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Abstract

Chain-of-thought (CoT) distillation aims to en-
hance small language models’ (SLMs) reasoning
by transferring multi-step reasoning capability
from the larger teacher models. However, ex-
isting work underestimates rationale quality, fo-
cusing primarily on data quantity, which may
transfer noisy or incorrect information to the stu-
dent model. To address the above issues, we
proposed Model-Oriented Rationale Selection
Distillation (MoRSD), which can discern and
select high quality rationales for distillation to
improve performance further. We further propose
a Rationale Difficulty (RD) metric to measure the
ability of the student model to generate the cor-
rect answer under a given rationale. Compared to
the baseline, we achieved 4.6% average improve-
ment on seven datasets over three tasks, using
fewer rationales by controlling their accuracy, di-
versity, and difficulty. Our results reveal that a
small portion of the high quality rationales can
enhance the reasoning ability of student models
than the entire dataset. Our method promises
to be a possible solution for efficient CoT dis-
tillation. Our code will be released to facilitate
reproducibility and future research in data effi-
ciency.

1 Introduction

Large language models (LLMs) such as LLaMA,
GPT-4, Gemini, DeepSeek-V3, and DeepSeek-R1,
have achieved remarkable performance in various
reasoning tasks by instructing them to think step-
by-step (Touvron et al., 2023; OpenAl et al., 2024;
Zhang et al., 2024a; DeepSeek-Al et al., 2024, 2025;
Brown et al., 2020; Sun et al., 2021). Engaging in
reasoning through logically coherent steps has sub-
stantially enhanced performance in tasks such as
mathematical problem solving and question answer-
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Figure 1: Vanilla CoT Distillation and MoRSD. Differ-
ent from previous studies that mostly use a), c), and d),
we propose b) and ¢) to select effective data for specific
student models to improve performance further.

ing. These intermediate reasoning steps are referred
to as rationale (Wei et al., 2023).

To achieve emergent reasoning abilities, LLMs
require large-scale parameters, making SLMs inher-
ently limited (Wei et al., 2023; Kojima et al., 2023;
Fu et al., 2023). CoT distillation has become a key
technique for enhancing SLM reasoning by transfer-
ring rationales from stronger teachers (Wang et al.,
2023b; Li et al., 2023), showing strong results on
arithmetic and symbolic tasks (Ho et al., 2023; Hsieh
et al., 2023; Ying et al., 2024; Kim et al., 2024).
Beyond basic distillation, recent works explore con-
sistency enforcement (Chen et al., 2023), cross-task
supervision (Li et al., 2024), and tailored strategies
(Zhang et al., 2024b). Mentor-KD (Lee et al., 2024)
introduces intermediate models for better supervi-
sion, MCC-KD promotes consistent yet diverse rea-
soning (Chen et al., 2023), while Lion (Kim et al.,
2024) and TA-in-the-Loop (Zhang et al., 2024b) use
adversarial and auxiliary guidance, respectively.

However, these approaches often require addi-
tional models, discard useful failures, or introduce
iterative overhead—resulting in high computational
costs and limited flexibility. And many works still



rely on enlarging the rationale set (increasing from
1 to 8 per instance (Ho et al., 2023)) to improve
performance, while overlooking rationale quality.
Such data scaling ignores variance in correctness
and diversity, risking the distillation of noisy signals.
Furthermore, most approaches neglect the speci-
ficity of student models, failing to adapt to their
strengths or limitations. These limitations motivate
our focus: how to select a small set of high-quality,
student-aware rationales for efficient and effective
distillation.

To overcome these limitations, we propose
MOoRSD, a simple but effective method that enables
student models to customize their distillation data
autonomously. As presented in Figure 1, MoRSD
consists of four stages: 1) rationale generation, 2)
self-evaluation, 3) rationale selection and 4) distil-
lation. The rationale generation stage prompts the
teacher LLLM to generate the rationale dataset. In
the self-evaluation stage, we calculate rationale dif-
ficulty (RD) to measure the contribution of a given
rationale to distillation. Specifically, RD measures
the student’s ability to generate the correct answer
given a question and rationale. Those with smaller
RD are considered more beneficial to generate the
corresponding answer.

Then, we first apply model-agnostic accuracy se-
lection and diversity selection to the rationale dataset.
Accuracy selection adjusts the proportion of correct
rationales in the dataset to achieve the given accu-
racy threshold, diversity selection involves pairwise
Jaccard similarity to eliminate similar rationale in
the dataset. Finally, we use difficulty selection to se-
lect the rationales with smaller RD. Since difficulty
selection uses perplexity-based RD, a model-specific
metric, it enables the student model to customize
its distillation data during the difficulty selection.
Through these stages, we obtain a small amount of
high-quality rationale data to improve distillation per-
formance for specific student models. In summary,
our contributions are three-fold:

1. We propose MoRSD, a simple and effective
method that performs better with fewer rationales.
Prove that using a small portion of the dataset can
outperform using the entire dataset in enhancing the
reasoning ability of student models.

2. We propose a model-specific metric, rationale
difficulty, to measure rationale contribution for dis-

tillation, enabling student models to customize data
based on their training requirements.

3. We conducted extensive experiments on seven
datasets covering three distinct tasks. The results
demonstrate that our method consistently outper-
forms the baselines, achieving an average accuracy
improvement of 4.6%.

