
Towards Efficient CoT Distillation: Self-Guided Rationale Selector for Better
Performance with Fewer Rationales

Anonymous ACL submission

Abstract

Chain-of-thought (CoT) distillation aims to en-001
hance small language models’ (SLMs) reasoning002
by transferring multi-step reasoning capability003
from the larger teacher models. However, ex-004
isting work underestimates rationale quality, fo-005
cusing primarily on data quantity, which may006
transfer noisy or incorrect information to the stu-007
dent model. To address the above issues, we008
proposed Model-Oriented Rationale Selection009
Distillation (MoRSD), which can discern and010
select high quality rationales for distillation to011
improve performance further. We further propose012
a Rationale Difficulty (RD) metric to measure the013
ability of the student model to generate the cor-014
rect answer under a given rationale. Compared to015
the baseline, we achieved 4.6% average improve-016
ment on seven datasets over three tasks, using017
fewer rationales by controlling their accuracy, di-018
versity, and difficulty. Our results reveal that a019
small portion of the high quality rationales can020
enhance the reasoning ability of student models021
than the entire dataset. Our method promises022
to be a possible solution for efficient CoT dis-023
tillation. Our code will be released to facilitate024
reproducibility and future research in data effi-025
ciency.026

1 Introduction027

Large language models (LLMs) such as LLaMA,028

GPT-4, Gemini, DeepSeek-V3, and DeepSeek-R1,029

have achieved remarkable performance in various030

reasoning tasks by instructing them to think step-031

by-step (Touvron et al., 2023; OpenAI et al., 2024;032

Zhang et al., 2024a; DeepSeek-AI et al., 2024, 2025;033

Brown et al., 2020; Sun et al., 2021). Engaging in034

reasoning through logically coherent steps has sub-035

stantially enhanced performance in tasks such as036

mathematical problem solving and question answer-037
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Figure 1: Vanilla CoT Distillation and MoRSD. Differ-
ent from previous studies that mostly use a), c), and d),
we propose b) and e) to select effective data for specific
student models to improve performance further.

ing. These intermediate reasoning steps are referred 038

to as rationale (Wei et al., 2023). 039

To achieve emergent reasoning abilities, LLMs 040

require large-scale parameters, making SLMs inher- 041

ently limited (Wei et al., 2023; Kojima et al., 2023; 042

Fu et al., 2023). CoT distillation has become a key 043

technique for enhancing SLM reasoning by transfer- 044

ring rationales from stronger teachers (Wang et al., 045

2023b; Li et al., 2023), showing strong results on 046

arithmetic and symbolic tasks (Ho et al., 2023; Hsieh 047

et al., 2023; Ying et al., 2024; Kim et al., 2024). 048

Beyond basic distillation, recent works explore con- 049

sistency enforcement (Chen et al., 2023), cross-task 050

supervision (Li et al., 2024), and tailored strategies 051

(Zhang et al., 2024b). Mentor-KD (Lee et al., 2024) 052

introduces intermediate models for better supervi- 053

sion, MCC-KD promotes consistent yet diverse rea- 054

soning (Chen et al., 2023), while Lion (Kim et al., 055

2024) and TA-in-the-Loop (Zhang et al., 2024b) use 056

adversarial and auxiliary guidance, respectively. 057

However, these approaches often require addi- 058

tional models, discard useful failures, or introduce 059

iterative overhead—resulting in high computational 060

costs and limited flexibility. And many works still 061
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rely on enlarging the rationale set (increasing from062

