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Abstract

Outlier detection in high-dimensional tabular data is an important task in data min-
ing, essential for many downstream tasks and applications. Existing unsupervised
outlier detection algorithms face one or more problems, including inlier assumption
(TA), curse of dimensionality (CD), and multiple views (MV). To address these
issues, we introduce Generative Subspace Adversarial Active Learning (GSAAL),
a novel approach that uses a Generative Adversarial Network with multiple ad-
versaries. These adversaries learn the marginal class probability functions over
different data subspaces, while a single generator in the full space models the entire
distribution of the inlier class. GSAAL is specifically designed to address the MV
limitation while also handling the IA and CD, making it the only method to address
all three. We provide a mathematical formulation of MV, theoretical guarantees
for the training, and scalability analysis for GSAAL. Our extensive experiments
demonstrate the effectiveness and scalability of GSAAL, highlighting its superior
performance compared to other popular OD methods, especially in MV scenarios.

1 Introduction

Outlier detection (OD), a fundamental and widely recognized issue in data mining, involves the
identification of anomalous or deviating data points within a dataset. Outliers are typically defined
as low-probability occurrences within a population [41, [19]. In the absence of access to the true
probability distribution of the data points, OD algorithms rely on constructing a scoring function.
Points with higher scores are more likely to be outliers. Existing unsupervised OD algorithms have
one or more of the following problems, in high-dimensional tabular data scenarios.

* The inlier assumption (IA): OD algorithms often make assumptions about what constitutes
an inlier, which can be challenging to verify and validate [30].

* The curse of dimensionality (CD): As the dimensionality of data increases, the challenge of
identifying outliers intensifies, decreasing the effectiveness of certain OD algorithms [2]

* Multiple Views (MV): Outliers are often only visible in certain "views" of the data and are
hidden in the full space of original features [|31]]

‘We now explain these problems one by one.

The inlier assumption poses a challenge to algorithms that assume a standard profile of the inlier
data. For example, angle-based algorithms like ABOD [24] assume that inliers have other inliers
at all angles. Similarly, neighbor-based algorithms like kNN [34] assume that inliers have other
neighboring points nearby. These assumptions influence the scoring as it measures the degree to
which a sample deviates from this assumed norm. Consequently, the performance of these algorithms
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Figure 1: Scatterplots of the dataset from example

may degrade if these assumptions do not hold [30]. This means that a general OD method should not
make any inlier assumptions.

The curse of dimensionality [2] refers to the decrease in the relative proximity of data points as the
number of dimensions increases. Simply put, with high dimensionality, the distance between any pair
of points becomes similar, regardless of whether none, one, or both of the points in a pair are outliers.
This is particularly problematic for OD algorithms that rely on distances or on identifying neighbors
to detect outliers, such as density- (e.g., LOF [3]), neighbor- (e.g., KNN [34]), and cluster-based (e.g.,
SVDD [l Chapter 2]) OD algorithms.

Multiple Views refers to the phenomenon that certain complex correlations between features are only
observable in some feature subspaces [31]. As detailed in [1]], this occurs when the dataset contains
additional irrelevant features, making some outliers only detectable in certain subspaces. In scenarios
where multiple subspaces contain different interesting structures, this problem is exacerbated. It then
becomes increasingly difficult to explain the variability of a data point based solely on its behavior in
a single subspace [23]]. This problem can occur regardless of the dimensionality of the dataset if the
number of points is insufficient to capture a complex correlation structure.

The following example illustrates the three problems described above

Example 1 (Effect of MV, IA and CD). Consider the random variables x1,Xo and x3, where x1 and
Xo are highly correlated and x3 is Gaussian noise. Figure[l|plots datasets with 20, 100 and 1000
realizations of (X1, X2, X3). It also contains the classification boundaries from both a locality-based
method (green) and a cluster-based method (red) in the subspace. The cluster-based detector fitted in
the full 3D space fails to detect the outlier shown in the figure (red cross). However, the outlier is
always detected in the 2D subspace, as we can see. Once we increase the number of samples over
n = 1000, the cluster-based method detects the outlier in the full space (MV). On the contrary, the
locality-based method could not detect the outlier in any tested scenario (MV + IA). If we increase
the dimensionality by adding more features consisting of noise, no method can detect the outlier in
the full space (MV + IA + CD,).

We are interested in tackling outlier detection whenever a population exhibits MV, like [31} 23| 25]]
and as showcased in [1]]. Particularly, the goal of this paper is to propose the first outlier detection
method that explicitly addresses A, CD, and MV simultaneously.

As we will explain in the next section, we build on Generative Adversarial Active Learning
(GAAL) [44]], a widely used approach for outlier detection [30} [17, [39]]. It involves training a
Generative Adversarial Network (GAN) to mimic the distribution of outlier data, and it enhances
the discriminator’s performance through active learning [38]], leveraging the GAN’s data generation
capability. GAAL methods avoid IA [30] and use the multi-layered structure of the GAN to overcome
the curse of dimensionality [33]]. However, they often miss important subspaces, leading to MV.

Challenges. Training multiple GAN-based models in individual subspaces is not trivial. (1) The
joint training of generators and discriminators in GANs requires careful monitoring to determine
the optimal stopping point, a task that becomes daunting for large ensembles. (2) The generation of
difficult-to-detect points in a subspace remains hard [40]. (3) While several authors have proposed
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Table 1: Families of OD methods with the limitations they address.

Type IA- CD MV
Classical X X X
Subspace X v v
Generative w/ uniform distribution v~ X X
Generative w/ param. distribution X v X
Generative w/ subspace behavior X v v
GAAL v v X
GSAAL (Our method) v v v

multi-adversarial architectures for GANSs [11, 5], none of them address adversaries tailored to
subspaces composed of feature subsets. Furthermore, these methods may not be suitable for GAAL
since they do not have convergence guarantees for detectors, as we will explain.

Contributions. (1) We propose GSAAL (Generative Subspace Adversarial Active Learning), a
novel GAAL method that uses multiple adversaries to learn the marginal inlier probability functions
in different data subspaces. Each adversary focuses on a single subspace. Simultaneously, we train
a single generator in the full space to approximate the entire distribution of the inlier class. All
networks are trained end-to-end, avoiding the ensembling problem. (2) To our knowledge, we give
the first mathematical formulation of the “multiple views” problem. We used it to show the ability of
GSAAL to mitigate the MV problem. (3) We formulate the novel optimization problem for GSAAL
and give convergence guarantees of each discriminator to the marginal distribution of its respective
subspace. We also analyze the worst-case complexity of the method. (4) In extensive experiments we
compare GSAAL with multiple competitors. GSAAL was the only method capable of consistently
detecting anomalous data under MV. Furthermore, on 22 popular benchmark datasets for the one-class
classification task, GSAAL demonstrated SOTA-level performance and was orders of magnitude
faster in inference than its best competitors. (5) Our code is publicly availableE]

Paper outline: Section@]reviews related work, SectionE]contains the theoretical results for our method,
Section[z_f] features our experimental results, and Section E] concludes and addresses limitations.