2 Related work

2.1 Chain-of-thought (CoT) Distillation

Chain-of-thought prompting delivers strong perfor-
mance but typically benefits from large models with
many parameters, resulting in high computational
costs and limited deployment (Hoffmann et al., 2022;
Chowdhery et al., 2022). Ho et al. (2023) first in-
troduced fine-tune-CoT, a method that transfers the
multi-step reasoning ability of LLMs to smaller mod-
els through fine-tuning. Some approaches use in-
context learning to implicitly transfer knowledge
(Rajani et al., 2019; Wang et al., 2023a), while others
treat rationale generation as a multi-task fine-tuning
objective (Hsieh et al., 2023). Furthermore, Li et al.
(2024) distill the rationale into multiple experts in
low-rank adaptation (LoRA), decoupling CoT rea-
soning from the student model. Zhang et al. (2024b)
enhances knowledge transfer through active learning
and explanation-guided sample selection. Some re-
searchers identify influential tokens using gradient
attribution techniques such as saliency maps to guide
the student model (Ballout et al., 2024). Recently,
a study found that only a small fraction (4.7%) of
CoT steps are critical for performance (Dai et al.,
2024), which closely matches our findings. Bus-
bridge et al. (2025) introduce a distillation scaling
law to optimize compute allocation between teacher
and student models, providing efficient distillation
strategies that outperform supervised pretraining in
certain cases.

2.2 Data Efficiency in Language Models

Data efficiency means that the model achieves high
performance with a smaller amount of training data,
maximizing the value derived from limited data.
Yang et al. (2024) shows that with only 1,000 care-
fully selected prompts and responses, models can
learn to follow specific formats and generalize effec-
tively to new tasks. Chen et al. (2024) used GPT-3.5
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Question: There were 28 bales of
hay in the barn . Tim stacked bales in
the barn today. There are now 54
bales of hay in the barn. How many
bales did he store in the barn ?
Answer: 26

Prompt

Q: There were 28 bales of hay in the
barn . Tim stacked bales in the barn
today. There are now 54 bales of hay
in the barn. How many bales did he
store in the barn ?

A: Let's think step by step.

were 28 bales of hay in the barn. ...
Therefore, the answer is 30.

of hay in the barn. This means
that.... So, Tim must have stored 26
bales of hay in the barn today.
...Therefore, he stored 26 bales in
the barn. m
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Figure 2: Detailed overview of MoRSD. MoRSD comprises four stages: a) Rationale generation prompts a teacher
model to generate all the data required for the rationale selection stage (blue). b) Self-evaluation, which uses the
rationale difficulty (RD) to evaluate all generated rationales. Those rationales with smaller RD are considered helpful
for distillation. ¢) Rationale selection, which constructs the final dataset for distillation by controlling the original
dataset’s accuracy, diversity, and difficulty. d) Distillation, which fine-tunes the student model using the constructed

dataset.

to score data difficulty, and Mekala et al. (2024) pro-
posed Learning Percentage (LP) for difficulty assess-
ment, both reduced data needs for instruction tuning.
LIMA achieves strong performance with few exam-
ples, generalizing well to unseen tasks and requiring
minimal instruction tuning (Zhou et al., 2023). Yue
et al. (2024) uses a multi-round distillation frame-
work with an oracle LLM to select challenging in-
structions for student models, reducing the need for
extensive training samples. Recently, Ye et al. (2025)
proposed the "Less is More Reasoning Hypothesis"
(LIMO), demonstrating that complex reasoning can
be induced with few examples when the base model
has pre-trained domain knowledge. Muennighoff
et al. (2025) introduced a test-time scaling approach
using a curated dataset (s1K) and budget forcing,
enabling the Qwen2.5-32B-Instruct model to outper-
form OpenAl’s ol-preview (OpenAl, 2024) on math
reasoning tasks by 27% with controlled test-time
compute.

3 Method

3.1 Problem definition

CoT distillation first requires prompting the teacher
model to generate rationales related to the training
data. Let D = {(ql, al) , (QQ, ag) ey (qN, CLN)}
denote the complete dataset, where each (g;, a;) rep-
resents a question-answer pair and the label is avail-
able. Then, a teacher model T (07) (the parameter
607 is inaccessible) is prompted to generates m dis-
tinct rationale {f}, f?, ..., 7" ; where each ff rep-
resents a separate rationale for the question ¢;. The
complete dataset with these rationales is denoted as:

Dfull = {Qia {(f‘zl7 &'Ll)a (f127 &12)7 SRR (fi7 dz)}
ey
Where ¢+ = 1,2,...,N,57 = 1,2,..., M. The
performance of the student model S on the test set
Diest can be denoted as:
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Perf (S, Dtest ) == W
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I(S(q) = a)
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Our goal is to select a subset Dgejected & Dryyt from
Drann and make the performance of the student model
SDteerea» distilled using Diejecred 0N the test set Dieg,
outperform that of the student model Sp,, distilled
using the full data:

max
Dselected EDrunl

Perf (SDselected ’ DteSt )
3)

To achieve the above goal, we designed a four-
stage distillation method MoRSD. Its details will be
described in the following sections.

* —
Dselected = arg

3.2 Rationale generation

To obtain the dataset for distillation, we adopt the
same generation method as in previous studies(Ho
et al., 2023). As shown in the upper left of Figure
2, we use a fixed template: "Q: (¢;). A: Let’s think
step by step. (7;) Therefore, the answer is (a;)".
By applying this process to all data points in D, we
obtain the full dataset Dgyy in Eq 1.