1 to 8 per instance (Ho et al., 2023)) to improve063

performance, while overlooking rationale quality.064

Such data scaling ignores variance in correctness065

and diversity, risking the distillation of noisy signals.066

Furthermore, most approaches neglect the speci-067

ficity of student models, failing to adapt to their068

strengths or limitations. These limitations motivate069

our focus: how to select a small set of high-quality,070

student-aware rationales for efficient and effective071

distillation.072

To overcome these limitations, we propose073

MoRSD, a simple but effective method that enables074

student models to customize their distillation data075

autonomously. As presented in Figure 1, MoRSD076

consists of four stages: 1) rationale generation, 2)077

self-evaluation, 3) rationale selection and 4) distil-078

lation. The rationale generation stage prompts the079

teacher LLM to generate the rationale dataset. In080

the self-evaluation stage, we calculate rationale dif-081

ficulty (RD) to measure the contribution of a given082

rationale to distillation. Specifically, RD measures083

the student’s ability to generate the correct answer084

given a question and rationale. Those with smaller085

RD are considered more beneficial to generate the086

corresponding answer.087

Then, we first apply model-agnostic accuracy se-088

lection and diversity selection to the rationale dataset.089

Accuracy selection adjusts the proportion of correct090

rationales in the dataset to achieve the given accu-091

racy threshold, diversity selection involves pairwise092

Jaccard similarity to eliminate similar rationale in093

the dataset. Finally, we use difficulty selection to se-094

lect the rationales with smaller RD. Since difficulty095

selection uses perplexity-based RD, a model-specific096

metric, it enables the student model to customize097

its distillation data during the difficulty selection.098

Through these stages, we obtain a small amount of099

high-quality rationale data to improve distillation per-100

formance for specific student models. In summary,101

our contributions are three-fold:102

1. We propose MoRSD, a simple and effective103

method that performs better with fewer rationales.104

Prove that using a small portion of the dataset can105

outperform using the entire dataset in enhancing the106

reasoning ability of student models.107

2. We propose a model-specific metric, rationale108

difficulty, to measure rationale contribution for dis-109

tillation, enabling student models to customize data 110

based on their training requirements. 111

3. We conducted extensive experiments on seven 112

datasets covering three distinct tasks. The results 113

demonstrate that our method consistently outper- 114

forms the baselines, achieving an average accuracy 115

improvement of 4.6%. 116

2 Related work 117

2.1 Chain-of-thought (CoT) Distillation 118

Chain-of-thought prompting delivers strong perfor- 119

mance but typically benefits from large models with 120

many parameters, resulting in high computational 121

costs and limited deployment (Hoffmann et al., 2022; 122

Chowdhery et al., 2022). Ho et al. (2023) first in- 123

troduced fine-tune-CoT, a method that transfers the 124

multi-step reasoning ability of LLMs to smaller mod- 125

els through fine-tuning. Some approaches use in- 126

context learning to implicitly transfer knowledge 127

(Rajani et al., 2019; Wang et al., 2023a), while others 128

treat rationale generation as a multi-task fine-tuning 129

objective (Hsieh et al., 2023). Furthermore, Li et al. 130

(2024) distill the rationale into multiple experts in 131

low-rank adaptation (LoRA), decoupling CoT rea- 132

soning from the student model. Zhang et al. (2024b) 133

enhances knowledge transfer through active learning 134

and explanation-guided sample selection. Some re- 135

searchers identify influential tokens using gradient 136

attribution techniques such as saliency maps to guide 137

the student model (Ballout et al., 2024). Recently, 138

a study found that only a small fraction (4.7%) of 139

CoT steps are critical for performance (Dai et al., 140

2024), which closely matches our findings. Bus- 141

bridge et al. (2025) introduce a distillation scaling 142

law to optimize compute allocation between teacher 143

and student models, providing efficient distillation 144

strategies that outperform supervised pretraining in 145

certain cases. 146

2.2 Data Efficiency in Language Models 147

Data efficiency means that the model achieves high 148

performance with a smaller amount of training data, 149

maximizing the value derived from limited data. 150

Yang et al. (2024) shows that with only 1,000 care- 151

fully selected prompts and responses, models can 152

learn to follow specific formats and generalize effec- 153

tively to new tasks. Chen et al. (2024) used GPT-3.5 154

2



Answer #1
RD #1
55.21

Rationale #1

Answer #2
RD #2
4.93

Rationale #2

Answer #3
RD #3
12.66

Rationale #3

Answer #n
RD #n
3.55

Rationale #n

b) Self-evaluation

Q: There were 28 bales of hay in the
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store in the barn ?
A: Let's think step by step.

Rationale #2    There were 28 bales
of hay in the barn. This means
that.... So, Tim must have stored 26
bales of hay in the barn today.
...Therefore, he stored 26 bales in
the barn.

Rationale #n There were 28 bales of
hay in the barn . Tim stacked bales in
the barn today. ... There are now 26
bales of hay in the barn. 

Rationale #3    There were 28 bales
of hay in the barn. Tim stacked bales
in the barn today ......Therefore, he
stored 26 bales in the barn.

Question: There were 28 bales of
hay in the barn . Tim stacked bales in
the barn today. There are now 54
bales of hay in the barn. How many
bales did he store in the barn ?
Answer: 26

Rationale #1 We know that there
were 28 bales of hay in the barn. ...
Therefore, the answer is 30.
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Figure 2: Detailed overview of MoRSD. MoRSD comprises four stages: a) Rationale generation prompts a teacher
model to generate all the data required for the rationale selection stage (blue). b) Self-evaluation, which uses the
rationale difficulty (RD) to evaluate all generated rationales. Those rationales with smaller RD are considered helpful
for distillation. c) Rationale selection, which constructs the final dataset for distillation by controlling the original
dataset’s accuracy, diversity, and difficulty. d) Distillation, which fine-tunes the student model using the constructed
dataset.

to score data difficulty, and Mekala et al. (2024) pro-155

posed Learning Percentage (LP) for difficulty assess-156

ment, both reduced data needs for instruction tuning.157

LIMA achieves strong performance with few exam-158

ples, generalizing well to unseen tasks and requiring159

minimal instruction tuning (Zhou et al., 2023). Yue160

et al. (2024) uses a multi-round distillation frame-161

work with an oracle LLM to select challenging in-162

structions for student models, reducing the need for163

extensive training samples. Recently, Ye et al. (2025)164

proposed the "Less is More Reasoning Hypothesis"165

(LIMO), demonstrating that complex reasoning can166

be induced with few examples when the base model167

has pre-trained domain knowledge. Muennighoff168

et al. (2025) introduced a test-time scaling approach169

using a curated dataset (s1K) and budget forcing,170

enabling the Qwen2.5-32B-Instruct model to outper-171

form OpenAI’s o1-preview (OpenAI, 2024) on math172

reasoning tasks by 27% with controlled test-time173

compute.174

3 Method 175

3.1 Problem definition 176

CoT distillation first requires prompting the teacher 177

model to generate rationales related to the training 178

data. Let D = {(q1, a1) , (q2, a2) , . . . , (qN , aN )} 179

denote the complete dataset, where each (qi, ai) rep- 180

resents a question-answer pair and the label is avail- 181

able. Then, a teacher model T
(
θT

)
(the parameter 182

θT is inaccessible) is prompted to generates m dis- 183

tinct rationale
{
r̂1i , r̂

2
i , . . . , r̂

m
i

}
where each r̂ji rep- 184

resents a separate rationale for the question qi. The 185

complete dataset with these rationales is denoted as: 186

Dfull =

{
qi,

{
(r̂1i , â

1
i ), (r̂

2
i , â

2
i ), . . . , (r̂

j
i , â

j
i )
}}

(1) 187

Where i = 1, 2, . . . , N, j = 1, 2, . . . ,M . The 188

performance of the student model S on the test set 189

Dtest can be denoted as: 190
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Perf (S,Dtest ) =
1

|Dtest |
∑

(q,a)∈Dtest

I(S(q) = a)

(2)191

Our goal is to select a subset Dselected ⊆ Dfull from192

Dfull and make the performance of the student model193

SDselected , distilled using Dselected on the test set Dtest,194

outperform that of the student model SDfull distilled195

using the full data:196

D∗
selected = arg max

Dselected⊆Dfull
Perf (SDselected ,Dtest )

