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Abstract

Outlier detection in high-dimensional tabular data is an important task in data min-1

ing, essential for many downstream tasks and applications. Existing unsupervised2

outlier detection algorithms face one or more problems, including inlier assumption3

(IA), curse of dimensionality (CD), and multiple views (MV). To address these4

issues, we introduce Generative Subspace Adversarial Active Learning (GSAAL),5

a novel approach that uses a Generative Adversarial Network with multiple ad-6

versaries. These adversaries learn the marginal class probability functions over7

different data subspaces, while a single generator in the full space models the entire8

distribution of the inlier class. GSAAL is specifically designed to address the MV9

limitation while also handling the IA and CD, making it the only method to address10

all three. We provide a mathematical formulation of MV, theoretical guarantees11

for the training, and scalability analysis for GSAAL. Our extensive experiments12

demonstrate the effectiveness and scalability of GSAAL, highlighting its superior13

performance compared to other popular OD methods, especially in MV scenarios.14

1 Introduction15

Outlier detection (OD), a fundamental and widely recognized issue in data mining, involves the16

identification of anomalous or deviating data points within a dataset. Outliers are typically defined17

as low-probability occurrences within a population [41, 19]. In the absence of access to the true18

probability distribution of the data points, OD algorithms rely on constructing a scoring function.19

Points with higher scores are more likely to be outliers. Existing unsupervised OD algorithms have20

one or more of the following problems, in high-dimensional tabular data scenarios.21

• The inlier assumption (IA): OD algorithms often make assumptions about what constitutes22

an inlier, which can be challenging to verify and validate [30].23

• The curse of dimensionality (CD): As the dimensionality of data increases, the challenge of24

identifying outliers intensifies, decreasing the effectiveness of certain OD algorithms [2]25

• Multiple Views (MV): Outliers are often only visible in certain "views" of the data and are26

hidden in the full space of original features [31]27

We now explain these problems one by one.28

The inlier assumption poses a challenge to algorithms that assume a standard profile of the inlier29

data. For example, angle-based algorithms like ABOD [24] assume that inliers have other inliers30

at all angles. Similarly, neighbor-based algorithms like kNN [34] assume that inliers have other31

neighboring points nearby. These assumptions influence the scoring as it measures the degree to32

which a sample deviates from this assumed norm. Consequently, the performance of these algorithms33
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Figure 1: Scatterplots of the dataset from example 1.

may degrade if these assumptions do not hold [30]. This means that a general OD method should not34

make any inlier assumptions.35

The curse of dimensionality [2] refers to the decrease in the relative proximity of data points as the36

number of dimensions increases. Simply put, with high dimensionality, the distance between any pair37

of points becomes similar, regardless of whether none, one, or both of the points in a pair are outliers.38

This is particularly problematic for OD algorithms that rely on distances or on identifying neighbors39

to detect outliers, such as density- (e.g., LOF [3]), neighbor- (e.g., kNN [34]), and cluster-based (e.g.,40

SVDD [1, Chapter 2]) OD algorithms.41

Multiple Views refers to the phenomenon that certain complex correlations between features are only42

observable in some feature subspaces [31]. As detailed in [1], this occurs when the dataset contains43

additional irrelevant features, making some outliers only detectable in certain subspaces. In scenarios44

where multiple subspaces contain different interesting structures, this problem is exacerbated. It then45

becomes increasingly difficult to explain the variability of a data point based solely on its behavior in46

a single subspace [23]. This problem can occur regardless of the dimensionality of the dataset if the47

number of points is insufficient to capture a complex correlation structure.48

The following example illustrates the three problems described above49

Example 1 (Effect of MV, IA and CD). Consider the random variables x1,x2 and x3, where x1 and50

x2 are highly correlated and x3 is Gaussian noise. Figure 1 plots datasets with 20, 100 and 100051

realizations of (x1,x2,x3). It also contains the classification boundaries from both a locality-based52

method (green) and a cluster-based method (red) in the subspace. The cluster-based detector fitted in53

the full 3D space fails to detect the outlier shown in the figure (red cross). However, the outlier is54

always detected in the 2D subspace, as we can see. Once we increase the number of samples over55

n = 1000, the cluster-based method detects the outlier in the full space (MV). On the contrary, the56

locality-based method could not detect the outlier in any tested scenario (MV + IA). If we increase57

the dimensionality by adding more features consisting of noise, no method can detect the outlier in58

the full space (MV + IA + CD).59

We are interested in tackling outlier detection whenever a population exhibits MV, like [31, 23, 25]60

and as showcased in [1]. Particularly, the goal of this paper is to propose the first outlier detection61

method that explicitly addresses IA, CD, and MV simultaneously.62

As we will explain in the next section, we build on Generative Adversarial Active Learning63

(GAAL) [44], a widely used approach for outlier detection [30, 17, 39]. It involves training a64

Generative Adversarial Network (GAN) to mimic the distribution of outlier data, and it enhances65

the discriminator’s performance through active learning [38], leveraging the GAN’s data generation66

capability. GAAL methods avoid IA [30] and use the multi-layered structure of the GAN to overcome67

the curse of dimensionality [33]. However, they often miss important subspaces, leading to MV.68

Challenges. Training multiple GAN-based models in individual subspaces is not trivial. (1) The69

joint training of generators and discriminators in GANs requires careful monitoring to determine70

the optimal stopping point, a task that becomes daunting for large ensembles. (2) The generation of71

difficult-to-detect points in a subspace remains hard [40]. (3) While several authors have proposed72
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Table 1: Families of OD methods with the limitations they address.
Type IA CD MV

Classical ✗ ✗ ✗
Subspace ✗ ✓ ✓
Generative w/ uniform distribution ✓ ✗ ✗
Generative w/ param. distribution ✗ ✓ ✗
Generative w/ subspace behavior ✗ ✓ ✓
GAAL ✓ ✓ ✗
GSAAL (Our method) ✓ ✓ ✓

multi-adversarial architectures for GANs [11, 5], none of them address adversaries tailored to73

subspaces composed of feature subsets. Furthermore, these methods may not be suitable for GAAL74

since they do not have convergence guarantees for detectors, as we will explain.75

Contributions. (1) We propose GSAAL (Generative Subspace Adversarial Active Learning), a76

novel GAAL method that uses multiple adversaries to learn the marginal inlier probability functions77

in different data subspaces. Each adversary focuses on a single subspace. Simultaneously, we train78

a single generator in the full space to approximate the entire distribution of the inlier class. All79

networks are trained end-to-end, avoiding the ensembling problem. (2) To our knowledge, we give80

the first mathematical formulation of the “multiple views” problem. We used it to show the ability of81

GSAAL to mitigate the MV problem. (3) We formulate the novel optimization problem for GSAAL82

and give convergence guarantees of each discriminator to the marginal distribution of its respective83

subspace. We also analyze the worst-case complexity of the method. (4) In extensive experiments we84

compare GSAAL with multiple competitors. GSAAL was the only method capable of consistently85

detecting anomalous data under MV. Furthermore, on 22 popular benchmark datasets for the one-class86

classification task, GSAAL demonstrated SOTA-level performance and was orders of magnitude87

faster in inference than its best competitors. (5) Our code is publicly available.188

Paper outline: Section 2 reviews related work, Section 3 contains the theoretical results for our method,89

Section 4 features our experimental results, and Section 5 concludes and addresses limitations.90

2 Related Work91

This section is a brief overview of popular unsupervised outlier detection methods for tabular data92

related to our approach. We categorize them based on their ability to address the specific limitations93

outlined above. Table 1 is a comparative summary. Further comments about OD in other data types94

can be found in the appendix.95

Classical Methods Conventional outlier detection approaches, such as distance-based strategies96

like LOF and KNN, angle-based techniques like ABOD, and cluster-based methods like SVDD,97

rely on specific assumptions on the behavior of inlier data. They use a scoring function to measure98

deviations from this assumed norm. These methods face the inlier assumption limitation by definition.99

For example, local methods that assume isolated outliers fail when several outlying samples fall100

together. In addition, many classical methods, which rely on measuring distances, are susceptible to101

the curse of dimensionality. Both limitations impair the effectiveness of these methods [30].102

Subspace Methods Subspace-based methods [25] operate in lower-dimensional subspaces formed103

by subsets of features. They effectively counteract the curse of dimensionality by focusing on104

identifying so-called “subspace outliers” [22]. These outliers, which are prevalent in high-dimensional105

datasets with many correlated features, are often elusive to conventional non-subspace methods [29,106

31]. However, existing subspace methods inherently operate on specific assumptions on the nature of107

anomalies in each subspace they explore, and thus face the inlier assumption limitation.108

Generative Methods A common strategy to mitigate the IA and CD limitations is to reframe the109

task as a classification task using self-supervision. A prevalent self-supervised technique, particularly110

