vely minimizing (5) may not cover some “potentially
hard” noise samples, and this would result in a significant harm in certified radius especially at the
regime of pf (x, y) ≈ 1 as shown in Figure 1. The purpose of worst-case Gaussian training is to
overcome this lack of samples via an adversarial search around each of the noise samples.

Specifically, given that we have M samples of δ as in (7), namely δ1, δ2, · · · , δM ∼ N (0, σ2I), we
propose to modify (5) to find and minimize the worst-case noise (a) around an `2-ball for each noise
as well as (b) among the M samples, instead of minimizing the average-case loss:

Lhigh := max
i

max
‖δ∗i−δi‖2≤ε

CE(F (x+ δ∗i ), y). (8)

We use the projected gradient descent (PGD) (Madry et al., 2018) to solve the inner maximization in
(8): namely, we perform a T -step gradient ascent from each δi with step size 2 · ε/T while projecting
the perturbations to be in the `2-ball of size ε. Here, although T and ε can be hyperparameters that
affect the inner maximization, we simply fix them in our experiments by ε = 1.0 and T = 4. We
also make sure that the likelihood of the optimized δ∗ as i.i.d. Gaussian still remains high by simply
normalizing the mean and standard deviation of δ∗ to follow those of the original δ.

Comparison to SmoothAdv. The idea of incorporating an adversarial search for the robustness of
smoothed classifiers has been also considered in previous works (Salman et al., 2019; Jeong et al.,
2021): e.g., Salman et al. (2019) have proposed SmoothAdv that applies adversarial training (Madry
et al., 2018) to a “soft” approximation of f̂ given f and M noise samples:

x∗ = arg max
||x′−x||2≤ε

(
− log

(
1

M

∑
i

Fy(x′ + δi)

))
. (9)

Our method is different from the previous approaches in which part of the inputs is adversarially
optimized: i.e., we directly optimize the noise samples δi’s instead of x, with no need to assume a
soft relaxation of f̂ . This is due to our unique motivation of finding the worst-case Gaussian noise,
and our experimental results in Section 4 further support the effectiveness of this approach.

3.3 OVERALL TRAINING SCHEME

Given the two losses Llow and Lhigh defined in Section 3.1 and 3.2, respectively, we now define
the full objective of our proposed Confidence-Aware Training for Randomized Smoothing (CAT-
RS). Overall, in order to differentiate how to combine the two losses per sample basis, we use the
smoothed confidence pf (x, y) (4) as the guiding proxy: specifically, we aim to apply the worst-case
loss of Lhigh only for the samples where pf (x, y) is already high enough. In practice, however, one
does not have a direct access to the value of pf (x, y) during training, and we estimate this with the
M noise samples2 as done for Llow and Lhigh, i.e., by p̂f (x, y) := 1

M

∑M
i=1 1[f(x+δi) = y]. Here,

we set a simple condition of “p̂f (x, y) = 1” to activate Lhigh, and the final loss becomes:

LCAT-RS := Llow + λ · 1[p̂f (x, y) = 1] · Lhigh, (10)

where 1[·] is the indicator random variable, and λ > 0 is a hyperparameter. The complete procedure
of computing our proposed CAT-RS loss can be found in Appendix A.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed training scheme compared to existing
state-of-the-art training methods for smoothed classifiers, based on two well-established benchmarks
on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) extensively in compliance to the
standard protocol of the previous works (Cohen et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020;
Jeong et al., 2021). Overall, the experiments show that our method can consistently outperform the
previous best efforts to improve the average certified radius by (a) maximizing the robust radii of
high-confidence samples while (b) better maintaining the accuracy at low-confidence samples. We

2In our experiments, we use M = 4 for our method unless otherwise noted.