(3)197

To achieve the above goal, we designed a four-198

stage distillation method MoRSD. Its details will be199

described in the following sections.200

3.2 Rationale generation201

To obtain the dataset for distillation, we adopt the202

same generation method as in previous studies(Ho203

et al., 2023). As shown in the upper left of Figure204

2, we use a fixed template: "Q: ⟨qi⟩. A: Let’s think205

step by step. ⟨r̂i⟩ Therefore, the answer is ⟨âi⟩".206

By applying this process to all data points in D, we207

obtain the full dataset Dfull in Eq 1.208

3.3 Self-evaluation209

After building the full dataset Dfull in Section 3.2,210

we use rationale difficulty (RD) to score each ratio-211

nale rji in the dataset. RD is a metric based on the212

perplexity of the student model, where perplexity213

is the exponential transformation of the normalized214

Negative Log-Likelihood (NLL), given an input se-215

quence X = (x1, x2, . . . , xN ) and a target sequence216

Y = (y1, y2, . . . , yM ), the perplexity can be written217

as:218

PPL(yj |X) = exp

(
− 1

M

M∑
j=1

log Pr(yj |x1, ..., xN , yj−1)

)
(4)219

Since the student model has been pre-trained or220

supervised-fine-tuned (SFT) using NLL loss on a221

large corpus of text, its perplexity can indicate the222

quality of the rationales generated by the teacher.223

Therefore, we define RD as the ratio of the change224

in PPL of the student model before and after a given225

rationale:226

RD(r̂ji , qi) =
PPL(θS)(ai|r̂

j
i , qi)

PPL(θS)(ai|qi)
. (5) 227

For rationale r̂ji , if the student model achieves 228

low RD(r̂ji , qi), it suggests that the rationale is more 229

beneficial for the student in understanding the corre- 230

sponding question and will be selected in difficulty 231

selection. 232

3.4 Rationale selection 233

After calculating the RD for each rationale in section 234

3.3, this section will select a subset Dselected from 235

the full dataset Dfull based on the accuracy, diversity, 236

and difficulty of the rationale. Therefore, we divide 237

the rationale selection process into three sequential 238

parts: 1) Accuracy Selection, 2) Diversity Selection, 239

and 3) Difficulty Selection. 240

3.4.1 Accuracy selection 241

The most important characteristic of rationale is cor- 242

rectness. Different from (Ho et al., 2023; Li et al., 243

2024), we first divide the rationale into correct and 244

incorrect parts by comparing the final prediction âi 245

of the teacher model with the ground truth ai. We 246

then filter out negative samples to ensure the original 247

dataset meets a given accuracy threshold δ. 248

Then, we filter the rationales sequentially from the 249

original dataset such that the average accuracy of the 250

filtered dataset Daccurate reaches δ. The calculation is 251

as follows: 252

AvgAcc =
1

|Daccurate|
∑

(r̂ji ,âi)∈Daccurate

acc
(
r̂ji , âi

)
≥ δ

3.4.2 Diversity selection 253

The diversity of rationales is important for distilla- 254

tion performance. However, we found that even with 255

different sampling temperatures, the teacher model 256

often generates similar rationales. To address this, 257

we select diverse rationales by first splitting them into 258

N-grams (N=3 in our experiments). Then, we cal- 259

culate the pairwise Jaccard similarity between these 260

N-gram sets. For each rationale rji , we decompose it 261

into segments Rj
i and use the Jaccard similarity score 262

to compare and identify the most similar rationales. 263
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Method Params Single Add Multi Strategy GSM8K SVAMP Date Shuffled
Eq Sub Arith QA Understanding Objects

Random - 0.00 0.00 0.00 50.00 0.00 0.00 17.12 33.33

Teacher: InstructGPT 175B (text-davinci-002)

ZERO-SHOT-COT 175B 82.24 78.99 78.89 53.57 40.26 64.67 73.87 50.22

Student: Flan-T5-{Small, Base, Large, XL}

VANILLA

COT DISTILLATION

60M 7.24 10.92 17.22 56.04 2.58 10.67 84.68 62.22
250M 9.21 10.92 21.11 60.84 4.40 12.33 84.68 67.11
780M 10.52 15.13 20.00 61.72 7.12 13.67 87.39 89.33

3B 20.39 11.76 26.67 65.37 7.60 12.33 82.9 43.11

MULTI-TASK

COT DISTILLATION

250M 5.22 8.40 8.33 52.83 6.00 2.33 80.18 31.55
780M 11.89 16.81 16.81 50.09 6.36 9.00 79.23 35.96

3B 22.36 36.9 17.22 52.11 7.73 11.33 81.93 52.46

MODE-COTD
250M 5.26 7.56 13.89 56.18 6.11 5.33 85.55 35.55
780M 10.52 10.92 13.89 56.47 7.28 11.33 89.19 62.22

3B 23.33 24.37 23.33 60.99 9.78 17.33 93.69 70.67

MORSD (OURS)

60M 9.21 10.92 22.78 60.26 6.98 11.33 82.88 83.56
250M 9.21 12.61 24.44 65.65 6.98 13.67 86.49 99.56
780M 13.16 16.81 25.00 65.65 9.71 15.00 89.19 100.00

3B 21.71 24.37 31.67 65.65 10.20 23.67 91.00 100.00

Table 1: MoRSD Performance. Accuracy (%) of MoRSD and baseline methods on 8 tasks under various settings.
Random refers to random-guess performance derived based on the number of choices in multi-choice tasks. The best
method for each setting is marked in bold . For Zero-shot-CoT, we use the same prompt setting as (Ho et al., 2023).

