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Abstract
We consider a distributed learning problem, where
agents minimize a global objective function by
exchanging information over a network. Our ap-
proach has two distinct features: (i) It substan-
tially reduces communication by triggering com-
munication only when necessary, and (ii) it is ag-
nostic to the data-distribution among the different
agents. We therefore guarantee convergence even
if the local data-distributions of the agents are
arbitrarily distinct. We analyze the convergence
rate of the algorithm both in convex and noncon-
vex settings and derive accelerated convergence
rates for the convex case. We also characterize
the effect of communication failures and demon-
strate that our algorithm is robust to these. The
article concludes by presenting numerical results
from distributed learning tasks on the MNIST and
CIFAR-10 datasets. The experiments underline
communication savings of 35% or more due to
the event-based communication strategy, show re-
silience towards heterogeneous data-distributions,
and highlight that our approach outperforms com-
mon baselines such as FedAvg, FedProx, SCAF-
FOLD and FedADMM.

1. Introduction
Distributed learning refers to the minimization of a global
objective function over a network of agents, where each
agent has only access to a local cost function and can com-
municate with some or all agents in the network. Distributed
learning systems provide a solution for handling the grow-
ing amount of data being generated everywhere on earth, by
utilizing the computational power of individual devices in a
network rather than relying on a central entity. This takes
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the burden off central processors and improves data privacy
by avoiding a centralized training and storage of data.

Distributed learning is particularly challenging when the
data is not independent and identically distributed (non-
i.i.d.) across the different agents. This situation often hin-
ders the convergence to a globally optimal model. The
non-i.i.d. nature leads to disparities in local datasets, pre-
venting the local models from generalizing across the entire
dataset, leading to a fundamental dilemma between min-
imizing local and global objective functions (Acar et al.,
2021). In addition, a second key challenge arises from the
communication between agents, which is required to en-
sure convergence to the global solution and may lead to a
substantial overhead. This communication overhead results
in a waste of energy (Li et al., 2020b), and is prone to de-
lays and communication channel failures. As a result, both,
non-i.i.d. datasets and communication overhead, constitute
major bottlenecks for enabling large-scale learning systems.

We provide an effective solution to both challenges. In-
spired by the sent-on-delta concept (Miskowicz, 2006), we
reduce the communication load by introducing an event-
based communication strategy, such that each agent (or
computational node) communicates only if necessary. Our
communication rule enforces local constraints that collec-
tively guarantee bounded overall error, a paradigm related to
safe zone design strategies in distributed computing (Garo-
falakis & Samoladas, 2017). Our approach is also rooted
in event-based estimation, where communication is trig-
gered by significant state changes. We further base our
approach on the Alternating Direction Method of Multi-
pliers (ADMM). Our method is therefore robust against
ill-conditioning and agnostic towards a disparity of the local
data-distributions among the agents (these can be skewed
in arbitrary ways). The approach further enables an explicit
trade-off between communication load on the network and
solution accuracy via a small set of hyperparameters that
have a clear interpretation. We explicitly quantify the influ-
ence of these hyperparameters on the solution accuracy and
analyze the effect of communication failures. The article
concludes by highlighting the effectiveness of our algorithm
in training neural networks, and solving LASSO problems
in a distributed and communication-efficient manner.

Our theoretical analysis builds on a recent trend in the opti-
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mization literature (Wibisono et al., 2016; Su et al., 2016;
Muehlebach & Jordan, 2019; Tong & Muehlebach, 2023)
that views algorithms as dynamical systems and leverages
ideas from differential or symplectic geometry, as well as
passivity and dissipativity (Lessard et al., 2016; Muehlebach
& Jordan, 2020). As we will show, this enables convergence
proofs and a convergence rate analysis for our distributed
algorithms, together with an analysis of robustness against
communication failures. Our work provides important in-
sights into the behavior of the event-based optimization
under communication failures, an aspect, which has been
overlooked in prior works, and thereby lays the groundwork
for future research in this area.

Related Work: In the 1980s, Bertsekas & Tsitsiklis (1989)
and others laid the foundation for the analysis of distributed
algorithms. As machine learning became popular, dis-
tributed learning emerged, specifically focusing on paral-
lelizing computation for empirical risk minimization. Shokri
& Shmatikov (2015) explored collaborative deep learning
with multiple agents using distributed stochastic gradient
descent, which was later coined federated learning (McMa-
han et al., 2017) and advanced by subsequent contributions
(Kairouz et al., 2021; Asad et al., 2023). A unifying element
in these works is the consensus problem, where agents agree
on a common value or decision. This problem is both central
to distributed optimization and is also a special instance of
distributed optimization (Wei & Ozdaglar, 2012).

The trade-off between communication and computation is in-
evitable in distributed optimization (Nedic et al., 2018). Re-
cent work by Cao et al. (2023) categorizes communication-
efficient distributed learning into four main strategies: (1)
minimizing the number of communications, (2) compres-
sion, (3) managing resources (e.g., bandwidth), and (4)
using game theoretical approaches. We focus our review on
the first category that aligns with our work, and reduces com-
munication by transmitting information only if necessary.
A first line of work (McMahan et al., 2017; Wei Liu et al.,
2021; Reisizadeh et al., 2020, and many more) proposes
algorithms with a periodical exchange of model parameters
either among all agents or randomly selected subsets for
decreasing communication load. While this approach is
particularly straightforward and easy to implement, the ran-
dom sampling risks missing critical updates or performing
redundant communications. A second line of work involves
accelerated gradient methods for distributed optimization,
reducing the need for many communication rounds to con-
verge. For instance, Kovalev et al. (2020) and Nabli &
Oyallon (2023) optimize the number of gradient evaluations
together with communication rounds. Shamir et al. (2014)
replaces gradient descent with Newton-like methods and
Hendrikx et al. (2020) proposes statistical preconditioning
where both methods further improve convergence rates at
the cost of a higher computational load per iteration. Addi-

tionally, Liu et al. (2021) propose a lazy evaluation of dual
gradients, reducing communication by skipping redundant
updates, while (Chen et al., 2018) adaptively reuse lagged
gradients to meet target accuracy with fewer communica-
tion rounds. There has also been a third line of work that
focuses on reducing communication via event-based trig-
gering and compression of network parameters (Liu et al.,
2019; Ghadikolaei et al., 2021; Singh et al., 2023; Zhang
et al., 2023). While (Zhang et al., 2024; 2023) employ an
ADMM-based strategy that is similar to ours, their focus
lies on investigating different compression schemes, and not
on analyzing convergence rates and the effect of communi-
cation failures. Event-triggering has also been explored in
contexts like dynamics model learning (Solowjow & Trimpe,
2020; Umlauft & Hirche, 2019), and Bayesian optimization
(Brunzema et al., 2025). While highlighting the benefit of
triggering for reducing communication, these works do not
consider distributed optimization problems as we do herein.

In addition to the communication overhead, another major
challenge for distributed learning arises from non-i.i.d.
data distributions across agents (Zhao et al., 2018; Li et al.,
2020c; Glasgow et al., 2022). SCAFFOLD (Karimireddy
et al., 2020) addresses this challenge by introducing a
client control variate to improve convergence at the cost
of doubling communication. Similarly, (Gao et al., 2022)
enhances training with auxiliary drift variables, while
(Zheng et al., 2024) selects representative clients and
adjusts server gradients. Recent contributions by Li et al.
(2020a); Acar et al. (2021); Shi et al. (2023) add a proximal
regularization term to the local objective functions of the
individual agents, whereas Zhang et al. (2021) (FedPD)
and Zhou & Li (2023); Wang et al. (2022); Gong et al.
(2022) (FedADMM) address the challenge with ADMM
formulations. However, compared to our work, FedADMM
(Zhou & Li, 2023; Wang et al., 2022; Gong et al., 2022)
relies on utilizing a random selection of agents that
communicate and FedPD (Zhang et al., 2021) considers
full participation, whereas we use an event-triggered
mechanism. Alternatively, other splitting schemes such
as Douglas-Rachford method proposed by Tran Dinh et al.
(2021), similarly align local and global objectives but
remain constrained by random agent participation.

ADMM remains a widely-used tool for distributed learning,
with recent advancements focusing on improving conver-
gence rates and communication efficiency. For example,
Wang et al. (2025) introduce inertia and adaptive iteration
strategies to accelerate convergence, while Song et al. (2025)
controls inexactness and dynamically tunes penalty parame-
ters. In addition, He et al. (2023) explore dynamic tuning
of ADMM hyperparameters, and hierarchical grouping ap-
proaches (Qiu et al., 2023), inspired by Elgabli et al. (2020),
aim to reduce communication overhead by restricting up-
dates to neighboring workers. These methods share the goal
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of improving the efficiency of ADMM in distributed settings,
but they still rely on periodic or full-agent participation,
whereas our approach uses event-triggered mechanisms to
further reduce communication costs.

As we also highlight in numerical experiments, a random
selection of agents might prevent important local changes
from propagating quickly through the network, leading
to a slower convergence. To the best of our knowledge,
this is the first work to provide a convergence analysis of
distributed learning with event-triggered communication
that addresses key aspects, such as packet drop and the
presence of non-i.i.d. data.

Contributions are summarized as follows:
(i) We propose an event-based communication scheme for
distributed optimization, where a communication event is
only triggered, when the current state has deviated by a
predefined threshold ∆, indicating a significant change in
the local decision variables. Therefore, our approach is ef-
fective in reducing communication overhead and can adapt
to the limited communication resources in heterogeneous
networks. Our method is also compatible with and com-
plementary to gradient compression/quantization (Hegazy
et al., 2024; Mao et al., 2022; Wang et al., 2018) and fair
aggregation techniques (Zhu & Ling, 2021).

(ii) We characterize the effect of the communication thresh-
old ∆ on the solution accuracy and therefore quantify
the trade-off between communication and solution accu-
racy. Compared to other ADMM-based approaches, such
as (Zhang et al., 2021; Zhou & Li, 2023), our method is
versatile, both in the selection of variables that are being
communicated (which is important for reducing commu-
nication in practice), as well as the different problem for-
mulations that we can address. In particular, our approach
goes beyond the scope of consensus problems, and can
solve generic constrained optimization problems, sparse re-
gression and LASSO problems, perform robust principal
component analysis (Candès et al., 2011), and solve dis-
tributed learning instances where the features but not the
data points are distributed (Boyd et al., 2010).