1https://anonymous.4open.science/r/GSAAL-8D6E
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for tabular data, is the generation of artificial outliers [13, 30]. This method involves distinguishing111

between actual training data and artificially generated data drawn from a predetermined “reference112

distribution”. [21] showed that by approximating the class probability of being a real sample, one113

approximates the probability function of being an inlier. One then uses this approximation as a114

scoring function [30]. However, it is not easy to find the right reference distribution, and a poor115

choice can affect OD by much [21].116

A first approach to this challenge proposed the use of naïve reference distributions by uniformly117

generating data in the space. This approach showed promising results in low-dimensional spaces but118

failed in high dimensions due to the curse of dimensionality [21]. Other approaches, such as assuming119

parametric distributions for inlier data [1, Chapter 2] or directly generating in susbpaces [12], can120

avoid CD when the parametric assumptions are met. Methods that generate in the subspaces can121

model the subspace behavior, additionally tackling the MV limitation. However, these last two122

approaches do not address the IA limitation, as they make specific assumptions about the behavior of123

the inlier data.124

Generative Adversarial Active Learning According to [21], the closer the reference distribution125

is to the inlier distribution, the better the final approximation to the inlier probability function will126

be. Hence, recent developments in generative methods have focused on learning the reference127

distribution in conjunction with the classifier. A key approach is the use of Generative Adversarial128

Networks (GANs), where the generator converges to the inlier distribution [15]. The most common129

approaches for this are GAAL-based methods [30, 17, 39]. These methods differentiate themselves130

from other GANs for OD by training the detectors using active learning after normal convergence of131

the GAN [36, 10]. The architecture of GAAL inherently addresses the curse of dimensionality, as132

GANs can incorporate layers designed to manage high-dimensional data [33]. In practice, GAAL-133

based methods outperformed all their competitors in their original work. However, they overlook the134

behavior of the data in subspaces and therefore may be susceptible to MV.135

Our method, GSAAL, incorporates several subspace-focused detectors into GAAL. These detectors136

approximate the marginal inlier probability functions of their subspaces. Thus, GSAAL effectively137

addresses MV while inheriting GAAL’s ability to overcome IA and CD limitations.138

3 Our Method: GSAAL139

We first formalize the notion of data exhibiting multiple views. We then use it to design our140

outlier detection method, GSAAL, and give convergence guarantees. Finally, we derive the runtime141

complexity of GSAAL. All the proofs and extra derivations can be found in the technical appendix.142

3.1 Multiple Views143

Several authors [1, 31, 23, 25, 29] have observed that at times the variability of the data can only be144

explained from its behavior in some subspaces. Researchers variably call this problem “the subspace145

problem” [1, 25] or “multiple views of the data” [22, 31]. Previous research has largely focused on146

practical scenarios, leaving aside the need for a formal definition. In response, we propose a unifying147

definition of “multiple views” that provides a foundation for developing methods to address this148

challenge effectively.149

The problem “multiple views” of data (MV) arises from two different effects. First, it involves the150

ability to understand the behavior of a random vector x by examining lower-dimensional subsets of151

its components (x1, . . . ,xd). Second, it stems from the challenge of insufficient data to obtain an152

effective scoring function in the full space of x. As Example 1 shows, combining these two effects153

obscures the behavior of the data in the full space. Hence, methods not considering subspaces when154

building their scoring function may have issues detecting outliers under MV. The next definition155

formalizes the first effect.156

Definition 1 (myopic distribution). Consider a random vector x : Ω −→ Rd and Diagd×d({0, 1}),157

the set of diagonal binary matrices without the identity. If there exists a random matrix u : Ω −→158

Diagd×d({0, 1}), such that159

px(x) = pux(ux) for almost all x, (1)
we say that the distribution of x is myopic to the views of u. Here, x and ux are realizations of x160

and ux, and px and pux are the pdfs of x and ux.161
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It is clear that, under MV, using pux to build a scoring function instead of px mitigates the effects.162

This comes as the subspaces selected by u are smaller in dimensionality. Hence it should take fewer163

samples to approximate the pdf of ux. The difficulty is that it is not yet clear how to approximate164

pux. The following proposition elaborates on a way to do so. It states that by averaging a collection165

of marginal distributions of x in the subspaces given by realizations of u, one can approximate the166

distribution of pux.167

Proposition 1. Let x and u be as before with px myopic to the views of u. Consider a set of168

independent realizations of u: {ui}ki=1. Then 1
k

∑
i puix(uix) is an unbiased statistic for pux(ux).169

MV appears when there is a lack of data, and its distribution is myopic. To improve OD under MV,170

one can exploit the distribution myopicity to model x in the subspaces, where less data is sufficient.171

Proposition 1 gives us a way to do so, by approximating pux. In this way, under myopicity, this also172

approximates px, avoiding MV. Our method, GSAAL, exploits these derivations, as we explain next.173

3.2 GSAAL174

GAAL methods tackle IA by being agnostic to outlier definition and mitigate CD through the use of175

multilayer neural networks [30, 28, 33]. GAAL methods have two steps:176

1. Training of the GAN. Train the GAN consisting of one generator G and one detector D using177

the usual min-max optimization problem as in [15].178

2. Training of the detector through active learning. After convergence, G is fixed, and D179

continues to train. This last step is an active learning procedure with [44]. Following [21],180

D(x) now approximates the pdf of the training data px.181

After Step 2, the detector converges to px. However, our goal is to approximate px by exploiting182

a supposed myopicity of the distribution. We extend GAAL methods to also address MV in what183

follows. The following theorem adapts the objective function of the GAN to the subspace case and184

gives guarantees that the detectors converge to the marginal pdfs used in Proposition 1:185

Theorem 1. Consider x and u as in the previous definition, with x a realization of x and {ui}i a set186

of realizations of u. Consider a generator G : z ∈ Z 7−→ G(z) ∈ Rd and {Di}, i = 1, . . . , k, a set187

of detectors such as Di : uix ∈ Si ⊂ Rd 7−→ Di(uix) ∈ [0, 1]. Z is an arbitrary noise space where188

G randomly samples from. Consider the following optimization problem189

min
G

max
Di, ∀i

∑
i

V (G,Di) =

min
G

max
Di, ∀i

∑
i

Euix logDi(uix) + Ez log (1−Di (uiG(z))) ,
(2)

where each addend V (G,Di) is the binary cross entropy in each subspace. Under these conditions,190

the following holds:191

i) Each detector in optimum is D∗
i (uix) =

1
2 ,∀x. Thus, in optimum V (G,Di) = − log(4),∀i.192

ii) Each individual Di converges to D∗
i (uix) = puix(uix) after trained in Step 2 of a GAAL193

method.194

iii) D∗(x) = 1
k

∑k
i=1D∗

i (uix) approximates pux(ux). If px is myopic, D∗(x) also approxi-195

mates px(x).196

Using Theorem 1 we can extend the GAAL methods to the subspace case:197

1. Training the GAN. Train a GAN with one generator G and multiple detectors {Di} with198

Equation (2) as the objective function. The training of each detector stops when the loss199

reaches its value with the optimum in Statement (i).200

2. Training of the k detectors by active learning. Train each Di as in Step 2 of a regular GAAL201

method using G. By Statement (ii) of the Theorem, each Di will approximate puix. By202

Statement (iii), D(x) = 1
k

∑k
i=1Di(uix) will approximate px under the myopicity of the203

data.204

We call this generalization of GAAL Generative Subspace Adversarial Active Learning (GSAAL).205

The appendix contains the pseudo-code for GSAAL.206
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3.3 Complexity207

In this section, we focus on studying the theoretical complexity of GSAAL. We study both its usability208

for training and, more importantly, for inference.209

Theorem 2. Consider our GSAAL method with generator G and detectors {Di}ki=1, each with four210

fully connected hidden layers,
√
n nodes in the detectors and d in the generator. Let D be the training211

data for GSAAL, with n data points and d features. Then the following holds:212

i) Time complexity of training is O(ED · n · (k · n + d2)). ED is an unknown complexity213

variable depicting the unique epochs to convergence for the network in dataset D.214

ii) Time complexity of single sample inference is in O(k · n), with k the number of detectors215

used.216

The linear inference times make GSAAL particularly appealing in situations where the model can be217

trained once for each dataset, like one-class classification. We build on this particular strength in the218

following section.219

4 Experiments220

This section presents experiments with GSAAL. We will outline the experimental setting, and examine221

the handling of “multiple views” in GSAAL and other OD methods. We then evaluate GSAAL’s222

performance against various OD methods and investigate its scalability. The appendix includes a223

study on the sensitivity to the number of detectors, IA experiments, an ablaition study and extra224

competitors evaluated in the real world datasets. System specifications are included in the appendix.225

4.1 Experimental Setting226

This section has three parts: First, we describe the synthetic and real data for the outlier detection227

experiments. Then, we describe the configuration of GSAAL. Finally, we present our competitors.228