2 Related Work

This section is a brief overview of popular unsupervised outlier detection methods for tabular data
related to our approach. We categorize them based on their ability to address the specific limitations
outlined above. Table[I]is a comparative summary. Further comments about OD in other data types
can be found in the appendix.

Classical Methods Conventional outlier detection approaches, such as distance-based strategies
like LOF and KNN, angle-based techniques like ABOD, and cluster-based methods like SVDD,
rely on specific assumptions on the behavior of inlier data. They use a scoring function to measure
deviations from this assumed norm. These methods face the inlier assumption limitation by definition.
For example, local methods that assume isolated outliers fail when several outlying samples fall
together. In addition, many classical methods, which rely on measuring distances, are susceptible to
the curse of dimensionality. Both limitations impair the effectiveness of these methods [30].

Subspace Methods Subspace-based methods [25] operate in lower-dimensional subspaces formed
by subsets of features. They effectively counteract the curse of dimensionality by focusing on
identifying so-called “subspace outliers” [22]. These outliers, which are prevalent in high-dimensional
datasets with many correlated features, are often elusive to conventional non-subspace methods [29,
31]]. However, existing subspace methods inherently operate on specific assumptions on the nature of
anomalies in each subspace they explore, and thus face the inlier assumption limitation.

Generative Methods A common strategy to mitigate the IA and CD limitations is to reframe the
task as a classification task using self-supervision. A prevalent self-supervised technique, particularly

'https://anonymous.4open.science/t/GSAAL-8DGE
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for tabular data, is the generation of artificial outliers [13[30]. This method involves distinguishing
between actual training data and artificially generated data drawn from a predetermined “reference
distribution”. [21] showed that by approximating the class probability of being a real sample, one
approximates the probability function of being an inlier. One then uses this approximation as a
scoring function [30]. However, it is not easy to find the right reference distribution, and a poor
choice can affect OD by much [21]].

A first approach to this challenge proposed the use of naive reference distributions by uniformly
generating data in the space. This approach showed promising results in low-dimensional spaces but
failed in high dimensions due to the curse of dimensionality [21]. Other approaches, such as assuming
parametric distributions for inlier data [[1, Chapter 2] or directly generating in susbpaces [12]], can
avoid CD when the parametric assumptions are met. Methods that generate in the subspaces can
model the subspace behavior, additionally tackling the MV limitation. However, these last two
approaches do not address the IA limitation, as they make specific assumptions about the behavior of
the inlier data.

Generative Adversarial Active Learning According to [21]], the closer the reference distribution
is to the inlier distribution, the better the final approximation to the inlier probability function will
be. Hence, recent developments in generative methods have focused on learning the reference
distribution in conjunction with the classifier. A key approach is the use of Generative Adversarial
Networks (GANs), where the generator converges to the inlier distribution [15]. The most common
approaches for this are GAAL-based methods [30L [17,139]. These methods differentiate themselves
from other GANs for OD by training the detectors using active learning after normal convergence of
the GAN [36}[10]. The architecture of GAAL inherently addresses the curse of dimensionality, as
GANSs can incorporate layers designed to manage high-dimensional data [33]]. In practice, GAAL-
based methods outperformed all their competitors in their original work. However, they overlook the
behavior of the data in subspaces and therefore may be susceptible to MV.

Our method, GSAAL, incorporates several subspace-focused detectors into GAAL. These detectors
approximate the marginal inlier probability functions of their subspaces. Thus, GSAAL effectively
addresses MV while inheriting GAAL’s ability to overcome IA and CD limitations.

3 Our Method: GSAAL

We first formalize the notion of data exhibiting multiple views. We then use it to design our
outlier detection method, GSAAL, and give convergence guarantees. Finally, we derive the runtime
complexity of GSAAL. All the proofs and extra derivations can be found in the technical appendix.

3.1 Multiple Views

Several authors [[1,[31} 23} 25, 129]] have observed that at times the variability of the data can only be
explained from its behavior in some subspaces. Researchers variably call this problem “the subspace
problem” [[1} 25]] or “multiple views of the data” [22}[31]]. Previous research has largely focused on
practical scenarios, leaving aside the need for a formal definition. In response, we propose a unifying
definition of “multiple views” that provides a foundation for developing methods to address this
challenge effectively.

The problem “multiple views” of data (MV) arises from two different effects. First, it involves the
ability to understand the behavior of a random vector x by examining lower-dimensional subsets of
its components (X1, . ..,X4). Second, it stems from the challenge of insufficient data to obtain an
effective scoring function in the full space of x. As Example[I]shows, combining these two effects
obscures the behavior of the data in the full space. Hence, methods not considering subspaces when
building their scoring function may have issues detecting outliers under MV. The next definition
formalizes the first effect.
Definition 1 (myopic distribution). Consider a random vector x : Q@ — R? and Diag ., ;,({0,1}),
the set of diagonal binary matrices without the identity. If there exists a random matrix u : {1 —»
Diag ;. 4({0,1}), such that

Px () = pux(uz) for almost all x, (1
we say that the distribution of x is myopic to the views of u. Here, x and ux are realizations of x
and ux, and px and pyx are the pdfs of x and ux.
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It is clear that, under MV, using p,x to build a scoring function instead of px mitigates the effects.
This comes as the subspaces selected by u are smaller in dimensionality. Hence it should take fewer
samples to approximate the pdf of ux. The difficulty is that it is not yet clear how to approximate
Pux- The following proposition elaborates on a way to do so. It states that by averaging a collection
of marginal distributions of x in the subspaces given by realizations of u, one can approximate the
distribution of pyx.

Proposition 1. Let x and u be as before with px myopic to the views of u. Consider a set of
independent realizations of u: {u;}¥_,. Then 1 >_. pu,x(u;z) is an unbiased statistic for pux(uz).

MYV appears when there is a lack of data, and its distribution is myopic. To improve OD under MV,
one can exploit the distribution myopicity to model x in the subspaces, where less data is sufficient.
Proposition [I] gives us a way to do so, by approximating pyx. In this way, under myopicity, this also
approximates py, avoiding MV. Our method, GSAAL, exploits these derivations, as we explain next.

3.2 GSAAL

GAAL methods tackle IA by being agnostic to outlier definition and mitigate CD through the use of
multilayer neural networks [30, 28, 33]]. GAAL methods have two steps:

1. Training of the GAN. Train the GAN consisting of one generator G and one detector D using
the usual min-max optimization problem as in [15].

2. Training of the detector through active learning. After convergence, G is fixed, and D
continues to train. This last step is an active learning procedure with [44]]. Following [21]],
D(x) now approximates the pdf of the training data py.