3.3 Self-evaluation

After building the full dataset Dy, in Section 3.2,
we use rationale difficulty (RD) to score each ratio-
nale 7/ in the dataset. RD is a metric based on the
perplexity of the student model, where perplexity
is the exponential transformation of the normalized
Negative Log-Likelihood (NLL), given an input se-
quence X = (x1,x2,...,2xyN) and a target sequence
Y = (y1,v2,--.,ym), the perplexity can be written
as:

M
1
PPL(y;|X) = exp (M > log Pr(y; |1, -~-,-’EN7yj—1)>

j=1

J @

Since the student model has been pre-trained or

supervised-fine-tuned (SFT) using NLL loss on a

large corpus of text, its perplexity can indicate the

quality of the rationales generated by the teacher.

Therefore, we define RD as the ratio of the change

in PPL of the student model before and after a given
rationale:

RD(q) = o)
v PPL(QS)(aﬂqi)

&)

For rationale ff, if the student model achieves
low RD(f{ , i), it suggests that the rationale is more
beneficial for the student in understanding the corre-
sponding question and will be selected in difficulty

selection.

3.4 Rationale selection

After calculating the RD for each rationale in section
3.3, this section will select a subset Dgejected from
the full dataset Dy, based on the accuracy, diversity,
and difficulty of the rationale. Therefore, we divide
the rationale selection process into three sequential
parts: 1) Accuracy Selection, 2) Diversity Selection,
and 3) Difficulty Selection.

3.4.1 Accuracy selection

The most important characteristic of rationale is cor-
rectness. Different from (Ho et al., 2023; Li et al.,
2024), we first divide the rationale into correct and
incorrect parts by comparing the final prediction a;
of the teacher model with the ground truth a;. We
then filter out negative samples to ensure the original
dataset meets a given accuracy threshold 4.

Then, we filter the rationales sequentially from the
original dataset such that the average accuracy of the
filtered dataset Daccurate T€aches 6. The calculation is
as follows:

1
AvgAcc = ——— Z
‘Daccurate | .

(7:12 ’ﬁ‘i)EDaCCllrate

acc (ff,di) >4

3.4.2 Diversity selection

The diversity of rationales is important for distilla-
tion performance. However, we found that even with
different sampling temperatures, the teacher model
often generates similar rationales. To address this,
we select diverse rationales by first splitting them into
N-grams (N=3 in our experiments). Then, we cal-
culate the pairwise Jaccard similarity between these
N-gram sets. For each rationale r, we decompose it
into segments Rf and use the Jaccard similarity score
to compare and identify the most similar rationales.



Single Add Multi  Strategy Date Shuffled
Method Params | oo Sub  Arith QA GSMBK  SVAMP ;. derstanding Objects
Random - ‘ 0.00 0.00 0.00 50.00 0.00 0.00 17.12 33.33
Teacher: InstructGPT 175B (text-davinci-002)
ZERO-SHOT-COT 175B \ 8224 7899 78.89  53.57 40.26 64.67 73.87 50.22
Student: Flan-T5-{Small, Base, Large, XL}
60M 7.24 1092 1722 56.04 2.58 10.67 84.68 62.22
VANILLA 250M 9.21 1092 21.11  60.84 4.40 12.33 84.68 67.11
CoT DISTILLATION ~ 780M | 10.52  15.13  20.00 61.72 7.12 13.67 87.39 89.33
3B 2039 11.76  26.67  65.37 7.60 12.33 82.9 43.11
MULTI-TASK 250M | 5.22 8.40 8.33 52.83 6.00 2.33 80.18 31.55
780M | 11.89  16.81 16.81  50.09 6.36 9.00 79.23 35.96
COT DISTILLATION
3B 22.36 36.9 1722  52.11 7.73 11.33 81.93 52.46
250M | 5.26 7.56 13.89 56.18 6.11 5.33 85.55 35.55
MODE-CoTD 780M 10.52 10.92 13.89 56.47 7.28 11.33 89.19 62.22
3B 2333 2437 2333 6099 9.78 17.33 93.69 70.67
60M 9.21 1092 2278 60.26 6.98 11.33 82.88 83.56
MORSD (OURS) 250M 9.21 12.61 24.44  65.65 6.98 13.67 86.49 99.56
780M 13.16 16.81 25.00 65.65 9.71 15.00 89.19 100.00
3B 21.71  24.37 31.67  65.65 10.20 23.67 91.00 100.00

Table 1: MoRSD Performance. Accuracy (%) of MoRSD and baseline methods on 8 tasks under various settings.
Random refers to random-guess performance derived based on the number of choices in multi-choice tasks. The best
method for each setting is marked in bold . For Zero-shot-CoT, we use the same prompt setting as (Ho et al., 2023).
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We then randomly keep one form the two ratio-
nales from Eq. 6 and discard the other. This process
repeats until we collect a total of K rationales (set
to 6 in our experiments). Afterward, we have a di-
verse dataset, Dgiverse, ready for the final difficulty
selection step.

3.4.3 Diffculty selection

After obtaining Dygiverse, We need to filter and retain
rationales that are helpful for distillation based on
RD. As mentioned in section 3.3, rationale with low
RD is considered helpful for distillation, so in the
difficulty selection, we select the k (k set to 3 in
our experiments) samples with the lowest RD in the
dataset:

Dselmdz{qi,{(ﬁ,ab,(ff,a?), ...,(ff,af)}} @)

where RD (7},q;) < RD (72,q;)) < -+ <
RD(ffchl)’Z:]-an7N*,]:1,2,7M*
3.5 Distillation

Then, we use Dggjecteq to fine-tune the student model.
Similar to SFT, the objective function of distillation
can be written as follows:

>

73 € Dselected

L(0s) = — 1.,y - log Pr(as,7i | qi;0s)  (8)

The final distilled student model Dggjecteq 1S used
to verify the final performance according to Eq 2.