(iii) Numerical experiments support the theoretical analy-
sis and highlight that our approach even converges in the
most extreme non-i.i.d. setting, where each agent has only
access to training data from a single class (see the MNIST
classifier example in Sec. 5). Comparisons to the baselines
FedADMM (Zhou & Li, 2023), SCAFFOLD (Karimireddy
et al., 2020), FedProx (Li et al., 2020a) and FedAvg (McMa-
han et al., 2017) demonstrate superiority both in terms of
communication efficiency and classification accuracy.

(iv) We demonstrate an accelerated convergence rate, and
derive symbolic expressions that relate the convergence rate
to instance-specific quantities such as the condition number

and the topology of the communication network. The con-
vergence analysis requires a Lyapunov-like function that is
different compared to earlier work (Nishihara et al., 2015),
due to the presence of the event-based communication.

(v) We study the robustness of our algorithm against com-
munication failures, both in theory as well as in numerical
experiments, which, to the best of our knowledge, is largely
missing in the literature (a notable exception for the con-
sensus problem is (Bastianello et al., 2021)). We address
communication failures algorithmically by proposing a rare
periodic reset strategy. We show that, without such a re-
set strategy, inter-agent errors accumulate rapidly in the
presence of packet drops and prevent convergence.

Outline: The article is structured as follows: Sec. 2 de-
scribes the problem formulation and introduces our event-
based learning algorithm in the consensus setting. The more
general formulation is discussed in Sec. 3, where we also
introduce a dynamical systems model for our algorithm.
Sec. 4 discusses the convergence analysis of the proposed
algorithm and presents convergence rates, while empirical
results that underline the theoretical findings are included in
Sec. 5 and in App. G. The appendix contains additional tech-
nical details about the communication structure in App. A
and the details of the convergence analysis in App. C and D.

2. Event-Based Distributed Learning
We consider a distributed learning problem of the type
minx∈Rn

∑N
i=1 f

i(x), where the overall cost function f(x)
is the sum of N individual, potentially nonsmooth func-
tions. The different f i typically arise from different training
datasets stored on different computational nodes. In the
most basic instance, our algorithm arises from the consen-
sus formulation

min
x1,...,xN∈Rn

N∑
i=1

f i(xi) + g(z),

subject to xi = z, i = 1, . . . , N,

(1)

where we impose the constraints xi = z by correspond-
ing dual variables ui. Thus, by guaranteeing constraint
satisfaction, we can ensure consensus between the agents
despite different local problems and, in particular, arbitrary
non-i.i.d. data distributions among the computational nodes.
In addition, we assume the function f i : Rn → R to be
smooth, while g :Rn → R̄ is allowed to be nonsmooth (g
typically represents a regularizer) and maps to the extended
real numbers.

Our event-based algorithm, stated in Alg. 1, works as fol-
lows. Each agent (or computational node) i, i = 1, . . . , N ,
has access to the local objective function f i, its local so-
lution xi, its local multiplier ui, and an estimate ẑi of the
consensus variable z. We further introduce the agent N+1

3



Distributed Event-Based Learning via ADMM

Agent 1 Agent 2 Agent 3 Agent 4

Agent 5

d1k+1−d1[k] d2k+1−d2[k] d3k+1−d3[k] d4k+1−d4[k]

zk+1−z[k] zk+1−z[k] zk+1−z[k] zk+1−z[k]

Figure 1: The figure illustrates the distributed learning setup.
The Agents 1−4 store xi, ui and perform updates based on
the information received by Agent 5, according to Alg. 1.
Agent 5, stores z and performs updates based on the infor-
mation received by Agent 1−4. This architecture is common
in distributed learning, where a single server aggregates up-
dates from multiple distributed clients to collaboratively
train a model.

(acting as server) that has access to g, the variable z, and
maintains an estimate ζ̂ of the average

ζk :=
1

N

N∑
i=1

(
αxik+1 + uik

)
.

Following the communication structure in Fig. 1, the algo-
rithm proceeds in two steps:

i) Parallel update of agents i = 1, . . . , N : Each agent
i = 1, . . . , N first updates its estimate ẑik based on whether
it receives an event-based communication from the agent
N+1. The agent then updates its multiplier uik and solves a
local minimization over f i, which also includes a quadratic
regularization term. The regularization term ensures that
the minimization is well-conditioned (a key advantage to
dual ascent, for example) and the local solution xi is biased
towards ẑik. In practice, the minimization is replaced by a
fixed number of (stochastic) gradient descent steps. If the
resulting value dik+1 := αxik+1+u

i
k of the agent i is signifi-

cantly different from the value that it last communicated to
the agent N+1, an event-based communication is triggered
and the difference of dik+1 to the last communicated value
is sent to the agent N+1.

ii) Update of agent N+1: The agent N+1 updates its esti-
mate ζ̂ of ζ by accumulating the di variables that it receives
from all agents. It then updates the consensus variable zk+1

by solving a local minimization over g with a quadratic
regularization term. Note that if the nonsmooth component
g is missing, zk+1 is simply set to ζ̂k−(1−α)zk. Finally,
the agent N+1 triggers an event-based communication if
the value zk+1 is significantly different from the value that
it last communicated to the agents i = 1, . . . , N .

Next, we explain the details of the event-based communi-
cation protocol on the example of the communication of
di, which is related to the primal xi and dual ui variables
of agent i. The other event-based communications proceed
similarly. The protocol comes in two variants, vanilla event-

Algorithm 1 Event-Based Distributed Learning with Over-
Relaxed ADMM
Require: Local objective functions f i, parameters ρ,
∆d,∆z , reset period T

Require: Initialize x̂i0 = x0, ẑ0 = ζ0 = x0, ûi−1 = ui0
for k = 0 to tmax do

for i = 1 to N do
ẑik ← receive zk−z[k−1] {Agent i}
uik = uik−1 + αxik−ẑik + (1− α)ẑik−1

xik+1 = argminxi f i(xi) + ρ
2 |x

i − ẑik + uik|2
event-based send of dik+1 − di[k] {See (2)}

end for
ζ̂k ← receive 1

N

∑
i∈Cd

k+1
(dik+1−di[k]) {Agent N+1}

zk+1 = argminz g(z) +
Nρ
2 |z − ζ̂k−(1− α)zk|

2

event-based send of zk+1−z[k]
if mod(k + 1, T ) = 0 then

perform reset→ ζ̂k = ζk, ẑk = zk
end if

end for

based and randomized event-based.

Vanilla event-based: This communication rule is inspired
from the sent-on-delta concept (Miskowicz, 2006), which
aims to reduce the number of communications by only send-
ing updates when significant changes occur. A communica-
tion is triggered, if the value dik+1 has deviated by more than
the predefined threshold ∆d>0 compared to the value that
was last communicated. We introduce the variable di[k] to de-
note the value dik that was last communicated and add the in-
dex i to the set Cdk+1. The set Cdk+1 denotes the set of agents
that trigger a communication of dik+1 at time-step k, that is,

|dik+1−di[k]|>∆d ⇐⇒ i∈Cdk+1, (2)

and dik+1 − di[k] is sent out. Similarly, agent N + 1 triggers
a communication if |zk+1 − z[k]| > ∆z . We also model
communication failures as drops, which we represent by
the variables χdi

k+1. The variable χdi
k+1 takes the value

χdi
k+1 = −(dik+1−di[k]), if dik+1−di[k] is not received by the

agent N+1; otherwise χdi
k+1 = 0. The agent N+1 updates

its estimate of the average ζk according to the primal and
dual variables that it has received at time k, that is,

ζ̂k = ζ̂k−1 +
1

N

∑
i∈Cd

k+1

(
dik+1 − di[k] + χdi

k+1

)
.

Randomized event-based: The protocol makes a case
distinction. If |dik+1−di[k]| ≤ ∆d, a communication is ran-
domly triggered with probability ptrig. If |dik+1−di[k]| > ∆d,
a communication is triggered with certainty. Randomized
communication from agent N + 1 to the other agents
works in a similar way. If |zk+1− z[k]| ≤ ∆z , then a
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communication is randomly triggered with probability ptrig
between agent N + 1 and agent i.

We observed in our numerical experiments that randomized
event-based often improves vanilla event-based in terms
of the achieved communication versus solution accuracy
trade-off.

The error caused by the event-based communication remains
bounded at all times thanks to the communication protocol
and the periodic resets. This is summarized with the next
proposition, whose proof is included in App. E:

Proposition 2.1. The error ζ̂k−ζk at iteration k is bounded
by |ζ̂k−ζk|≤∆d+T χ̄d, where T denotes the reset period
(see Alg. 1) and χ̄d is a bound on the disturbance χdi

k .

We now state the main convergence result for Alg. 1. The
result arises as a corollary from the convergence analysis
in the more general distributed optimization setting (see
Thm. 4.1). We also provide sublinear convergence rates in a
nonconvex setting (see Thm 2.3).

Corollary 2.2. Let f =
∑N

i=1 f
i be m-strongly convex and

L-smooth with κ = L/m, and g be convex. Let the step-size
be ρ = (mL)

1
2κϵ with ϵ ∈ [0,∞), and α = 1. For large

enough κ, we have

|zk − z∗|2 ≤ 4

(
1− 1

4κϵ+
1
2

)2k

D0+
5

N
κ2+2ϵ∆2,

where z∗ is the optimal value for the consensus variable
z, and D0 represents the initial error, D0 = |z0−z∗|2 +
1
N

∑N
i=1|ui0−ui∗|2, with ui∗ denoting the optimal values

of the dual variables associated with each agent. Here,
∆ = N∆d+∆z+T (Nχ̄d+χ̄z) captures the error arising
from the event-based communication.

The convergence result bounds the distance between the
consensus variable zk and the optimal solution z∗ = x∗
that minimizes (1). The analysis models our event-based
learning algorithm as a dynamical system, accounting for
disturbances introduced by the event-based communication
strategy. By design, these disturbances remain bounded
under the communication protocol. The next section elab-
orates on the formulation of our algorithm as a dynamical
system.

The strong convexity assumption enables faster conver-
gence rates compared to more general nonconvex scenarios.
Specifically, under this assumption, the rate of convergence
is linear, as shown in Cor. 2.2 and accelerated. In contrast,
without such assumptions, convergence rates are generally
much slower, typically sublinear or achieving only asymp-
totic convergence.