5



Under review as a conference paper at ICLR 2022

Table 1: Comparison of ACR and approximate certified test accuracy (%) on MNIST. For each
column, we set our result bold-faced whenever the value improves the Gaussian baseline. We mark
the highest and lowest values of certified accuracy at each radius in blue and red colors, respectively.
σ Methods ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian (Cohen et al., 2019) 0.910 99.2 98.5 96.7 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability (Li et al., 2019) 0.914 99.3 98.6 97.1 93.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 0.932 99.4 99.0 98.2 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER (Zhai et al., 2020) 0.921 99.3 98.7 97.5 94.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.928 99.5 98.9 98.0 96.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix (Jeong et al., 2021) 0.932 99.4 99.0 98.2 96.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CAT-RS (Ours) 0.933 99.3 98.9 98.2 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian (Cohen et al., 2019) 1.557 99.2 98.3 96.8 94.3 89.7 81.9 67.3 43.6 0.0 0.0 0.0
Stability (Li et al., 2019) 1.573 99.2 98.5 97.1 94.8 90.7 83.2 69.2 45.4 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 1.687 99.0 98.3 97.3 95.8 93.2 88.5 81.1 67.5 0.0 0.0 0.0
MACER (Zhai et al., 2020) 1.583 98.5 97.5 96.2 93.7 90.0 83.7 72.2 54.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 1.655 99.2 98.6 97.6 95.9 93.0 87.8 78.5 60.5 0.0 0.0 0.0
SmoothMix (Jeong et al., 2021) 1.694 98.7 98.0 97.0 95.3 92.7 88.5 81.8 70.0 0.0 0.0 0.0

CAT-RS (Ours) 1.699 98.6 98.0 97.0 95.4 92.8 88.9 82.3 70.9 0.0 0.0 0.0

1.00

Gaussian (Cohen et al., 2019) 1.619 96.3 94.4 91.4 86.8 79.8 70.9 59.4 46.2 32.5 19.7 10.9
Stability (Li et al., 2019) 1.636 96.5 94.6 91.6 87.2 80.7 71.7 60.5 47.0 33.4 20.6 11.2
SmoothAdv (Salman et al., 2019) 1.779 95.8 93.9 90.6 86.5 80.8 73.7 64.6 53.9 43.3 32.8 22.2
MACER (Zhai et al., 2020) 1.598 91.6 88.1 83.5 77.7 71.1 63.7 55.7 46.8 38.4 29.2 20.0
Consistency (Jeong & Shin, 2020) 1.738 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3
SmoothMix (Jeong et al., 2021) 1.820 93.7 91.6 88.1 83.5 77.9 70.9 62.7 53.8 44.8 36.6 28.9

CAT-RS (Ours) 1.830 93.9 91.3 88.0 83.5 78.0 71.8 64.0 55.7 47.3 38.9 29.8
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Figure 3: Comparison of approximate certified accuracy for various training methods on MNIST.
The sharp drop of certified accuracy in each plot is due to a strict upper bound in radius that CERTIFY
can output for a given σ, N = 100, 000, and α = 0.001.

also perform a thorough ablation study on our loss design and confirm that (a) both of our proposed
components have effectiveness to improve the certified robustness, and (b) the single hyperprameter
λ (10) between the two losses can balance the trade-off between robustness and accuracy.

Training setups. For a fair comparison, we follow the training setup considered in most of the
previous works to compare the performance of the smoothed classifiers (Cohen et al., 2019; Zhai
et al., 2020; Jeong & Shin, 2020; Jeong et al., 2021): specifically, we mainly consider LeNet (LeCun
et al., 1998) and ResNet-110 (He et al., 2016) for MNIST and CIFAR-10, respectively, and consider
three different scenarios of σ = 0.25, 0.5, and 1.0 for randomized smoothing. We train each model
for 150 epochs with stochastic gradient descent (SGD) with a momentum of 0.9. The learning rates
are initialized to 0.01 for MNIST and 0.1 for CIFAR-10, and decreased by a factor of 0.1 in every 50
epochs. We apply the same σ for both training and evaluation. More details on the training setups,
e.g., hyperparameters, can be found in Appendix B.

Baselines. We compare our method with an extensive list of baseline methods in the literature for
training smoothed classifiers: (a) Gaussian training (Cohen et al., 2019) simply trains a classifier
with Gaussian augmentation (5); (b) Stability training (Li et al., 2019) adds a cross-entropy term be-
tween the logits from clean and noisy images; SmoothAdv (Salman et al., 2019) employs adversarial
training for smoothed classifiers (9); (d) MACER (Zhai et al., 2020) adds a regularization that aims
to maximize a soft approximation of certified radius; (e) Consistency (Jeong & Shin, 2020) regular-
izes the variance of confidences over Gaussian noise; (f) SmoothMix (Jeong et al., 2021) proposes a
mixup-based (Zhang et al., 2018) adversarial training for smoothed classifiers. Whenever possible,
we use the pre-trained models publicly released by the authors to reproduce the results.
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Figure 4: Comparison of approximate certified accuracy for various training methods on CIFAR-
10. The sharp drop of certified accuracy in each plot is due to a strict upper bound in radius that
CERTIFY can output for a given σ, N = 100, 000, and α = 0.001.