4 Experiment

4.1 Task and Datasets

Experiments were conducted on seven datasets re-
lated to three tasks: mathematical reasoning, ques-
tion answering, and temporal/spatial reasoning. In-
cluding StrategyQA (Geva et al., 2021) for common-
sense reasoning, Addsub (Hosseini et al., 2014), Mul-
tiarith (Roy and Roth, 2015), SVAMP (Patel et al.,
2021), SingleEq (Koncel-Kedziorski et al., 2015) and



Table 2: Performance of MORSD and baselines across two student models on four tasks. Best results for each

student model are in bold .

Strategy Date Shuffled
Method Student 0A SVAMP Understanding  Object Average
MCC-KD FlanT5-Small | 58.37 10.00 81.98 43.11 48.37
MENTOR-KD FlanT5-Small | 59.97 10.67 83.78 82.67 59.27
MORSD (Ours) FlanT5-Small | 60.26 11.33 82.88 83.56 59.51
MCC-KD FlanT5-Base 64.92 12.00 85.59 69.78 58.07
MENTOR-KD FlanT5-Base 65.21 11.33 87.39 93.78 64.43
MORSD (OuRrs) FlanT5-Base 65.65 13.67 86.49 99.56 66.34
GSMSK (Cobbe et al., 2021) for arithmetic math in- [ Mersplows o Nenlla T MepReor T Anetone Hulti-ask
(a) Arith (b) Arith

ference and Date Understanding (Srivastava et al.,
2023), Tracking Shuffled Objects (Srivastava et al.,
2023) for temporal/spatial reasoning. The details on
partition training, testing sets, and other specificities
are provided in the Appendix A.

4.2 Baseline

We provide a comparison of MoRSD (ours) with
three baseline methods:

e Vanilla CoT Distillation (Ho et al., 2023),
where the student model is directly fine-tuned on
the teacher-generated CoT rationales without addi-
tional selection or filtering.

e Multi-task CoT Distillation (Li et al., 2024),
where the student model is fine-tuned on a combined
dataset from multiple reasoning tasks.

e MoDE-CoTD (Li et al., 2024), where the ratio-
nales from different tasks are distilled into separate
LoRA modules, enabling cross-task collaboration
through task-specific parameter adaptation.

e MCC-KD (Chen et al., 2023), which improves
reasoning consistency by generating multiple ratio-
nales per question and minimizing bidirectional KL-
divergence between their answer distributions.

e Mentor-KD (Lee et al., 2024), which uses a
task-specific mentor model to enrich the distillation
set with CoT annotations and soft labels, addressing
data quality and label scarcity.

4.3 Teacher and Student Models

For the teacher models, we use GPT-3 175B (Brown
et al., 2020), accessed via the OpenAl API, with

Add
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Date Date
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Shuffled
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Figure 3: Comparison of the performance and the
rationale usage.

text-davinci-002 (Ouyang et al., 2022) as the de-
fault model unless otherwise specified. We employ
the instruction-tuned versions of T5 for the student
models, specifically Flan-T5-{Small, Base, Large}
(Chung et al., 2022).

5 Results

In this section, we report the performance of our
MoRSD and baseline methods on 7 benchmarks. We
compare our approach with baselines of different
model sizes. The performance on the test set demon-
strates the effectiveness of our approach, showing
that our method achieves better performance with
fewer samples.

5.1 MoRSD outperforms baselines across
different student models

The results in Table 1 and Table 2 show that
MOoRSD consistently outperforms strong base-
lines across various student model sizes and rea-
soning tasks. On Flan-T5-Small, MoRSD notably
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Figure 4: Effect of dataset accuracy. The performances
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Figure 5: Effect of rationale diversity. The performance
of MoRSD on four test sets with different rationale diver-
sities.

improves results on challenging datasets such as
SVAMP and Tracking Shuffled Objects, achieving
11.33% on SVAMP (+3.73% over MoDE-CoTD)
and 83.56 % on Tracking Shuffled Objects, surpass-
ing MoDE-CoTD (62.22%) and Multi-task CoT
(31.55%). These improvements are obtained with
fewer rationales, highlighting the effectiveness of
selective rationale filtering over data quantity.

Compared to multi-task and consistency-based
methods like MCC-KD and Mentor-KD, MoRSD
achieves comparable or better performance. On
Flan-T5-Small, it reaches an average accuracy of
59.51%, slightly above Mentor-KD (59.27%) and
notably higher than MCC-KD (48.37%), demonstrat-
ing that effective rationale selection can boost per-
formance without extra supervision.

As the student model scales up, MoRSD con-
tinues to outperform baselines. On Flan-T5-
Base, it achieves the highest average accuracy
of 66.34%, exceeding Mentor-KD (64.43%) and
MCC-KD (58.07%). Notably, MoRSD achieves
near-perfect accuracy on temporal and spatial rea-
soning tasks such as Tracking Shuffled Objects

MultiArith Tracking Shuffled Objects
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Figure 6: Effect of rationale difficulty. The performance
of MoRSD using different samples selected by RD among
four test sets

(99.56 %) and Date Understanding (86.49 %), indi-
cating strong generalization.

5.2 Effect of rationale correctness and diversity

To assess how rationale accuracy affects distillation,
we varied dataset accuracy and measured student
performance. As shown in Figure 4, distillation im-
proves with higher accuracy, but gains plateau be-
yond a certain threshold. This indicates that accuracy
is crucial at lower levels, while its marginal benefit
diminishes as it increases.