(rmi , rni ) = argmax
1≤m,n≤M,m̸=n

|Rm
i ∩Rn

i |
|Rm

i ∪Rn
i |

(6)264

We then randomly keep one form the two ratio-265

nales from Eq. 6 and discard the other. This process266

repeats until we collect a total of K rationales (set267

to 6 in our experiments). Afterward, we have a di-268

verse dataset, Ddiverse, ready for the final difficulty269

selection step.270

3.4.3 Diffculty selection271

After obtaining Ddiverse, we need to filter and retain272

rationales that are helpful for distillation based on273

RD. As mentioned in section 3.3, rationale with low274

RD is considered helpful for distillation, so in the275

difficulty selection, we select the k (k set to 3 in276

our experiments) samples with the lowest RD in the277

dataset:278

Dselected =

{
qi,
{
(r̂1i , â

1
i ), (r̂

2
i , â

2
i ), . . . , (r̂ki , â

k
i )
}}

(7)279

where RD
(
r̂1i , qi

)
≤ RD

(
r̂2i , qi

)
≤ · · · ≤ 280

RD
(
r̂ki , qi

)
, i = 1, 2, . . . , N∗, j = 1, 2, . . . ,M∗. 281

3.5 Distillation 282

Then, we use Dselected to fine-tune the student model. 283

Similar to SFT, the objective function of distillation 284

can be written as follows: 285

L(θS) = −
∑

ri∈Dselected

1(ri) · log Pr (ai, r̂i | qi; θS) (8) 286

The final distilled student model Dselected is used 287

to verify the final performance according to Eq 2. 288

4 Experiment 289

4.1 Task and Datasets 290

Experiments were conducted on seven datasets re- 291

lated to three tasks: mathematical reasoning, ques- 292

tion answering, and temporal/spatial reasoning. In- 293

cluding StrategyQA (Geva et al., 2021) for common- 294

sense reasoning, Addsub (Hosseini et al., 2014), Mul- 295

tiarith (Roy and Roth, 2015), SVAMP (Patel et al., 296

2021), SingleEq (Koncel-Kedziorski et al., 2015) and 297
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Table 2: Performance of MORSD and baselines across two student models on four tasks. Best results for each
student model are in bold .

Method Student Strategy
QA SVAMP Date

Understanding
Shuffled
Object Average

MCC-KD FlanT5-Small 58.37 10.00 81.98 43.11 48.37
MENTOR-KD FlanT5-Small 59.97 10.67 83.78 82.67 59.27
MORSD (OURS) FlanT5-Small 60.26 11.33 82.88 83.56 59.51

MCC-KD FlanT5-Base 64.92 12.00 85.59 69.78 58.07
MENTOR-KD FlanT5-Base 65.21 11.33 87.39 93.78 64.43
MORSD (OURS) FlanT5-Base 65.65 13.67 86.49 99.56 66.34

GSM8K (Cobbe et al., 2021) for arithmetic math in-298

ference and Date Understanding (Srivastava et al.,299

2023), Tracking Shuffled Objects (Srivastava et al.,300

2023) for temporal/spatial reasoning. The details on301

partition training, testing sets, and other specificities302

are provided in the Appendix A.303

4.2 Baseline304

We provide a comparison of MoRSD (ours) with305

three baseline methods:306

• Vanilla CoT Distillation (Ho et al., 2023),307

where the student model is directly fine-tuned on308

the teacher-generated CoT rationales without addi-309

tional selection or filtering.310

• Multi-task CoT Distillation (Li et al., 2024),311

where the student model is fine-tuned on a combined312

dataset from multiple reasoning tasks.313

• MoDE-CoTD (Li et al., 2024), where the ratio-314

nales from different tasks are distilled into separate315

LoRA modules, enabling cross-task collaboration316

through task-specific parameter adaptation.317

• MCC-KD (Chen et al., 2023), which improves318

reasoning consistency by generating multiple ratio-319

nales per question and minimizing bidirectional KL-320

divergence between their answer distributions.321

• Mentor-KD (Lee et al., 2024), which uses a322

task-specific mentor model to enrich the distillation323

set with CoT annotations and soft labels, addressing324

data quality and label scarcity.325

4.3 Teacher and Student Models326

For the teacher models, we use GPT-3 175B (Brown327

et al., 2020), accessed via the OpenAI API, with328

Single
Eq

Add
Sub

Multi
Arith

SVAMP

Strategy
QA

Date 
Understanding

Shuffled 
Objects

(a)

Single
Eq

Add
Sub

Multi
Arith

SVAMP

Strategy
QA

Date 
Understanding

Shuffled 
Objects

(b)
MoRSD (ours) Vanilla MoDE-CoTD Fine-tune Multi-task

Figure 3: Comparison of the performance and the
rationale usage.

text-davinci-002 (Ouyang et al., 2022) as the de- 329

fault model unless otherwise specified. We employ 330

the instruction-tuned versions of T5 for the student 331

models, specifically Flan-T5-{Small, Base, Large} 332

(Chung et al., 2022). 333

5 Results 334

In this section, we report the performance of our 335

MoRSD and baseline methods on 7 benchmarks. We 336

compare our approach with baselines of different 337

model sizes. The performance on the test set demon- 338

strates the effectiveness of our approach, showing 339

that our method achieves better performance with 340

fewer samples. 341

5.1 MoRSD outperforms baselines across 342

different student models 343

The results in Table 1 and Table 2 show that 344

MoRSD consistently outperforms strong base- 345

lines across various student model sizes and rea- 346

soning tasks. On Flan-T5-Small, MoRSD notably 347
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Figure 4: Effect of dataset accuracy. The performances
of MoRSD on the MultiArith, Date Understanding, Strat-
egyQA and SVAMP datasets with different correctness
rates of the teacher generated rationales.
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Figure 5: Effect of rationale diversity. The performance
of MoRSD on four test sets with different rationale diver-
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improves results on challenging datasets such as348

SVAMP and Tracking Shuffled Objects, achieving349

11.33% on SVAMP (+3.73% over MoDE-CoTD)350

and 83.56% on Tracking Shuffled Objects, surpass-351

ing MoDE-CoTD (62.22%) and Multi-task CoT352

(31.55%). These improvements are obtained with353

fewer rationales, highlighting the effectiveness of354

selective rationale filtering over data quantity.355

Compared to multi-task and consistency-based356

methods like MCC-KD and Mentor-KD, MoRSD357

achieves comparable or better performance. On358

Flan-T5-Small, it reaches an average accuracy of359

59.51%, slightly above Mentor-KD (59.27%) and360

notably higher than MCC-KD (48.37%), demonstrat-361

ing that effective rationale selection can boost per-362

formance without extra supervision.363

As the student model scales up, MoRSD con-364

tinues to outperform baselines. On Flan-T5-365

Base, it achieves the highest average accuracy366

of 66.34%, exceeding Mentor-KD (64.43%) and367

MCC-KD (58.07%). Notably, MoRSD achieves368

near-perfect accuracy on temporal and spatial rea-369

soning tasks such as Tracking Shuffled Objects370
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Figure 6: Effect of rationale difficulty.The performance
of MoRSD using different samples selected by RD among
four test sets