Evaluation metrics. We follow the standard evaluation protocol for smoothed classifiers (Salman
et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2021): specifically, Cohen et al.
(2019) have proposed a practical Monte Carlo based certification procedure, namely CERTIFY, that
returns the prediction of f̂ and a lower bound of certified radius, CR(f, σ, x), over the randomness
of n samples with probability at least 1 − α, or abstains the certification. Based on CERTIFY, we
consider two major evaluation metrics: (a) the average certified radius (ACR) (Zhai et al., 2020):
the average of certified radii on the test datasetDtest while assigning incorrect samples as 0, namely
ACR := 1

|Dtest|
∑

(x,y)∈Dtest
[CR(f, σ, x) ·1f̂(x)=y], and (b) the approximate certified test accuracy

at r: the fraction of the test dataset which CERTIFY classifies correctly with the radius larger than r
without abstaining. We use n = 100, 000, n0 = 100, and α = 0.001 for CERTIFY, following the
previous works (Cohen et al., 2019; Salman et al., 2019; Jeong & Shin, 2020; Jeong et al., 2021).

4.1 RESULTS ON MNIST

We compare the certified robustness of the smoothed classifiers on MNIST from our method to those
from other baselines in Table 1. We also present in Figure 3 the plots of the approximate certified
accuracy across varying r for σ ∈ {0.25, 0.5, 1.0}. Overall, the results show that our method of
CAT-RS clearly surpasses all the other baselines in terms of ACR: i.e., our method could better
balance between the clean accuracy and robustness. For σ = 0.25, we notice that some baselines,
i.e., SmoothAdv and SmoothMix, already achieve a reasonably saturated level of ACR: even in this
trivial task, our method could further improve the robust accuracy at r = 0.75 as 96.8% → 97.0%.
In more challenging cases of σ = 0.5 and σ = 1.0, on the other hand, the improvements from CAT-
RS in ACR become more evident as σ increases: e.g., at σ = 1.0, compared to SmoothMix (the best-
performing baseline), CAT-RS could improve the certified accuracy at r = 2.50 by 28.9%→ 29.8%
while even improving the clean accuracy (i.e., certified accuracy at r = 0.0) by 93.7% → 93.9%.
This means that our proposed CAT-RS can be more effective at challenging tasks, where it is more
likely that a given classifier gets a more diverse confidence distribution for the training samples, so
that our proposed confidence-aware training can better play its role.

Accuracy-robustness trade-off. To further validate that our method can exhibit a better trade-off
between accuracy and robustness compared to other methods, we additionally compare the perfor-
mance trends between clean accuracy and certified accuracy at r = 2.0 as we vary a hyperparameter
to control the trade-off, e.g., λ (10) in case of our method. We use σ = 1.0 for this experiment.
We choose Consistency (Jeong & Shin, 2020) and SmoothMix (Jeong et al., 2021) for this com-
parison, considering that they also offer a single hyperparameter (namely λ and η, respectively) for
the balance between accuracy and robustness similar to our method, while both generally achieve
good performances among the baselines considered. The results plotted in Figure 5 clearly show
that CAT-RS indeed exhibits a higher trade-off frontier compared to both methods, which confirms
the effectiveness of our method. More detailed results can be found in Appendix C.

4.2 RESULTS ON CIFAR-10

Table 2 shows the performance of the baselines and our model on CIFAR-10. In Figure 4, we
also plot the approximate certified accuracy over the range of r for σ ∈ {0.25, 0.5, 1.0}. In this
experiment, for each σ, the baseline models are individually chosen based on its “best” ACR, i.e.,
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Table 2: Comparison of ACR and approximate certified test accuracy (%) on CIFAR-10. For each
column, we set our result bold-faced whenever the value improves the Gaussian baseline. We mark
the highest and lowest values of certified accuracy at each radius in blue and red colors, respectively.
σ Methods ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian (Cohen et al., 2019) 0.424 76.6 61.2 42.2 25.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability (Li et al., 2019) 0.420 73.0 58.9 42.9 26.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 0.544 73.4 65.6 57.0 47.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER (Zhai et al., 2020) 0.531 79.5 69.0 55.8 40.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.552 75.8 67.6 58.1 46.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix (Jeong et al., 2021) 0.553 77.1 67.9 57.9 46.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CAT-RS (Ours) 0.557 76.2 68.1 58.4 47.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian (Cohen et al., 2019) 0.525 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9 0.0 0.0 0.0
Stability (Li et al., 2019) 0.531 62.1 52.6 42.7 33.3 23.8 16.1 9.8 4.7 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 0.717 53.1 49.2 44.9 41.0 37.2 33.2 29.1 24.0 0.0 0.0 0.0
MACER (Zhai et al., 2020) 0.691 64.2 57.5 49.9 42.3 34.8 27.6 20.2 12.6 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.720 64.3 57.5 50.6 43.2 36.2 29.5 22.8 16.1 0.0 0.0 0.0
SmoothMix (Jeong et al., 2021) 0.737 61.8 55.9 49.5 43.3 37.2 31.7 25.7 19.8 0.0 0.0 0.0

