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Abstract
We propose a practical and generalizable
Decision-Aware Model-Based Reinforcement
Learning algorithm. We extend the frameworks
of VAML (Farahmand et al., 2017) and IterVAML
(Farahmand, 2018), which have been shown to be
difficult to scale to high-dimensional and continu-
ous environments (Lovatto et al., 2020a; Modhe
et al., 2021; Voelcker et al., 2022). We propose
to use the notion of the Value Improvement Path
(Dabney et al., 2020) to improve the generaliza-
tion of VAML-like model learning. We show
theoretically for linear and tabular spaces that our
proposed algorithm is sensible, justifying exten-
sion to non-linear and continuous spaces. We also
present a detailed implementation proposal based
on these ideas.

1. Introduction
With the growing success and increasing performance of
reinforcement learning methods in recent years, the com-
plexity of environments tackled with these methods has
increased correspondingly. The focus of the community has
shifted towards leveraging the representational power and
flexibility of deep neural networks to tackle challenges in
high-dimensional observations, such as playing video games
from pixel input (Hafner et al., 2020; 2021) and controlling
robots based on cameras (Ibarz et al., 2021). However, using
high-dimensional observations has proven to be challenging
for applying representation learning or model based tech-
niques, since modelling high dimensional inputs such as
video streams with sufficient fidelity to accommodate plan-
ning is a challenging task (Lambert et al., 2020; Stone et al.,
2021; Tomar et al., 2021).

Therefore, reducing the state space or finding alternative
ways to model the environment is an important sub-problem
of scaling model-based methods to challenging domains
such as video inputs with distracting dimensions or high-
dimensional inputs. Recent efforts have focused on using
techniques from computer vision to tackle complex vision
environment (Yarats et al., 2021), or learning models which
aim to capture the underlying decision problems in the MDP
(Farahmand et al., 2017; Oh et al., 2017; Farahmand, 2018;

Schrittwieser et al., 2020; Zhang et al., 2021; Fu et al., 2021).
However, algorithm inspired by computer vision often rely
crucially on domain knowledge and heuristics, which leads
to failure in cases where these are inadmissible (Tomar et al.,
2021; Chen et al., 2021), and decision-centered models can
be inefficient in training or fail to generalize.

The aim of this project is to consider representation and
model learning as a joint effort, and use our knowledge
about representations to directly modify the model learning
objective. We consider the framework of decision-aware
model learning (DAML) (Farahmand et al., 2017), which
aims to derive models which are optimal for planning for
different sets of policies or value functions. We highlight
that by introducing ideas from the representation learning
community, we can qualify what sets of value functions and
policies to consider for decision-aware model learning. Fur-
thermore, by explicitly considering a range of different value
functions as decision-aware targets, we mitigate previously
described problems with the Value-aware Model Learning
framework. Finally, we show how reasoning about represen-
tation learning and decision-aware model learning jointly,
we can derive a simple and well-motivated algorithm.

This paper is a Work-in-Progress contribution. In this pre-
liminary report, we present the core framework and theo-
retical justification for our idea to invite feedback from the
community. We leave empirical experiments to a full pre-
sentation of the work at a later stage. The main question we
seek to address in this paper is how to learn a model which
is useful as part of a Dyna update loop.

2. Background
We consider a Markov decision process or MDP M defined
as (X ,A, P ∗, r, γ), with state space X , action space A,
transition kernel P ∗ : X × A −→ P(X ), reward function
r : X × A × X −→ R, and discount factor γ ∈ [0, 1).
The goal of an agent is to optimize the obtained aver-
age discounted infinite horizon reward under its policy:
maxπ Eπ,P∗ [

∑∞
t=0 γ

tr(xt, at, xt+1)]

Given a policy π : X −→ P(A), the value function is
defined as the expected return conditioned on every pos-
sible state: V π(x) = Eπ

[∑
t≥0 γ

tRt|X0 = x
]
, where

Rt = r(Xt, At, Xt+1) is the reward at time t. The
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action-value function is defined similarly as Qπ(x, a) =

Eπ

[∑
t≥0 γ

tRt|X0 = x,A0 = a
]
. The Bellman operator

T π , when applied to Q has the following effect:

(T πQ)(x, a) = E[r(x, a,X ′) + γEπ[Q(X ′, A′)]].