We note that the strong convexity assumption in Cor. 2.2
only requires f :=

∑N
i=1 f

i to be strongly convex, without

imposing the same condition on the individual components
f i. In addition, we present a convergence result for general
nonconvex cases in Thm. 2.3 leading to sublinear conver-
gence rates. The proof is provided in App. B.
Theorem 2.3. Let each f i : Rn → R be smooth (potentially
nonconvex) and let g : Rn → R̄ be a proper, closed convex
function. Let the relaxation parameter be α = 1, and the
communication threshold ∆k decay as ∆k = ∆0/(k + 1)2.
Then, the gradients and residuals converge with a rate of
O(1/k), and the following bound holds:

1

K + 1

K∑
k=0

(
2

3N

N∑
i=1

∣∣rik+1

∣∣2 + 1

6N

∣∣∣Gk+1

∣∣∣2) = O
(

1

K

)
,

where rik+1 = xik+1 − zk+1 are the residuals, and the
gradient terms are given by

Gk+1∈
1

ρN

(
N∑
i=1

∇f i(xik+1) + ∂g(zk+1)

)
.

3. Event-Based ADMM as a Dynamical System
We introduce a more general problem formulation that en-
compasses the previous section as a special case in order
to broaden the scope of our analysis. This leads to the
following constrained minimization problem

min
x∈Rp, z∈Rq

f(x) + g(z), subject to Ax+Bz = c, (3)

where x ∈ Rp and z ∈ Rq are decision variables, A ∈
Rr×p, B ∈ Rr×q, and c ∈ Rr are corresponding matrices,
and the objective function is decomposed into a smooth part
f :Rp→R and a nonsmooth part g :Rq→ R̄. We will pro-
vide an analysis under the following standard assumptions
in distributed optimization.
Assumption 3.1. The matrix A is invertible and B is full
column rank.
Assumption 3.2. The function f is m-strongly convex and
L-smooth. The function g is convex.

It is important to emphasize that the assumption of strong
convexity for f is introduced to derive linear rates within
a dynamical systems framework. This assumption does
not limit the practical applicability of the algorithm and a
corresponding nonconvex result is included in Thm. 2.3. We
also note that Assumption 3.2 allows for nonconvex f i (see
(1)) that

∑
f i is strongly convex.

The formulation in (3) accommodates a variety of dis-
tributed optimization problems, including consensus, re-
source sharing, and distributed model fitting, see for exam-
ple (Boyd et al., 2010). App. A further highlights how the
general formulation can be tailored and simplified to accom-
modate specific applications, such as the sharing problem
or finding a consensus on a graph.
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Our event-based distributed learning method is summarized
in Alg. 2. The algorithm is based on an over-relaxed version
of ADMM, where an event-based communication structure
between different agents is introduced. The over-relaxation
brings the additional parameter α, which, as we will show,
can be used to achieve faster convergence rates. The com-
munication structure of the algorithm is shown in Fig. 2
and includes three agents that keep track of the individual
quantities rk = Axk, sk = Bzk, and the dual multiplier uk.
In the special case of the consensus problem, the updates
of the primal variable xk and dual variable uk decompose
further into local updates based on xik and uik, which results
in the communication structure shown in Fig. 1.

Alg. 2 begins by initializing its variables, and over a series
of iterations, agents alternate between sharing information
and optimizing their local variables. Key steps include up-
dating variables based on local objectives and residuals,
and triggering communication events when individual resid-
ual changes exceed predefined thresholds. The algorithm
leverages event-based communication to reduce the commu-
nication load, while still achieving convergence towards an
optimal solution of (3), as we will show in the following sec-
tion. The event-based communication proceeds as in Sec. 2,
that is, the r-agent, for example, triggers a communication
with the other agents if |rk+1−r[k]|>∆r, at which point it
sends the difference rk+1−r[k] to the other agents. We again
model communication failures by introducing the variables
χru
k+1 if the communication is not received by the u-agent

at time k+1. The notation is analogous for the remaining
agents and communication lines (see also Fig. 2).

Algorithm 2 Event-Based Distributed Optimization with
Over-Relaxed ADMM
Require: Functions f and g, matrices A and B, vector c,

parameters ρ and α. Initial condition x0, z0
r0= r̂

s
0= r̂

u
0 =Ax0,s0= ŝ

r
0= ŝ

u
0 =Bz0,u0= û

r
0= û

s
0=0

for k = 0 to tmax do
ŝrk, û

r
k ← receive sk+1−s[k], uk+1−u[k]

xk+1 = argminx f(x) +
ρ
2 |Ax+ ŝrk − c+ ûrk|2

event-based send rk+1−r[k] where rk+1 = Axk+1

r̂sk+1,û
s
k ←receive rk+1−r[k], uk+1−u[k]

zk+1=argmin
z

g(z)+ρ
2 |αr̂

s
k+1−(1−α)Bzk+Bz−αc+ûsk|2

event-based send sk+1−s[k], where sk+1 = Bzk+1

r̂uk+1,ŝ
u
k+1←receive rk+1 −r[k], sk+1 −s[k]

uk+1 = uk + αr̂uk+1−(1− α)ŝuk + ŝuk+1−αc
event-based send uk+1−u[k]
if mod(k + 1, T ) = 0 then

reset→ r̂u;sk+1 = rk+1, ŝ
u;r
k+1 = sk+1, ur;sk+1 = uk+1

end if
end for

Alg. 2 has three update steps that occur sequentially,

whereby the first two involve optimization problems that can
be replaced by their corresponding stationarity conditions.
This yields the following implicit update equations:

0 = ∇f(xk+1) + ρA⊤(Axk+1 + ŝrk − c+ ûrk)

0 ∈∂g(zk+1)+ρB
⊤(αr̂sk+1−(1−α)Bzk+Bzk+1−αc+ûsk)

uk+1 = uk + αr̂uk+1 − (1− α)ŝuk + ŝuk+1 − αc,

which can be expressed by the dynamical system shown
in Fig. 2. We note that the variable xk+1 is uniquely de-
termined by ŝrk and ûrk and does not depend on xk, which
means that only ξk := (sk, uk) comprises the state of the
dynamical system. We further note that the dynamical sys-
tem includes a nonlinear component, which arises from
the (sub)gradient evaluations ∇f and ∂g, and the system
is subjected to external disturbances ek that arise from the
event-based communication. The detailed derivation and
the corresponding matrices for the dynamics in Fig. 2 are
included in App. C. Our convergence analysis will build on
the dynamical systems model of Alg. 2. While our analysis
is inspired by earlier works, such as (Nishihara et al., 2015)
and (Lessard et al., 2016), the Lyapunov function that is used
to prove convergence rates are different due to the external
disturbances caused by the event-based communication.

s u

r

sk+1 − s[k]

sk+1 − s[k]

rk+1 − r[k]

rk+1
− r[k]

uk+1 − u[k]

uk+
1
− u[k]

Â Ê B̂

Ĉ Êy D̂

ϕ

e[
rk+1 − c
sk+1

]

Delay [
sk
uk

][
sk+1

uk+1

]

Figure 2: The figure visualizes the event-based commu-
nication structure of Alg. 2 at the top and a discrete-time
dynamical system which represents the sequence generated
by the event-based ADMM algorithm on the bottom. The
function ϕ is nonlinear and represents the evaluation of
(sub)gradients.

4. Convergence Analysis
This section provides convergence guarantees for the event-
based learning algorithm (Alg. 2). The detailed proof for
Thm. 4.1 is provided in App. D.

Theorem 4.1. Let Assumption 3.1 and 3.2 be satisfied and
let the step-size for Alg. 2 be ρ = κϵ

√
mL/(σ(A)σ̄(A)),

for some ϵ ≥ 0 and α ∈ (0.675, 1+
√
1−1/

√
κ), κ =
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Lσ̄2(A)/(m
¯
σ2(A)), where

¯
σ and σ̄ denote the minimum

and maximum singular value of a matrix, respectively. Then,
for large enough κ, the following bound holds:

|ξk−ξ∗|2≤κP |ξ0−ξ∗|2
(
1− α

4κϵ+
1
2

)2k

+
60κ2+2ϵ

α(1−|α−1|)
∆2,

with ξk = (sk, uk), and where sk = Bzk, uk is the dual
variable, and ξ∗ the optimizer corresponding to (3). Fur-
thermore, ∆=∆r+∆s+∆u+T (χ̄r+χ̄s+χ̄u) represents the
error arising from the event-based communication and κP =
(2
√
κ−1+

√
4κ(α−1)2+1)/(2

√
κ−1−

√
4κ(α−1)2+1).

We conclude the section by highlighting a few important
points.

(i) For ϵ=0, α=1, the bound is considerably simplified to

|ξk − ξ∗|2 ≤ 2|ξ0 − ξ∗|2
(
1− 1

4
√
κ

)2k

+ 60κ2∆2,

which shows that the convergence rate scales with 1/
√
κ

and is therefore accelerated. This also highlights that the
same convergence rate (up to constants) can be achieved
with the event-based learning algorithm stated in Alg. 1
compared to a standard ADMM algorithm. As we will show
in the numerical experiments, our event-based algorithm
reduces communication without any significant reduction in
accuracy.

(ii) The bound from Thm. 4.1 also highlights how the com-
munication thresholds ∆ affect the solution accuracy. In the
simplified scenario with ϵ = 0, α = 1 (the more general
scenario follows the same rationale), the solution accuracy
is bounded by |ξk−ξ∗| ≤ 8κ∆, for large enough k. This
means that the solution accuracy of Alg. 2 is proportional to
the condition number κ and ∆.

(iii) We can therefore easily ensure convergence, by choos-
ing a time-varying ∆ = ∆k such that ∆k → 0. The
formal statement is included and derived in App. F. We
also obtain precise nonasymptotic bounds. For example, if
∆k = ∆0/(k + 1)t for any t > 0, we conclude that the
error converges with O(1/kt) (see again App. F).

(iv) If f fails to be strongly convex, we can include a small
regularizer, for example of the type m|x|2/2. Choosing a
diminishing regularizer with m = O(1/k2) and a diminish-
ing threshold ∆k = O(1/k4) can be shown to result in an
accelerated convergence rate of O(1/k2).

(v) The topology of the communication network, rep-
resented by the matrix A, directly influences the con-
vergence rate, through the condition number κ =
Lσ̄2(A)/(m

¯
σ2(A)). This formulation allows us to gen-

eralize our convergence results beyond simple client-server
architectures. See App. A.2 for a detailed discussion on how
agent network topology is encoded in the matrix A.