CAT-RS (Ours) 0.752 60.2 55.0 49.7 43.8 38.2 33.2 27.7 22.0 0.0 0.0 0.0

1.00

Gaussian (Cohen et al., 2019) 0.511 47.1 40.9 33.8 27.7 22.1 17.2 13.3 9.7 6.6 4.3 2.7
Stability (Li et al., 2019) 0.514 43.0 37.8 32.5 27.5 23.1 18.8 14.7 11.0 7.7 5.2 3.1
SmoothAdv (Salman et al., 2019) 0.790 43.7 40.3 36.9 33.8 30.5 27.0 24.0 21.4 18.4 15.9 13.4
MACER (Zhai et al., 2020) 0.744 41.4 38.5 35.2 32.3 29.3 26.4 23.4 20.2 17.4 14.5 12.1
Consistency (Jeong & Shin, 2020) 0.756 46.3 42.2 38.1 34.3 30.0 26.3 22.9 19.7 16.6 13.8 11.3
SmoothMix (Jeong et al., 2021) 0.773 45.1 41.5 37.5 33.8 30.2 26.7 23.4 20.2 17.2 14.7 12.1

CAT-RS (Ours) 0.812 43.9 40.9 37.6 34.4 31.3 28.0 25.1 22.3 19.3 16.6 13.9
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Figure 6: Comparison of certified accuracy of CAT-RS ablations
on CIFAR-10. We use ResNet-20 for ablation study and plot the
results at σ = 0.5. More results can be found in Appendix D.

the hyperparameter of the same baseline may vary over σ. For example, we choose the SmoothAdv
baseline as the best model from the hundreds of hyperparameter configurations those examined by
Salman et al. (2019) for each σ. Overall, our method of CAT-RS achieves a significant improvement
of ACR compared to the baselines. In case of σ = 0.25 and σ = 0.5, for example, CAT-RS clearly
offers a better trade-off between the clean accuracy and robustness compared to SmoothAdv, in a
sense that (a) they achieve similar certified accuracy at large r, yet (b) CAT-RS could maintain much
higher clean accuracy, e.g., 53.2% → 60.2% in case of σ = 0.5. For σ = 1.0, the ACR of our
method significantly surpasses the previous best model, SmoothMix, by 0.773 → 0.812. As in
MNIST, the improvement of CAT-RS is most evident in σ = 1.0, demonstrating the effectiveness of
confidence-aware training. Furthermore, we observe that the performance gap between our method
and the previous best model is more significant in CIFAR-10 because the higher complexity of
CIFAR-10 compared to MNIST makes the confidence information more critical.

4.3 ABLATION STUDY

We also conduct an ablation study to further analyze individual effectiveness of the design compo-
nents in our method. Unless otherwise specified, we use ResNet-20 (He et al., 2016) throughout this
section and test it on a subsampled CIFAR-10 of size 500. We assume λ = 1.0 and p0 = 1

10 by
default. We report the detailed results for this study in Appendix D.

Effect of p0. We introduce a hyperparameter p0 in (7) to control how much we constrain the
confidence of “hard” noises, so that p0 → 1 would lead the proposed Llow (7) into the standard
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Table 3: Comparison of ACR and approximate certified test accuracy (%) varying components of
CAT-RS on CIFAR-10. We assume σ = 0.5 in this experiment. The best ACR is bold-faced.