After Step 2] the detector converges to p,. However, our goal is to approximate p, by exploiting
a supposed myopicity of the distribution. We extend GAAL methods to also address MV in what
follows. The following theorem adapts the objective function of the GAN to the subspace case and
gives guarantees that the detectors converge to the marginal pdfs used in Proposition|[I}

Theorem 1. Consider x and u as in the previous definition, with x a realization of x and {u;}; a set
of realizations of u. Consider a generator G : z € Z — G(z) € RYand {D;}, i = 1,...,k, a set
of detectors such as D; : u;x € S; C R — D;(u;x) € [0,1]. Z is an arbitrary noise space where
G randomly samples from. Consider the following optimization problem
i V(G,D;) =
g 2. V0P

@

G D, Vi

min max ZEMX log D;(u;x) + E, log (1 — D; (w;G(2))),

where each addend V (G, D;) is the binary cross entropy in each subspace. Under these conditions,
the following holds:

i) Each detector in optimum is D} (u;z) = 1, V. Thus, in optimum V (G, D;) = —log(4), Vi.
ii) Each individual D; converges to D} (u;x) = pu,s(w;x) after trained in Step[2|of a GAAL
method.
iii) D*(x) = Zle D} (u;x) approximates pux(ux). If px is myopic, D*(x) also approxi-
mates px ().

Using Theorem [I] we can extend the GAAL methods to the subspace case:

1. Training the GAN. Train a GAN with one generator G and multiple detectors {D;} with
Equation (2) as the objective function. The training of each detector stops when the loss
reaches its value with the optimum in Statement (7).

2. Training of the k detectors by active learning. Train each D; as in Step 2 of a regular GAAL
method using G. By Statement (i¢) of the Theorem, each D; will approximate p,,x. By
Statement (iii), D(z) = + Zf;l D;(u;x) will approximate p, under the myopicity of the
data.

We call this generalization of GAAL Generative Subspace Adversarial Active Learning (GSAAL).
The appendix contains the pseudo-code for GSAAL.
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3.3 Complexity

In this section, we focus on studying the theoretical complexity of GSAAL. We study both its usability
for training and, more importantly, for inference.

Theorem 2. Consider our GSAAL method with generator G and detectors {D;}¥_,, each with four
fully connected hidden layers, \/n nodes in the detectors and d in the generator. Let D be the training
data for GSAAL, with n data points and d features. Then the following holds:

i) Time complexity of training is O(Ep - n - (k-n + d?)). Ep is an unknown complexity
variable depicting the unique epochs to convergence for the network in dataset D.

i1) Time complexity of single sample inference is in O(k - n), with k the number of detectors
used.

The linear inference times make GSAAL particularly appealing in situations where the model can be
trained once for each dataset, like one-class classification. We build on this particular strength in the
following section.

4 Experiments

This section presents experiments with GSAAL. We will outline the experimental setting, and examine
the handling of “multiple views” in GSAAL and other OD methods. We then evaluate GSAAL’s
performance against various OD methods and investigate its scalability. The appendix includes a
study on the sensitivity to the number of detectors, IA experiments, an ablaition study and extra
competitors evaluated in the real world datasets. System specifications are included in the appendix.

4.1 Experimental Setting

This section has three parts: First, we describe the synthetic and real data for the outlier detection
experiments. Then, we describe the configuration of GSAAL. Finally, we present our competitors.

4.1.1 Datasets

Synthetic. We constructed synthetic datasets, each containing two correlated features, x; and xo,
along with 58 independent features x;, j = 3, ..., 60 consisting of Gaussian noise. This approach
simulates datasets that exhibit the MV property by adding irrelevant features into a pair of highly
correlated variables. We detail the methodology and all correlation patterns in the technical appendix.

Real. We selected 22 real-world tabular datasets for our experiments from [19]. The selection
criteria included datasets with less than 10,000 data points, more than 10 outliers, and more than 15
features, focusing on high-dimensional data while keeping the runtime (of competing OD methods)
tractable. Table[2a]contains the summary of the datasets. For datasets with multiple versions, we chose
the first in alphanumeric order. Details about each dataset are available in the original source [19].

4.1.2 Network Settings

Structure. Unless stated otherwise, GSAAL uses the following network architecture. It consists of
four fully connected layers with ReLu activation functions used in the generator and the detectors.
Each layer in k& = 2/d detectors has /n nodes, where n and d are the number of data points
and features in the training set, respectively. This configuration ensures linear inference time. The
generator has d nodes in each layer, a standard in GAAL approaches, which ensures polynomial
training times. We assumed u to be distributed uniformly across all subspaces. Therefore, we
obtained each subspace for the detectors by drawing uniformly from the set of all subspaces.

Training. Like other GAAL methods [30} 44]], we train the generator G together with all the
detectors D; until the loss of G stabilizes. Then we train each detector D; until convergence with
G fixed. To automate this process, we introduce an early stopping criterion: Training stops when a
detector’s loss approaches the theoretical optimum (— log(4)), see statement (i) of Theorem 1} For
consistency across experiments, training parameters remain fixed unless otherwise noted. Specifically,
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Table 2: Real-world datasets and Competitors

(a) Real-world datasets converted to tabular if needed

(b) Competitors

Dataset Category | Dataset Category Type Competitors
20news Text | MNIST Image Classical kNN, LOF
Annthyroid Health | MVTec Text ABOD, OCSVM w/ rbf
Arrhythmia  Cardiology | Optdigits Image Subspace [Forest, SOD
Cardiot.. Cardiology | Satellite Astronomy Gen., uniform dist. NA (see the text)
CIFAR10 Image | Satimage-2  Astronomy Gen., parametric dist. GMM
F-MNIST Image | SpamBase Document Gen., subspace behavior NA (see the text)
Fault Industrial | Speech Linguistics GAAL MO-GAAL
InternetAds Image | SVHN Image
Ionosphere Weather | Waveform  Elect. Eng.
Landsat Astronomy | WPBC Oncology
Letter Image | Hepatitis Health

the learning rates of the detectors and the generator are 0.01 and 0.001, respectively. We use minibatch
gradient descent [[14] optimization, with a batch size of 500.

4.1.3 Competitors

We selected popular and accessible methods from each category, as summarized in Table [2b] guided
by related work. We excluded generative methods with uniform distributions because they prove
ineffective for large datasets [21]]. We could not include a generative method with subspace behavior
due to operational issues with the most relevant method in this class, [12], caused by its outdated
repository. We used the recommended parameters for all methods, as usual in OD [19]].

We used the pyod [43]] library to access all competitors except MO-GAAL. We used MO-GAAL
from its original source and implemented our method GSAAL in keras [6].

4.2 Effect of Multiple Views on Outlier Detection

To demonstrate the effectiveness of GSAAL under MV, we use synthetic datasets. Visualizing the
outlier scoring function in a 60-dimensional space is challenging, so we project it into the x;-X5
subspace. A method adept at handling MV should have a boundary that accurately reflects the x; and
x5 dependency structure. We first generate a synthetic dataset D¥"" as described in section
and train the OD model. Using this model, we compute the scores for the points (z1, 22,0, ...,0)
and visualize the level curves on the x;-x5 plane.

Figure 2 shows results for selected datasets and competitors, which are detailed in the Appendix. It
shows the level curves and decision boundaries (dashed lines) of the methods. Notably, our model
effectively detects correlations in the right subspace. To quantify this, we generated outliers in the
subspace of interest and extra inliers. We tested the one-class classification performance of each
method in 10 different MV datasets. On average, GSAAL managed to obtain 0.70 AUC, while the
second-best performer (IForest) did not surpass a random classifier —0.49 AUC. All results and
further details can be found in section [B.2]in the appendix.