4.1.1 Datasets229

Synthetic. We constructed synthetic datasets, each containing two correlated features, x1 and x2,230

along with 58 independent features xj , j = 3, . . . , 60 consisting of Gaussian noise. This approach231

simulates datasets that exhibit the MV property by adding irrelevant features into a pair of highly232

correlated variables. We detail the methodology and all correlation patterns in the technical appendix.233

Real. We selected 22 real-world tabular datasets for our experiments from [19]. The selection234

criteria included datasets with less than 10,000 data points, more than 10 outliers, and more than 15235

features, focusing on high-dimensional data while keeping the runtime (of competing OD methods)236

tractable. Table 2a contains the summary of the datasets. For datasets with multiple versions, we chose237

the first in alphanumeric order. Details about each dataset are available in the original source [19].238

4.1.2 Network Settings239

Structure. Unless stated otherwise, GSAAL uses the following network architecture. It consists of240

four fully connected layers with ReLu activation functions used in the generator and the detectors.241

Each layer in k = 2
√
d detectors has

√
n nodes, where n and d are the number of data points242

and features in the training set, respectively. This configuration ensures linear inference time. The243

generator has d nodes in each layer, a standard in GAAL approaches, which ensures polynomial244

training times. We assumed u to be distributed uniformly across all subspaces. Therefore, we245

obtained each subspace for the detectors by drawing uniformly from the set of all subspaces.246

Training. Like other GAAL methods [30, 44], we train the generator G together with all the247

detectors Di until the loss of G stabilizes. Then we train each detector Di until convergence with248

G fixed. To automate this process, we introduce an early stopping criterion: Training stops when a249

detector’s loss approaches the theoretical optimum (− log(4)), see statement (ii) of Theorem 1. For250

consistency across experiments, training parameters remain fixed unless otherwise noted. Specifically,251
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Table 2: Real-world datasets and Competitors

(a) Real-world datasets converted to tabular if needed

Dataset Category Dataset Category

20news Text MNIST Image
Annthyroid Health MVTec Text
Arrhythmia Cardiology Optdigits Image
Cardiot.. Cardiology Satellite Astronomy
CIFAR10 Image Satimage-2 Astronomy
F-MNIST Image SpamBase Document
Fault Industrial Speech Linguistics
InternetAds Image SVHN Image
Ionosphere Weather Waveform Elect. Eng.
Landsat Astronomy WPBC Oncology
Letter Image Hepatitis Health

(b) Competitors

Type Competitors

Classical kNN, LOF
ABOD, OCSVM w/ rbf

Subspace IForest, SOD
Gen., uniform dist. NA (see the text)
Gen., parametric dist. GMM
Gen., subspace behavior NA (see the text)
GAAL MO-GAAL

the learning rates of the detectors and the generator are 0.01 and 0.001, respectively. We use minibatch252

gradient descent [14] optimization, with a batch size of 500.253

4.1.3 Competitors254

We selected popular and accessible methods from each category, as summarized in Table 2b, guided255

by related work. We excluded generative methods with uniform distributions because they prove256

ineffective for large datasets [21]. We could not include a generative method with subspace behavior257

due to operational issues with the most relevant method in this class, [12], caused by its outdated258

repository. We used the recommended parameters for all methods, as usual in OD [19].259

We used the pyod [43] library to access all competitors except MO-GAAL. We used MO-GAAL260

from its original source and implemented our method GSAAL in keras [6].261

4.2 Effect of Multiple Views on Outlier Detection262

To demonstrate the effectiveness of GSAAL under MV, we use synthetic datasets. Visualizing the263

outlier scoring function in a 60-dimensional space is challenging, so we project it into the x1-x2264

subspace. A method adept at handling MV should have a boundary that accurately reflects the x1 and265

x2 dependency structure. We first generate a synthetic dataset Dsynth as described in section 4.1.1266

and train the OD model. Using this model, we compute the scores for the points (x1, x2, 0, . . . , 0)267

and visualize the level curves on the x1-x2 plane.268

Figure 2 shows results for selected datasets and competitors, which are detailed in the Appendix. It269

shows the level curves and decision boundaries (dashed lines) of the methods. Notably, our model270

effectively detects correlations in the right subspace. To quantify this, we generated outliers in the271

subspace of interest and extra inliers. We tested the one-class classification performance of each272

method in 10 different MV datasets. On average, GSAAL managed to obtain 0.70 AUC, while the273

second-best performer (IForest) did not surpass a random classifier —0.49 AUC. All results and274

further details can be found in section B.2 in the appendix.275

4.3 One-class Classification276

This section evaluates GSAAL on a one-class classification task [37]. First, we study the effectiveness277

of GSAAL on real data. Then, we investigate the scalability of GSAAL in practical scenarios.278

4.3.1 Real-world Performance279

We perform the outlier detection experiments on real datasets. Specifically, we take on the task of280

one-class classification, where the goal is to detect outliers by training only on a collection of inliers281

[19]. To evaluate the performance of OD methods, we use AUC as it is robust to test data imbalance,282

a common issue in OD tasks . The procedure is as follows:283
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Figure 2: GSAAL finds classification boundaries for datasets banana and star under MV.

Table 3: Results of the Conover-Iman test for pairwise comparisons of the rankings.

Method ABOD GSAAL GMM IForest KNN LOF MO GAAL OCSVM SOD
ABOD = ++ ++ ++ ++ ++

GSAAL = ++ ++ + ++ ++ ++
GMM – – – – = ++ – – – – ++ ++
IForest – – – – – – = – – ++ ++
KNN ++ ++ = ++ ++
LOF – ++ = ++ + ++

MO GAAL – – – – – – – – – – = ++
OCSVM – – – – – – – = ++

SOD – – – – – – – – – – – – – – – – =

1. Split the dataset D into a training set Dtrain containing 80% of the inliers from D, and a test284

set Dtest containing the remaining inliers and all outliers.285

2. Train an outlier detection model with Dtrain and evaluate its performance on Dtest with ROC286

AUC.287

To save space, we moved the detailed AUC results to the appendix; showing that GSAAL obtained288

the lowest median rank —see Figure 10 in the appendix. Although other subspace methods tend to289

perform better with irrelevant attributes [29, 25], they did not outperform classical OD methods on290

average in our experiments. Notably, ABOD, the second-best method in our experiments, performed291

poorly in the MV tests (Section 4.2).292

For statistical comparisons, we use the Conover-Iman post hoc test for pairwise comparisons be-293

tween multiple populations [7]. It is superior to the Nemenyi test due to its improved type I error294

boundings [8]. Conover-Iman test requires a preliminary positive result from a multiple population295

comparison test, for which we employ the Kruskal-Wallis test [26].296

Table 3 shows the test results. In each cell, ‘+’ indicates that the method in the row has a significantly297

lower median rank than the method in the column, while ‘−’ indicates a significantly higher median298

rank. One symbol indicates p-values ≤ 0.15 and two symbols indicate p-values ≤ 0.05. A blank299

indicates no significant difference. The table shows that GSAAL is superior to most of its competitors.300

Our method does not significantly outperform the classical methods ABOD and kNN. However, these301

methods struggle to detect structures in subspaces, showing their inadequacy in dealing with the MV302

limitation, see Section 4.2.303

Overall, the results support GSAAL’s superiority in outlier detection tasks involving multiple views.304

Additionally, they establish our method as the leading GAAL option for One-class classification305

4.3.2 Scalability306

In section 3.3, we derived that the inference time of GSAAL scales linearly with the number of307

training points if the number of detectors k is fixed, while it does not depend on the number of308

features d. This is in contrast to other methods, in particular LOF, KNN, and ABOD, which have309

quadratic runtimes in d [3, 24]. We now validate this experimentally. The procedure is as follows:310
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(a) (b)

Figure 3: Plots of different performance metrics for scalability

1. Generate datasets Dtrain and Dtest consisting of random points. |Dtest| = 106.311

2. Train an OD method using Dtrain and record the inference time over Dtest.312

Following the result of the sensitivity study in our appendix, we fixed k = 30. Figure 3a plots the313

inference time of a single data point as a function of the number of features when |Dtrain| = 500.314

Figure 3b plots the inference time as a function of the number of points in Dtrain, for a fixed number of315

100 features. Both figures confirm our complexity derivations and show that GSAAL is particularly316

well-suited for large datasets.317

5 Limitations & Conclusions318

5.1 Limitations and Future Work319

In section 4 we randomly selected subspaces for training the detectors in GSAAL, i.e. we took320

a uniform distribution of u. This was already sufficient to demonstrate the highly competitive321

performance of our method. In practice, this assumption seemed to perform well for our experiments.322