5. Numerical Experiments
This section discusses the performance of Alg. 1 in nu-
merical experiments, highlighting that Alg. 1 achieves fast
convergence while reducing communication. Numerical
experiments with the more general version (Alg. 2) are in-
cluded in App. G, where distributed training over a network
of agents is explored. We also investigate the trade-off be-
tween communication load and solution accuracy achieved
by selecting different communication thresholds. The com-
munication load is calculated by counting the number of
triggered communications for Tmax number of steps and
normalizing according to the full communication case of
one data package per round.
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Figure 3: Validation accuracy (top) and communication load
percentage (bottom) over 150 communication rounds for
training a CIFAR-10 classifier. The results indicate that
Alg. 1 achieves top accuracy at a lower communication
rate. The plots compare the performance of various algo-
rithms, including Alg. 1 with different parameter settings
(Vanilla and randomized), FedAvg, FedProx, FedADMM,
and SCAFFOLD. Notably, ADMM-based methods (Alg. 1,
Alg. 1-Rand and FedADMM) demonstrate better conver-
gence by reaching up to 78% test accuracy, compared to
other algorithms FedAvg, FedProx and SCAFFOLD, which
reach only 70% accuracy. Among ADMM-based methods,
Alg. 1 and Alg. 1-Rand achieve the same accuracy with
over 20% less communication load. Communication load
curves are smoothed using a window length of three for
visualization purposes.
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Algorithm MNIST Target Accuracy CIFAR-10 Target Accuracy

80% 85% 90% 70% 75% 77% 78%

Alg. 1 - Randomized 629 693 1723 12531 13422 15008 18376
Alg. 1 - Vanilla 816 1285 1710 12214 14780 14780 20690

FedADMM (Zhou & Li, 2023) 800 1200 >2000 12000 15000 21000 27000
FedAvg (McMahan et al., 2017) 800 2000 N/A 3000 N/A N/A N/A

FedProx (Li et al., 2020a) 1000 2000 N/A 6000 N/A N/A N/A
SCAFFOLD (Karimireddy et al., 2020) 1600 2000 3200 12000 N/A N/A N/A

Table 1: The total number of communication events required by each algorithm to achieve the target accuracies for the
MNIST and CIFAR-10 classifiers within 100 and 150 rounds, respectively. “N/A” indicates cases where the target accuracy
was not reached within the specified rounds. Parameter choices for the algorithms are detailed in Appendix G. Reported
values are averages over multiple experiments with different random seeds, with standard deviations below 2%, making them
negligible. The corresponding communication load and accuracy trends for the rightmost column of CIFAR-10 are shown in
Fig. 3. The results emphasize the trade-off between achieving higher validation accuracy and maintaining communication
efficiency across various algorithm configurations.

Due to space limitations, we present two examples in this
section. Further experiments (including linear regression,
LASSO, and distributed training over a network of agents)
are presented in App. G. App. G also includes hyperparam-
eters for the experiments, model details and discusses the
effect of communication failures.

We start by evaluating the performance of Alg. 1 on MNIST
(Deng, 2012) and CIFAR-10 (Krizhevsky, 2009). Tab. 1
reports the total number of communication events required
by each algorithm to achieve the target accuracies for the
MNIST and CIFAR-10 classifiers. Our event-based algo-
rithm consistently requires fewer communication events to
achieve high accuracies compared to baseline methods. This
reduction is attributed to the selective triggering mechanism,
which prevents unnecessary communication while ensur-
ing convergence. For instance, on the CIFAR-10 dataset,
our approach achieved 78% accuracy with a cost of 18,376
communication events, compared to 27,000 for FedADMM.

The comparison with other federated learning methods em-
phasizes the challenges associated with non-i.i.d. data dis-
tribution and communication overhead. FedAvg, as high-
lighted in (Li et al., 2020c; Glasgow et al., 2022), experi-
ences slowdowns in the presence of non-i.i.d. data, and
increasing participation does not necessarily alleviate this
issue. FedProx has the same issue and is unable to converge
to a classifier that generalizes across all digits. FedADMM
and SCAFFOLD can indeed cope with non-i.i.d. data, in
general, both achieving high classification accuracies. How-
ever, FedADMM has disadvantages arising from the random
sampling mechanism and SCAFFOLD suffers from an addi-
tional communication load to communicate two variables
(client drift and local model). Notably, all baselines employ
a random selection of agents, which, in non-i.i.d. scenarios,
misses crucial changes and results in a waste of communi-
cation resources. Our method addresses these challenges by

adopting an event-based agent selection approach and out-
performs all baselines by yielding uniformly better trade-off
curves.

6. Conclusion
We introduce an event-based distributed learning approach
that effectively reduces communication overhead by trig-
gering events only when local models undergo significant
changes. The method, based on over-relaxed ADMM, ex-
hibits accelerated convergence rates in convex settings,
demonstrates robustness to communication failures, and
outperforms common baselines such as FedAvg, FedProx,
SCAFFOLD and FedADMM in our experiments, which
include an MNIST and CIFAR-10 learning task. The exper-
iments highlight that savings of more than 35% are possible
without significantly degrading the solution accuracy (less
than 1%). Our method allows for explicit trade-offs be-
tween communication load and solution accuracy, making
it promising for large-scale learning systems with heteroge-
neous data and communication constraints.

Limitations: While our approach offers significant improve-
ments in communication efficiency, it has not yet accounted
for adversarial attacks, such as gradient poisoning, or un-
reliable nodes in the network. These factors could poten-
tially degrade the robustness of the method. Nevertheless,
our event-based methodology can be integrated with robust
aggregation or anomaly detection methods (Pillutla et al.,
2022; Yin et al., 2018) to improve security without compro-
mising communication efficiency. Additionally, this method
has not been specifically analyzed with respect to differen-
tial privacy and does not address privacy concerns in the
current formulation.

Discussion: In this article, we focused on communication
efficiency and convergence relationship under some con-
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straints. However, practical implementations often face
additional challenges, such as limited bandwidth, high la-
tency, and network failures. Although we have not explic-
itly named these factors, they can be effectively modeled
through our packet drop framework, which provides a foun-
dation for handling such constraints.

Furthermore, while we initially framed our algorithm as
a synchronous method, event-based communication can
also be adapted to function in asynchronous systems. This
flexibility allows the method to accommodate real-world
scenarios with varying degrees of network reliability and
synchronization.

Finally, our method is compatible with compression and
quantization techniques, which can further reduce the size
of the models exchanged during communication events and
improve communication efficiency. This can also help mini-
mize the amount of data stored in the agents, contributing
to more efficient memory usage and reducing the overall
communication load.

Impact Statement
This article advances machine learning by introducing a
communication-efficient, event-based distributed learning
method, enabling scalability for resource-constrained sys-
tems. While the work does not explicitly address adversarial
robustness or differential privacy, future extensions could
explore these aspects to further improve security in applica-
tions. We see no immediate negative societal impacts.
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A. Communication Structure
This section discusses the sharing problem and consensus reaching over graphs as two special cases of the more general
constrained minimization problem

min
x∈Rp, z∈Rq

f(x) + g(z), subject to Ax+Bz = c, (4)

with variables x ∈ Rp and z ∈ Rq and constant matrices A ∈ Rr×p, B ∈ Rr×q, and c ∈ Rr. The objective function is
decomposed into a smooth part f : Rp → R and nonsmooth part g : Rq → R. The communication structure of the problem
formulation (4) is shown in Fig. 4, where primal, dual and auxiliary variables are treated as different communication nodes.

z u

x

sk+1 − s[k]

sk+1 − s[k] rk+1 − r[k]
rk+1 − r[k]

uk+1 − u[k]

uk+1 − u[k]

Figure 4: The communication structure that arises from Alg. 2, where s := Bz, r := Ax, and u denotes the dual variable.

A.1. Sharing Problem

We will show that the event-based communication structure introduced in Fig. 4 simplifies considerably for the sharing
problem. The sharing problem takes the following form,

min
x1,...,xN∈Rp

N∑
i=1

f i(xi) + g

(
N∑
i=1

xi

)
,

and arises as a special case from (4) when choosing f(x) =
∑N

i=1 f i(xi), x = (x1, x2, . . . , xN ) ∈ RNp, A = INp,
B = −(Ip, Ip, . . . , Ip), c = 0. The problem can be solved via the following updates, by agents i = 1, . . . , N :

xik+1 = argmin
xi∈Rp

f i
(
xi
)
+
ρ

2

∣∣∣xi − xik + ĥk

∣∣∣2 , (5)

and by agent N + 1:

x̄k+1 =
1

N

N∑
i=1

x̂ik+1

zk+1 = argmin
z∈Rp

g(Nz) +
Nρ

2

∣∣∣∣z − x̄k+1 −
1

ρ
uk
∣∣∣∣2

uk+1 = uk + ρ (x̄k+1 − zk+1)

hk+1 = x̄k+1 − zk+1 +
1

ρ
uk+1.

(6)

For the sharing problem, the general communication scheme in Fig. 4 reduces to the diagram in Fig. 5, where each node
communicates their local variable in an event-based manner.

Agent 1 Agent 2 Agent 3 Agent 4

Agent 5

x1
k+1 − x1

[k] x2
k+1 − x2

[k] x3
k+1 − x3

[k] x4
k+1 − x4

[k]

hk+1 − h[k] hk+1 − h[k] hk+1 − h[k] hk+1 − h[k]

Figure 5: The diagram visualizes the communication structure for the sharing problem for N = 4 agents.
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Agent 1 Agent 2

Agent 3 Agent 4

x1
k+1 − x1

[k] x3
k+1 − x3

[k]

x3
k+1 − x3

[k]

x4
k+1 − x4

[k]

x4
k+1 − x4

[k]x2
k+1 − x2

[k]

x2
k+1 − x2

[k]

x3
k+1 − x3

[k]

Figure 6: The diagram visualizes the communication structure for a distributed learning problem over a graph that connects
four agents with four edges.

A.2. Consensus over a Graph

As another example, we will show that (4) also generalizes to distributed learning scenarios over graphs. We consider a
network topology, captured by an undirected connected graph G = (V, E), where V = {1, . . . , N} is the set of vertices and
E ⊆ V × V is the set of edges. Each agent (vertex) has a local data distribution, and the aim is to train a model without a
central server to aggregate the collected information. The problem can be formulated as follows:

min
xi∈Rp,zij∈Rp

N∑
i=1

f i
(
xi
)
, subject to xi = zij , xj = zij , ∀(i, j) ∈ E .