4.3 One-class Classification

This section evaluates GSAAL on a one-class classification task [37]]. First, we study the effectiveness
of GSAAL on real data. Then, we investigate the scalability of GSAAL in practical scenarios.

4.3.1 Real-world Performance

We perform the outlier detection experiments on real datasets. Specifically, we take on the task of
one-class classification, where the goal is to detect outliers by training only on a collection of inliers
[19]. To evaluate the performance of OD methods, we use AUC as it is robust to test data imbalance,
a common issue in OD tasks . The procedure is as follows:
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Figure 2: GSAAL finds classification boundaries for datasets banana and star under MV.

IForest

Table 3: Results of the Conover-Iman test for pairwise comparisons of the rankings.

Method ABOD GSAAL GMM [IForest KNN LOF MO GAAL OCSVM SOD
ABOD = ++ ++ ++ ++ ++
GSAAL = ++ ++ + ++ ++ ++
GMM - - = ++ - - ++ ++
[Forest —-— —-— —-— = —-— ++ ++
KNN ++ ++ = ++ ++
LOF - ++ = ++ + ++
MO GAAL -— - - -— -—— = ++
OCSVM - -—— —— - = ++

SOD —— —— —— —— —— —— —— —— =

1. Split the dataset D into a training set D" containing 80% of the inliers from D, and a test
set D'**' containing the remaining inliers and all outliers.

2. Train an outlier detection model with D"™ and evaluate its performance on D'**' with ROC
AUC.

To save space, we moved the detailed AUC results to the appendix; showing that GSAAL obtained
the lowest median rank —see Figure [I0]in the appendix. Although other subspace methods tend to
perform better with irrelevant attributes [29, 25]], they did not outperform classical OD methods on
average in our experiments. Notably, ABOD, the second-best method in our experiments, performed
poorly in the MV tests (Section [4.2).

For statistical comparisons, we use the Conover-Iman post hoc test for pairwise comparisons be-
tween multiple populations [7]. It is superior to the Nemenyi test due to its improved type I error
boundings [8]. Conover-Iman test requires a preliminary positive result from a multiple population
comparison test, for which we employ the Kruskal-Wallis test [26].

Table[3]shows the test results. In each cell, ‘+’ indicates that the method in the row has a significantly
lower median rank than the method in the column, while ‘—’ indicates a significantly higher median
rank. One symbol indicates p-values < 0.15 and two symbols indicate p-values < 0.05. A blank
indicates no significant difference. The table shows that GSAAL is superior to most of its competitors.
Our method does not significantly outperform the classical methods ABOD and kNN. However, these
methods struggle to detect structures in subspaces, showing their inadequacy in dealing with the MV
limitation, see Section 4.2}

Overall, the results support GSAAL’s superiority in outlier detection tasks involving multiple views.
Additionally, they establish our method as the leading GAAL option for One-class classification

4.3.2 Scalability

In section [3.3] we derived that the inference time of GSAAL scales linearly with the number of
training points if the number of detectors £ is fixed, while it does not depend on the number of
features d. This is in contrast to other methods, in particular LOF, KNN, and ABOD, which have
quadratic runtimes in d [3}124]. We now validate this experimentally. The procedure is as follows:
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Figure 3: Plots of different performance metrics for scalability

1. Generate datasets Dyy,ip and Dieg consisting of random points. | Dyes| = 109,
2. Train an OD method using Dy, and record the inference time over Dieg.

Following the result of the sensitivity study in our appendix, we fixed & = 30. Figure [3a| plots the
inference time of a single data point as a function of the number of features when | D;,.q5,,| = 500.
Figure@]plots the inference time as a function of the number of points in Dy, for a fixed number of
100 features. Both figures confirm our complexity derivations and show that GSAAL is particularly
well-suited for large datasets.

5 Limitations & Conclusions

5.1 Limitations and Future Work

In section ] we randomly selected subspaces for training the detectors in GSAAL, i.e. we took
a uniform distribution of u. This was already sufficient to demonstrate the highly competitive
performance of our method. In practice, this assumption seemed to perform well for our experiments.
However, GSAAL can work with any subspace search strategy to obtain the distribution of u, for
example, the methods exploiting multiple views [23, 22]. We have not included them in this paper
due to the lack of an official implementation. In the future, we plan to benchmark various subspace
search methods in GSAAL.

Next, GSAAL is limited to tabular data, since the “multiple views” problem has only been observed
for this data type. The mathematical formulation of MV in section [3|does not exclude unstructured
data. The difficulty lies in identifying good search strategies for u for non-tabular data, which remains
an open question [[18]]. However, depending on the type of unstructured data, extending GSAAL to
work with it is not immediate. Therefore, building a method that exploits the theoretical derivations
of GSAAL for structured data is future work.

5.2 Conclusions

Unsupervised outlier detection (OD) methods rely on a scoring function to distinguish inliers from
outliers, since the true probability function that generated the dataset is usually unavailable in practice.
However, they face one or more of the following problems — Inlier Assumption (IA), Curse of
Dimensionality (CD), or Multiple Views (MV). In this article, we have proposed the first mathematical
formulation of MV, which allows for a better understanding of how to solve this occurrence. Using
this formulation, we developed GSAAL, which is the first OD approach that solves MV, CD, and IA.
In short, GSAAL is a generative adversarial network with a generator and multiple detectors fitted in
the subspaces to find outliers not visible in the full space. In our experiments on 27 different datasets,
we demonstrated the usefulness of GSAAL, in particular, its ability to deal with MV and its superior
performance on OD tasks with real datasets. In addition, we have shown that GSAAL can scale up to
deal with high-dimensional data, which is not the case for our most competent competitors. These
results confirm GSAAL’s ability to deal with data exhibiting MV and its usability in any practical
scenario involving large datasets.
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A Theoretical Appendix

In this appendix, we will include all the proofs of the included theorems and propositions. Addition-
ally, we also extend all non-experimental sections with relevant information for the experimental
appendix.

A.1 Previous Remarks

Before starting to prove our main results, it is important to add a remark about our notation in this
article. Whenever we denote ux, we mean the operation resulting in the following vector: u(w)x(w).
Thus, ux is a random vector following its distribution p,x. However, it is important to remark that
uz, and therefore, also u;x, does not state the usual matrix-vector multiplication. What we mean by
uz is the operation U X s z, where U stands for the range-complete version of « and X j; the usual
matrix multiplication. This means that whenever we write ux we are considering the projection of x
into the subspace of the features selected in u. This means that u;x is the random vector composed
of the features selected by u;, and therefore, p,,,x(u;z) denotes subsequent marginal pdf of x. We
do not state this in the main text as it functionally does not change anything of our derivations, and
simply works as a notation. The only important remarks stemming from this fact are the following:

1. px(uix) = px(my, (z)), where 7, denotes the projection of a point z into the subspace of
u;. Therefore, we can write px (u; ) = Pu,x(u; ).