Method (CIFAR-10) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Gaussian 0.532 68.2 54.8 41.0 31.8 23.0 15.4 9.2 4.0

(a) Llow only 0.552 67.0 55.4 44.8 33.0 24.6 16.8 9.4 5.0
(b) Lhigh only 0.687 52.8 48.2 44.2 39.2 35.2 31.8 26.4 22.0
(c) Llow + λ · Lhigh 0.712 57.0 51.8 47.0 41.6 36.6 32.0 25.6 20.2
(d) Lhigh → Lavg max (11) 0.692 60.2 54.0 46.8 41.0 35.8 28.6 22.8 17.4

LCAT-RS (Ours; (10)) 0.717 58.4 52.2 45.4 41.2 36.6 33.6 26.4 20.2

Gaussian training. To verify its effectiveness, we conduct an experiment comparing the certified
robustness of models with different p0 ∈ {0, 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2 , 1} on σ ∈ {0.25, 0.5, 1.0}: Table 5 in

Appendix D summarizes the results. Overall, we observe that setting p0 < 1 is clearly beneficial
to improve ACR for all the σ considered, e.g., in case of σ = 1.0 the method achieve the best
ACR when p0 = 1

16 ,
1
32 , and this confirms that our proposed loss of Llow (7) alone is superior to

the Gaussian training even without the effect from Lhigh (8). From the Figure 6(a) which plots the
results at σ = 0.5, one can observe that letting p0 → 0 leads the classifier to achieve a better robust
accuracy with a relatively little degradation in the clean accuracy.

Effect of λ. By the definition in (10), λ controls the contribution of Lhigh. We evaluate the impact
of λ here, and the results are shown in Figure 6(b). We compare the performance of the models,
varying λ ∈ {0.25, 0.5, 1.0, 2.0, 4.0} on σ = 0.5. As expected, we observe that λ balances the
trade-off between robustness and clean accuracy; as λ increases, robustness increases while clean
accuracy decreases. Also, in Table 7 in Appendix C, we verify that CAT-RS offers more effective
trade-off between robustness and the clean accuracy than other methods. Further details can be
found in Table 6 in Appendix D.

Loss design. Our loss design in (10) combines several important ideas proposed in Section 3,
and here we validate that each of the components has an individual effect in improving the certified
robustness. In Table 3, we compare several variants of our proposed CAT-RS loss (10), namely (a)
using only Llow (7), (b) using only Lhigh (8), and (c) Llow +λ ·Lhigh, i.e., not applying the masking
condition 1[p̂f (x, y) = 1] to Lhigh. We also consider (d) a variant of Lhigh, where the outer max
operation over noise samples (8) is replaced by the average, i.e., we define:

Lavg max :=
1

M

∑
i

(
max

‖δ∗i−δi‖2≤ε
CE(F (x+ δ∗i ), y)

)
. (11)

We report the experimental results on σ = 0.5. Overall, CAT-RS achieves the best ACR and ap-
proximate certified accuracy among the variants. We observe that Llow alone improves Gaussian
baseline, which highlights the importance of the confidence information for robust training. Also,
Lhigh alone increases the robustness dramatically, while it sacrifices the clean accuracy. Combining
Llow and Lhigh achieves better results by balancing robustness and accuracy. CAT-RS further im-
proves the overall performance by simply masking out Lhigh for low-confidential predictions: i.e.,
when the confidence is not high enough, learning challenging adversarial samples harm the perfor-
mance. By comparing the results made by using Lavg max and Lhigh, we verify that it is more helpful
for a model to utilize the most challenging adversarial examples instead of averaging them.

5 CONCLUSION

This paper explores a close relationship between confidence and robustness, a natural property of
smoothed classifiers yet neural networks cannot currently offer. We have successfully leveraged
this relationship to relax the hard-to-compute metric of adversarial robustness into an easier concept
of prediction confidence. Consequently, we could propose a practical robust training method that
enables a sample-level control of adversarial robustness, which has been difficult without heuristics
in a conventional belief. We believe our work could be a useful step for the future research on
exploring the interesting connection between adversarial robustness and confidence calibration (Guo
et al., 2017; Lee et al., 2018) through the framework of randomized smoothing.
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ETHICS STATEMENT

Deploying deep learning based systems into the real-world, especially when they are of security-
concerned (Caruana et al., 2015; Yurtsever et al., 2020), still poses many potential risks for both
companies and customers, and we researchers are responsible to make this technology more reliable
through research towards AI safety (Amodei et al., 2016). Adversarial robustness is one of the
central parts of this direction, and we believe our research on certified robustness can be a useful
step towards building a practical yet secure deep learning system. Nevertheless, one should also
recognize that adversarial robustness is still a bare minimum requirement for reliable deep learning,
and the future research should address how to extend this restrictive notion of robustness into other
challenging setups, e.g., corruption robustness (Hendrycks et al., 2020) and unrestricted attacks
(Bhattad et al., 2020), just to name a few, to establish a practical sense of security for practitioners.