The diversity of the rationale is also vital for dis-
tillation. To measure the degree of diversity among
rationales, we use the number of rationales remain-
ing after the Jacquard similarity filtering to measure
the diversity of the dataset. In simple terms, a smaller
number of remaining rationales after filtering indi-
cates a higher level of diversity in the dataset. As
illustrated in Figure 5, the performance of MoRSD
exhibits a corresponding improvement with increas-
ing diversity among the rationales, as observed in all
four different test sets.

5.3 Effect of rationale difficulty

To verify the effect of the rationale difficulty (RD) on
distillation performance, we conducted experiments
using samples of varying sizes selected after sorting
based on RD. As illustrated in Figure 6, the distil-
lation performance of the student model improves
as the RD of the selected data decreases, achieving
optimal performance when the RD is at its smallest.
This trend is consistent across multiple test sets, in-
cluding StrategyQA and Tracking Shuffled Objects,
demonstrating that lower RD values correlate with
more effective distillation outcomes. The results un-
derscore the efficacy of the proposed RD indicator



Single Add Multi Strategy Date Shuffled
Method Eq Sub Arith QA SVAMP Understanding  Objects
MORSD 9.21 10.92 22.78 60.26 11.33 82.88 82.22
w/0 ACCURACY SEL. 592 329 10.08 pg4 15.00.778 57.21 305 5.67 566 T4.77 511 89.33
w/o DIVERSITY SEL. | 9.21 990 10.92 990 15.00.778 59.64 060 4.67 6466 82.88 _0.00 67.56 _14.66
w/o DIFFICULTY SEL. | 1.97 74 8.40 » 57 15.56 720 60.26 900 7.33 400 76.58 .30 82.22 J0.00

Table 3: Ablation study on Flan-T5-Small. Results of ablation study about Accuracy selection, Diversity selection,

and Difficulty selection on test sets.

in identifying and prioritizing data that is most bene-
ficial for the distillation process. This finding high-
lights the importance of RD in enhancing the overall
performance of the student model by focusing on the
most informative and manageable rationales.

5.4 Ablation study

In this section, we conduct an ablation study on
the Flan-T5-Small model to assess the contributions
of accuracy, diversity, and difficulty selection in
MOoRSD. As shown in Table 3, removing any com-
ponent leads to notable performance drops. Accu-
racy selection is critical—its removal causes large
degradations on tasks like SingleEq (—35.7%) and
SVAMP (—38.1%). Diversity selection is espe-
cially important for reasoning-heavy tasks such as
MultiArith (—31.2%) and Tracking Shuffled Ob-
jects (—44.3%), helping reduce redundancy. Diffi-
culty selection prioritizes informative rationales, and
its absence also leads to significant drops, includ-
ing —44.0% on SingleEq and —26.9% on SVAMP.
These results indicate that each selection stage plays
a distinct and complementary role in improving dis-
tillation effectiveness. Overall, all three components
are essential for maximizing student performance.

5.5 Analyse of selected rationale

In order to compare the quality of rationales screened
by different methods, we introduced the ChatGPT
API as a referee to further explore the characteristics
of different rationales selected using RD. By stitch-
ing different rationales together and prompting the
referee to judge which of the two is better and give
them a score of 1-10, we visualized these results as
the winning frequency of those selected with the min-
imum RD and the maximum RD. As presented in
Figure 7, to avoid possible bias of the judges due to
the position of the rationale in the prompt, we judged
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Figure 7: Effect of selected rationale. The ChatGPT API
was used as a referee, prompted to compare two rationales
and rate them on a scale of 1 to 10. Each rationale pair
(maximum RD and minimum RD) was judged twice to
avoid position bias, with the rationale positions swapped
in each evaluation.

each maximum RD-minimum RD pair twice and ex-
changed the position of the rationale in the prompt
in each judgment. From the results, we can conclude
that the quality of rationales with lower RD attributes
is higher than those with higher RD attributes on all
datasets. This further proves the effectiveness of the
RD in selecting high-quality rationales.

6 Conclusion

In this work, we propose MoRSD, an efficient CoT
distillation method that enhances the performance of
small language models using fewer rationales. By
introducing a self-guided Rationale Difficulty metric,
MOoRSD enables the autonomous selection of high-
quality rationales, effectively addressing challenges
related to the rationale quality. Experiments across
seven datasets demonstrate an average accuracy im-
provement of 4.6% over the baseline. MoRSD out-
performs full dataset distillation with a small, tai-
lored set of rationales, providing a robust solution
for efficient CoT distillation and advancing knowl-
edge transfer in a more efficient manner.



Limitations

Although MoRSD achieves significant improve-
ments on the Flan-T5 series but is not universally
applicable. First, the selection based on rationale
difficulty requires the student model to have a ba-
sic capability, making it unsuitable for models with-
out fine-tuning. Applying MoRSD to such mod-
els would require instruction fine-tuning, increasing
computational costs. Second, selecting high-quality
rationales requires filtering a large dataset from the
teacher model, matching the computational cost of
traditional CoT distillation. Future work could focus
on efficient rationale generation. Moreover, the selec-
tion method relies on the student model’s perplexity,
which may introduce bias due to its parameter size.
While small RD identifies most high-quality samples,
it cannot exclude all low-quality rationales, poten-
tially affecting distillation results.
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A Appendix
A.1 Datasets

A summary of the datasets used in our experiments,
along with their original licenses, can be found in
Appendix Table 4. We utilize the 7 datasets from
(Kojima et al., 2023) to evaluate reasoning perfor-
mance.

Dataset Training Samples  Test Samples  Data Split ~ License

SingleEq 356 152 70:30 None
AddSub 276 119 70:30 Unspecified
MultiArith 420 180 70:30 Unspecified
SVAMP 700 300 70:30 MIT
Date Understanding 258 111 70:30 Apache-2.0
Tracking Shuffled Objects 525 225 70:30 Apache-2.0

StrategyQA 1603 687 70:30 Apache2.0

Table 4: Description of datasets used in our study.