(99.56%) and Date Understanding (86.49%), indi- 371

cating strong generalization. 372

5.2 Effect of rationale correctness and diversity 373

To assess how rationale accuracy affects distillation, 374

we varied dataset accuracy and measured student 375

performance. As shown in Figure 4, distillation im- 376

proves with higher accuracy, but gains plateau be- 377

yond a certain threshold. This indicates that accuracy 378

is crucial at lower levels, while its marginal benefit 379

diminishes as it increases. 380

The diversity of the rationale is also vital for dis- 381

tillation. To measure the degree of diversity among 382

rationales, we use the number of rationales remain- 383

ing after the Jacquard similarity filtering to measure 384

the diversity of the dataset. In simple terms, a smaller 385

number of remaining rationales after filtering indi- 386

cates a higher level of diversity in the dataset. As 387

illustrated in Figure 5, the performance of MoRSD 388

exhibits a corresponding improvement with increas- 389

ing diversity among the rationales, as observed in all 390

four different test sets. 391

5.3 Effect of rationale difficulty 392

To verify the effect of the rationale difficulty (RD) on 393

distillation performance, we conducted experiments 394

using samples of varying sizes selected after sorting 395

based on RD. As illustrated in Figure 6, the distil- 396

lation performance of the student model improves 397

as the RD of the selected data decreases, achieving 398

optimal performance when the RD is at its smallest. 399

This trend is consistent across multiple test sets, in- 400

cluding StrategyQA and Tracking Shuffled Objects, 401

demonstrating that lower RD values correlate with 402

more effective distillation outcomes. The results un- 403

derscore the efficacy of the proposed RD indicator 404
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Method Single
Eq

Add
Sub

Multi
Arith

Strategy
QA SVAMP Date

Understanding
Shuffled
Objects

MORSD 9.21 10.92 22.78 60.26 11.33 82.88 82.22
w/o ACCURACY SEL. 5.92 -3.29 10.08 -0.84 15.00 -7.78 57.21 -3.05 5.67 -5.66 74.77 -8.11 89.33 +7.11
w/o DIVERSITY SEL. 9.21 -0.00 10.92 -0.00 15.00 -7.78 59.64 -0.62 4.67 -6.66 82.88 -0.00 67.56 -14.66
w/o DIFFICULTY SEL. 1.97 -7.24 8.40 -2.52 15.56 -7.22 60.26 -0.00 7.33 -4.00 76.58 -6.30 82.22 -0.00

Table 3: Ablation study on Flan-T5-Small. Results of ablation study about Accuracy selection, Diversity selection,
and Difficulty selection on test sets.

in identifying and prioritizing data that is most bene-405

ficial for the distillation process. This finding high-406

lights the importance of RD in enhancing the overall407

performance of the student model by focusing on the408

most informative and manageable rationales.409

5.4 Ablation study410

In this section, we conduct an ablation study on411

the Flan-T5-Small model to assess the contributions412

of accuracy, diversity, and difficulty selection in413

MoRSD. As shown in Table 3, removing any com-414

ponent leads to notable performance drops. Accu-415

racy selection is critical—its removal causes large416

degradations on tasks like SingleEq (−35.7%) and417

SVAMP (−38.1%). Diversity selection is espe-418

cially important for reasoning-heavy tasks such as419

MultiArith (−31.2%) and Tracking Shuffled Ob-420

jects (−44.3%), helping reduce redundancy. Diffi-421

culty selection prioritizes informative rationales, and422

its absence also leads to significant drops, includ-423

ing −44.0% on SingleEq and −26.9% on SVAMP.424

These results indicate that each selection stage plays425

a distinct and complementary role in improving dis-426

tillation effectiveness. Overall, all three components427

are essential for maximizing student performance.428

5.5 Analyse of selected rationale429

In order to compare the quality of rationales screened430

by different methods, we introduced the ChatGPT431

API as a referee to further explore the characteristics432

of different rationales selected using RD. By stitch-433

ing different rationales together and prompting the434

referee to judge which of the two is better and give435

them a score of 1-10, we visualized these results as436

the winning frequency of those selected with the min-437

imum RD and the maximum RD. As presented in438

Figure 7, to avoid possible bias of the judges due to439

the position of the rationale in the prompt, we judged440
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Figure 7: Effect of selected rationale. The ChatGPT API
was used as a referee, prompted to compare two rationales
and rate them on a scale of 1 to 10. Each rationale pair
(maximum RD and minimum RD) was judged twice to
avoid position bias, with the rationale positions swapped
in each evaluation.

each maximum RD-minimum RD pair twice and ex- 441

changed the position of the rationale in the prompt 442

in each judgment. From the results, we can conclude 443

that the quality of rationales with lower RD attributes 444

is higher than those with higher RD attributes on all 445

datasets. This further proves the effectiveness of the 446

RD in selecting high-quality rationales. 447

6 Conclusion 448

In this work, we propose MoRSD, an efficient CoT 449

distillation method that enhances the performance of 450

small language models using fewer rationales. By 451

introducing a self-guided Rationale Difficulty metric, 452

MoRSD enables the autonomous selection of high- 453

quality rationales, effectively addressing challenges 454

related to the rationale quality. Experiments across 455

seven datasets demonstrate an average accuracy im- 456

provement of 4.6% over the baseline. MoRSD out- 457

performs full dataset distillation with a small, tai- 458

lored set of rationales, providing a robust solution 459

for efficient CoT distillation and advancing knowl- 460

edge transfer in a more efficient manner. 461
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Limitations462