However, GSAAL can work with any subspace search strategy to obtain the distribution of u, for323

example, the methods exploiting multiple views [23, 22]. We have not included them in this paper324

due to the lack of an official implementation. In the future, we plan to benchmark various subspace325

search methods in GSAAL.326

Next, GSAAL is limited to tabular data, since the “multiple views” problem has only been observed327

for this data type. The mathematical formulation of MV in section 3 does not exclude unstructured328

data. The difficulty lies in identifying good search strategies for u for non-tabular data, which remains329

an open question [18]. However, depending on the type of unstructured data, extending GSAAL to330

work with it is not immediate. Therefore, building a method that exploits the theoretical derivations331

of GSAAL for structured data is future work.332

5.2 Conclusions333

Unsupervised outlier detection (OD) methods rely on a scoring function to distinguish inliers from334

outliers, since the true probability function that generated the dataset is usually unavailable in practice.335

However, they face one or more of the following problems — Inlier Assumption (IA), Curse of336

Dimensionality (CD), or Multiple Views (MV). In this article, we have proposed the first mathematical337

formulation of MV, which allows for a better understanding of how to solve this occurrence. Using338

this formulation, we developed GSAAL, which is the first OD approach that solves MV, CD, and IA.339

In short, GSAAL is a generative adversarial network with a generator and multiple detectors fitted in340

the subspaces to find outliers not visible in the full space. In our experiments on 27 different datasets,341

we demonstrated the usefulness of GSAAL, in particular, its ability to deal with MV and its superior342

performance on OD tasks with real datasets. In addition, we have shown that GSAAL can scale up to343

deal with high-dimensional data, which is not the case for our most competent competitors. These344

results confirm GSAAL’s ability to deal with data exhibiting MV and its usability in any practical345

scenario involving large datasets.346
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A Theoretical Appendix461

In this appendix, we will include all the proofs of the included theorems and propositions. Addition-462

ally, we also extend all non-experimental sections with relevant information for the experimental463

appendix.464

A.1 Previous Remarks465

Before starting to prove our main results, it is important to add a remark about our notation in this466

article. Whenever we denote ux, we mean the operation resulting in the following vector: u(ω)x(ω).467

Thus, ux is a random vector following its distribution pux. However, it is important to remark that468

ux, and therefore, also uix, does not state the usual matrix-vector multiplication. What we mean by469

ux is the operation U ×M x, where U stands for the range-complete version of u and ×M the usual470

matrix multiplication. This means that whenever we write ux we are considering the projection of x471

into the subspace of the features selected in u. This means that uix is the random vector composed472

of the features selected by ui, and therefore, puix(uix) denotes subsequent marginal pdf of x. We473

do not state this in the main text as it functionally does not change anything of our derivations, and474

simply works as a notation. The only important remarks stemming from this fact are the following:475

1. px(uix) = px(πui(x)), where πui
denotes the projection of a point x into the subspace of476

ui. Therefore, we can write px(uix) = puix(uix).477

2. The operator as stated before is not distributive. This is trivial, as given u a random matrix as478

in definition 1, (1d − u)x is defined properly, as 1d − u ∈ Diag({0, 1}). However, x− ux479

denotes the vector subtraction between two vectors with different dimensionality.480

While not important to understand the following proofs and the derivations from the main text,481

understanding this is crucial for anyone seeking to work with these definitions.482

A.2 Proofs483

We will reformulate all of the statements for completion before introducing each proof.484

Proposition 2. Let x and u be as before with px myopic to the views of u. Consider a set of485

independent realizations of u: {ui}ki=1, a realization of x, x, and a realization of ux, ux. Then486
1
k

∑
i puix(uix) is a statistic for pux(ux).487

Proof. Consider x and u as in the statement. Recall the law of total probabilities:488

pux(ux) = Eu

(
pux|u=u′(ux|u′)

)
.

By taking the definition of u and the myopicity, it is trivial that:489

pux|u=u′(ux|u′) = pu′x(u
′x)

for u′ such that pu(u′) ̸= 0.490

Then, by definition of marginal probability and expectation, we have that:491

pux(ux) =

N∑
i=1

pu(ui)puix(uix),

as u is discrete with finite set of occurrences of size N . Thus, we can approximate492 ∑N
i=1 pu(ui)puix(uix)) by 1

k

∑
i puix with ui independent samples of u.493

Theorem 3. Consider x and u as in the previous definition, with x a realization of x and {ui}i a set494

of realizations of u. Consider a generator G : z ∈ Z 7−→ G(z) ∈ Rd and {Di}, i = 1, . . . , k, a set495

of detectors such as Di : uix ∈ Si ⊂ Rd 7−→ Di(uix) ∈ [0, 1]. Z is an arbitrary noise space where496

G randomly samples from. Consider the following objective function497

min
G

max
Di, ∀i

∑
i

V (G,Di) =

min
G

max
Di, ∀i

∑
i

Euix logDi(uix) + Ez log (1−Di (uiG(z)))
(3)

Under these conditions, the following holds:498
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i) Each detector’s loss in optimum is V (G,D∗
i ) =

1
2 .499

ii) Each individual Di converges to D∗
i (uix) = puix(uix) after trained in Step 2 of a GAAL500

method.501

iii) D∗(x) = 1
k

∑k
i=1D∗

i (uix) approximates pux(ux). If px is myopic, D∗(x) also approxi-502

mates px(x).503

Proof. This proof will follow mainly the results in [15], adapted for our case. We will first derivative504

two general results that we are going to use to immediately prove (i), (ii) and (iii). First, consider505

the objective function506 ∑
i

V (G,Di) =
∑
i

Euix∼puix
log(Di(uix))+

Ez∼pz(1− log(Di(uiG(z)))),

where z is the random vector used by G to sample from the noise space Z. We will write Ex,Ez and507

Euix instead of Ex∼px ,Ez∼pz and Euix∼puix
as an abuse of notation.508

The problem is, then, to optimize:509

min
G

max
Di, ∀i

∑
i

V (G,Di). (4)

Fixing G and maximizing for all Di, each detector individually maximizes V (G,Di). Let us try to510

obtain the optimal of each Di with a fixed G. First, we write:511

V (G,Di) =

∫
uix

puix(uix) logDi(uix)duix+∫
z

pz(z) log(1−Di(uiG(z)))dz.

As G uses z to sample from its sample distribution pG(x), we can rewrite the second addent, like in512

[15], as:513

V (G,Di) =

∫
uix

puix(uix) logDi(uix)duix+∫
uix

pG(uix) log(1−Di(uix))duix.

Aggregating both integrals, we have a function of the type f(t) = a log(t) + b log(1 − t), with514

a, b ∈ R−{0}. We know that f(t) obtains its optimum in t = a
a+b . As f(t) ∈ R+, V (G,Di) obtains515

its optimum for a given G in:516

D∗
i (uix) =

puix(uix)

puix(uix) + pG(uix)
. (5)

Let us now consider the following function517

C(G) =
∑
i

max
Di, ∀i

V (G,Di)

=
∑
i

Euix log
puix(uix)

puix(uix) + pG(uix)
+

Euix∼pG log
pG(uix)

puix(uix) + pG(uix)
.

(6)

This is known in Game Theory as the cost function of player “G” in the null-sum game defined by518

the minmax optimization problem. [15] refers to it as the virtual training criterion of the GAN. The519

adversarial game defined by (4) reaches an equilibrium (and thus, the minmax problem an optimum)520

whenever C(G) is minimized. We will study the value of G in such equilibrium and use it, together521

with (5), to prove the statements.522
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Rewriting C(G) it is clear that:523

C(G) =
∑
i

KL

(
puix(uix)∥

puix(uix) + pG(uix)

2

)
+KL

(
pG(uix)∥

puix(uix) + pG(uix)

2

)
.

This expression corresponds to that of a sum of multiple binary cross entropies between a population524

coming from puix and from pG projected by ui. Therefore, as we know, we can rewrite:525

C(G) =
∑
i

2JSD(puix(uix)∥pG(uix)),

with JSD the Jensen-Shannon divergence. Since JSD(s∥r) ∈ [0, log(2)), it is clear that C(G)526

obtains its minimum only whenever527

pG(uix) = puix(uix),∀∀x2; (7)

and for all i ∈ {1, . . . , k}.528

Knowing G and Di in the optimum for all i, we can prove the statements above:529

(i) As pG(uix) = puix(uix) for almost all x, in the optimum of (4), it is immediate that:530

Di(uix) =
1

2
,

i.e., the detectors cannot differentiate between the real training data and the synthetic data of the531

generator. If one employs the numerically stable version of each V (G,Di) (equivalent to the532

numerically stable version of the binary cross entropy [6]), it is trivial to see that533

V stable(G,Di) = log(2).

(ii) After optimizing (4), training each Di individually with G fixed, is the equivalent of building a534

two-class classifier distinguishing between the artificial class generated by pG(uix) = puix(uix) and535

the real data coming from puix(uix). By [21], the resulting two-class classifier would be such as:536

Di(uix) = puix(uix).