A.2 Experimental details

All experiments were conducted on a cluster of
NVIDIA V100 GPUs. We strictly controlled the
hyperparameters for all datasets. For each experi-
ment, we used a batch size of 8 and a maximum of
10,000 steps, which was found to be sufficient for the
test accuracy to plateau. We report the best accuracy
achieved within these 10,000 steps.

A.3 KDE visualization of API scores

In Section 5.5, we used the ChatGPT-API to score
rationales on a scale of 1 to 10 and employed KDE
to visualize the score distributions for rationales se-
lected by different methods. The KDE distributions
for rationales selected via the minimum RD approach
(red curves) show distinct advantages across tasks,
with scores concentrated between 6 and 8, indicat-
ing higher and more consistent quality compared to
other methods. The mean values of these distribu-
tions (dashed red lines) are consistently higher than
those of maximum RD rationales (dashed blue lines),
further supporting the superiority of the minimum
RD method.

However, tasks like StrategyQA and Tracking
Shuffled Objects exhibit longer tails in the mini-
mum RD distributions, indicating a small propor-
tion of lower-quality outliers. Despite this variability,
the minimum RD method generally selects higher-
quality rationales, making it a more effective ap-
proach for ensuring better overall quality in most
cases.
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Figure 8: KDE plot of scored selected rationale. Kernel
Density Estimation (KDE) plot, where the ChatGPT API
is employed as a referee to investigate the characteristics
of various rationales selected through RD. By combining
different reasons and assigning them scores ranging from
1 to 10..

A.4 RD and length

Figure 9 illustrates the relationship between rationale
length and tokenized rationale length for different
model sizes of Flan-T5 {small, base, large}. As
the rationale length increases, the tokenized ratio-
nale length grows correspondingly, with a more pro-
nounced increase observed in larger model versions.
For the Flan-T5-small model, the rate of growth
is moderate, indicating that smaller models require
fewer tokens for shorter rationales. In contrast, the
Flan-T5-base model shows a steeper increase in to-
kenized length as rationale length grows, reflecting
its enhanced capacity to handle more complex rea-
soning. The Flan-T5-large model exhibits the most
significant acceleration in tokenized rationale length,
suggesting that larger models, with their greater ca-
pacity, demand significantly more tokens for longer
rationales. This trend highlights the models’ scal-
ing behaviour, where larger models can handle more
extensive rationales, necessitating an increase in the
number of tokens for effective representation. Over-
all, the results underscore the positive correlation
between rationale length and tokenized length across
all model sizes, with the rate of increase being more
pronounced in larger models.

A.5 Transferability of rationale selected by RD

To verify whether the RD calculated by different
models can also improve the distillation performance
on other models, we use Flan-T5-Small, Base, Large
and the larger LLamA2-7b-hf to calculate their re-
spective RDs and use them to fine-tune the smaller



Prompt for Performance Evaluation

You are a helpful and precise assistant for checking the quality of the rationale

We would like to request your feedback on the performance of two rationales
in response to the question displayed above. Please rate the rationales. Each
rationale receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first output a single line containing
only two values indicating the scores for rationale 1 and rationale 2, respectively.
The two scores are separated by a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation and fully compare the quality
of the two rationales, avoiding any potential bias and ensuring that the order in

which the rationale was presented does not affect your judgment.

[The Start of Rationalel] {rationale_1}

System Prompt based on a given question.
Task Discribe
[Question] {question}
Prompt
[The End of Rationale2]

[The End of Rationalel] [The Start of Rationale2] {rationale_2}

[System] {TASK_DISCRIBE}

Table 5: The prompt we used to request ChatGPT to evaluate the rationales.

Train model AddSub SingleEq StrategyQA
Cal RD model

Flan-T5 Flan-T5 Flan-T5 Flan-T5 Flan-T5 Flan-T5

Small p-value Base p-value Small p-value Base p-value Small p-value Base p-value
Flan-T5 Small | 477 - 113 3877 | 3.28 - 072 014 | 5276 - -39 0.02
Flan-T5 Base | +1.04 15 564 - | +022 054 472 - | +133  62e* 5839 -
Flan-T5 Large | +136  23¢7% 4167 6.4 | +0.16 045 4019 097 | +0.58 002  +055 G.le””
LLamA2-7B-hf | +140 0001  +128  0.141 | +0.66 0062  +0.87 0012 | +0.39 0223  +0.80  0.082

Table 6: Transferability analyse for RD. Flan-T5-{Small, Base, Large} and LLaMA2-7B are used to calculate their
RDs, which are then used to distill Flan-T5-Small. Conversely, the RD from Flan-T5-Small, Large and LLaMA2-7B is

used to distill Flan-T5-Base.

Flan-T5-Small and use the RD calculated by Flan-
T5-Small to fine-tune the larger Flan-T5-Base model.
The RD transferability analysis and wilcoxon signed-
rank test in Table 6 reveals that RD transfer from
different models (Flan-T5 variants and LLaMA2-7B)
improves performance more on simpler tasks than on
complex ones. For tasks like AddSub and SingleEq,
RD transfer from Flan-T5 Base and Large results
in notable improvements, with Flan-T5 Large show-
ing increases of 1.36% in AddSub (p-value = 0.009)
and 1.68% in SingleEq (p-value = 0.001). However,
the gains are minimal for the more complex Strat-
egyQA task, with Flan-T5 Large only improving
performance by 0.58% (p-value = 0.269). Overall,
the transfer of reasoning capabilities through RD
(Rationale Distillation) proves to be more effective
for relatively simple tasks, where smaller models
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benefit significantly from the distillation process. In
contrast, the impact of using larger models in such
tasks tends to be less pronounced.