Although MoRSD achieves significant improve-463

ments on the Flan-T5 series but is not universally464

applicable. First, the selection based on rationale465

difficulty requires the student model to have a ba-466

sic capability, making it unsuitable for models with-467

out fine-tuning. Applying MoRSD to such mod-468

els would require instruction fine-tuning, increasing469

computational costs. Second, selecting high-quality470

rationales requires filtering a large dataset from the471

teacher model, matching the computational cost of472

traditional CoT distillation. Future work could focus473

on efficient rationale generation. Moreover, the selec-474

tion method relies on the student model’s perplexity,475

which may introduce bias due to its parameter size.476

While small RD identifies most high-quality samples,477

it cannot exclude all low-quality rationales, poten-478

tially affecting distillation results.479
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A Appendix725

A.1 Datasets726

A summary of the datasets used in our experiments,727

along with their original licenses, can be found in728

Appendix Table 4. We utilize the 7 datasets from729

(Kojima et al., 2023) to evaluate reasoning perfor-730

mance.731

Dataset Training Samples Test Samples Data Split License

SingleEq 356 152 70:30 None
AddSub 276 119 70:30 Unspecified
MultiArith 420 180 70:30 Unspecified
SVAMP 700 300 70:30 MIT
Date Understanding 258 111 70:30 Apache-2.0
Tracking Shuffled Objects 525 225 70:30 Apache-2.0
StrategyQA 1603 687 70:30 Apache2.0

Table 4: Description of datasets used in our study.

A.2 Experimental details732

All experiments were conducted on a cluster of733

NVIDIA V100 GPUs. We strictly controlled the734

hyperparameters for all datasets. For each experi-735

ment, we used a batch size of 8 and a maximum of736

10,000 steps, which was found to be sufficient for the737

test accuracy to plateau. We report the best accuracy738

achieved within these 10,000 steps.739

A.3 KDE visualization of API scores740

In Section 5.5, we used the ChatGPT-API to score741

rationales on a scale of 1 to 10 and employed KDE742

to visualize the score distributions for rationales se-743

lected by different methods. The KDE distributions744

for rationales selected via the minimum RD approach745

(red curves) show distinct advantages across tasks,746

with scores concentrated between 6 and 8, indicat-747

ing higher and more consistent quality compared to748

other methods. The mean values of these distribu-749

tions (dashed red lines) are consistently higher than750

those of maximum RD rationales (dashed blue lines),751

further supporting the superiority of the minimum752

RD method.753

However, tasks like StrategyQA and Tracking754

Shuffled Objects exhibit longer tails in the mini-755

mum RD distributions, indicating a small propor-756

tion of lower-quality outliers. Despite this variability,757

the minimum RD method generally selects higher-758

quality rationales, making it a more effective ap-759

proach for ensuring better overall quality in most760

cases.761
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Figure 8: KDE plot of scored selected rationale. Kernel
Density Estimation (KDE) plot, where the ChatGPT API
is employed as a referee to investigate the characteristics
of various rationales selected through RD. By combining
different reasons and assigning them scores ranging from
1 to 10..

A.4 RD and length 762

Figure 9 illustrates the relationship between rationale 763

length and tokenized rationale length for different 764

model sizes of Flan-T5 {small, base, large}. As 765

the rationale length increases, the tokenized ratio- 766

nale length grows correspondingly, with a more pro- 767

nounced increase observed in larger model versions. 768

For the Flan-T5-small model, the rate of growth 769

is moderate, indicating that smaller models require 770

fewer tokens for shorter rationales. In contrast, the 771

Flan-T5-base model shows a steeper increase in to- 772

kenized length as rationale length grows, reflecting 773

its enhanced capacity to handle more complex rea- 774

soning. The Flan-T5-large model exhibits the most 775

significant acceleration in tokenized rationale length, 776

suggesting that larger models, with their greater ca- 777

pacity, demand significantly more tokens for longer 778

rationales. This trend highlights the models’ scal- 779

ing behaviour, where larger models can handle more 780

extensive rationales, necessitating an increase in the 781

number of tokens for effective representation. Over- 782

all, the results underscore the positive correlation 783

between rationale length and tokenized length across 784

all model sizes, with the rate of increase being more 785

pronounced in larger models. 786

A.5 Transferability of rationale selected by RD 787

To verify whether the RD calculated by different 788

models can also improve the distillation performance 789

on other models, we use Flan-T5-Small, Base, Large 790

and the larger LLamA2-7b-hf to calculate their re- 791

spective RDs and use them to fine-tune the smaller 792
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Prompt for Performance Evaluation

System Prompt You are a helpful and precise assistant for checking the quality of the rationale
based on a given question.

Task Discribe

We would like to request your feedback on the performance of two rationales
in response to the question displayed above. Please rate the rationales. Each
rationale receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first output a single line containing
only two values indicating the scores for rationale 1 and rationale 2, respectively.
The two scores are separated by a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation and fully compare the quality
of the two rationales, avoiding any potential bias and ensuring that the order in
which the rationale was presented does not affect your judgment.

Prompt
[Question] {question} [The Start of Rationale1] {rationale_1}
[The End of Rationale1] [The Start of Rationale2] {rationale_2}
[The End of Rationale2] [System] {TASK_DISCRIBE}

Table 5: The prompt we used to request ChatGPT to evaluate the rationales.

Cal RD model
Train model AddSub SingleEq StrategyQA

Flan-T5 p-value Flan-T5 p-value Flan-T5 p-value Flan-T5 p-value Flan-T5 p-value Flan-T5 p-valueSmall Base Small Base Small Base

Flan-T5 Small 4.77 – -1.13 3.8e−7 3.28 – -0.72 0.14 52.76 – -1.39 0.02

Flan-T5 Base +1.04 1.5e−5 5.64 – +0.22 0.54 4.72 – +1.33 6.2e−4 58.39 –

Flan-T5 Large +1.36 2.3e−6 +1.67 6.4e−9 +0.16 0.45 +0.19 0.97 +0.58 0.02 +0.55 6.1e−7

LLamA2-7B-hf +1.40 0.001 +1.28 0.141 +0.66 0.062 +0.87 0.012 +0.39 0.223 +0.80 0.082

Table 6: Transferability analyse for RD. Flan-T5-{Small, Base, Large} and LLaMA2-7B are used to calculate their
RDs, which are then used to distill Flan-T5-Small. Conversely, the RD from Flan-T5-Small, Large and LLaMA2-7B is
used to distill Flan-T5-Base.