Similar to the formulation in (Yu & Freris, 2023), we define transmitter and receiver matrices Ât, Âr ∈ R|E|×N for all edges,
i.e.,

[
Ât

]
ei
=
[
Âr

]
ej

=

{
1 (i, j) ∈ E
0 otherwise

, ∀e ∈ E .

By stacking xi, zij ∈ Rp into column vectors x ∈ RNp, z ∈ R|E|p, respectively, we conclude that distributed learning over
graphs is indeed a special case of (4),

min
x∈RNp, z∈R|E|p

f(x), subject to
[
Ât ⊗ Ip
Âr ⊗ Ip

]
x =

[
I|E|p
I|E|p

]
z,

where ⊗ denotes the Kronecker product and Ip the identity matrix. Thus, the matrices A and B encode the topology of
the communication graph, which will affect the convergence rates as highlighted with our main result Thm. 4.1 where the
convergence rate is dictated by the value κ = σ̄(A)L/(

¯
σ(A)m).

The resulting instance of Alg. 1 takes the following form:

xik+1 = argmin
xi∈Rp

fi (xi) +
|Ni|ρ
2

∣∣∣∣xi − 1

2

(
xki − x̄ik

)
+

1

ρ
pik

∣∣∣∣2
x̄ik+1 =

1

|Ni|
∑
j∈Ni

x̂jk+1

pik+1 = pik +
ρ

2

(
xik+1 − x̄ik+1

)
,

(7)

where Ni represents the set containing the neighbors of the agent i and |Ni| is the number of vertices. In the event
based-communication setting, an agent transmits its local model (xik+1) to the neighbors only if there has been a significant
change in the local model. Fig. 6 shows an example with four agents, each communicating local variables only.
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B. Proof of Thm. 2.3
Proof. We will establish the convergence rate by analyzing the behavior of a carefully chosen Lyapunov function. Let us
begin by formulating the augmented Lagrangian for (1):

Lρ(x, z, y) =

N∑
i=1

f i(xi) + g(z) +

N∑
i=1

(yi)⊤(xi − z) + ρ

2

N∑
i=1

|xi − z|22, (8)

where x = (x1, . . . , xN ) and y = (y1, . . . , yN ) represent the primal and dual variables respectively, and ρ > 0 is the
penalty parameter.

We express the ADMM updates in Alg. 1 for α = 1 as follows by introducing the scaled dual variable ui = 1
ρy

i:

xik+1 = argmin
xi

(
f i(xi) +

ρ

2
|xi − ẑk + uik|22

)
, ∀i ∈ {1, . . . , N}, (9)

zk+1 = argmin
z

(
g(z) +

Nρ

2

N∑
i=1

|x̂ik+1 − z + ûik|22

)
, (10)

uik+1 = uik + xik+1 − ẑk+1, ∀i ∈ {1, . . . , N}. (11)

Here, we use the notation ẑk+1 = zk+1 + εzk+1, x̂ik+1 = xik+1 + εx,ik+1, and ûik+1 = uik+1 + εu,ik+1 to account for errors
emerging from event-based communication.

From (9) and (10), we derive the following first-order optimality conditions for xik+1 and zk+1

0 =∇f i(xik+1) + ρ(xik+1 − ẑk + uik) (12)

0 ∈∂g(zk+1) + ρ

N∑
i=1

(zk+1 − x̂ik+1 − ûik). (13)

We then define the Lyapunov function:

Vk = |zk − z∗|22 +
1

N

N∑
i=1

|uik − ui∗|22, (14)

where (ui∗, z∗) denotes the optimal dual and consensus variables. Our goal is to demonstrate that this Lyapunov function is
monotonically decreasing.

The optimality condition in (12) implies that xik+1 minimizes,

f i(x) + ρ
(
uik+1 + zk+1 − zk

)⊤
x+ ρ(εzk+1 − εzk)⊤x.

From this minimization, we can derive the following inequality,

f i(xik+1)− f i(xi∗) ≤ ρ
(
uik+1 + zk+1 − zk

)⊤
(xi∗ − xik+1) + ρ(εzk+1 − εzk)⊤(xi∗ − xik+1). (15)

Similarly, the optimality condition (13) indicates that zk+1 minimizes,

g (z)− ρ
N∑
i=1

(uik+1 + εd,ik+1 + εzk+1)
⊤z, (16)

where εd,ik+1 = εx,ik+1 + εu,ik . This minimization leads to,

g (zk+1)− g (z∗) ≤ ρ
N∑
i=1

(uik+1)
⊤(zk+1 − z∗)− ρ

N∑
i=1

(εd,ik+1 + εzk+1)
⊤(zk+1 − z∗). (17)
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By adding (17) and the sum over i of (15), and applying the conditions xi∗ − z∗ = 0 along with the relation xi∗ − xik+1 =
−rik+1 − (zk+1 − z∗), we obtain,

g(zk+1)−g(z∗)+
N∑
i=1

(
f i(xik+1)−f i(xi∗)

)
≤−ρ

N∑
i=1

(
uik+1

)⊤
rik+1−ρ

N∑
i=1

(zk+1 − zk)⊤ (rik+1 + (zk+1 − z∗))

+ρ

N∑
i=1

(εzk+1 − εzk)⊤(xi∗ − xik+1)+ρ

N∑
i=1

(εd,ik+1 + εzk+1)
⊤(zk+1−z∗),

(18)

where the residual is defined as rik := xik − zk.

Since (xi∗, z∗, u
i
∗) is a saddle point of L0 in (8), i.e., L0(x∗, z∗, u∗) ≤ L0(xk+1, zk+1, u∗), we have,

−g(zk+1) + g(z∗)−
N∑
i=1

(
f i(xik+1)− f i(xi∗)

)
≤

N∑
i=1

ui∗
⊤
(xik+1 − zk+1) =

N∑
i=1

ui∗
⊤
rik+1. (19)

By adding (18) and (19) and multiplying by 2
ρ , we arrive at

0 ≥ 2

N∑
i=1

(
uik+1 − ui∗

)⊤
rik+1︸ ︷︷ ︸

(I)

+2

N∑
i=1

(zk+1 − zk)⊤ (rik+1 + (zk+1 − z∗))︸ ︷︷ ︸
(II)

− 2

N∑
i=1

(εzk+1 − εzk)⊤(xi∗ − xik+1)− 2

N∑
i=1

(εd,ik+1+ε
z
k+1)

⊤(zk+1 − z∗).

(20)

Here
(
uik+1 − ui∗

)⊤
rik+1 can be written as

(
uik+1 − ui∗

)⊤
(uik+1 − uik + εzk+1) which splits into(

uik+1 − ui∗
)⊤
rik+1 =

1

2

(
uik+1 − uik

)⊤
εzk+1 +

1

2
|uik+1 − uik|2 +

1

2

(
uik+1 − uik

)⊤
(uik+1 − uik + εzk+1)

+
(
uik − ui∗

)⊤
(uik+1 − ui∗) +

(
uik − ui∗

)⊤
εzk+1 − |uik − ui∗|2.

Next, we substitute uik+1 − uik = rik+1 − εzk+1 and use the following squared norm identity,

1

2
|uik+1 − uik|2 +

(
uik − ui∗

)⊤
(uik+1 − ui∗) =

1

2
|uik+1 − ui∗|2 +

1

2
|uik − ui∗|2.

Consequently, we can expand terms (I) and (II) as follows:

(I) =

N∑
i=1

(
|uik+1 − ui∗|2 − |uik − ui∗|2 + 2(uik+1 − ui∗)⊤εzk+1 + |εzk+1|2 + |rik+1|2 − 2(εzk+1)

⊤rik+1

)
(II) =

N∑
i=1

(
|rik+1 + (zk+1 − zk) |2 + |zk+1 − z∗|2 − |zk − z∗|2 − |rik+1|2

)
.

Substituting these expansions back into (20) and using the definition of our Lyapunov function from (14), we can express
the decrease in the Lyapunov function as,

0 ≥N(Vk+1 − Vk) +
N∑
i=1

(
2(uik+1 − ui∗)⊤εzk+1 + |εzk+1|2 − 2(εzk+1)

⊤rik+1

)
+

N∑
i=1

(
|rik+1 + (zk+1 − zk) |2

)
+ 2

N∑
i=1

(εzk+1 − εzk)⊤(xik+1 − xi∗)− 2

N∑
i=1

(εd,ik+1 + εzk+1)
⊤(zk+1 − z∗).
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Modifying the error terms using xik+1 − xi∗ = rik+1 + (zk+1 − z∗) and rik+1 = uik+1 − uik + εzk+1, we get,

N(Vk+1 − Vk) ≤ −
N∑
i=1

|rik+1 + (zk+1 − zk) |2 +
N∑
i=1

(
− 2(εzk+1 − εzk)⊤(uik+1 − ui∗)− |εzk+1|2

+ 2(εd,ik+1 + εzk)
⊤(zk+1 − z∗)− 2(εzk)

⊤ (uik − ui∗)− 2(εzk)
⊤εzk+1

)
.

(21)

Furthermore, we expand the squared norm term:

−
N∑
i=1

|rik+1 + (zk+1 − zk) |2 = −
N∑
i=1

|rik+1|2 − 2

N∑
i=1

(rik+1)
⊤ (zk+1 − zk)−

N∑
i=1

|zk+1 − zk|2. (22)

Next we will establish a bound for the cross term −2
∑N

i=1(r
i
k+1)

⊤ (zk+1 − zk).

We recall that (13) implies (16). This minimization property leads to the following pair of inequalities:

g (zk+1)− g (zk) ≤ ρ
N∑
i=1

(uik+1 + εd,ik+1 + εzk+1)
⊤(zk+1 − zk)

g (zk)− g (zk+1) ≤ −ρ
N∑
i=1

(uik + εd,ik + εzk)
⊤(zk+1 − zk).

By adding these inequalities and rearranging terms, we obtain,

0 ≤
N∑
i=1

(uik+1 − uik + εd,ik+1 − ε
d,i
k + εzk+1 − εzk)⊤(zk+1 − zk) =

N∑
i=1

(rik+1 + εd,ik+1 − ε
d,i
k − ε

z
k)

⊤(zk+1 − zk).