(iii) By proposition 2 and statement (ii), 1
k

∑
i D

∗
i (uix) is an estimator for pux(ux). By myopicity,537

it is also of px(x).538

Theorem 4. Giving our GSAAL method with generator G and detectors {Di}ki=1, each with four539

fully connected hidden layers,
√
n nodes in the detectors and d in the generator, we obtain that:540

i) The training time complexity is bounded with O(ED · n · (k · n+ d2)), for a dataset D with541

n training samples and d features. ED is an unknown complexity variable depicting the542

unique epochs to convergence for the network in dataset D.543

ii) The single sample inference time complexity is bounded with O(k · n), with k the number of544

detectors used.545

Proof. An evaluation of a neural network is composed of two steps, the backpropagation, and the546

fowardpass steps. While training the network requires both, inference requires only a fowardpass.547

Therefore, we will first prove (ii) and will build upon it to prove (i).548

2For almost all x
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(ii). GSAAL consists of a generator and k detectors. Single point inference consists of a single549

fowardpass of all the detectors. We will first prove the general complexity of a fowardpass of a550

general fully connected 4 layer network and will use it to derive all the other complexities. Let us551

consider three weight matrices Wji, Whj and Wlh each between two layers, with j, i, h and l being552

the number of nodes in each. Therefore, Wji denotes a matrix with j rows and i columns, and so553

on. Now, let us consider xi1 the datapoint after passing the input layer. Lastly, without any loss of554

generality, consider f to be the activation function for all layers. This way, the forward pass of a555

single detector can be written as:556

cl1 = f (Wlhf (Whjf (Wjixi1))) .

We will study the complexity in the first layer and use it to derive the complexity of the others.557

Aj1 = Wjixi1 is a simple matrix-vector multiplication that we know to be O(j · i) atmost. Then, as558

f is an activation function, f(Aj1) is equivalent to writing fj1 ⊙Aj1, with ⊙ being the element-wise559

multiplication. Thus, f (Wjixi1) is:560

O(j · i+ j) = O(j · (i+ 1)) = O(j · i).

Doing this for all layers, we obtain:561

O(l · h+ k · j + j · i). (8)

As all layers have
√
n nodes,562

O(3n) = O(n).
As we have k detectors, the complexity for a fowardpass of all detectors, and thus, for a single sample563

inference of GSAAL is:564

O(k · n).

(i). A backpropagation step has the same complexity as an inference step on all training samples.565

As we have n training samples, this then becomes566

O(k · n2)

for the detectors. As the training consists of multiple epochs, we will write567

O(ED · k · n2),

with ED being the number of epochs needed for convergence for the training data set D. As the568

training consists of both backpropagation and fowardpass steps on all training samples, the total569

training time complexity for all detectors is:570

O(ED · k · n2 + k · n2) = O(ED · k · n2).

As we also need to consider the generator, we will use equation 8 to derive both steps on the generator.571

As the generator is also a fully connected 4-layer network, with all layers having d nodes, the572

complexity for a single fowardpass is:573

O(d2).
As during training one generates n samples during each fowardpass:574

O(n · d2).

Now, on each backpropagation pass the network calculates the backpropagation error for each575

generated sample, thus,576

O(n · d2)
is also the time complexity for the backpropagation step of the generator. Considering all ED epochs577

and both backpropagation and fowardpass steps of the generator and all the detectors, the time578

complexity of GSAAL’s training is:579

O(ED · k · n2 + ED · n · d2) = O(ED · n · (k · n+ d2))

580
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Figure 4: Difference in statistical distance between two populations.

A.3 Related Work (extension)581

Deep Outlier Detection for other data types. Outlier detection is also very popular in different582

data types, especially in unstructured data [42, 16, 36, 35, 32]. Due to the complexity of the data they583

are used for, deep methods are the main approach employed for this task. The main difference with584

the other deep methods introduced for tabular data, is that the deep architecture in the later targets585

mainly CD. For unstructured data types, like images or natural language, is the complexity of the data586

that drives the architecture. For example, to treat image data, multiple linear layers do not suffice,587

complex layers like convolutional or residual layers are employed for this [27].588

Although popular, most deep methods have limited to no use at all in tabula data in their original589

articles. However, some have appeared in the literature of tabular data as competitors [36, 35]. We590

identified the most common for our task in related articles and benchmarks, and included them as an591

extension of our main experiments in sections B.2 and B.3.592

A.4 Multiple Views (extension)593

In this section we extend the derivations in section 3.1 by providing an example of a myopic594

distribution:595

Example 2 (Myopic distribution). Consider a x like in example 1. Here, it is clear that x1,x2⊥x3.596

Consider, then, u such that:597

u : {1} −→ {diag(1, 1, 0)}.
To test whether px is myopic, we employed a simple test utilizing a statistical distance (MMD with598

the identity kernel) between px and pux. This way, if ˆMMD(px∥pux) = 0, it would be clear that the599

equality holds. As a control measure, we also calculated the same distance for a different population600

x′, where x3 = x2
1. We have plotted the results in image 4, where Population 1 refers to x and601

Population 2 to x′. As we can see, we do obtain a positive result in the test of myopicity for x and a602

negative one for x′.603

A.5 GSAAL (extension)604

We now extend the results from section 3.2 by providing the pseudocode for the training of our605

method. It is important to consider that, while theorem 3 formulates the optimization problem606

in terms of the neural networks G and {Di}i, in practice this will not be the case. Instead, we607

will consider the optimization in terms of their weights, ΘG and ΘDi . Therefore, in practice, the608

convergence into an equilibrium will be limited by the capacity of the networks themselves [14].609

We considered the optimization to follow minibatch-stochastic gradient descent [14]. To consider610

any other minibatch-gradient method it will suffice to perform the necessary transformations to the611

gradients.612

The pseudocode is located in Algorithm 1. As it is the training for the method, it takes both613

the parameters for the method and the training. In this case, epochs refers to the total number614

of epochs we will train in total, while stop_epoch marks the epoch where we start step 2 of the615

GAAL training. Lines 1-3 initialize both the detectors in their subspaces and the generator with616
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Algorithm 1 GSAAL training

Require: Data set D, Number of Discriminators κ, u, epochs, stop_epoch
1: Initialize Generator G {#d is the dimensionality of D}
2: {ui}κi=1 ← DRAWFROMu(κ)
3: Initialize Discriminators {Di}κi=1 with unique subspaces {ui}κi=1
4: for epoch ∈ {1, ..., epochs} do
5: for batch ∈ {1, ..., batches} do
6: noise← Random noise z(1), ..., z(m) from Z
7: data← Draw current batch x(1), ..., x(m)

8: for j ∈ {1...k} do
9: Update Dj by ascending the stochastic gradient: ∇ΘDj

1
m

∑m
i=1 log(Dj(ujx

(i))) +

log(1−Dj(ujG(z(i))))
10: end for
11: if epoch < stop_epoch then
12: Update G by descending the stochastic gradient: ∇ΘG

1
k

∑k
j=1

1
m

∑m
i=1 log(1 −

Dj(G(z(i))))
13: end if
14: end for
15: end for

Table 4: Different outliers generated for the experiments.

Outlier Type Assumption Description Outlier Description M

Local Assumes that all inliers are
located close to other inliers

As a result, outliers are
far away from inliers LOF

Angle Assumes that all inliers
have other inliers in all angles from their position

As a result, outliers are
not surrounded by other points ABOD

Cluster Assumes that all inliers
form large clusters of data

As a result, outliers are
gathered in small clusters Fn,µ+εi

random weight matrices ΘDi
and ΘG . Lines 4-13 correspond to the normal GAN training loop617

across multiple epochs, referred to as step 1 of a GAAL method, if epoch < stop_epoch. Here618

we proceed with training each detector and the generator using their gradients. Lines 8-10 update619

each detector by ascending its stochastic gradient, while line 11 updates the generator by descending620

its stochastic gradient. After the normal GAN training, we start the active learning loop [30] once621

epoch ≥ stop_epoch. The only difference with the regular GAN training is that G remains fixed, i.e.,622

we do not descend using its gradient. This allows us to additionally train the detectors and, in case of623

equilibrium of step 1, converge to the desired marginal distributions as derived in theorem 3.624

B Experimental Appendix625

In this section, we will include a supplementary experiment testing the IA condition for completion,626

the sensibility experiments, and an ablation study. Additionally, we extended both main experimental627

studies featured in the main text. All of the code for the extra experiments, as well as for all628

experiments in the main text, can be found in our remote repository3. Our experiments used a RTX629

3090 GPU and an AMD EPYC 7443p CPU running Python in Ubuntu 22.04.3 LTS. Deep neural630

network methods were trained on the GPU and inferred on the CPU; shallow methods used only the631

CPU.632

B.1 Effects of Inlier Assumptions on Outlier Detection633

GAAL methodologies are capable of dealing with the inlier assumption by learning the correct inlier634

distribution px without any assumption [30]. While this should also extend to our methodology, we635

will study experimentally whether this condition holds in practice. To do so, as one cannot identify636

3https://anonymous.4open.science/r/GSAAL-8D6E
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(a) (b) (c)

Figure 5: 2D-example of the different types of anomalies we generate using the method summarized
in table 4.