Flan-T5-Small and use the RD calculated by Flan-793

T5-Small to fine-tune the larger Flan-T5-Base model.794

The RD transferability analysis and wilcoxon signed-795

rank test in Table 6 reveals that RD transfer from796

different models (Flan-T5 variants and LLaMA2-7B)797

improves performance more on simpler tasks than on798

complex ones. For tasks like AddSub and SingleEq,799

RD transfer from Flan-T5 Base and Large results800

in notable improvements, with Flan-T5 Large show-801

ing increases of 1.36% in AddSub (p-value = 0.009)802

and 1.68% in SingleEq (p-value = 0.001). However,803

the gains are minimal for the more complex Strat-804

egyQA task, with Flan-T5 Large only improving805

performance by 0.58% (p-value = 0.269). Overall,806

the transfer of reasoning capabilities through RD807

(Rationale Distillation) proves to be more effective808

for relatively simple tasks, where smaller models809

benefit significantly from the distillation process. In 810

contrast, the impact of using larger models in such 811

tasks tends to be less pronounced. 812
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Figure 9: Comparison of RD Lengths

A.6 Prompt for evaluation 813

In this section, we provide the detailed prompt we 814

used for evaluating the performance of two rationales 815

for the same instruction as shown in Table 5 816
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A.7 Pattern Characteristics Comparison of817

Selected rationale818

In order to better compare the quality difference be-819

tween the maximum RD and minimum RD ratio-820

nales, we use ChatGPT’s API to compare them and821

give an explanation. As shown in Table 7 8 and 9,822

the primary advantage of the rationale with min RD823

over the rationale with max RD is its more detailed824

and coherent reasoning process. It clearly breaks825

down each step of the reasoning, providing explicit826

explanations for how the final conclusion is reached,827

which enhances both transparency and logical rigor.828

By systematically deconstructing the problem, the829

rationale with min RD allows readers to more easily830

follow the reasoning flow. In contrast, the rationale831

with max RD, while more concise, may lack suf-832

ficient detail and explanation, potentially causing833

confusion. As a result, the rationale with min RD834

generally leads to a clearer understanding of the rea-835

soning process.836
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Figure 10: Effect of the number of rationales selected
by RD. The performance of MoRSD with different num-
bers of rationales is evaluated on the Date Understanding,
StrategyQA, SVAMP, and MultiArith datasets.

A.8 Effect of the number of rationales selected837

by RD838

We also examine the performance of MoRSD with839

varying numbers of rationales on Date Understand-840

ing, StrategyQA, Tracking Shuffled Objects, and841

MultiArith, respectively. The student model em-842

ployed in these experiments is Flan-T5-Small. As843

depicted in Figure 10, we observe that as the number844

of rationales increases, the model’s performance on845

all four datasets improves correspondingly. Specif-846

ically, when the number of rationales is increased 847

from 1 to 4, performance is significantly enhanced 848

on both datasets. However, the performance gains 849

become less pronounced when the number is fur- 850

ther increased from 4 to 6. Therefore, considering 851

computational efficiency, we use 6 rationales in our 852

experiments. 853
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AddSub

Question There were 28 bales of hay in the barn . Tim stacked bales in the barn today . There are now 54 bales of
hay in the barn . How many bales did he store in the barn ?

Maximum RD
There were 28 bales of hay in the barn. Tim stacked bales in the barn today. There are now 54 bales of hay
in the barn. How many bales did he store in the barn? He must have stored 26 bales. –> 26

Minimum RD

We know that there were 28 bales of hay in the barn. We know that Tim stacked bales in the barn today.
We know that there are now 54 bales of hay in the barn. So, how many bales did Tim store in the barn?
We can solve this problem by using basic algebra. First, we need to create a variable to represent the
number of bales that Tim stored in the barn. We will use the letter "x" to represent this variable. Next, we
need to create an equation that represents the information –> 26

API judgement

7 9 Rationale 1: Score: 7 Strengths: - Provides a direct and concise answer to the question by calculating
the difference between the initial and final number of bales. Weaknesses: - Lacks explanation or reasoning
behind the calculation. - Could benefit from more context or steps to show the process of arriving at the
solution. Rationale 2: Score: 9 Strengths: - Demonstrates a clear step-by-step approach using algebra to
solve the problem. - Provides thorough explanations and sets up an equation to represent the situation
accurately. - Offers a more detailed and structured response compared to Rationale 1. Weaknesses: -
Could further enhance clarity by breaking down complex steps into simpler terms for better understanding.
Comparison: Rationale 2 outperforms Rationale 1 due to its comprehensive and structured approach. In
conclusion, Rationale 2 offers a higher quality response by incorporating algebraic methods and providing
detailed reasoning, earning it a higher score in this evaluation.

Date Understanding

Question
The deadline is Jun 1, 2021, which is 2 days away from now. What is the date 10 days ago in
MM/DD/YYYY? Which choice is true? Answer choices: (A) 06/24/2021, (B) 04/06/2021, (C)
04/29/2021, (D) 05/21/2021, (E) 05/20/2021.

Maximum RD The deadline is Jun 1, 2021, which is 2 days away from now. So, 10 days ago would be May 21, 2021.
Therefore, the answer is (D). –> E

Minimum RD Jun 1, 2021 is 2 days away from now. 2 days ago would be May 30, 2021. 10 days ago from May 30,
2021 would be May 20, 2021. Therefore, the answer is (E) 05/20/2021. –> E

API judgement

7 9 Rationale 1: Score: 7 Explanation: This rationale correctly identified that the deadline is on Jun 1,
2021, which is 2 days away from the current date. The final answer choice selected was incorrect, but the
reasoning process was logical and clear. Rationale 2: Score: 9 Explanation: This rationale not only
correctly identified the current date and calculated 10 days ago accurately but also provided a step-by-step
breakdown of the calculations. Comparison: Rationale 2 outperformed Rationale 1 due to its more
detailed and coherent explanation. Rationale 2 not only provided the correct answer but also presented the
steps involved in reaching that answer clearly. Rationale 1, although accurate in its calculation, lacked the
detailed breakdown that Rationale 2 offered.