2. The operator as stated before is not distributive. This is trivial, as given u a random matrix as
in definition 1, (14 — u)x is defined properly, as 14 — u € Diag({0, 1}). However, x — ux
denotes the vector subtraction between two vectors with different dimensionality.

While not important to understand the following proofs and the derivations from the main text,
understanding this is crucial for anyone seeking to work with these definitions.

A.2 Proofs

We will reformulate all of the statements for completion before introducing each proof.

Proposition 2. Let x and u be as before with px myopic to the views of u. Consider a set of
independent realizations of w: {u;}¥_,, a realization of x, x, and a realization of ux, uz. Then

+ 3 Pusx (wiz) is a statistic for pux(uz).
Proof. Consider x and u as in the statement. Recall the law of total probabilities:

Pux(uz) = Ey (pux|u:u/ (UJU|U/)) .
By taking the definition of u and the myopicity, it is trivial that:

pux\u:u’ (ux|u') = pu’x(u/x)
for u’ such that py, (u’) # 0.

Then, by definition of marginal probability and expectation, we have that:

N
pux(uz) = Zpu(ui)pulx(uix)a
i=1
as u is discrete with finite set of occurrences of size N. Thus, we can approximate
Zi\[:l Pu(Wi)pux(uiz)) by £ 3, Pu,x With u; independent samples of u. O

Theorem 3. Consider x and u as in the previous definition, with x a realization of x and {u;}; a set
of realizations of u. Consider a generator G : z € Z — G(z) € R4 and {Di},i=1,...,k aset
of detectors such as D; : u;x € S; C R — D;(u;x) € [0,1]. Z is an arbitrary noise space where
G randomly samples from. Consider the following objective function

mng 2 V(9. Pi) =

3)
nginggf%gfi Z Ey,xlog Di(u;z) + E. log (1 — D; (w:G(2)))

Under these conditions, the following holds:
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i) Each detector’s loss in optimum is V (G, D) = 1.

ii) Each individual D; converges to D} (u;x) = pu,,(w;x) after trained in Step[2|of a GAAL
method.

iit) D*(z) = %Zle D} (u;x) approximates pux(ux). If px is myopic, D*(x) also approxi-
mates py ().

Proof. This proof will follow mainly the results in [15], adapted for our case. We will first derivative
two general results that we are going to use to immediately prove (¢), (é¢) and (éi7). First, consider
the objective function

S V(G D)) = Y Euixp, . log(Di(usz))+

Epp, (1~ log(Di (1:0(2)))),

where z is the random vector used by G to sample from the noise space Z. We will write E,, E, and
Ey,x instead of Ex~p, ,Ez~p, and Ky x~p,, . as an abuse of notation.

The problem is, then, to optimize:

iy VU

mgingla@; Z V(G,D;). “4)

Fixing G and maximizing for all D;, each detector individually maximizes V (G, D;). Let us try to
obtain the optimal of each D; with a fixed G. First, we write:

V(G,D;) :/ Pu;x (wix) log D; (u;x)du;x+

U

/pz(z) log(1 — D;(u;G(z)))dz.

z

As G uses z to sample from its sample distribution pg(x), we can rewrite the second addent, like in
[15], as:

V(G,D;) :/ Du;x (wix) log D (u;z)du; x+

/ pg(u;x)log(l — D;(u;x))du;x.
Ui T

Aggregating both integrals, we have a function of the type f(t) = alog(t) + blog(1 — t), with
a,b € R—{0}. We know that f(t) obtains its optimum in t = 5. As f(t) € R*, V(G, D;) obtains
its optimum for a given G in:

« Pux (UiT)
D} (u;x) = . . (5)
£ (i) Pux(uiz) + pg(uiz)
Let us now consider the following function
() = Z max V(9. D;)
pux(uzx)
= Eufx log - + 6
; T Pux(wi) + pg (uiw) ©

pg (uix)
Pu;x(uiz) + pg(uir)

This is known in Game Theory as the cost function of player “G” in the null-sum game defined by
the min max optimization problem. [[15] refers to it as the virtual training criterion of the GAN. The
adversarial game defined by (4)) reaches an equilibrium (and thus, the min max problem an optimum)
whenever C'(G) is minimized. We will study the value of G in such equilibrium and use it, together
with (3)), to prove the statements.

Euix~pg log
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Rewriting C(G) it is clear that:

€@ = Z KL (puix(uix) ”pum(uzw) + g (UZ:L'))

2

LKL (pg(uix)”puix(uﬂ) +pg(uz‘$)) .

2

This expression corresponds to that of a sum of multiple binary cross entropies between a population
coming from p,,,x and from pg projected by u;. Therefore, as we know, we can rewrite:

C(G) =Y 2JSD(pux(un Ipg (uic)),

with JSD the Jensen-Shannon divergence. Since JSD(s|r) € [0,1og(2)), it is clear that C(G)
obtains its minimum only whenever

PG (W) = pu;x(uiT), Wﬂ (7N
and forall i € {1,...,k}.

Knowing G and D; in the optimum for all 7, we can prove the statements above:

(i) Aspg(u;iz) = pu,x(u;z) for almost all z, in the optimum of (), it is immediate that:

1
Di(u;x) = >
i.e., the detectors cannot differentiate between the real training data and the synthetic data of the
generator. If one employs the numerically stable version of each V(G,D;) (equivalent to the
numerically stable version of the binary cross entropy [6]), it is trivial to see that

Vsable(G D;) = log(2).

(ii) After optimizing (), training each D; individually with G fixed, is the equivalent of building a
two-class classifier distinguishing between the artificial class generated by pg(u;x) = py,x(u;x) and
the real data coming from p,,,x (u;z). By [21]], the resulting two-class classifier would be such as:

D;(uix) = pu,x(uix).

(iii) By propositionand statement (ii), + >, D; (u;z) is an estimator for pux (uz). By myopicity,
it is also of px(x). O

Theorem 4. Giving our GSAAL method with generator G and detectors {D;}%_,, each with four
fully connected hidden layers, \/n nodes in the detectors and d in the generator, we obtain that:

i) The training time complexity is bounded with O(Ep - n - (k - n + d?)), for a dataset D with
n training samples and d features. Ep is an unknown complexity variable depicting the
unique epochs to convergence for the network in dataset D.

i1) The single sample inference time complexity is bounded with O(k - n)), with k the number of
detectors used.

Proof. An evaluation of a neural network is composed of two steps, the backpropagation, and the
fowardpass steps. While training the network requires both, inference requires only a fowardpass.
Therefore, we will first prove (#¢) and will build upon it to prove (7).