In this paper, we consider Dyna-based algorithms (Sutton,
1990), in which the environment P ∗ is replaced with a
learned approximate model P̂ . The learned model is used to
gather additional fictitious experience, which can be incorpo-
rated into any RL algorithm. In our setting, we specifically
consider policy iteration and actor-critic algorithms, such as
SAC (Haarnoja et al., 2018). In these, an actor (represented
by a policy π) and a critic (an approximate value function
V̂ π) are updated iteratively. The actor maximizes the per-
formance of the policy under the critic, while the critic aims
to learn an accurate value function of the policy.

2.1. Decision-aware and value equivalent model learning

Although traditional model-based methods have mostly fo-
cused on finding the maximum likelihood estimate for the
model, it has been shown that this is not always an optimal
design decision. Several recent works discuss variations of
this approach for model learning that aim to align the model
with the way it is used in planning. Following the nomen-
clature of Farahmand et al. (2017) we will refer to these
different ideas and proposals collectively as Decision-Aware
Model Learning. One example of DAML is “Value-Aware
Model Learning” which we review in the next section.

2.1.1. VALUE-AWARE MODEL LEARNING

The Value-Aware Model Learning (VAML) framework
(Farahmand et al., 2017) proposes to train a model by pe-
nalizing the differences in value function prediction under a
learned model P̂ and the true environment transition model
P ∗. Given a distribution over the state-action space ν and a
value function V , the VAML loss function can be expressed
as follows, with notation taken from Voelcker et al. (2022):

LV (P̂ , P ∗, ν) =

∫
ν(s, a)

∣∣∣∣
environment value estimate︷ ︸︸ ︷∫
P ∗(s′|s, a)V (s′)ds′ −

model value estimate︷ ︸︸ ︷∫
P̂ (s′|s, a)V (s′)ds′

∣∣∣∣2d(s, a).
Since the value function is generally not known during
training, Farahmand et al. (2017) proposes to use a worst-
case value function from a function class F :

LVAML(P̂ , P ∗, ν) = sup
V ∈F

LV (P̂ , P ∗, ν).

The VAML loss function was proposed to directly control
the error when using the model to compute the Bellman
backup operator, which can be used for a (Fitted) Value
Iteration algorithm (Ernst et al., 2005; Gordon, 1995; Munos
& Szepesvári, 2008).

The biggest issue with using this loss in practice is choosing
a meaningful set of value functions, F , and computing the
supremum. In practice, it is common to use neural networks
to parameterize the value function. The supremum over this
class of flexible models can be very conservative (although
still less conservative than the MLE) and is hard to compute
in practice.

To mitigate this, Farahmand (2018) proposes to use the most
recent value function estimate Vi produced during learning,
where (V1, . . . , Vi) is the sequence of value estimates pro-
duced during the value iteration procedure. This leads to
the Iterative Value-Aware Model Learning (IterVAML) al-
gorithm:

LIterVAML(P̂ , P ∗, ν) = LVi(P̂ , P ∗, ν).

Intuitively, the current value function estimate is used di-
rectly in the Bellman backup computation for the next value
function update, so it is sufficient for the model to match
this value function. However, several authors (Lovatto et al.,
2020b; Voelcker et al., 2022; Modhe et al., 2021) note that
the empirical results of IterVAML are lacking. Voelcker
et al. (2022) show that the problem reliably appears if the
same model is used to compute several value function up-
date steps, as the learned models performance can quickly
deteriorate when the value function changes. This inspires
us to take a closer look at the value function set choices for
learning a decision-aware model.

When looking at IterVAML and VAML as two algorithms
from a general family, one addressing the supremum over a
whole function space and one operating on a single value
function, it is easy to see that we can devise additional algo-
rithms by considering different sets of value functions. This
view naturally leads to a connection of the VAML paradigm
with recent developments that investigate the geometry of
the value function space and the value functions encoun-
tered during value function training (Dadashi et al., 2019;
Dabney et al., 2020).

2.1.2. THE VALUE-EQUIVALENCE PRINCIPLE

A complementary view on the DAML framework is pre-
sented by Grimm et al. (2020) and Grimm et al. (2021).
Instead of discussing loss functions for DAML models, they
instead characterize the set of models on which the Bellman
backup behaves the same as on the true model. To bridge the
two perspectives, we can see that the set of Value-Equivalent
Models for a given value function is exactly comprised of
those that achieve zero error on the VAML loss for the value
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function set.