Figure 9: Comparison of RD Lengths

A.6 Prompt for evaluation

In this section, we provide the detailed prompt we
used for evaluating the performance of two rationales
for the same instruction as shown in Table 5



A.7 Pattern Characteristics Comparison of
Selected rationale

In order to better compare the quality difference be-
tween the maximum RD and minimum RD ratio-
nales, we use ChatGPT’s API to compare them and
give an explanation. As shown in Table 7 8 and 9,
the primary advantage of the rationale with min RD
over the rationale with max RD is its more detailed
and coherent reasoning process. It clearly breaks
down each step of the reasoning, providing explicit
explanations for how the final conclusion is reached,
which enhances both transparency and logical rigor.
By systematically deconstructing the problem, the
rationale with min RD allows readers to more easily
follow the reasoning flow. In contrast, the rationale
with max RD, while more concise, may lack suf-
ficient detail and explanation, potentially causing
confusion. As a result, the rationale with min RD
generally leads to a clearer understanding of the rea-
soning process.

MultiArith
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Figure 10: Effect of the number of rationales selected
by RD. The performance of MoRSD with different num-
bers of rationales is evaluated on the Date Understanding,
StrategyQA, SVAMP, and MultiArith datasets.

A.8 Effect of the number of rationales selected
by RD

We also examine the performance of MoRSD with
varying numbers of rationales on Date Understand-
ing, StrategyQA, Tracking Shuffled Objects, and
MultiArith, respectively. The student model em-
ployed in these experiments is Flan-T5-Small. As
depicted in Figure 10, we observe that as the number
of rationales increases, the model’s performance on
all four datasets improves correspondingly. Specif-
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ically, when the number of rationales is increased
from 1 to 4, performance is significantly enhanced
on both datasets. However, the performance gains
become less pronounced when the number is fur-
ther increased from 4 to 6. Therefore, considering
computational efficiency, we use 6 rationales in our
experiments.



AddSub

Question

There were 28 bales of hay in the barn . Tim stacked bales in the barn today . There are now 54 bales of
hay in the barn . How many bales did he store in the barn ?

Maximum RD

There were 28 bales of hay in the barn. Tim stacked bales in the barn today. There are now 54 bales of hay
in the barn. How many bales did he store in the barn? He must have stored 26 bales. —> 26

Minimum RD

We know that there were 28 bales of hay in the barn. We know that Tim stacked bales in the barn today.
We know that there are now 54 bales of hay in the barn. So, how many bales did Tim store in the barn?
We can solve this problem by using basic algebra. First, we need to create a variable to represent the
number of bales that Tim stored in the barn. We will use the letter "x" to represent this variable. Next, we
need to create an equation that represents the information —> 26

API judgement

7 9 Rationale 1: Score: 7 Strengths: - Provides a direct and concise answer to the question by calculating
the difference between the initial and final number of bales. Weaknesses: - Lacks explanation or reasoning
behind the calculation. - Could benefit from more context or steps to show the process of arriving at the
solution. Rationale 2: Score: 9 Strengths: - Demonstrates a clear step-by-step approach using algebra to
solve the problem. - Provides thorough explanations and sets up an equation to represent the situation
accurately. - Offers a more detailed and structured response compared to Rationale 1. Weaknesses: -
Could further enhance clarity by breaking down complex steps into simpler terms for better understanding.
Comparison: Rationale 2 outperforms Rationale 1 due to its comprehensive and structured approach. In
conclusion, Rationale 2 offers a higher quality response by incorporating algebraic methods and providing
detailed reasoning, earning it a higher score in this evaluation.

Date Understanding

Question

The deadline is Jun 1, 2021, which is 2 days away from now. What is the date 10 days ago in
MM/DD/YYYY? Which choice is true? Answer choices: (A) 06/24/2021, (B) 04/06/2021, (C)
04/29/2021, (D) 05/21/2021, (E) 05/20/2021.

Maximum RD

The deadline is Jun 1, 2021, which is 2 days away from now. So, 10 days ago would be May 21, 2021.
Therefore, the answer is (D). —> E

Minimum RD

Jun 1, 2021 is 2 days away from now. 2 days ago would be May 30, 2021. 10 days ago from May 30,
2021 would be May 20, 2021. Therefore, the answer is (E) 05/20/2021. —> E

API judgement

7 9 Rationale 1: Score: 7 Explanation: This rationale correctly identified that the deadline is on Jun 1,
2021, which is 2 days away from the current date. The final answer choice selected was incorrect, but the
reasoning process was logical and clear. Rationale 2: Score: 9 Explanation: This rationale not only
correctly identified the current date and calculated 10 days ago accurately but also provided a step-by-step
breakdown of the calculations. Comparison: Rationale 2 outperformed Rationale 1 due to its more
detailed and coherent explanation. Rationale 2 not only provided the correct answer but also presented the
steps involved in reaching that answer clearly. Rationale 1, although accurate in its calculation, lacked the
detailed breakdown that Rationale 2 offered.

Table 7: Example of Selected rationale and API judgement.

15



Multiarith

Question

For Halloween Debby and her sister combined the candy they received. Debby
had 32 pieces of candy while her sister had 42. If they ate 35 pieces the first
night, how many pieces do they have left?