2For almost all
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(ii). GSAAL consists of a generator and k detectors. Single point inference consists of a single
fowardpass of all the detectors. We will first prove the general complexity of a fowardpass of a
general fully connected 4 layer network and will use it to derive all the other complexities. Let us
consider three weight matrices W;;, Wy; and Wy, each between two layers, with j,7, h and [ being
the number of nodes in each. Therefore, W;; denotes a matrix with j rows and 7 columns, and so
on. Now, let us consider x;; the datapoint after passing the input layer. Lastly, without any loss of
generality, consider f to be the activation function for all layers. This way, the forward pass of a
single detector can be written as:

cin = [ Winf Wi f Wiizi))) -

We will study the complexity in the first layer and use it to derive the complexity of the others.
Aj1 = Wj;z41 is a simple matrix-vector multiplication that we know to be O(j - 7) atmost. Then, as
f is an activation function, f(A;1) is equivalent to writing f;; ® A1, with © being the element-wise
multiplication. Thus, f (Wj,;z;1) is:

O -i+34) =0 - (i +1) = O(j - ).
Doing this for all layers, we obtain:
O(l-h+k-j+j-i). (3)
As all layers have v/n nodes,
O(3n) = O(n).

As we have k detectors, the complexity for a fowardpass of all detectors, and thus, for a single sample
inference of GSAAL is:

O(k - n).

(i). A backpropagation step has the same complexity as an inference step on all training samples.
As we have n training samples, this then becomes

O(k -n?)
for the detectors. As the training consists of multiple epochs, we will write
O(ED k- n2),

with E'p being the number of epochs needed for convergence for the training data set D. As the
training consists of both backpropagation and fowardpass steps on all training samples, the total
training time complexity for all detectors is:

O(Ep -k-n*+k-n*) =O(Ep - k-n?).

As we also need to consider the generator, we will use equation|§]to derive both steps on the generator.
As the generator is also a fully connected 4-layer network, with all layers having d nodes, the
complexity for a single fowardpass is:

O(d?).
As during training one generates n samples during each fowardpass:
O(n - d?).

Now, on each backpropagation pass the network calculates the backpropagation error for each
generated sample, thus,

O(n - d?)

is also the time complexity for the backpropagation step of the generator. Considering all Ep epochs
and both backpropagation and fowardpass steps of the generator and all the detectors, the time
complexity of GSAAL’s training is:

OEp-k-n*+Ep-n-d*)=0(Ep-n-(k-n+d*)
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Figure 4: Difference in statistical distance between two populations.

A.3 Related Work (extension)

Deep Outlier Detection for other data types. Outlier detection is also very popular in different
data types, especially in unstructured data [42} (16} 36,135, 132]]. Due to the complexity of the data they
are used for, deep methods are the main approach employed for this task. The main difference with
the other deep methods introduced for tabular data, is that the deep architecture in the later targets
mainly CD. For unstructured data types, like images or natural language, is the complexity of the data
that drives the architecture. For example, to treat image data, multiple linear layers do not suffice,
complex layers like convolutional or residual layers are employed for this [27].

Although popular, most deep methods have limited to no use at all in tabula data in their original
articles. However, some have appeared in the literature of tabular data as competitors [36,[35]. We
identified the most common for our task in related articles and benchmarks, and included them as an
extension of our main experiments in sections[B.2]and B3]

A.4 Multiple Views (extension)

In this section we extend the derivations in section 3.1 by providing an example of a myopic
distribution:

Example 2 (Myopic distribution). Consider a x like in example 1. Here, it is clear that x1, X2 1 X3.
Consider, then, u such that:
u: {1} — {diag(1,1,0)}.

To test whether px is myopic, we employed a simple test utilizing a statistical distance (M M D with
the identity kernel) between px and pux. This way, if M M D(px||pux) = 0, it would be clear that the
equality holds. As a control measure, we also calculated the same distance for a different population
x', where x3 = x3. We have plotted the results in image |4} where Population I refers to x and
Population 2 to x'. As we can see, we do obtain a positive result in the test of myopicity for x and a
negative one for x'.

A.5 GSAAL (extension)

We now extend the results from section 3.2 by providing the pseudocode for the training of our
method. It is important to consider that, while theorem [3] formulates the optimization problem
in terms of the neural networks G and {D;};, in practice this will not be the case. Instead, we
will consider the optimization in terms of their weights, ©g and ©p,. Therefore, in practice, the
convergence into an equilibrium will be limited by the capacity of the networks themselves [14].
We considered the optimization to follow minibatch-stochastic gradient descent [14]. To consider
any other minibatch-gradient method it will suffice to perform the necessary transformations to the
gradients.

The pseudocode is located in Algorithm [T} As it is the training for the method, it takes both
the parameters for the method and the training. In this case, epochs refers to the total number
of epochs we will train in total, while stop_epoch marks the epoch where we start step 2 of the
GAAL training. Lines 1-3 initialize both the detectors in their subspaces and the generator with
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Algorithm 1 GSAAL training

Require: Data set D, Number of Discriminators «, u, epochs, stop_epoch

1: Initialize Generator G {#d is the dimensionality of D}

2: {u;}f, < DRAWFROMu(k)

3: Initialize Discriminators {D; }¥_, with unique subspaces {u;} ;

4: for epoch € {1, ...,epochs} do

5. for batch € {1, ..., batches} do

6: noise < Random noise z(V ..., (") from Z
7: data < Draw current batch (V)| ..., z(™)
8.
9

for j € {1..k} do
Update D; by ascending the stochastic gradient: Ve, LS log(Dj(ujz™)) +

log(1 — D;(u;G(2")))

10: end for
11: if epoch < stop_epoch then
12: Update g by descending the stochastic gradient: Ve Z§=1 Ly log(l —
D;(G(=1)))
13: end if
14:  end for
15: end for
Table 4: Different outliers generated for the experiments.
Outlier Type  Assumption Description Outlier Description M
Assumes that all inliers are As a result, outliers are
Local o . LOF
located close to other inliers far away from inliers
Anel Assumes that all inliers As a result, outliers are ABOD
gle have other inliers in all angles from their position  not surrounded by other points
Cluster Assumes that all inliers As a result, outliers are I
uste form large clusters of data gathered in small clusters e

617 random weight matrices ©p, and ©g. Lines 4-13 correspond to the normal GAN training loop
618 across multiple epochs, referred to as step 1 of a GAAL method, if epoch < stop_epoch. Here
619 we proceed with training each detector and the generator using their gradients. Lines 8-10 update
620 each detector by ascending its stochastic gradient, while line 11 updates the generator by descending
621  its stochastic gradient. After the normal GAN training, we start the active learning loop [30] once
622 epoch > stop_epoch. The only difference with the regular GAN training is that G remains fixed, i.e.,
623 we do not descend using its gradient. This allows us to additionally train the detectors and, in case of
624 equilibrium of step 1, converge to the desired marginal distributions as derived in theorem 3]

es B Experimental Appendix

626 In this section, we will include a supplementary experiment testing the IA condition for completion,
627 the sensibility experiments, and an ablation study. Additionally, we extended both main experimental
628 studies featured in the main text. All of the code for the extra experiments, as well as for all
620 experiments in the main text, can be found in our remote reposito Our experiments used a RTX
630 3090 GPU and an AMD EPYC 7443p CPU running Python in Ubuntu 22.04.3 LTS. Deep neural
631 network methods were trained on the GPU and inferred on the CPU; shallow methods used only the
632 CPU.