In the Proper Value Equivalence approach (Grimm et al.,
2021), a loss function for the abstract planning model
MuZero (Schrittwieser et al., 2020) is proposed. This loss
is motivated as expanding the single value function used in
MuZero to include past value function iterates to constrain
the set of value-equivalent models further (note that this is
different from the Value Improvement Path discussed in the
next section, as the past value function iterates are not due to
improving policies but are rather improving approximations
of the value function for an individual policy). We hypoth-
esize that a similar construction can be used to constrain
IterVAML using information about the value function space
that our policy iterates on.

2.2. The geometry of the value function set

Dadashi et al. (2019) showed that the space of value func-
tions for an MDP V = {V π : π ∈ P(A)X }, i.e. the set
of all value functions attainable by some policy, is charac-
terized by a polytope, which we will refer to as the value
function polytope. This set is generally different from the
set F considered by Farahmand et al. (2017), which is the
set of value functions that can be represented by a certain
choice of parameterization or representation. In Figure 1 we
illustrate the value function polytope for a 2-state MDP, as
well as a particular choice of F that contains it (which may
not be true in general).

In Dabney et al. (2020), it was shown that the sequence of
improving value functions goes along a curve in the value
function polytope (see Fig 1). The sequence of improv-
ing value functions, or “the value improvement path” as
referred to by Dabney et al. (2020), is defined as the se-
quence (V π0 , V π1 , . . . , V π∗

) where V πi+1 ⪰ V πi , that is,
V πi+1(x) ≥ V πi(x) for all x ∈ X .

We can see that this set is smaller than V , yet captures
the value functions that are likely to be important during
learning. It is this property that we will use to motivate our
approach in subsequent sections.

3. Model generalization along the value
improvement path

One crucial problem with value-aware models is ensuring
that they are useful for several value function updates. This
is a simple fact that is often not clearly stated, so it deserves
some motivation and consideration.

As Voelcker et al. (2022) show, IterVAML fails if the model
is reused for several value function update steps. They
highlight that this happens because the predictions of the
model are not guaranteed to be value equivalent for a wider
set of value functions. It is possible for the model to predict

Figure 1. A two dimensional representation of the value function
sets discussed. The yellow outline indicates the convex hull of the
value function polytope

out-of-distribution states that are value equivalent under the
current value function estimate, but wrong when updating
the value function. This would not be a problem if the model
was only used for a single update step and retrained from
scratch after, as was assumed in the theoretical analysis by
Farahmand (2018). However, such an algorithm can become
prohibitively expensive when using a gradient descent based
optimization which requires thousands of updates and have
no guarantees of convergence when using neural networks.

In the case that we want to use our model for multiple value
function updates, we require that the model generalize to
future updates of the value function and choose a sufficiently
large set for value equivalence. Model learning should be
done so that future value updates result in small model loss
and do not invalidate the model’s predictions. The insights
presented in Section 2.2 allow us to highlight several sets
which can be considered to achieve this goal.

3.1. Choosing a proper value function set

In VAML, we explicitly, through the use of supremum,
enforce that the model loss be small for any value function
representable in the function space. While this ensures
that the error in the Bellman backup is bounded for any
function choice from the value function space, this may be
too conservative in practice. We may never encounter most
of the value functions representable in the function space.
However, by enforcing that our model and value functions
be able to represent them, we lose some of the advantage of
being “value-aware” as this may require us to learn many
parts of the observation space that will never be useful to the
planning problem. To highlight this, consider the following
theorem on the VAML loss due to Farahmand et al. (2017),
for a set of value functions:

Theorem 3.1 (VAML for linear value function model). If
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the value-function class is given as Vθ(x) = ϕ(x)⊤θ with
∥θ∥2 ≤ B, the supremum over the value function class can
be computed as a difference in expectation over next-state
features

sup
Vθ∈Fθ

〈
P̂ − P ∗, Vθ

〉
=

=B

∥∥∥∥∫ (P̂ (x′|x, a)− P ∗(x′|x, a))ϕ(x′)dx

∥∥∥∥2
2

=B
∥∥EP̂ [ϕ(X ′)]− EP∗ [ϕ(X ′)]

∥∥2
2

This is a conservative loss as it requires full matching of
the next states features in expectation. But if some of these
features are irrelevant for the task, this is not taken into
account.