Figure 6: AUCs of the different methods in the IA experiments. From left to right: Local (blue),
Angle (orange) and Cluster (green).

beforehand whether a method is going to fail due to IA, we will generate synthetic datasets. This will637

allow us to generate outliers that we know to follow from a specific IA, ensuring that failure comes638

from the anomalies themselves. We will include all of the code in the code repository. To generate639

the synthetic datasets we follow:640

1. Generate D, a population of 2000 inliers following some distribution F in R20.641

2. Select an outlier detection method M with some assumption about the normality of the data642

and fit it using D. We will call such M as the reference model for the generation.643

3. Generate 400 outliers by sampling on R20 uniformly and keeping only those points o such644

that M(o) = 1 (i.e., they are detected as outliers). We will write OD to refer to such a645

collection of points.646

4. Repeat step 3 10 times, to obtain OD
1 , . . . , OD

10.647

5. Sample out 20% of the points in D. The remainder 80% will be stored in Dtrain, and the648

other 20% in Dtest
1 , . . . , Dtest

10 together with each OD
i .649

These steps were repeated 4 times with different F , to create 4 different training sets and 40 different650

testing sets, corresponding to a total of 40 different datasets employed per model M selected in step651

2. As we used 3 different reference models, we have a total of 120 different datasets employed in652

this experiment alone. In particular, the models used for this are collected in table 4. The table653

contains the name of the outlier type, the description of the IA taken to generate them, and a brief654

description of how the outliers should look. Column M contains the method employed to generate655

each, these being LOF , ABOD, and the same inlier distribution as D, but with multiple shifted656

means µi and with a significantly lower amount of points n. A visualization of how these outliers657

would look with 2 features is located in figure 5. To study how different methods behave when658

detecting these outliers, we have performed the same experiments as in section 4.3, but with these659

synthetic datasets. Figure 6 gathers all the AUCs of a method in 3 boxplots, one for each outlier type660

in each training set. Additionally, we grouped all based on the IA and assigned a similar color for661

all of them. We have done this for the classical OD methods LOF, ABOD, and kNN, besides our662

method GSAAL. We cropped the image below 0.45 in the y axis as we are not interested in results663

below a random classifier. As we can see, classical methods seem to correctly detect outliers for664
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an outlier type that verifies its IA. However, whenever we introduce outliers behaving outside of665

their IA, the performance hit is significant. Notoriously, it appears that none of them had trouble666

detecting the Local and Angle outlier type. regardless of their IA. This can be easily explained by667

those outliers types being similar, as we can see in figure 5. On the other hand, GSAAL manages to668

have a significant detection rate regardless of the outlier type.669

B.2 Effects of Multiple Views on Outlier Detection (extension)670

In this section, we will include a brief description of the generation process for the datasets used in671

section 4.2. We will also perform the same experiment as in section 4.2 for all methods showcased in672

the main text and additional datasets. The datasets were generated by the following formulas:673

• Banana. Given θ ∈ [0, π] we have x = sin(θ) + U(0, 0.1) and y = sin(θ)3 + U(0, 0.1).674

• Spiral. Given θ ∈ [0, 4π] and r ∈ (0, 1), we have x = r cos(θ) + U(0, 0.1) and y =675

r sin(θ).676

• Star. Given θ ∈ [0, 2π] and r ∈ {r ∈ R|r = sin(5θ); r ≥ 0, 1, 0.4} , we have x = r cos(θ)+677

U(0, 0.1) and y = r sin(θ) + U(0, 0.1).678

• Circle. Given θ ∈ [0, 2π], we have x = cos(θ) + U(0, 0.1) and y = sin(θ) + U(0, 0.1).679

• L. Given x1 = N(0, 0.1), x2 = U(0, 5), y1 = U(−5, 0), and y2 = N(0, 0.1); we have680

x = concat(x1, x2) and y = concat(y1, y2).681

We considered N(0, 0.1) to denote a random normal realization with µ = 0 and σ2 = 0.1, and682

U(a, b) to denote a uniform realization in the [a, b] interval.683

Figure 7 contains all images from the MV experiment. We employed the default parameters for all684

methods in this experiments. We did that as those were the employed parameters in our real world685

experiments. Additonally, the choice of parameter did not impact the outcome of the experiment686

much. Our remote repository includes extra images for every competitor with multiple parameters687

for comparison. We do not have any new insight beyond the ones exposed in the main article. Note688

that we have included all methods but SOD. The reason was that SOD failed to execute for datasets689

Star, Spiral, and Circle.690

Additionally, we added competitors from outside of our related work that will later be used in section691

B.3. In particular, we employed LUNAR, DIF and DeepSVDD with default parameters. We included692

extra images in our remote repository with multiple parameters for the deep competitors as well. The693

method AnoGAN was not included due to it failing in datasets Star, Spiral and Circle. Their results694

can be seen in Figure 8. As it also happened our main competitors, some of the extra competitors were695

capable of detecting the data structure in very sparse occasions. However they remained incapable to696

properly describe a boundary consistently. The only method that was sensible enough in all datasets697

was GSAAL.698

In order to quantify this, we tested the ability of all methods to perform one-class classification in699

each dataset. As outliers, we used white noise in the x1 − x2 subspace. Additionally, we created two700

extra datasets greatly different from the rest, X and wave:701

• X. Given x1 = x2 = U(−1, 1) and y1 = x1 + U(0, 0.1), y2 = x2 + U(0, 0.1); we have702

x = concat(x1, x2) and y = concat(y1, y2)..703

• Wave. Given θ ∈ [0, 4π], we have x = θ and y = sin(x) + U(0, 0.1).704

We will also use them as outleirs, for a total of 15 different datasets. We also generated extra inliers705

in each test set. We gathered the AUC results in Figure 9. As we can see, all other methods struggel706

to come ahead of the random classifier, marked with a dashed line. The only method well above that707

is GSAAL.708

B.3 One-class Classification (extension)709

As we noted in Section 4, we obtained our benchmark datasets from [19], a benchmark study for710

One-class classification methods in tabular data. Some of the datasets featured in the study, and711

also in our experiments, were obtained from embedding image or text data using a pre-trained NN712
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(a) Banana

(b) Spiral

(c) Star

(d) Circle

(e) L

Figure 7: Projected classification boundaries for the datasets in section 4.2 and the extra datasets.

(ResNet [20] and BERT [9], respectively). We shunt the interested reader into [19] for additional713

information. Additionally, we found discrepancies between the versions of the datasets in the study714

of [4] and [19]. We utilized the version of those datasets featured in [4] for our experiments due715

to popularity. This affected the datasets Arrhythmia, Annthyroid, Cardiotocography, InternetAds,716

Ionosphere, SpamBase, Waveform, WPBC and Hepatitis. Figure 10 summarizes the ranks from the717

one-class experiments in section 4.3. Table 5 summarizes the AUC results from our experiments. As718

mentioned in section A.3, we also included extra methods outside of our related work. Particularly,719

we added deep versions tailored to image data of previously included methods —DeepSVDD [35]720

and Deep Isolation Forest [42] (DIF)— and others that extend some types of outlier detectors into721

image and text data —LUNAR [16], as an extension of Locality-based classical methods, and722

AnoGAN [36], as an extension of Generative methods. For their parameters, we employed the723

recommended ones for LUNAR and DIF, and trained the models the same way that the authors did724

in their articles. As for DeepSVDD and AnoGAN, as they do not have any recommended way of725

training nor hyperparameters, we performed a grid search for their training parameters and kept the726

best result. We used all of their official implementations4. All deep methods (including MO-GAAL727

4LUNAR and DIF have official implementations by their authors in pyod [43].
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(a) Banana

(b) Spiral

(c) Star

(d) Circle

(e) L

Figure 8: Projected classification boundaries of the competitors outside of our related work.

Figure 9: AUC results in the MV datasets.
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Figure 10: Boxplots of the ranks used for the Conover-Iman experiment in section 4.3.