633 B.1 Effects of Inlier Assumptions on Outlier Detection

634 GAAL methodologies are capable of dealing with the inlier assumption by learning the correct inlier
635 distribution px without any assumption [30]. While this should also extend to our methodology, we
636 will study experimentally whether this condition holds in practice. To do so, as one cannot identify

*https://anonymous.4open.science/r/GSAAL-8DGE
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Figure 5: 2D-example of the different types of anomalies we generate using the method summarized
in table 4]
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Figure 6: AUCs of the different methods in the IA experiments. From left to right: Local (blue),
Angle (orange) and Cluster (green).

beforehand whether a method is going to fail due to IA, we will generate synthetic datasets. This will
allow us to generate outliers that we know to follow from a specific IA, ensuring that failure comes
from the anomalies themselves. We will include all of the code in the code repository. To generate
the synthetic datasets we follow:

1. Generate D, a population of 2000 inliers following some distribution F'in R2°.

2. Select an outlier detection method M with some assumption about the normality of the data
and fit it using D. We will call such M as the reference model for the generation.

3. Generate 400 outliers by sampling on R?° uniformly and keeping only those points o such
that M (o) = 1 (i.e., they are detected as outliers). We will write OP to refer to such a
collection of points.

4. Repeat step[3| 10 times, to obtain O, ..., Of.

5. Sample out 20% of the points in D. The remainder 80% will be stored in D", and the
other 20% in D%, ..., D't together with each OP.

These steps were repeated 4 times with different F, to create 4 different training sets and 40 different
testing sets, corresponding to a total of 40 different datasets employed per model M selected in step
2l As we used 3 different reference models, we have a total of 120 different datasets employed in
this experiment alone. In particular, the models used for this are collected in table 4] The table
contains the name of the outlier type, the description of the IA taken to generate them, and a brief
description of how the outliers should look. Column M contains the method employed to generate
each, these being LOF', ABOD, and the same inlier distribution as D, but with multiple shifted
means u; and with a significantly lower amount of points n. A visualization of how these outliers
would look with 2 features is located in figure[5] To study how different methods behave when
detecting these outliers, we have performed the same experiments as in section 4.3, but with these
synthetic datasets. Figure[6] gathers all the AUCs of a method in 3 boxplots, one for each outlier type
in each training set. Additionally, we grouped all based on the IA and assigned a similar color for
all of them. We have done this for the classical OD methods LOF, ABOD, and kNN, besides our
method GSAAL. We cropped the image below 0.45 in the y axis as we are not interested in results
below a random classifier. As we can see, classical methods seem to correctly detect outliers for
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an outlier type that verifies its IA. However, whenever we introduce outliers behaving outside of
their IA, the performance hit is significant. Notoriously, it appears that none of them had trouble
detecting the Local and Angle outlier type. regardless of their IA. This can be easily explained by
those outliers types being similar, as we can see in figure[5] On the other hand, GSAAL manages to
have a significant detection rate regardless of the outlier type.

B.2 Effects of Multiple Views on Outlier Detection (extension)

In this section, we will include a brief description of the generation process for the datasets used in
section 4.2. We will also perform the same experiment as in section 4.2 for all methods showcased in
the main text and additional datasets. The datasets were generated by the following formulas:

* Banana. Given 6 € [0, 7] we have x = sin(6) + U(0,0.1) and y = sin(#)® + U(0,0.1).

* Spiral. Given 6 € [0,4n] and r € (0,1), we have x = rcos(¢) + U(0,0.1) and y =
rsin(0).

* Star. Given 0 € [0,27] and r € {r € R|r = sin(50);r > 0,1,0.4} , we have x = r cos(f)+
U(0,0.1) and y = rsin(6) + U(0,0.1).

* Circle. Given 6 € [0, 27], we have x = cos(6) + U(0,0.1) and y = sin(d) + U(0,0.1).

* L. Given z; = N(0,0.1),z2 = U(0,5),y1 = U(=5,0),and yo = N(0,0.1); we have
x = concat(z1,zs) and y = concat(y1,y2)-

We considered N (0,0.1) to denote a random normal realization with 1 = 0 and 0% = 0.1, and
U (a,b) to denote a uniform realization in the [a, b] interval.

Figure[7] contains all images from the MV experiment. We employed the default parameters for all
methods in this experiments. We did that as those were the employed parameters in our real world
experiments. Additonally, the choice of parameter did not impact the outcome of the experiment
much. Our remote repository includes extra images for every competitor with multiple parameters
for comparison. We do not have any new insight beyond the ones exposed in the main article. Note
that we have included all methods but SOD. The reason was that SOD failed to execute for datasets
Star, Spiral, and Circle.

Additionally, we added competitors from outside of our related work that will later be used in section
In particular, we employed LUNAR, DIF and DeepSVDD with default parameters. We included
extra images in our remote repository with multiple parameters for the deep competitors as well. The
method AnoGAN was not included due to it failing in datasets Star, Spiral and Circle. Their results
can be seen in Figure[§] As it also happened our main competitors, some of the extra competitors were
capable of detecting the data structure in very sparse occasions. However they remained incapable to
properly describe a boundary consistently. The only method that was sensible enough in all datasets
was GSAAL.

In order to quantify this, we tested the ability of all methods to perform one-class classification in
each dataset. As outliers, we used white noise in the x; — x5 subspace. Additionally, we created two
extra datasets greatly different from the rest, X and wave:

* X. Givenzy = 29 = U(—1,1) and y1 = 21 + U(0,0.1),y2 = z2 + U(0,0.1); we have
x = concat(zy,z2) and y = concat(y1, y2)..
* Wave. Given 0 € [0, 47|, we have x = § and y = sin(z) + U(0,0.1).
We will also use them as outleirs, for a total of 15 different datasets. We also generated extra inliers
in each test set. We gathered the AUC results in Figure[J] As we can see, all other methods struggel

to come ahead of the random classifier, marked with a dashed line. The only method well above that
is GSAAL.

B.3 One-class Classification (extension)

As we noted in Section 4, we obtained our benchmark datasets from [19], a benchmark study for
One-class classification methods in tabular data. Some of the datasets featured in the study, and
also in our experiments, were obtained from embedding image or text data using a pre-trained NN
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713 (ResNet and BERT [9], respectively). We shunt the interested reader into [19] for additional
714 information. Additionally, we found discrepancies between the versions of the datasets in the study
715 of [4] and [19]. We utilized the version of those datasets featured in [4] for our experiments due
716 to popularity. This affected the datasets Arrhythmia, Annthyroid, Cardiotocography, InternetAds,
717 lonosphere, SpamBase, Waveform, WPBC and Hepatitis. Figure [I0|summarizes the ranks from the
718 one-class experiments in section [4.3] Table [5|summarizes the AUC results from our experiments. As
719 mentioned in section[A-3] we also included extra methods outside of our related work. Particularly,
720 we added deep versions tailored to image data of previously included methods —DeepSVDD [33]]
721 and Deep Isolation Forest [42] (DIF)— and others that extend some types of outlier detectors into
722 image and text data —LUNAR [[16], as an extension of Locality-based classical methods, and
723 AnoGAN [36], as an extension of Generative methods. For their parameters, we employed the
724 recommended ones for LUNAR and DIF, and trained the models the same way that the authors did
725 in their articles. As for DeepSVDD and AnoGAN, as they do not have any recommended way of
726 training nor hyperparameters, we performed a grid search for their training parameters and kept the
727 best result. We used all of their official implementationsﬂ All deep methods (including MO-GAAL

*LUNAR and DIF have official implementations by their authors in pyod [43].
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and GSAAL) were trained multiple times with the same train set and their results were averaged to
account for initialization.