Following the insights from (Dadashi et al., 2019), we can
see that the set of value functions for policies in the actual
MDP is constrained in the value function polytope. Further-
more, we can use the structure of this polytope to derive the
following result:

Theorem 3.2. Assume a set of linear value functions V ={
V (x) = ϕ(x)⊤θ : θ ∈ {θ1, . . . , θm}

}
and a model P̂ with

∀θ :
∥∥∥EP̂ (·|x,a)

[
ϕ(X ′)⊤θ

]
− EP∗(·|x,a)

[
ϕ(X ′)⊤θi

]∥∥∥2
≤ ϵ(x, a).

Then for any convex combination of the value functions
V (x) = ϕ(x)⊤

∑
i αiθi with

∑
i αi = 1 and αi ≥ 0, the

prediction error of the model wrt the new value function can
be bounded as follows:∥∥EP̂ [V (X ′)]− EP∗ [V (X ′)]

∥∥2
≤
∑
i

αi

∥∥EP̂

[
ϕ(X ′)⊤θ

]
− EP∗

[
ϕ(X ′)⊤θ

]∥∥2
≤ϵ(x, a).

If the value functions Vi are chosen as the vertices of the
value function polytope, their convex hull covers the whole
polytope. The proof of the second line follows from the
linearity of the expectations and an application of Jensen’s
inequality.

The corresponding VAML loss over this set can be written
as the maximum over a finite set of weight vectors θi. This
allows us to concentrate on those value function that can
actually appear for policies in the given MDP, so the set of
value-aware models can be substantially larger depending
on the actual behavior of value function on the MDP. For
example, if the value functions are independent of one of
the observation dimensions, the value function polytope will
capture this while our set defined a priori might not.

A perfect model under this loss for all vertex policies in
the value function polytope also correspond to the largest
set of proper value equivalent models inthe framework of
(Grimm et al., 2021), as it allows the computation of the full
Bellman backup for any policy on the MDP without error.

However, this theorem still has a problem: to cover the
whole value function polytope, we now have to compute
the value functions for all vertex policies. As Dadashi et al.
(2019) shows, this set can be prohibitively large, growing
exponentially with the number of states, and is infinite for
continuous state-action spaces. Obtaining the value func-
tions also requires us to solve the policy evaluation problem
for all deterministic policies, which would require an accu-
rate model for each a priori to obtaining the value functions.
If we had information about the shape of the value function
polytope before running VAML, we could use this, but for
practical algorithms that are able to operate tabula rasa, we
need to restrict our set even further.

As highlighted by Dabney et al. (2020), the value functions
an agent will encounter follow the value improvement path,
which is substantially smaller than the whole value function
polytope. In their paper, they conjecture and show empir-
ically that a learned representation over past policies and
value functions along the value improvement path contains
sufficient information to allow generalization to future value
functions. We hypothesize that the same holds for a model
which is value equivalent to the set of past value functions.

4. Connecting representation and model
learning

To focus on representing the value functions along the value
improvement path, we argue that the model and value func-
tions should be learned in the same embedding space, and
a model that is learned in this space is sufficiently expres-
sive for the task of learning any value function that can be
represented.

Any model learning objective induces a representation learn-
ing objective in the underlying state space. For example,
in a tabular domain, given certain restrictions on the model
class, it can be shown (see Appendix A) that learning an
IterVAML model is equivalent to finding the MLE over a
Q∗-state abstraction. Given this viewpoint, we can shift
our focus and talk about the representations learned by the
model, and those learned by the value function. We use Z
to refer to the representation space and assume (for now)
that ϕ is a fixed embedding function with ϕ : X → Z .

Assume the value-function class is Fθ = {Vθ(x) =
ϕ(x)⊤θ; ∥θ∥ ≤ B}. Note that here we denote the em-
bedding space as a mapping from the observation space
through ϕ(·), i.e. Z = ϕ(X ). Then the VAML model with
zero error, considering the result of Theorem 3.1, satisfies
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Figure 2. Illustration of the underlying model structure of the ViPer
model. At each timestep t, the observation O is encoded into a
latent space which serves as the input to a set of value functions
for past policies πi.