(a) (b)

Figure 11: Performance of the detector with different values of k.

and GSAAL) were trained multiple times with the same train set and their results were averaged to728

account for initialization.729

Additionally, we gathered all extra deep methods and performed the same statistical analysis as in730

section 4.3. We also included MO GAAL besides GSAAL for completion. SO GAAL, the single731

generator version of MO GAAL was not included, even if popular in the related literature. The732

reason is that authors in [30] showed that MO GAAL constantly outperforms SO GAAL in the outlier733

detection task. Results are included in table 6, gathered after a positive Kruskal-Wallis test. As we can734

see, GSAAL outperform almost all competitors except LUNAR (the most recent method). However,735

LUNAR is incapable to detect change in the subspaces as GSAAL does, see section B.2. Therefore,736

regardless of considering the tabular related work, or the more generalist deep methods, GSAAL737

still can outperform most competitors in the field. Additionally, for those that GSAAL performs738

similar to, we showed that we are more sensible to changes in subspaces. This fact makes GSAAL739

the preferred option for One-class classification under MV.740

B.4 Parameter Sensibility741

We now explore the effect of the number of detectors in GSAAL, k, by repeating the previous742

experiments with varying k. Figure 11a plots the median AUC for different k values, showing a743

stabilization at larger k. Next, Figure 11b compares the results with a fixed k = 30 and the default744

value k = 2
√
d used in the previous experiments; there is no large difference in either the AUC or the745

ranks. We also found that the results in Table 3 remain almost the same if one sets k = 30. So we746

recommend fixing k = 30, which makes GSAAL very suitable for high-dimensional data.747

B.5 Ablation study748

Lastly, we also performed an ablation study for GSAAL. We identify two critical components in our749

method, the subspace nature of our detectors, and the multiple detectors used. Table 7 contains a750

summary of the included features in each considered configuration. We will compare the performance751

of all the different configurations of GSAAL.752
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Table 6: Results of the Conover-Iman test for all the Deep methods.
Method AnoGAN DIF DeepSVDD GSAAL LUNAR MO GAAL
AnoGAN = – – – – – – – – – –
DIF ++ = – – – – –
DeepSVDD ++ + = – – ++
GSAAL ++ ++ + = ++
LUNAR ++ ++ + = ++
MO GAAL ++ – – – – – – =

Table 7: Summary of the included components in the ablation study.
Name Subspace Multiple Di

GSAAL✗✗ ✗ ✗
GSAAL✓✗ ✓ ✗
GSAAL✗✓ ✗ ✓
GSAAL ✓ ✓

We will employ, once again, the Conover-Iman test to compare the performance of all configuration753

in a statistically sound way. Table 8 contains the results of the ablation experiment. As expected, our754

fully configured method significantly outperformed all of the others. This further confirms that the755

performance increase over our competitors comes directly from tackling the MV problem.756

Table 8: Results of the Connover-Iman test for the ablation study.
GSAAL✗✗ GSAAL✓✗ GSAAL✗✓ GSAAL

GSAAL✗✗ = ++ – – – –
GSAAL✓✗ – – = – – – –
GSAAL✗✓ ++ ++ = – –
GSAAL ++ ++ ++ =

25



NeurIPS Paper Checklist757

1. Claims758

Question: Do the main claims made in the abstract and introduction accurately reflect the759

paper’s contributions and scope?760

Answer: [Yes]761

Justification: sections 3 for the theoretical claims, 4.2 for the MV claims, and 4.3 for the762

real world performance claims.763

Guidelines:764

• The answer NA means that the abstract and introduction do not include the claims765

made in the paper.766

• The abstract and/or introduction should clearly state the claims made, including the767

contributions made in the paper and important assumptions and limitations. A No or768

NA answer to this question will not be perceived well by the reviewers.769

• The claims made should match theoretical and experimental results, and reflect how770

much the results can be expected to generalize to other settings.771

• It is fine to include aspirational goals as motivation as long as it is clear that these goals772

are not attained by the paper.773

2. Limitations774

Question: Does the paper discuss the limitations of the work performed by the authors?775

Answer: [Yes]776

Justification: Section 5.777

Guidelines:778

• The answer NA means that the paper has no limitation while the answer No means that779

the paper has limitations, but those are not discussed in the paper.780

• The authors are encouraged to create a separate "Limitations" section in their paper.781

• The paper should point out any strong assumptions and how robust the results are to782

violations of these assumptions (e.g., independence assumptions, noiseless settings,783

model well-specification, asymptotic approximations only holding locally). The authors784

should reflect on how these assumptions might be violated in practice and what the785

implications would be.786

• The authors should reflect on the scope of the claims made, e.g., if the approach was787

only tested on a few datasets or with a few runs. In general, empirical results often788

depend on implicit assumptions, which should be articulated.789

• The authors should reflect on the factors that influence the performance of the approach.790

For example, a facial recognition algorithm may perform poorly when image resolution791

is low or images are taken in low lighting. Or a speech-to-text system might not be792

used reliably to provide closed captions for online lectures because it fails to handle793

technical jargon.794

• The authors should discuss the computational efficiency of the proposed algorithms795

and how they scale with dataset size.796

• If applicable, the authors should discuss possible limitations of their approach to797

address problems of privacy and fairness.798

• While the authors might fear that complete honesty about limitations might be used by799

reviewers as grounds for rejection, a worse outcome might be that reviewers discover800

limitations that aren’t acknowledged in the paper. The authors should use their best801

judgment and recognize that individual actions in favor of transparency play an impor-802

tant role in developing norms that preserve the integrity of the community. Reviewers803

will be specifically instructed to not penalize honesty concerning limitations.804

3. Theory Assumptions and Proofs805

Question: For each theoretical result, does the paper provide the full set of assumptions and806

a complete (and correct) proof?807

Answer: [Yes]808
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Justification: Section A.809

Guidelines:810

• The answer NA means that the paper does not include theoretical results.811

• All the theorems, formulas, and proofs in the paper should be numbered and cross-812

referenced.813

• All assumptions should be clearly stated or referenced in the statement of any theorems.814

• The proofs can either appear in the main paper or the supplemental material, but if815

they appear in the supplemental material, the authors are encouraged to provide a short816

proof sketch to provide intuition.817

• Inversely, any informal proof provided in the core of the paper should be complemented818

by formal proofs provided in appendix or supplemental material.819

• Theorems and Lemmas that the proof relies upon should be properly referenced.820

4. Experimental Result Reproducibility821

Question: Does the paper fully disclose all the information needed to reproduce the main ex-822

perimental results of the paper to the extent that it affects the main claims and/or conclusions823

of the paper (regardless of whether the code and data are provided or not)?824

Answer: [Yes]825

Justification: Section 4 includes all details about our experimental setup (competitors,826

datasets, experiments & training). Section A in the appendix includes the pseudo-code as827

well828

Guidelines:829

• The answer NA means that the paper does not include experiments.830

• If the paper includes experiments, a No answer to this question will not be perceived831

well by the reviewers: Making the paper reproducible is important, regardless of832

whether the code and data are provided or not.833

• If the contribution is a dataset and/or model, the authors should describe the steps taken834

to make their results reproducible or verifiable.835

• Depending on the contribution, reproducibility can be accomplished in various ways.836

For example, if the contribution is a novel architecture, describing the architecture fully837

might suffice, or if the contribution is a specific model and empirical evaluation, it may838

be necessary to either make it possible for others to replicate the model with the same839

dataset, or provide access to the model. In general. releasing code and data is often840

one good way to accomplish this, but reproducibility can also be provided via detailed841

instructions for how to replicate the results, access to a hosted model (e.g., in the case842

of a large language model), releasing of a model checkpoint, or other means that are843

appropriate to the research performed.844

• While NeurIPS does not require releasing code, the conference does require all submis-845

sions to provide some reasonable avenue for reproducibility, which may depend on the846

nature of the contribution. For example847

(a) If the contribution is primarily a new algorithm, the paper should make it clear how848

to reproduce that algorithm.849

(b) If the contribution is primarily a new model architecture, the paper should describe850

the architecture clearly and fully.851

(c) If the contribution is a new model (e.g., a large language model), then there should852

either be a way to access this model for reproducing the results or a way to reproduce853

the model (e.g., with an open-source dataset or instructions for how to construct854

the dataset).855

(d) We recognize that reproducibility may be tricky in some cases, in which case856

authors are welcome to describe the particular way they provide for reproducibility.857

In the case of closed-source models, it may be that access to the model is limited in858

some way (e.g., to registered users), but it should be possible for other researchers859

to have some path to reproducing or verifying the results.860

5. Open access to data and code861
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Question: Does the paper provide open access to the data and code, with sufficient instruc-862

tions to faithfully reproduce the main experimental results, as described in supplemental863

material?864

Answer: [Yes]865

Justification: We include our GitHub (anonymized for the double-blind phase).866

Guidelines:867

• The answer NA means that paper does not include experiments requiring code.868

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/869

public/guides/CodeSubmissionPolicy) for more details.870

• While we encourage the release of code and data, we understand that this might not be871

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not872

including code, unless this is central to the contribution (e.g., for a new open-source873

benchmark).874

• The instructions should contain the exact command and environment needed to run to875

reproduce the results. See the NeurIPS code and data submission guidelines (https:876

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.877

• The authors should provide instructions on data access and preparation, including how878

to access the raw data, preprocessed data, intermediate data, and generated data, etc.879