Table 7: Example of Selected rationale and API judgement.
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Multiarith

Question
For Halloween Debby and her sister combined the candy they received. Debby
had 32 pieces of candy while her sister had 42. If they ate 35 pieces the first
night, how many pieces do they have left?

Maximum RD
Debby took 24 pictures at the zoo, and then she took 12 more at the museum,
so she took a total of 36 pictures. If she later deleted 14 pictures, she would
have 36 - 14, or 22 pictures. –> 22

Minimum RD Debby took 24 pictures at the zoo and 12 at the museum. That’s a total of 36
pictures. If she later deleted 14 of the pictures, she would still have 22 pictures.
–> 22

API judgement

7 9 Rationale 1: The rationale correctly identifies the total number of pictures
Debby took (36) and subtracts the number she deleted (14) to find the remaining
amount. The explanation is clear and concise, making it easy to follow the logic.
However, it could be improved by explicitly stating the final answer instead
of just showing the calculation. Rationale 2: This rationale also correctly
calculates the total number of pictures, mentions the deletion process, and
provides the final answer. In addition to the clear logic, it includes a better
structure with separate lines for the calculations, making it easier to read and
understand. Overall, Rationale 2 is rated higher due to its better organization
and presentation of information. While Rationale 1 is also accurate, it lacks the
clarity and structure of Rationale 2.

Strategy QA

Question Would toast for a vegan have margarine instead of butter?

Maximum RD
Toast is bread that has been heated until it is crisp. Bread is made from flour,
water, yeast, and salt. Flour is made from wheat. So, no, toast would not have
margarine instead of butter. –> Yes

Minimum RD

First, what is veganism? Veganism is the practice of abstaining from the use of
animal products, particularly in diet, and an associated philosophy that rejects
the commodity status of animals. So, a vegan does not eat any animal products.
This includes, but is not limited to, meat, poultry, fish, dairy, eggs, and honey.
Now, let’s think about toast. Toast is a quick and easy breakfast food that can be
made with just a few ingredients. Bread and butter are the two main ingredients
in toast. Bread is vegan. There are many –> Yes

API judgement

6 9 Rationale 1 provides a basic explanation of veganism and the restrictions it
entails in terms of avoiding animal products. It correctly points out that a vegan
would not consume butter due to it being an animal product. However, the ratio-
nale lacks a direct answer to the question regarding margarine as an alternative
for vegans. On the other hand, Rationale 2 concisely explains the ingredients
of toast and clearly states that toast would not have margarine instead of butter.
It directly addresses the question by explaining that toast consists of basic
plant-based ingredients and does not require butter or margarine. Therefore,
Rationale 2 scores higher for providing a more straightforward and accurate
response to the given question compared to Rationale 1.

Table 8: Example of Selected rationale and API judgement.
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Single Eq

Question Sally had 760 quarters in her bank. She spent 418 of her quarters. How many quarters does she
have now ?

Maximum RD
Sally has 760 quarters in her bank. She spends 418 of her quarters. That means she has lost 418
quarters. So we have to subtract 418 from 760. 760-418=342 Therefore, Sally has 342 quarters
left in her bank. –> 342.0

Minimum RD Sally had 760 quarters in her bank. She spent 418 of her quarters. This means that Sally now has
760 - 418 = 342 quarters in her bank. –> 342.0

API judgement

5 7 Rationale 1: The rationale correctly identifies the initial number of quarters Sally had, the
amount she spent, and calculates the remaining quarters accurately. Rationale 2: This rationale
also correctly identifies the initial and remaining quarters but presents the solution more concisely
compared to Rationale 1. Overall, Rationale 2 is rated higher (7) due to its clarity and conciseness,
while Rationale 1 is rated at 5 as it provides the correct solution but in a slightly more convoluted
manner. Both solutions correctly arrive at the answer, but Rationale 2 presents the information in
a more straightforward and efficient way.

Tracking shuffled objects

Question

Alice, Bob, and Claire are playing a game. At the start of the game, they are each holding a ball:
Alice has a black ball, Bob has a brown ball, and Claire has a blue ball. As the game progresses,
pairs of players trade balls. First, Bob and Claire swap balls. Then, Alice and Bob swap balls.
Finally, Claire and Bob swap balls. At the end of the game, Bob has the Which choice is true?
Answer choices: (A) black ball, (B) brown ball, (C) blue ball.

Maximum RD

First, Bob and Claire swap balls. This means that Bob now has the blue ball, and Claire has the
brown ball. Then, Alice and Bob swap balls. This means that Alice now has the brown ball, and
Bob has the black ball. Finally, Claire and Bob swap balls. This means that Claire now has the
black ball, and Bob has the blue ball. At the end of the game, Bob has the blue ball. Therefore,
the correct answer is (C). –> B

Minimum RD

output:" After Bob and Claire swap, Claire has the brown ball and Bob has the blue ball. Then,
after Alice and Bob swap, Alice has the brown ball and Bob has the black ball. Finally, after
Claire and Bob swap, Claire has the black ball and Bob has the brown ball. Therefore, answer
choice B, Bob has the brown ball, is correct. –> B

API judgement

7 9 Rationale 1 provides a clear and logical explanation of how the ball swapping between
the players leads to Bob ending up with the blue ball. The rationale demonstrates a good
understanding of the question and effectively leads to the correct answer. Rationale 2 also
correctly follows the ball swapping sequence and provides a coherent explanation, leading to
the conclusion that Bob ends up with the brown ball. The explanation is concise and clear, with
proper transitions between the steps. This rationale also exhibits a good grasp of the question
and leads to the correct answer smoothly. When comparing the two rationales, Rationale 2
receives a higher score due to its more concise and straightforward explanation. Additionally,
Rationale 2 has a lower perplexity value, indicating more concise reasoning. However, both
explanations ultimately reach the correct answer and demonstrate a solid understanding of the
game’s mechanics.

Table 9: Example of Selected rationale and API judgement.
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