EP̂ (·|x,a) [z
′] = EP∗(·|x,a) [z

′]. In other words, instead of
a model that acts in the observation space X , an equiva-
lent one acts directly in the representation space, which we
denote as a “lifted” model.

Parr et al. (2008) states that if a linear value function ap-
proximation over feature embeddings Z is used, then the
least-squares linear model over the same feature space has
precisely the same value function for a given policy. There-
fore it is sufficient to learn a lifted linear model in the space
Z to evaluate any given policy (under the constraint of linear
value function approximation).

This result helps us see that if the representation space of the
model is shared with the representation space of the value
function, there is sufficient flexibility for the optimal model
to be learned, and therefore we do not need to learn separate
features ϕ for the model and values.

Although the linear argument cannot be transferred easily
into the embedding space of a deep neural network, we
argue that it is a sensible extension of these results. First of
all, if we assume that the value function is represented by a
learned function on top of an embedding function, any point
in the observation space will be mapped into the embedding
space before predicting the value. Therefore, by lifting the
model into this space, we cannot lose information that is
necessary for representing the value function. In fact, a
similar assumption has been made implicitly in works such
as VPN (Oh et al., 2017) and MuZero (Schrittwieser et al.,
2020). However the losses used in these works are different,
and they do not explicitly consider larger value function
sets.

We hypothesize that learning a model and value function in
the same representation space is sufficient for generalizable
models even in the deep learning setting.

In addition, the arguments from Section 3 allow us to expand
the simple idea of a lifted model in an embedding space:
the exact choice of the embedding and its expressiveness
directly corresponds with the expressiveness of the model.

Figure 3. The algorithmic setup of the actor and critic components
of our algorithm. Blue indicates quantities that are updated at each
step using gradient descent. Past policies are frozen, but the value
functions are still updated on new data.

Figure 4. Value and embedding update procedure given a model
defined on the embedding space and set of k value functions corre-
sponding to k past policies. The loss function is the soft Bellman
error due to Haarnoja et al. (2018).

If the representation space is able to capture the whole
value function polytope, a (good) model in it will be equally
useful to express the Bellman backup of any policy. If the
representation space captures the value functions along the
value improvement path, the model will equally be useful
to compute value function predictions for value functions
contained therein.

To leverage this knowledge, we propose a joint learning of a
agent, embedding space and latent model that is built on the
insights of the Value Improvement Path. A schematic view
of our proposed agent is shown in Figure 2. We discuss
details of our setup in the next section.

5. Proposal: Experimental setup
As mentioned in the introduction, this Work-in-Progress
report only presents a preliminary framework and theoret-
ical background of the algorithm, which we call Value Im-
provement Path Iterative Model Learning or VIPer. An
implementation based on deep neural networks and flexi-
ble actor-critic algorithms such as SAC leaves open many
design decisions and hyper-parameters. In this section, we
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Figure 5. Model updating procedure. Model loss defined in equa-
tion 1. Color scheme as above.

describe the algorithm and the planned experiments to in-
vestigate the ideas presented in this work.

We hope that our approach stabilizes and speeds up the learn-
ing of models on high-dimensional observation environ-
ments such as image-based robotics control. Especially in
the presence of distracting state information, current model-
based algorithms struggle to filter the necessary information
from the complicated observation space.

Following the discussions of Sections 3 and 4, we present
the following experimental setup for verifying our hypothe-
ses. Referring to Figure 3, an agent interacts with the en-
vironment using a policy πi, and its policy parameters are
updated. At regular intervals between policy updates, the
policy parameters are “frozen”, and copied and stop becom-
ing updated. As a result, a set of k policies are maintained in
memory, where the kth policy is the behaviour policy, and
is updated using an actor-critic algorithm. The critics asso-
ciated with each of these policies are continually updated
in an off-policy manner so that they are closer to the value
functions of each policy. In this way, we have access to the
past k policy and value functions that represent the values
in the value improvement path. Crucially, these critic share
a learned representation function which is forced to learn a
sufficiently expressive embedding to capture the necessary
representation for all past policy value functions.

Figures 4 and 5 illustrate the training procedure for the
model, the embedding function ϕ, and the value functions.
Referring to Figure 4, the model is used to predict the next
state in the embedding space, from which the targets for up-
dating the value functions are calculated. These targets are
then used to update the value functions and the embedding
function.