Maximum RD

Debby took 24 pictures at the zoo, and then she took 12 more at the museum,
so she took a total of 36 pictures. If she later deleted 14 pictures, she would
have 36 - 14, or 22 pictures. —> 22

Minimum RD

Debby took 24 pictures at the zoo and 12 at the museum. That’s a total of 36
pictures. If she later deleted 14 of the pictures, she would still have 22 pictures.
—>22

API judgement

7 9 Rationale 1: The rationale correctly identifies the total number of pictures
Debby took (36) and subtracts the number she deleted (14) to find the remaining
amount. The explanation is clear and concise, making it easy to follow the logic.
However, it could be improved by explicitly stating the final answer instead
of just showing the calculation. Rationale 2: This rationale also correctly
calculates the total number of pictures, mentions the deletion process, and
provides the final answer. In addition to the clear logic, it includes a better
structure with separate lines for the calculations, making it easier to read and
understand. Overall, Rationale 2 is rated higher due to its better organization
and presentation of information. While Rationale 1 is also accurate, it lacks the
clarity and structure of Rationale 2.

Strategy QA

Question

Would toast for a vegan have margarine instead of butter?

Maximum RD

Toast is bread that has been heated until it is crisp. Bread is made from flour,
water, yeast, and salt. Flour is made from wheat. So, no, toast would not have
margarine instead of butter. —> Yes

Minimum RD

First, what is veganism? Veganism is the practice of abstaining from the use of
animal products, particularly in diet, and an associated philosophy that rejects
the commodity status of animals. So, a vegan does not eat any animal products.
This includes, but is not limited to, meat, poultry, fish, dairy, eggs, and honey.
Now, let’s think about toast. Toast is a quick and easy breakfast food that can be
made with just a few ingredients. Bread and butter are the two main ingredients
in toast. Bread is vegan. There are many —> Yes

API judgement

6 9 Rationale 1 provides a basic explanation of veganism and the restrictions it
entails in terms of avoiding animal products. It correctly points out that a vegan
would not consume butter due to it being an animal product. However, the ratio-
nale lacks a direct answer to the question regarding margarine as an alternative
for vegans. On the other hand, Rationale 2 concisely explains the ingredients
of toast and clearly states that toast would not have margarine instead of butter.
It directly addresses the question by explaining that toast consists of basic
plant-based ingredients and does not require butter or margarine. Therefore,
Rationale 2 scores higher for providing a more straightforward and accurate
response to the given question compared to Rationale 1.

Table 8: Example of Selected rationale and API judgement.
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Single Eq

Question

Sally had 760 quarters in her bank. She spent 418 of her quarters. How many quarters does she
have now ?

Maximum RD

Sally has 760 quarters in her bank. She spends 418 of her quarters. That means she has lost 418
quarters. So we have to subtract 418 from 760. 760-418=342 Therefore, Sally has 342 quarters
left in her bank. —> 342.0

Minimum RD

Sally had 760 quarters in her bank. She spent 418 of her quarters. This means that Sally now has
760 - 418 = 342 quarters in her bank. —> 342.0

API judgement

5 7 Rationale 1: The rationale correctly identifies the initial number of quarters Sally had, the
amount she spent, and calculates the remaining quarters accurately. Rationale 2: This rationale
also correctly identifies the initial and remaining quarters but presents the solution more concisely
compared to Rationale 1. Overall, Rationale 2 is rated higher (7) due to its clarity and conciseness,
while Rationale 1 is rated at 5 as it provides the correct solution but in a slightly more convoluted
manner. Both solutions correctly arrive at the answer, but Rationale 2 presents the information in
a more straightforward and efficient way.

Tracking shuffled

objects

Question

Alice, Bob, and Claire are playing a game. At the start of the game, they are each holding a ball:
Alice has a black ball, Bob has a brown ball, and Claire has a blue ball. As the game progresses,
pairs of players trade balls. First, Bob and Claire swap balls. Then, Alice and Bob swap balls.
Finally, Claire and Bob swap balls. At the end of the game, Bob has the Which choice is true?
Answer choices: (A) black ball, (B) brown ball, (C) blue ball.

Maximum RD

First, Bob and Claire swap balls. This means that Bob now has the blue ball, and Claire has the
brown ball. Then, Alice and Bob swap balls. This means that Alice now has the brown ball, and
Bob has the black ball. Finally, Claire and Bob swap balls. This means that Claire now has the
black ball, and Bob has the blue ball. At the end of the game, Bob has the blue ball. Therefore,
the correct answer is (C). — B

Minimum RD

output:" After Bob and Claire swap, Claire has the brown ball and Bob has the blue ball. Then,
after Alice and Bob swap, Alice has the brown ball and Bob has the black ball. Finally, after
Claire and Bob swap, Claire has the black ball and Bob has the brown ball. Therefore, answer
choice B, Bob has the brown ball, is correct. — B

API judgement

7 9 Rationale 1 provides a clear and logical explanation of how the ball swapping between
the players leads to Bob ending up with the blue ball. The rationale demonstrates a good
understanding of the question and effectively leads to the correct answer. Rationale 2 also
correctly follows the ball swapping sequence and provides a coherent explanation, leading to
the conclusion that Bob ends up with the brown ball. The explanation is concise and clear, with
proper transitions between the steps. This rationale also exhibits a good grasp of the question
and leads to the correct answer smoothly. When comparing the two rationales, Rationale 2
receives a higher score due to its more concise and straightforward explanation. Additionally,
Rationale 2 has a lower perplexity value, indicating more concise reasoning. However, both
explanations ultimately reach the correct answer and demonstrate a solid understanding of the
game’s mechanics.

Table 9: Example of Selected rationale and API judgement.
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