REPRODUCIBILITY STATEMENT

For the best practices to maintain the reproducibility of this paper, we have conducted our ex-
periments on publicly available datasets, with the detailed descriptions for pre-processing in Ap-
pendix B.1. We have documented a thorough specification on the experimental details, e.g., training
setups, baselines, and evaluation metrics, in Section 4. We have also fully specified all the hyperpa-
rameters considered to reproduce the baselines as well as our results in Appendix B.2. The code to
reproduce our results will be publicly available, as well as the pre-trained models for our method.
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A TRAINING PROCEDURE OF CAT-RS

Algorithm 1 Confidence-Aware Training for Randomized Smoothing (CAT-RS)
Require: training sample (x, y). smoothing factor σ. number of noise samples M > 0. truncation

probability p0 ∈ (0, 1], regularization strength λ > 0. attack norm ε > 0.

1: Sample δ1, · · · , δM ∼ N (0, σ2I)
2: p̂f ← 1

M

∑
i 1[f(x+ δi) = y]

3: // COMPUTE THE BOTTOM-K LOSS
4: Sample K ∼ Bin(M, p̂f )
5: K+ ← max(1,K)
6: for i = 1 to M do
7: Li ← CE(F (x+ δi), y)
8: end for
9: Lπ1:M ← argsort(L1:M )

10: Llow ← 1
M (
∑K+

i=1 L
π
i +

∑M
i=K++1(Lπi + log p0)+)

11: // COMPUTE THE WORST-CASE LOSS
12: for i = 1 to M do
13: δ∗i ← arg max‖δ∗i−δi‖≤εCE(F (x+ δ∗i ), y)

14: end for
15: Lhigh ← maxiCE(F (x+ δ∗i ), y)
16: // COMPUTE THE CAT-RS LOSS
17: LCAT-RS ← Llow + λ · 1[p̂f = 1] · Lhigh
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B EXPERIMENTAL DETAILS

B.1 DATASETS

MNIST (LeCun et al., 1998) consists of 70,000 gray-scale hand-written digit images of size 28×28,
60,000 for training and 10,000 for testing, where each is labeled to one value between 0 and 9. We
do not perform any pre-processing except for normalizing the range of each pixel from 0-255 to 0-1.
The dataset can be downloaded at http://yann.lecun.com/exdb/mnist/.

CIFAR-10 (Krizhevsky, 2009) consists of 60,000 RGB images of size 32×32 pixels, 50,000 for
training and 10,000 for testing, where each is labeled to one of 10 classes. We use the standard data-
augmentation scheme of random horizontal flip and random translation up to 4 pixels, following
the practice of other baselines (Cohen et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong &
Shin, 2020; Jeong et al., 2021). We also normalize the images in pixel-wise by the mean and the
standard deviation calculated from the training set. The full dataset can be downloaded at https:
//www.cs.toronto.edu/˜kriz/cifar.html.

B.2 HYPERPARAMETERS

Stability training (Li et al., 2019) uses a single hyperparameter γ to control the relative strength of
the regularization term. We fix γ = 2 for MNIST experiments. For CIFAR-10 experiments, γ = 2
is used for σ = 0.25, 0.5, and γ = 1 is used for σ = 1.0.

SmoothAdv (Salman et al., 2019) uses three major hyperparameters to perform the projected gra-
dient descent: namely, the attack radius in terms of `2-norm ε, the number of PGD steps T , and the
number of noises m. In our experiments, we fix T = 10. For MNIST experiments, we fix ε = 1.0
and m = 4 as well. In case of CIFAR-10, on the other hand, we report the results chosen among
the list of “best” configurations for each noise level which are previously searched by Salman et al.
(2019): specifically, we report the results of ε = 1.0 and m = 4 for σ = 0.25, and ε = 2.0 and
m = 2 for σ = 0.5, 1.0. When SmoothAdv is used, we adopt the warm-up strategy, i.e., we initially
set ε = 0.0 and linearly increase to the target value of ε for 10-epochs.

MACER (Zhai et al., 2020) introduces four hyperparameters: namely, the number of noises k, the
coefficient for the regularization term λ, the clamping parameter for maximizing the certified radius
γ, and the temperature scaling parameter β. For the MNIST experiments, we use k = 16, γ =
8.0, β = 16.0, and λ = 16.0 when σ = 0.25, 0.5, following the configurations in Zhai et al. (2020).
When σ = 1.0, for the training to succeed, we set λ = 6.0. For the CIFAR-10 experiments, we
follow the original configurations used by Zhai et al. (2020). We set k = 16, γ = 8.0, and β = 16.0.
λ is set to be 12.0 and 4.0 for σ = 0.25 and 0.5, respectively. For σ = 1.0, the training starts with
λ = 0 until the first learning rate decay and we set λ = 12.0 thereafter.