This yields the desired bound on the cross term −2
∑N

i=1(r
i
k+1)

⊤ (zk+1 − zk) which takes the form

−2
N∑
i=1

(rik+1)
⊤(zk+1 − zk) ≤2

N∑
i=1

(εd,ik+1 − ε
d,i
k − ε

z
k)

⊤(zk+1 − zk). (23)

As the next step, we rewrite |zk+1 − zk| in terms of the gradients of f i and g. This will be important for deriving the desired
convergence result. From the first-order optimality condition of the z-update (13), and rearranging for zk+1, we get,

zk+1 ∈
1

N

N∑
i=1

(
xik+1 + uik + εd,ik+1

)
− 1

ρN
∂g(zk+1). (24)

The optimality condition for xik+1 (see (12)) results in,

−zk = εzk +
1

N

N∑
i=1

(
−xik+1 − uik −

1

ρ
∇f i(xik+1)

)
. (25)

We combine (24) and (25) to express the update for zk+1 − zk as follows,

zk+1 − zk ∈ −
1

ρN

(
N∑
i=1

∇f i(xik+1) + ∂g(zk+1)

)
+ εzk +

1

N

N∑
i=1

εd,ik+1.

Thus, zk+1 − zk depends on the averaged gradients∇f i and ∂g, scaled by the penalty parameter ρ. We now take the square
and apply Young’s inequality on the cross term with γ′ = 2, which yields,

−|zk+1 − zk|2 ≤ −
1

2

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2

+

∣∣∣∣∣εzk +
1

N

N∑
i=1

εd,ik+1

∣∣∣∣∣
2

, (26)
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for any νk+1 ∈ ∂g(zk+1).

By substituting (22), (23), and (26) in (21), and applying Young’s inequality to cross terms, we derive the following
inequality:

N(Vk+1 − Vk) ≤−
N∑
i=1

|rik+1|2 −
1

2

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2

+

∣∣∣∣∣εzk +
1

N

N∑
i=1

εd,ik+1

∣∣∣∣∣
2

+

N∑
i=1

(
γ4|εzk+1 − εzk|2 +

1

γ4
|rik+1|2 + γ1|εzk+1|2 +

1

γ1
|uk − u∗|2 − |εzk+1|2 + γ2|2εd,ik+1 − ε

d,i
k |

2

+
1

γ2
|zk+1 − zk|2 + γ3|εd,ik+1 + εzk|2 +

1

γ3
|zk − z∗|2 + 2(εzk+1 − 2εzk)

⊤εzk+1

)
,

for any νk+1 ∈ ∂g(zk+1).

We can further simplify the expression by choosing the values as γ1 = γ3 = γk and γ2 = γ4 = 3,

N(Vk+1 − Vk) ≤
N

γk
Vk −

2

3

N∑
i=1

|rik+1|2 −
1

6

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2

+

∣∣∣∣∣εzk +
1

N

N∑
i=1

εd,ik+1

∣∣∣∣∣
2

+

N∑
i=1

(
3|εzk+1 − εzk|2 + γk|εzk+1|2 − |εzk+1|2 + 3|2εd,ik+1 − ε

d,i
k |

2 + γk|εd,ik+1 + εzk|2

+ 4|εzk+1 − 2εzk|2 + 4|εzk+1|2
)
,

for any νk+1 ∈ ∂g(zk+1).

The error values arising from event-based communication are bounded by the communication thresholds, |εd,ik | ≤ ∆d
k,

|εzk| ≤ ∆z
k. This leads to the following inequality,

Vk+1 ≤
(
1 +

1

γk

)
Vk −

2

3N

N∑
i=1

|rik+1|2 −
1

6N

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2

+ (3γk + 51 +
8

3N
)∆z

k
2 + (2γk + 30 +

8

3N
)∆d

k

2
,

for any νk+1 ∈ ∂g(zk+1), where rik+1 = xik+1 − zk+1 represents the residuals at step k + 1. Simplifying the expression,
we obtain:

Vk+1 ≤
(
1 +

1

γk

)
Vk −

2

3N

N∑
i=1

|xik+1 − zk+1|2 −
1

6N

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2

+O(γk ·∆2
k), (27)

for any νk+1 ∈ ∂g(zk+1), where ∆k represents the time-varying communication threshold, i.e., chosen bound for the
perturbation term. This inequality suggests a relationship between Vk and Vk+1 at consecutive steps.

To analyze the convergence of the sequence Vk, we apply Polyak’s Lemma (Lemma 2 in (Polyak, 1987, Chapter 2.2)),
which establishes convergence under certain additional assumptions. Polyak’s Lemma states that if a sequence Vk satisfies
an inequality of the form,

Vk+1 ≤
(
1 +

1

γk

)
Vk − c−k + c+k ,

where c−k and c+k are sequences of non-negative terms, then the sequence Vk is bounded above provided that
∑∞

k=0
1
γk
<∞,

and
∑∞

k=0 c
+
k <∞.
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We choose γk = (k + 1)p for some p > 1 to ensure convergence. Substituting this choice into the recurrence relation, we
obtain:

Vk+1 ≤
(
1 +

1

(k + 1)p

)
Vk −

2

3N

N∑
i=1

|xik+1 − zk+1|2 −
1

6N

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2

+O(kp ·∆2
k),

for any νk+1 ∈ ∂g(zk+1).

By assumption the communication threshold ∆k decays as ∆k ∼ O (1/kt). Under this assumption, the perturbation term
O(kp ·∆2

k) scales as O(kp−2t ·∆2
0), which satisfies

∑∞
k=0 γk∆

2
k <∞ if p > 1 and t > 1+p

2 . These conditions ensure that
the perturbation term decays sufficiently fast, ensuring boundedness of Vk.

Finally, by summing over k = 0 to K and dividing by K +1, we obtain the following bound for the average of the residuals
and gradient terms:

1

K + 1

K∑
k=0

 2

3N

N∑
i=1

|xik+1 − zk+1|2 +
1

6N

∣∣∣∣∣ 1

ρN

(
N∑
i=1

∇f i(xik+1) + νk+1

)∣∣∣∣∣
2
 ≤ O( 1

K

)
, (28)

for any νk+1 ∈ ∂g(zk+1), where communication threshold decays ∆k ≤ ∆0

(k+1)2 . This result establishes a sublinear
convergence rate for both the residuals and the gradient terms. The rate of decay of the communication threshold ensures
that these error terms decrease at a rate proportional to O

(
1
K

)
, which yields the desired result.
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C. Derivation of Alg. 2 as a Dynamical System
In this section, we represent Alg. 2 as a dynamical system that consists of linear dynamics with a nonlinear feedback
interconnection. The communication structure is summarized with Fig. 2.

For the convenience of the reader, we start by restating Alg. 2, which is based on an over-relaxed ADMM algorithm.

Algorithm 3 Event-Based Distributed Optimization with Over-Relaxed ADMM

Require: Functions f and g, matrices A and B, vector c, parameters ρ and α
Require: Initial condition x0, z0
r0 = r̂s0 = r̂u0 = Ax0, s0 = ŝr0 = ŝu0 = Bz0, u0 = ûr0 = ûs0 = 0
for k = 0 to tmax do
ŝrk, û

r
k ← event-based receive of sk+1 − s[k], uk+1 − u[k]

xk+1 = argminx f(x) +
ρ
2 |Ax+ ŝrk − c+ ûrk|2 {r-agent}

event-based send of rk+1 − r[k] where rk+1 = Axk+1

r̂sk+1, û
s
k ← event-based receive of rk+1 − r[k], uk+1 − u[k]

zk+1 = argminz g(z) +
ρ
2 |αr̂

s
k+1 − (1− α)Bzk +Bz − αc+ ûsk|2 {s-agent}

event-based send of sk+1 − s[k] where sk+1 = Bzk+1

r̂uk+1, ŝ
u
k+1 ← event-based receive of rk+1 − r[k], sk+1 − s[k]

uk+1 = uk + αr̂uk+1 − (1− α)ŝuk + ŝuk+1 − αc {u-agent}
event-based send of uk+1 − u[k]

if mod(k + 1, T ) = 0 then
reset→ r̂u;sk+1 = rk+1, ŝ

u;r
k+1 = sk+1, ur;sk+1 = uk+1

end if
end for

The following definitions will be useful for simplifying the updates of the iterates:
Definition C.1. Let Assumption 3.1 and 3.2 hold. We define the function f̂ : Rn → R as follows,

f̂ = (ρ−1f) ◦A−1, (29)

where ρ is the step-size of Alg. 2. The function is m̂ := m/(ρσ̄2(A))-strongly convex and L̂ := L/(ρ
¯
σ2(A))-smooth, and

has therefore the condition number

κ :=
L̂

m̂
=
L

m

σ̄2(A)

¯
σ2(A)

.

Definition C.2. Let Assumption 3.1 and 3.2 hold. The function ĝ : Rm → R̄ is defined as

ĝ = (ρ−1g) ◦B† + ψim(B), (30)

where B† is the Moore-Penrose inverse of B, ψim(B) is the indicator function of the image of B, and ρ is the step-size of
Alg. 2.

We proceed by summarizing the notation that will be used subsequently. The sequences rk and sk are defined as rk := Axk
and sk := Bzk. We introduced the variable r̂sk, for example, which models agent s’s estimate of the variable rk. The
variables r̂uk , ŝ

r
k, ŝ

u
k , etc., are defined analogously and follow the notational convention

̂variable
receiving agent
k := receiving agent’s estimate of variable at time k.

As a result of the event-based communication, the local estimates r̂sk, r̂
u
k , ŝ

r
k, etc., differ from rk, sk, etc. These differences

will be captured by the variable ε for which we introduce the following notational convention:

εvariable,receiving agent
k : = ̂variable

receiving agent
k − variablek

= receiving agent’s estimation error of variable at time k.
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We further introduce the error

ek := (εrsk+1, ε
ru
k+1, ε

su
k+1, ε

sr
k , ε

su
k , ε

ur
k , εusk ), (31)

that collects the estimation errors of the different agents. By virtue of the event-based communication mechanism and the
reset mechanism, the error ek is bounded by the communication threshold ∆. We finally introduce the notation for the
corresponding communication thresholds, ∆rs,∆sr, etc. (see Fig. 2), according to the same rationale:

∆variable,receiving agent := threshold for triggering a communication of variable to receiving agent.

To sum up, the vector ek contains the errors on the communication lines shown on Fig. 2. For example, εrsk+1 stands for
the difference between the actual value of state rk+1 and agent s’s estimate r̂sk+1, that is, εrsk+1 = r̂sk+1 − rk+1 at time step
k + 1.