The model is updated as shown in Figure 5 (along with ϕ).
The indicated ViPer model loss for a transition at timestep t
is defined as:

Lt
ViPer(P̂ , ϕ) =

k∑
i=1

(
EP̂ (·|ϕ(ot))[V

πi(ẑt+1)]− V πi(ϕ(ot+1))
)2

, (1)

where the expectation is approximated using Monte Carlo
samples from the model. Note that the loss is calculated
across a batch of transitions over multiple timesteps.

6. Related work
Several lines of work have focused on the idea of learning
abstract planning models or decision-aware models. One
major concept is the idea of bisimulation metrics (Ferns
et al., 2004; 2011; Zhang et al., 2021) which can be used
to define representation learning or model learning objec-
tives. Bisimiulation metrics describe a way to measure the
distance between two MDPs (for example between a model
and the ground truth environment) by the reward outcome
of policies on these two MDPs. If any policy leads to the
same reward sequence on the model as on the real environ-
ment, then these are equivalent. Similar to VAML or PVE
models on a large policy class, the Bisimulation distance
can be conservative, as it accounts for all policies on the
given MDP.

Another concept that combines characteristics of model and
representation learning is the concept of successor features.
Lehnert & Littman (2020) show that successor features,
which are empirical averages of future state occupancy un-
der a policy, encode information about the transition func-
tion of the environment. Similar concepts such as proto-
value functions (Mahadevan & Maggioni, 2007) are sim-
ilarly built on the characteristics of the environment, and
encode the underlying structure of the MDP’s transition
graph in the form of the eigenvectors of the graph Laplacian.
These encode temporal information about the transition
structure and can be used to define representations based
on the behavior of the transition function. Both of these
concepts are however difficult to scale up to large continu-
ous environments and do not account for the plicies actually
encountered during reinforcement learning.

Model learning has also been used to stabilize the value
function representation in empirical investigations (Jader-
berg et al., 2016). Lyle et al. (2021) presents a theoretical
analysis of the use of model learning as an auxiliary task
in representation learning and reaches the conclusion that
dynamics learning can greatly improve the stability and
expressiveness of learned representations. Since the value
function and policy often depend on future state information,
encoding some predictive information of future states into
the current representation makes can force the representa-
tion to be more general. In contrast to the work presented
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here, these approaches are not connected more deeply to the
goal of model-based RL or model learning, the learned mod-
els are merely auxiliary components of the representation
learning procedure.

7. Conclusions
In the context of Value-Aware Model Learning, the choice
of the value functions to be aware of is crucial. We present a
discussion of this choice, bringing in insights from represen-
tation learning to propose an improvement over IterVAML.
We show that considering the sets of value functions encoun-
tered in practice during running an actor-critic algorithm
is crucial to ensure that the model can be used for several
update steps in the value function space. We also high-
light that representation sharing can be used to ensure that a
model is both value equivalent and simple to learn, and we
provide an algorithm sketch for the resulting ViPer Model.
Implementation and experiments are left for future work, as
well as deeper discussions about the interplay of model and
representation learning updates.
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L. N. Decision-aware model learning for actor-critic
methods: When theory does not meet practice. In ”I
Can’t Believe It’s Not Better!” at NeurIPS Workshops,
2020b.

Lyle, C., Rowland, M., Ostrovski, G., and Dabney, W. On
the effect of auxiliary tasks on representation dynamics.
In International Conference on Artificial Intelligence and
Statistics, 2021.

Mahadevan, S. and Maggioni, M. Proto-value functions:
A laplacian framework for learning representation and
control in markov decision processes. Journal of Machine
Learning Research, 8(10), 2007.

Modhe, N., Kamath, H., Batra, D., and Kalyan, A. Model-
advantage optimization for model-based reinforcement
learning. ArXiv, abs/2106.14080, 2021.
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A. ϕQ∗ Abstraction vs. Value-Aware Model Learning
For a finite-state and tabular value functions and models, we can show a relationship between certain representation functions
and value-aware model learning. This is formalized in this section.

Suppose we use a Q∗-irrelevant abstraction, which means that for any two states s1, s2 ∈ S, ϕ(s1) = ϕ(s2) =⇒
Q∗(s1, a) = Q∗(s2, a),∀a ∈ A. Let Ds,a be the collection of transition tuples that start with (s, a) and Dx,a :=∑

s∈ϕ−1(x) |Ds,a|.