Consistency (Jeong & Shin, 2020) uses two hyperparameters: namely, the coefficient for the con-
sistency term η and those for the entropy term γ. We report the best results in terms of ACR among
those reported by Jeong & Shin (2020) varying η. Following the original practice, we fix γ = 0.5
throughout our experiments. For MNIST, we use λ = 10 for σ = 0.25 and λ = 5 for other noises.
For the CIFAR-10 experiments, we use λ = 20 for σ = 0.25 and λ = 10 for other noises.

SmoothMix (Jeong et al., 2021) introduces four hyperparameters: namely, the coefficient for the
mixup loss η, the step size for adversarial attack α, the number of steps for adversarial attack T ,
and the number of noises T . For the MNIST experiments, we fix η = 5.0, α = 1.0, and m =
4. T = 2, 4, 8 are used for the models with σ = 0.25, 0.5, 1.0, respectively. For the CIFAR-10
experiments, we again report the best result among those reported from Jeong et al. (2021): i.e., we
fix η = 5.0,m = 2, and T = 4, and use α = 0.5, 1.0, 2.0 for σ = 0.25, 0.5, 1.0, respectively. The
“one-step adversary” is used for σ = 0.5, 1.0 to follow the “best” configurations.

CAT-RS (Ours). CAT-RS uses two main hyperparameters: namely, the coefficient for “worst-case”
loss λ and the clamping parameter for maximizing the confidence of “hard” samples p0. For the
MNIST experiments, we use the fixed configuration of λ = 1.0 and p0 = 1

5 . For the CIFAR-10
experiments, we use λ = 0.5, p0 = 1

20 for σ = 0.25, and λ = 2.0, p0 = 1
10 for σ = 0.5 and 1.0.
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C COMPARISON OF ACCURACY-ROBUSTNESS TRADE-OFF
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Figure 7: (a): Comparison of the trends between the clean accuracy vs. (a) ACR, (b) the certified
accuracy at r = 1.0, and (c): the certified accuracy at r = 2.0, that each method exhibits as varying
its hyperparameter. We assume MNIST dataset with σ = 1.0 for this experiment.

Table 4: Comparison of ACR and approximate certified test accuracy on MNIST for varying hyper-
parameters of three different methods: Consistency, SmoothMix, and CAT-RS (ours). We assume
σ = 1.0 in this experiment. “Gaussian” indicates the baseline Gaussian training. Consistency and
SmoothMix degenerates to Gaussian when their hyperparameter is set to 0.

Methods Setups ACR 0.00 0.50 1.00 1.50 2.00 2.50

Gaussian - 1.620 96.4 91.4 79.9 59.6 32.6 10.8

Consistency

λ = 1 1.714 96.0 91.2 81.1 63.5 39.2 16.2
λ = 5 1.740 95.0 89.7 79.9 63.7 41.9 20.0
λ = 10 1.735 94.1 88.6 78.5 62.8 42.4 22.1
λ = 15 1.731 93.6 87.7 77.8 62.3 42.6 22.9
λ = 20 1.720 93.0 86.6 77.1 61.6 42.1 23.4
λ = 25 1.226 73.2 64.4 53.9 42.4 27.4 14.5

SmoothMix

η = 1 1.789 95.5 90.5 80.7 64.1 43.1 24.1
η = 2 1.810 94.9 89.7 79.6 63.8 44.4 26.6
η = 4 1.820 94.0 88.4 78.3 63.0 44.9 28.7
η = 8 1.817 93.4 87.5 77.3 62.4 44.8 29.3
η = 16 1.812 92.9 86.7 76.6 61.8 44.5 29.6

CAT-RS
(Ours)

λ = 0.00 1.675 96.9 92.1 81.8 62.7 35.4 12.4
λ = 0.12 1.770 96.0 91.3 81.3 64.7 42.7 20.9
λ = 0.25 1.799 95.5 90.5 80.7 64.8 44.2 24.5
λ = 0.50 1.820 94.9 89.5 79.6 64.5 45.7 27.4
λ = 1.00 1.830 93.9 88.0 78.0 64.0 47.3 29.8
λ = 2.00 1.820 92.0 85.4 75.5 62.7 47.8 31.8
λ = 4.00 1.788 89.0 82.0 72.8 62.1 48.7 32.6
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D DETAILED RESULTS ON ABLATION STUDY

Table 5: Comparison of ACR and approximate certified test accuracy (%) varying p0 on CIFAR-10.
For each σ, we set ACR bold-faced when it achieves the best among variants.