If the value rk+1 has deviated more than ∆rs amount since the time-step [k], where the last value r[k] has been communicated
to the agent s, a communication is triggered. This means rs ∈ Ck+1.

|rk+1 − rlrsk | > ∆rs ⇐⇒ rs ∈ Ck+1 ⇐⇒ [k + 1] = k + 1.

The set Dk+1, which is a subset of Ck+1, collects indices of failed transmission lines at time step k+1. We further introduce
that the superscript c to denote the complement of a set. If the communication does not fail, that is, rs ∈ Dc

k+1, then agent
s’s estimate of rk+1 is updated as follows.

rs ∈ Ck+1 ∧ rs ∈ Dc
k+1 ⇐⇒ r̂sk+1 = r̂sk + (rk+1 − r[k]).

To incorporate the effect of communication drops, we introduce the variable χrs
k+1, which represents the disturbance that

results from dropped communications,

rs ∈ Dk+1 ⇒ χrs
k+1 = −(rk+1 − r[k]). (32)

Therefore, the dynamics of r̂sk+1 are expressed as follows

r̂sk+1 = r[k+1] +

k+1∑
l=1

χrs
l . (33)

When deriving the previous equation, we have exploited the fact that

rs ∈ Ck+1 ⇒ [k + 1] = k + 1

rs ∈ Cck+1 ⇒ [k + 1] = [k].

To summarize, in the case of communication drop, the agent s updates the image of r with a disturbed value.

We now express the different minimization steps in Alg. 3 by their corresponding stationarity conditions, and simplify the
corresponding expressions. The minimization step for the primal variable x can be rewritten as follows

xk+1 = arg min
x∈Rp

f(x) +
ρ

2
|Ax+ ŝrk − c+ ûrk|

2

= A−1 arg min
r∈Rn

f(A−1r) +
ρ

2
|r + ŝrk − c+ ûrk|

2
,

due to the fact that A is invertible, which yields

rk+1 = arg min
r∈Rn

f̂(r) +
1

2
|r + ŝrk − c+ ûrk|

2
.

The variable rk+1 satisfies therefore the following stationarity condition

0 = ∇f̂(rk+1) + rk+1 + ŝrk − c+ ûrk,
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which can be rearranged to

rk+1 − c = −∇f̂(rk+1)− sk − εsrk − uk − εurk , (34)

where ŝrk is replaced by sk + εsrk and ûrk by uk + εurk .

Similarly, the update step of the auxiliary variable z can be reformulated as

zk+1 = arg min
z∈Rn

g(z) +
ρ

2
|αr̂sk+1 − (1− α)sk +Bz − αc+ ûsk|2

= B† arg min
s∈Rm

g(B†s) + ψim(B)(s) +
ρ

2
|αr̂sk+1 − (1− α)sk + s− αc+ ûsk|2,

since the matrix B has full column rank and therefore possesses the left inverse B†. This yields

sk+1 = arg min
s∈Rm

ĝ(s) +
1

2
|αr̂sk+1 − (1− α)sk + s− αc+ ûsk|2,

and implies the following stationarity condition for sk+1

0 ∈ ∂ĝ(sk+1) + αr̂sk+1 − (1− α)sk + sk+1 − αc+ ûsk. (35)

This stationarity condition can be reformulated as

sk+1 = sk + (α− 1)uk + α∇f̂(rk+1)− γk+1 − εusk + αεsrk + αεurk − αεrsk+1, (36)

for some γk+1 ∈ ∂ĝ(sk+1), and where we have expressed r̂sk+1 as rk+1 + εrsk+1 and ûsk as uk + εusk . We have further
replaced rk+1 − c by the expression given in (34).

The update of the dual variables uk evolve according to the following dynamics:

uk+1 = uk + αr̂uk+1 − (1− α)ŝuk + ŝuk+1 − αc
= uk + α(rk+1 + εruk+1)− (1− α)(sk + εsuk ) + (sk+1 + εsuk+1)− αc.

The dynamics can be further simplified by replacing sk+1 with the help of (35), which yields:

uk+1 = −γk+1 − αεrsk+1 + αεruk+1 + εsuk+1 + (α− 1)εsuk − εusk . (37)

As a result of these simplifications, we note that rk+1 is uniquely determined by sk, uk and the corresponding errors εsrk and
εurk . We further note that according to (36) and (37) the iterates of Alg. 3 can be represented as an interconnection between
a linear dynamical system, with a nonlinear feedback interconnection that models the evaluation of the gradient ∇f̂ and
∂ĝ. The state of the dynamical system is therefore chosen as ξk := (sk, uk), the output as yk := (rk+1 − c, sk+1), and the
input as vk := (∇f̂(rk+1), γk+1), where γk+1 ∈ ∂ĝ(sk+1). We also define output variables w1

k := (rk+1 − c,∇f̂(rk+1)),
w2

k := (sk+1, γk+1), which will be employed for the convergence analysis.

According to these definitions, we can express the iterates of Alg. 3 as trajectories of the following nonlinear dynamical
system,

ξk+1 =

[
1 α− 1
0 0

]
︸ ︷︷ ︸

:=Â

ξk +

[
α −1
0 −1

]
︸ ︷︷ ︸

:=B̂

vk +

[
−α 0 0 α 0 α −1
−α α 1 0 α− 1 0 −1

]
︸ ︷︷ ︸

:=Ê

ek, vk = ϕ(yk),

yk =

[
−1 −1
1 α− 1

]
︸ ︷︷ ︸

:=Ĉ

ξk +

[
−1 0
α −1

]
︸ ︷︷ ︸

:=D̂

vk +

[
0 0 0 −1 0 −1 0
−α 0 0 α 0 α −1

]
︸ ︷︷ ︸

:=Êy

ek,

(38)

w1
k =

[
−1 −1
0 0

]
︸ ︷︷ ︸

:=Ĉ1

ξk +

[
−1 0
1 0

]
︸ ︷︷ ︸
:=D̂1

vk +

[
0 0 0 −1 0 −1 0
0 0 0 0 0 0 0

]
︸ ︷︷ ︸

:=Ê1

ek,

w2
k =

[
1 α− 1
0 0

]
︸ ︷︷ ︸

:=Ĉ2

ξk +

[
α −1
0 1

]
︸ ︷︷ ︸

:=D̂2

vk +

[
−α 0 0 α 0 α −1
0 0 0 0 0 0 0

]
︸ ︷︷ ︸

:=Ê2

ek,

(39)
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Â Ê B̂

Ĉ Êy D̂

ϕ

e[
∇f̂(rk+1)

γk+1

][
rk+1 − c
sk+1

]
Delay [

sk
uk

][
sk+1

uk+1

]

Figure 7: The dynamical system following (38) is visualized.

where ϕ denotes the nonlinear feedback interconnection that captures the evaluation of the gradients ∇f̂ and ∂ĝ. Fig. 7
provides a graphical representation of the time-invariant dynamics determined by the matrices Â, B̂, Ĉ, D̂.

We close the section with the following proposition that shows that |ek| is bounded.

Proposition C.3. The error ek at iteration k is bounded by

|ek| ≤ ∆, ∆ :=
∑

l∈{rs,ru,su,sr,su,ur,us}

∆l + T χ̄l,

where the variable χ̄l is an upper bound on the communication drops.

Proof. The proof is analogous to Prop. 2.1. The error resulting from the event-based communication structure is given by

εrsk+1 = r̂sk+1 − rk+1 = r[k+1] − rk+1︸ ︷︷ ︸
I

+

k+1∑
l=1

χrs
l︸ ︷︷ ︸

II

. (40)

We further note that the first term is bounded by ∆rs by virtue of the communication rule

|rk+1 − r[k+1]| ≤ ∆rs.

Through the assumption |χrs
l | ≤ χ̄rs, the second part is bounded by T χ̄rs, where T is the reset period. Therefore, we

conclude that |ersk+1| is bounded by ∆rs +T χ̄rs. Similarly, the other elements of the vector ek are bounded by ∆ru +T χ̄ru,
∆su + T χ̄su, etc. Hence, |ek| is bounded by ∆ where

∆ =
∑

l∈{rs,ru,su,sr,su,ur,us}

∆l + T χ̄l.

The analysis indicates that a periodic reset with a period T is required to achieve a bounded error. If no reset is included,
Alg. 2 may not converge, which could result in a large error that accumulates over time. The dependence of ∆ on the
period T highlights how the reset period T affects the error (where smaller T leads to a smaller error bound). If there are
no communication failures, there is also no need for a reset (χ̄ = 0), and ∆ reduces to the collection of communication
thresholds.
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D. Convergence Analysis
We first start by proving the following intermediate lemmas.

Lemma D.1. Let Assumption 3.2 be satisfied. Then, the following holds,

[
(r1 − r2)⊤ (∇f̂(r1)−∇f̂(r2))⊤

]([ −2m̂L̂ (m̂+ L̂)

(m̂+ L̂) −2

]
⊗In

)[
r1 − r2

∇f̂(r1)−∇f̂(r2)

]
≥ 0, (41)

for all r1, r2 ∈ Rn.

Proof. We define the auxiliary function f̃(r) := f̂(r)− m̂
2 |r|

2, which is L̂− m̂-smooth and convex by the properties of f̂ .
Then the following inequality holds,

(∇f̃(r1)−∇f̃(r2))⊤(r1 − r2) ≥
1

L̂− m̂
|∇f̃(r1)−∇f̃(r2)|2,

for any r1, r2 ∈ Rn. Substituting f̃(r) := f̂(r)− m̂
2 |r|

2 and ∇f̃(r) = ∇f̂(r)− m̂r, we get

(m̂+ L̂)(r1 − r2)⊤(∇f̂(r1)−∇f̂(r2)) ≥ m̂L̂|r1 − r2|2 + |∇f̂(r1)−∇f̂(r2)|2,

which yields the desired result.

Lemma D.2. Let Assumption 3.2 be satisfied. Then, the following holds,[
(s1 − s2)⊤ (γ1 − γ2)⊤

]([0 1
1 0

]
⊗ Im

)[
s1 − s2
γ1 − γ2

]
≥ 0, (42)

where γ1 ∈ ∂ĝ(s1) and γ2 ∈ ∂ĝ(s2) and for any s1, s2 ∈ Rm.

Proof. The subdifferential of a convex function is a monotone operator, and therefore

(s1 − s2)⊤(γ1 − γ2) ≥ 0.