Consider an approximate MLE model using the abstract representation M̄ϕ = (Sϕ,A, P̄ϕ, R̄ϕ, γ) on ϕ(S). Note that
ϕ−1(x) consists of all the states in S with the same Q∗. Let eϕ(s′) be the unit vector whose ϕ(s′)-th entry is 1 and all other
entries are 0. Then,

P̄ϕ(x, a) =
1

|Dx,a|
∑

s′∈Dx,a

eϕ(s′), ∀(x, a) ∈ Sϕ ×A. (2)

Theorem A.1. The model learned by minimizing the IterVAML loss on the abstract state space is equivalent to P̄ϕ. The
model learned by minimizing the IterVAML loss on the ground state space, when the model can only represent n = |Sϕ|
number of transitions is equivalent to the model learned on the abstract state space and therefore to P̄ϕ.

Proof. Consider minimizing the VAML loss on the abstract space Sϕ, given the same dataset Dx,a,

P̂ϕ,IterVAML(x, a) = argmin
P̂

∣∣∣∣∣∣ 1

|Dx,a|
∑

s′∈Dx,a

max
a′

Q∗(ϕ(s′), a′)−
∑
s′′∈S

P̂ (ϕ(s′′)|x, a)max
a′

Q∗(ϕ(s′′), a′)

∣∣∣∣∣∣
2

. (3)

This is minimized when P̂ (ϕ(s′′)|x, a) is 1
|Dx,a| if s′′ appears in the dataset Dx,a, i.e. when P̂ (ϕ(s′′)|x, a) = 1

|Dx,a| ,∀s
′′ ∈

Dx,a and 0 otherwise. This is equivalent to

P̂ϕ,IterVAML(x, a) =
1

|Dx,a|
∑

s′∈Dx,a

eϕ(s′), ∀(x, a) ∈ Sϕ ×A.

Therefore, given a Q∗-irrelevant abstraction, the VAML model and MLE model (P̄ϕ) learned on Sϕ are equivalent.

On the ground state space, S, the VAML loss is:

LIterVAML(s, a; P̂ ) =

∣∣∣∣∣∣ 1

|Ds,a|
∑

s′∈Ds,a

max
a′

Q∗(s′, a′)−
∑
s′′∈S

P̂ (s′′|s, a)max
a′

Q∗(s′′, a′)

∣∣∣∣∣∣
2

. (4)

Since |Sϕ| = n, that means there are only n unique action-value functions, which we enumerate as Q∗
i (s, a), i =

0, . . . n− 1,∀a ∈ A. This means that for any s ∈ S , its action-value function is one of these n action-value functions. Thus,
we can rewrite the first term of the VAML loss as:

1

|Ds,a|
∑

s′∈Ds,a

max
a′

Q∗(s′, a′) =
1

|Ds,a|

n−1∑
i=0

ni(ϕ(s
′); s, a)max

a′
Q∗(ϕ(s′), a′) (5)

where ni(s
′; s, a) denotes the number of times the transition from (s, a) to s′ led to a ”phase” transition into the i-th abstract

state, according to the data Ds,a. Note that
∑n−1

i=0 ni(ϕ(s
′); s, a) = |Ds,a|. The second term of the loss can be similarly

rewritten: ∑
s′′∈S

P̂ (s′′|s, a)max
a′

Q∗(s′′, a′) =

n−1∑
i=0

 ∑
s′′∈ϕi

P̂ (s′′|s, a)

max
a′

Q∗(xi, a
′), (6)

where ϕi is the set of states that map to the same abstract state, and xi is the ϕ-mapped state in abstract set of states ϕi (i.e.
xi = ϕ(s′′)∀s′′ ∈ ϕi. Thus, the full loss becomes:

LIterVAML(s, a; P̂ ) =

∣∣∣∣∣∣ 1

|Ds,a|

n−1∑
i=0

ni(ϕ(s
′); s, a)max

a′
Q∗(ϕ(s′), a′)−

n−1∑
i=0

 ∑
s′′∈ϕi

P̂ (s′′|s, a)

max
a′

Q∗(xi, a
′)

∣∣∣∣∣∣
2

. (7)
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Thus, the optimal model groups together all s′′ that map to the same abstract state, inducing the ϕQ∗ abstraction.