CIFAR-10 Certified accuracy (%)

σ Setups ACR 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

0.25

1/p0 = 1.0 0.536 71.6 64.2 56.8 47.8 0.0 0.0 0.0 0.0 0.0 0.0
1/p0 = 2.0 0.524 69.4 62.4 56.0 46.2 0.0 0.0 0.0 0.0 0.0 0.0
1/p0 = 4.0 0.538 71.8 63.6 56.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0
1/p0 = 8.0 0.522 67.2 61.8 54.8 47.4 0.0 0.0 0.0 0.0 0.0 0.0
1/p0 = 16.0 0.515 67.6 61.2 52.8 46.6 0.0 0.0 0.0 0.0 0.0 0.0
1/p0 = 32.0 0.523 68.4 62.2 55.2 45.8 0.0 0.0 0.0 0.0 0.0 0.0
1/p0 =∞ 0.508 65.4 59.8 53.4 45.4 0.0 0.0 0.0 0.0 0.0 0.0

0.50

1/p0 = 1.0 0.700 62.4 56.6 48.4 40.2 34.4 28.8 23.0 18.2 0.0 0.0
1/p0 = 2.0 0.690 61.4 54.4 47.0 40.0 34.6 28.2 22.2 16.8 0.0 0.0
1/p0 = 4.0 0.707 61.8 54.6 46.8 40.8 35.0 30.0 24.6 18.6 0.0 0.0
1/p0 = 8.0 0.705 58.0 54.6 45.6 41.8 36.4 31.0 24.0 18.8 0.0 0.0
1/p0 = 16.0 0.713 56.4 53.2 48.0 41.4 36.2 30.6 25.6 20.8 0.0 0.0
1/p0 = 32.0 0.707 56.4 52.6 47.6 39.6 36.4 30.4 25.4 21.2 0.0 0.0
1/p0 =∞ 0.714 57.2 52.0 46.4 41.0 35.8 31.8 26.8 22.0 0.0 0.0

1.00

1/p0 = 1.0 0.716 48.2 41.2 37.6 32.0 27.4 24.0 20.6 17.8 15.0 13.0
1/p0 = 2.0 0.732 47.0 44.0 38.2 33.2 26.4 22.6 20.6 17.4 16.2 13.4
1/p0 = 4.0 0.743 46.4 41.4 37.0 32.8 27.8 25.4 21.2 18.6 16.0 13.4
1/p0 = 8.0 0.787 45.8 42.0 38.6 33.8 30.4 25.6 22.6 20.0 17.8 15.4
1/p0 = 16.0 0.815 45.2 41.2 39.4 34.2 30.8 28.2 23.8 19.6 17.4 15.6
1/p0 = 32.0 0.815 45.2 41.6 38.0 33.8 31.2 28.4 24.2 20.4 17.0 15.8
1/p0 =∞ 0.784 44.6 40.8 37.2 34.0 30.2 25.8 22.4 19.6 17.0 15.0

Table 6: Comparison of ACR and approximate certified test accuracy (%) for varying λ on CIFAR-
10. We assume σ = 0.5 in this experiment. For each column, we set the best value bold-faced.

CIFAR-10 Certified accuracy (%)

Setups ACR 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

λ = 0.25 0.681 65.4 57.0 49.0 40.4 32.6 27.4 19.8 14.4
λ = 0.50 0.704 62.2 56.4 47.2 39.6 36.0 29.6 23.0 17.0
λ = 1.00 0.717 58.4 52.2 45.4 41.2 36.6 33.6 26.4 20.2
λ = 2.00 0.719 53.6 49.0 45.0 41.2 37.8 34.2 29.6 22.8
λ = 4.00 0.720 52.4 49.2 44.2 41.0 38.0 34.4 29.4 24.8

Table 7: Comparison of ACR and approximative certified test accuracy (%) for varying M on
CIFAR-10. We assume σ = 0.5 in this experiment.

CIFAR-10 Certified accuracy (%)

Setups ACR 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

M = 1 0.667 63.6 55.4 47.0 38.6 33.4 25.8 19.0 14.8
M = 2 0.689 60.8 54.4 46.8 40.8 35.0 28.8 22.8 17.6
M = 4 0.717 58.4 52.2 45.4 41.2 36.6 33.6 26.4 20.2
M = 8 0.708 55.4 49.8 45.0 40.8 36.4 33.0 27.4 21.8
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