Additionally, we gathered all extra deep methods and performed the same statistical analysis as in
section[d.3] We also included MO GAAL besides GSAAL for completion. SO GAAL, the single
generator version of MO GAAL was not included, even if popular in the related literature. The
reason is that authors in [30] showed that MO GAAL constantly outperforms SO GAAL in the outlier
detection task. Results are included in table[f] gathered after a positive Kruskal-Wallis test. As we can
see, GSAAL outperform almost all competitors except LUNAR (the most recent method). However,
LUNAR is incapable to detect change in the subspaces as GSAAL does, see section[B:2] Therefore,
regardless of considering the tabular related work, or the more generalist deep methods, GSAAL
still can outperform most competitors in the field. Additionally, for those that GSAAL performs
similar to, we showed that we are more sensible to changes in subspaces. This fact makes GSAAL
the preferred option for One-class classification under MV.

B.4 Parameter Sensibility

We now explore the effect of the number of detectors in GSAAL, k, by repeating the previous
experiments with varying k. Figure plots the median AUC for different k values, showing a
stabilization at larger k. Next, Figure 1 1b|compares the results with a fixed £ = 30 and the default
value k = 2v/d used in the previous experiments; there is no large difference in either the AUC or the
ranks. We also found that the results in Table Blremain almost the same if one sets k = 30. So we
recommend fixing £ = 30, which makes GSAAL very suitable for high-dimensional data.

B.5 Ablation study

Lastly, we also performed an ablation study for GSAAL. We identify two critical components in our
method, the subspace nature of our detectors, and the multiple detectors used. Table[/|contains a
summary of the included features in each considered configuration. We will compare the performance
of all the different configurations of GSAAL.
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Table 6: Results of the Conover-Iman test for all the Deep methods.

Method AnoGAN DIF DeepSVDD GSAAL LUNAR MO GAAL
AnoGAN = -— -— -— -— -—
DIF ++ = - -— -—

DeepSVDD ++ + = - - ++
GSAAL ++ ++ + = ++
LUNAR ++ ++ + = ++
MO GAAL ++ -—— -— -—— =

Table 7: Summary of the included components in the ablation study.

Name Subspace Multiple D;
GSAALjxyx X X
GSAAL, x v X
GSAALy, X v
GSAAL v v

We will employ, once again, the Conover-Iman test to compare the performance of all configuration
in a statistically sound way. Table[§]contains the results of the ablation experiment. As expected, our
fully configured method significantly outperformed all of the others. This further confirms that the
performance increase over our competitors comes directly from tackling the MV problem.

Table 8: Results of the Connover-Iman test for the ablation study.
GSAALyxx GSAAL,x GSAALx, GSAAL

GSAALX)( = ++

GSAAL, x —= = -— —=
GSAALy, ++ ++ = __
GSAAL ++ ++ ++ =
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: sections 3] for the theoretical claims, [£.2] for the MV claims, and [£.3]for the
real world performance claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[3

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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809 Justification: Section[Al

810 Guidelines:

811 * The answer NA means that the paper does not include theoretical results.

812  All the theorems, formulas, and proofs in the paper should be numbered and cross-
813 referenced.

814 * All assumptions should be clearly stated or referenced in the statement of any theorems.
815 * The proofs can either appear in the main paper or the supplemental material, but if
816 they appear in the supplemental material, the authors are encouraged to provide a short
817 proof sketch to provide intuition.

818 * Inversely, any informal proof provided in the core of the paper should be complemented
819 by formal proofs provided in appendix or supplemental material.

820 * Theorems and Lemmas that the proof relies upon should be properly referenced.

821 4. Experimental Result Reproducibility

822 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
823 perimental results of the paper to the extent that it affects the main claims and/or conclusions
824 of the paper (regardless of whether the code and data are provided or not)?

825 Answer: [Yes]

826 Justification: Section [4|includes all details about our experimental setup (competitors,
827 datasets, experiments & training). Section[A]in the appendix includes the pseudo-code as
828 well

829 Guidelines:

830 * The answer NA means that the paper does not include experiments.

831 * If the paper includes experiments, a No answer to this question will not be perceived
832 well by the reviewers: Making the paper reproducible is important, regardless of
833 whether the code and data are provided or not.

834 * If the contribution is a dataset and/or model, the authors should describe the steps taken
835 to make their results reproducible or verifiable.

836 * Depending on the contribution, reproducibility can be accomplished in various ways.
837 For example, if the contribution is a novel architecture, describing the architecture fully
838 might suffice, or if the contribution is a specific model and empirical evaluation, it may
839 be necessary to either make it possible for others to replicate the model with the same
840 dataset, or provide access to the model. In general. releasing code and data is often
841 one good way to accomplish this, but reproducibility can also be provided via detailed
842 instructions for how to replicate the results, access to a hosted model (e.g., in the case
843 of a large language model), releasing of a model checkpoint, or other means that are
844 appropriate to the research performed.

845 * While NeurIPS does not require releasing code, the conference does require all submis-
846 sions to provide some reasonable avenue for reproducibility, which may depend on the
847 nature of the contribution. For example

848 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
849 to reproduce that algorithm.

850 (b) If the contribution is primarily a new model architecture, the paper should describe
851 the architecture clearly and fully.

852 (c) If the contribution is a new model (e.g., a large language model), then there should
853 either be a way to access this model for reproducing the results or a way to reproduce
854 the model (e.g., with an open-source dataset or instructions for how to construct
855 the dataset).

856 (d) We recognize that reproducibility may be tricky in some cases, in which case
857 authors are welcome to describe the particular way they provide for reproducibility.
858 In the case of closed-source models, it may be that access to the model is limited in
859 some way (e.g., to registered users), but it should be possible for other researchers
860 to have some path to reproducing or verifying the results.

861 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We include our GitHub (anonymized for the double-blind phase).
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain our processes for one-class classification in section #.3] Hyper-
parameters, as well as optimizers, are included in section @ Additionally, our remote
repository contains the full details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We utilized a statistical test to study the significance of all of our performance
results —see tables 3, 6, 8. We also extensively used boxplots of all AUC results to visualize
our performance in different scenarios —see figures 6, 9, 10, 11.b.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See the beginning of section[B]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics and found no violation.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In sections, [I] & [5] we go through the importance of outlier detection in
many fields, particularly for our use-case. Our positive impact on society consists of the
improvement of the tasks where outlier detection is needed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not identify any risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include URLs and citations for all dataset selections, packages, and
methods.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We include the documentation of our implementation in the repository.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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