• The authors should provide scripts to reproduce all experimental results for the new880

proposed method and baselines. If only a subset of experiments are reproducible, they881

should state which ones are omitted from the script and why.882

• At submission time, to preserve anonymity, the authors should release anonymized883

versions (if applicable).884

• Providing as much information as possible in supplemental material (appended to the885

paper) is recommended, but including URLs to data and code is permitted.886

6. Experimental Setting/Details887

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-888

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the889

results?890

Answer: [Yes]891

Justification: We explain our processes for one-class classification in section 4.3. Hyper-892

parameters, as well as optimizers, are included in section 4.1. Additionally, our remote893

repository contains the full details.894

Guidelines:895

• The answer NA means that the paper does not include experiments.896

• The experimental setting should be presented in the core of the paper to a level of detail897

that is necessary to appreciate the results and make sense of them.898

• The full details can be provided either with the code, in appendix, or as supplemental899

material.900

7. Experiment Statistical Significance901

Question: Does the paper report error bars suitably and correctly defined or other appropriate902

information about the statistical significance of the experiments?903

Answer: [Yes]904

Justification: We utilized a statistical test to study the significance of all of our performance905

results —see tables 3, 6, 8. We also extensively used boxplots of all AUC results to visualize906

our performance in different scenarios —see figures 6, 9, 10, 11.b.907

Guidelines:908

• The answer NA means that the paper does not include experiments.909

• The authors should answer "Yes" if the results are accompanied by error bars, confi-910

dence intervals, or statistical significance tests, at least for the experiments that support911

the main claims of the paper.912
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• The factors of variability that the error bars are capturing should be clearly stated (for913

example, train/test split, initialization, random drawing of some parameter, or overall914

run with given experimental conditions).915

• The method for calculating the error bars should be explained (closed form formula,916

call to a library function, bootstrap, etc.)917

• The assumptions made should be given (e.g., Normally distributed errors).918

• It should be clear whether the error bar is the standard deviation or the standard error919

of the mean.920

• It is OK to report 1-sigma error bars, but one should state it. The authors should921

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis922

of Normality of errors is not verified.923

• For asymmetric distributions, the authors should be careful not to show in tables or924

figures symmetric error bars that would yield results that are out of range (e.g. negative925

error rates).926

• If error bars are reported in tables or plots, The authors should explain in the text how927

they were calculated and reference the corresponding figures or tables in the text.928

8. Experiments Compute Resources929

Question: For each experiment, does the paper provide sufficient information on the com-930

puter resources (type of compute workers, memory, time of execution) needed to reproduce931

the experiments?932

Answer: [Yes]933

Justification: See the beginning of section B934

Guidelines:935

• The answer NA means that the paper does not include experiments.936

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,937

or cloud provider, including relevant memory and storage.938

• The paper should provide the amount of compute required for each of the individual939

experimental runs as well as estimate the total compute.940

• The paper should disclose whether the full research project required more compute941

than the experiments reported in the paper (e.g., preliminary or failed experiments that942

didn’t make it into the paper).943

9. Code Of Ethics944

Question: Does the research conducted in the paper conform, in every respect, with the945

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?946

Answer: [Yes]947

Justification: We reviewed the NeurIPS Code of Ethics and found no violation.948

Guidelines:949

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.950

• If the authors answer No, they should explain the special circumstances that require a951

deviation from the Code of Ethics.952

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-953

eration due to laws or regulations in their jurisdiction).954

10. Broader Impacts955

Question: Does the paper discuss both potential positive societal impacts and negative956

societal impacts of the work performed?957

Answer: [Yes]958

Justification: In sections, 1 & 5 we go through the importance of outlier detection in959

many fields, particularly for our use-case. Our positive impact on society consists of the960

improvement of the tasks where outlier detection is needed.961

Guidelines:962

• The answer NA means that there is no societal impact of the work performed.963
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• If the authors answer NA or No, they should explain why their work has no societal964

impact or why the paper does not address societal impact.965

• Examples of negative societal impacts include potential malicious or unintended uses966

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations967

(e.g., deployment of technologies that could make decisions that unfairly impact specific968

groups), privacy considerations, and security considerations.969

• The conference expects that many papers will be foundational research and not tied970

to particular applications, let alone deployments. However, if there is a direct path to971

any negative applications, the authors should point it out. For example, it is legitimate972

to point out that an improvement in the quality of generative models could be used to973

generate deepfakes for disinformation. On the other hand, it is not needed to point out974

that a generic algorithm for optimizing neural networks could enable people to train975

models that generate Deepfakes faster.976

• The authors should consider possible harms that could arise when the technology is977

being used as intended and functioning correctly, harms that could arise when the978

technology is being used as intended but gives incorrect results, and harms following979

from (intentional or unintentional) misuse of the technology.980

• If there are negative societal impacts, the authors could also discuss possible mitigation981

strategies (e.g., gated release of models, providing defenses in addition to attacks,982

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from983

feedback over time, improving the efficiency and accessibility of ML).984

11. Safeguards985

Question: Does the paper describe safeguards that have been put in place for responsible986

release of data or models that have a high risk for misuse (e.g., pretrained language models,987

image generators, or scraped datasets)?988

Answer: [NA]989

Justification: We do not identify any risks.990

Guidelines:991

• The answer NA means that the paper poses no such risks.992

• Released models that have a high risk for misuse or dual-use should be released with993

necessary safeguards to allow for controlled use of the model, for example by requiring994

that users adhere to usage guidelines or restrictions to access the model or implementing995

safety filters.996

• Datasets that have been scraped from the Internet could pose safety risks. The authors997

should describe how they avoided releasing unsafe images.998

• We recognize that providing effective safeguards is challenging, and many papers do999

not require this, but we encourage authors to take this into account and make a best1000

faith effort.1001

12. Licenses for existing assets1002

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1003

the paper, properly credited and are the license and terms of use explicitly mentioned and1004

properly respected?1005

Answer: [Yes]1006

Justification: We include URLs and citations for all dataset selections, packages, and1007

methods.1008

Guidelines:1009

• The answer NA means that the paper does not use existing assets.1010

• The authors should cite the original paper that produced the code package or dataset.1011

• The authors should state which version of the asset is used and, if possible, include a1012

URL.1013

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1014

• For scraped data from a particular source (e.g., website), the copyright and terms of1015

service of that source should be provided.1016
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• If assets are released, the license, copyright information, and terms of use in the package1017

should be provided. For popular datasets, paperswithcode.com/datasets has1018

curated licenses for some datasets. Their licensing guide can help determine the license1019

of a dataset.1020

• For existing datasets that are re-packaged, both the original license and the license of1021

the derived asset (if it has changed) should be provided.1022

• If this information is not available online, the authors are encouraged to reach out to1023

the asset’s creators.1024

13. New Assets1025

Question: Are new assets introduced in the paper well documented and is the documentation1026

provided alongside the assets?1027

Answer: [Yes]1028

Justification: We include the documentation of our implementation in the repository.1029

Guidelines:1030

• The answer NA means that the paper does not release new assets.1031

• Researchers should communicate the details of the dataset/code/model as part of their1032

submissions via structured templates. This includes details about training, license,1033

limitations, etc.1034

• The paper should discuss whether and how consent was obtained from people whose1035

asset is used.1036

• At submission time, remember to anonymize your assets (if applicable). You can either1037

create an anonymized URL or include an anonymized zip file.1038

14. Crowdsourcing and Research with Human Subjects1039

Question: For crowdsourcing experiments and research with human subjects, does the paper1040

include the full text of instructions given to participants and screenshots, if applicable, as1041

well as details about compensation (if any)?1042

Answer: [NA]1043

Justification: The paper does not involve crowdsourcing nor research with human subjects.1044

Guidelines:1045

• The answer NA means that the paper does not involve crowdsourcing nor research with1046

human subjects.1047

• Including this information in the supplemental material is fine, but if the main contribu-1048

tion of the paper involves human subjects, then as much detail as possible should be1049

included in the main paper.1050

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1051

or other labor should be paid at least the minimum wage in the country of the data1052

collector.1053

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1054

Subjects1055

Question: Does the paper describe potential risks incurred by study participants, whether1056

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1057

approvals (or an equivalent approval/review based on the requirements of your country or1058

institution) were obtained?1059

Answer: [NA]1060

Justification: The paper does not involve crowdsourcing nor research with human subjects.1061

Guidelines:1062

• The answer NA means that the paper does not involve crowdsourcing nor research with1063

human subjects.1064

• Depending on the country in which research is conducted, IRB approval (or equivalent)1065

may be required for any human subjects research. If you obtained IRB approval, you1066

should clearly state this in the paper.1067
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• We recognize that the procedures for this may vary significantly between institutions1068

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1069

guidelines for their institution.1070

• For initial submissions, do not include any information that would break anonymity (if1071

applicable), such as the institution conducting the review.1072
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