Lemma D.3. Let x∗, z∗ denote the minimizer of (3) and define r∗ := Ax∗, s∗ := Bz∗, β∗ := ∇f̂(r∗), and γ∗ ∈ ∂ĝ(s∗).
Then, the iterates of Alg. 3 with step-size ρ = ρ0(m̂L̂)

1
2 satisfy

(wi
k − wi

∗)
⊤M i(wi

k − wi
∗) ≥ 0, ∀i ∈ {1, 2}, ∀k ≥ 0,

with

M1 :=

 −2ρ−2
0 ρ−1

0

(
κ−

1
2 + κ

1
2

)
ρ−1
0

(
κ−

1
2 + κ

1
2

)
−2

⊗ In, M2 :=

[
0 1
1 0

]
⊗ Im,

where

w1
k :=

[
rk+1 − c
βk+1

]
, w2

k :=

[
sk+1

γk+1

]
, w1

∗ :=

[
r∗ − c
β∗

]
, w2

∗ :=

[
s∗
γ∗

]
.

Proof. The proof follows directly from Lemma D.1 and Lemma D.2.

Lemma D.4. Let the sequence Vk ≥ 0 satisfy

Vk+1 ≤ Vk(1− α̃) + β̃α̃, (43)

for all k ≥ 0, where the parameters α̃, β̃ satisfy 0 < α̃ < 1 and 0 ≤ β̃. Then, the following holds for all k ≥ 0:

Vk ≤ V0(1− α̃)k + β̃. (44)
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Proof. We prove the lemma by induction.

The claim holds for k = 0. We therefore assume that the claim holds for k and show that, as a result, the claim holds for
k + 1. More precisely,

Vk+1 ≤ Vk(1− α̃) + β̃α̃

≤ V0(1− α̃)k+1 + (1− α̃)β̃ + β̃α̃

≤ V0(1− α̃)k+1 + β̃,

(45)

which completes the induction argument.

In App. C, we expressed the iterates of Alg. 3 as the trajectories of a dynamical system. The dynamical system was given as
a linear time-invariant system that was interconnected in feedback with a nonlinear function ϕ. We now arrive at the main
result that will be used to show convergence of Alg. 3.

Theorem D.5. Let Assumption 3.2 be satisfied, let the step-size for Alg. 3 be ρ = ρ0(m̂L̂)
1
2 , and let ξ∗ = (Bz∗, u∗), where

(x∗, z∗) is the minimizer of (3) and u∗ the corresponding dual variable.

Suppose there exists a positive definite matrix P ≻ 0, 0 < τ < 1, and nonnegative constants λ1, λ2, γ1, γ2, γ3 and γ4 such
that the following linear matrix inequality

0 ⪰
[
(1+γ1)Â⊤PÂ−τ2P Â⊤PB̂

B̂⊤PÂ (1+γ2)B̂⊤PB̂

]
+

[
Ĉ1 D̂1

Ĉ2 D̂2

]⊤ [
Λ1M1 0

0 Λ2M2

] [
Ĉ1 D̂1

Ĉ2 D̂2

]
(46)

is satisfied, where Λ1 = λ1(1 + γ3), Λ2 = λ2(1 + γ4). Then, for all k ≥ 0, we have

|ξk − ξ∗|2 ≤ κP |ξ0 − ξ∗|2τ2k +
σ̄(Q)∆2

¯
σ(P )(1− τ2)

, (47)

where κP = σ̄(P )/
¯
σ(P ) denotes the condition number of the matrix P , ∆ is a bound on the error ek (see Prop. C.3), and

Q =

(
1 +

1

γ1
+

1

γ2

)
Ê⊤PÊ +

(
1 +

1

γ3
+

1

γ4

) 2∑
i=1

λiÊi⊤M iÊi. (48)

Proof. We consider the following quadratic storage function,

Vk = (ξk − ξ∗)⊤P (ξk − ξ∗),

and claim that the following inequality holds for the iterates of Alg. 3:

Vk+1 − τ2Vk +

2∑
i=1

λi(wi − wi
⋆)

⊤M i(wi − wi
⋆) ≤

e⊤k

((
1 +

1

γ1
+

1

γ2

)
E⊤PE +

2∑
i=1

λi
(
1 +

1

γ3
+

1

γ4

)
Ei⊤M iEi

)
ek.
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Proof of the claim: We insert the system dynamics stated in App. C into the expression on the left-hand side, which yields

Vk+1 − τ2Vk +

2∑
i=1

λi(wi
k − wi

⋆)
⊤M i(wi

k − wi
⋆)

=(ξk+1 − ξ⋆)TP (ξk+1 − ξ⋆)− τ2(ξk − ξ⋆)TP (ξk − ξ⋆) +
2∑

i=1

λi(wi
k − wi

⋆)
⊤M i(wi

k − wi
⋆)

=ξ̃⊤k
(
A⊤PA− τ2P

)
ξ̃k + υ̃⊤k B̂

⊤PB̂υ̃k + e⊤k E
⊤PEek

+ 2
(
υ̃⊤k B̂

⊤PÂξ̃k + e⊤k E
⊤PÂξ̃k + υ̃⊤k B̂

⊤PEek

)
+

2∑
i=1

λi
(
ξ̃⊤k Ĉ

i⊤M iĈiξ̃k + υ̃⊤k D̂
i⊤M iD̂iυ̃k + e⊤k E

i⊤M iEiek

)
+ 2

2∑
i=1

λi
(
υ̃⊤k D̂

i⊤M iĈiξ̃k + e⊤k E
i⊤M iĈiξ̃k + υ̃⊤k D̂

i⊤M iEiek

)
,

(49)

where ξ̃k = ξk − ξ⋆, and υ̃k = υk − υ⋆, for simplicity. We now apply Young’s inequality on the cross terms in (49), which
yields

Vk+1 − τ2Vk +

2∑
i=1

λi(wi
k − wi

⋆)
⊤M i(wi

k − wi
⋆)

≤ ξ̃⊤k
(
A⊤PA− τ2P

)
ξ̃k + υ̃⊤k B̂

⊤PB̂υ̃k + e⊤k E
⊤PEek + 2υ̃⊤k B̂

⊤PÂξ̃k

+ γ2(υ̃⊤k B̂
⊤PB̂υ̃k) +

1

γ2
(e⊤k E

⊤PEek) + γ1(ξ̃⊤k Â
⊤PÂξ̃k) +

1

γ1
(e⊤k E

⊤PEek)

+

2∑
i=1

λi
(
ξ̃⊤k Ĉ

i⊤M iĈiξ̃k + υ̃⊤k D̂
i⊤M iD̂iυ̃k + e⊤k E

i⊤M iEiek + 2
(
υ̃⊤k D̂

i⊤M iĈiξ̃k

))
+

2∑
i=1

λi
(
γ4υ̃⊤k D̂

i⊤M iD̂iυ̃k +
1

γ4
e⊤k E

i⊤M iEiek + γ3ξ̃⊤k Ĉ
i⊤M iĈiξ̃k +

1

γ3
e⊤k E

i⊤M iEiek

)
.

(50)

If we rearrange the right-hand side of the inequality in matrix form, we obtain,

Vk+1 − τ2Vk+
2∑

i=1

λi(wi
k − wi

⋆)
⊤M i(wi

k − wi
⋆) ≤

[
ξ̃⊤k υ̃⊤k

]([ (1 + γ1)Â⊤PÂ− τ2P Â⊤PB̂

B̂⊤PÂ (1 + γ2)B̂⊤PB̂

]

+

[
Ĉ1 D̂1

Ĉ2 D̂2

]⊤ [
λ1M1(1 + γ3) 0

0 λ2M2(1 + γ4)

] [
Ĉ1 D̂1

Ĉ2 D̂2

])[
ξ̃k
υ̃k

]

+ e⊤k

((
1 +

1

γ1
+

1

γ2

)
E⊤PE +

2∑
i=1

λi
(
1 +

1

γ3
+

1

γ4

)
Ei⊤M iEi

)
ek.

(51)

The fact that the linear matrix inequality (46) is satisfied proves the claim. Furthermore, we conclude that
∑2

i=1 λ
i(wi

k −
wi

⋆)
⊤M i(wi

k − wi
⋆) ≥ 0 from Lemma D.1 and D.2. This simplifies the previous expression to

Vk+1 ≤ τ2Vk + e⊤k Qek,

where we have also inserted the definition of the matrix Q. The right-hand side can further be bounded by virtue of the reset
mechanism and the event-based communication, which results in

Vk+1 ≤ τ2Vk + σ̄(Q)∆2. (52)
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We are now in a position where we can apply Lemma D.4, which concludes

Vk ≤ τ2kV0 +
σ̄(Q)∆2

1− τ2
.

By definition of the quadratic storage function we conclude

|ξk − ξ∗|2 ≤ τ2k
σ̄(P )

¯
σ(P )

|ξ0 − ξ∗|2 +
σ̄(Q)∆2

¯
σ(P )(1− τ2)

,

which implies the result of Thm. D.5.

We are now ready to prove our main result in Thm. 4.1.

Proof of Thm. 4.1. The proof is based on Thm. D.5 which shows that if the matrix inequality

0 ⪰
[

(1 + γ1)Â⊤PÂ− τ2P Â⊤PB̂

B̂⊤PÂ (1 + γ2)B̂⊤PB̂

]
+

[
Ĉ1 D̂1

Ĉ2 D̂2

]⊤ [
Λ1M1 0

0 Λ2M2

] [
Ĉ1 D̂1

Ĉ2 D̂2

]
(53)

is satisfied for a symmetric positive definite matrix P and for positive constants Λ1,Λ2, γ1, γ2, the following bound holds

|ξk − ξ∗|2 ≤ κP |ξ0 − ξ∗|2τ2k +
σ̄(Q)∆2

¯
σ(P )(1− τ2)

,

where κP denotes the condition number of P and Q is defined in App. D. In fact, the following set of parameters satisfies
the linear matrix inequality (53),

P =

[
1 α− 1

α− 1 1− 1√
κ

]
, τ = 1− α

4κϵ+
1
2

, Λ1 = ακϵ−
1
2 , Λ2 = α, γ1 =

α

κϵ+
3
2

, γ2 =
1

κ
.

This can be checked as follows: The matrix on the right-hand side of (53) can be expressed as − 1
4κ

−2L, where L is a
symmetric 4× 4 matrix (compared to earlier analyses (Nishihara et al., 2015), the last row and last column is not zero). We
now prove that L is positive semidefinite for all sufficiently large κ by checking the leading principle minors, which can be
expressed as polynomials in κ. If the leading terms of the principle minors have positive coefficients, it means that for large
enough κ, the principle minor will indeed be positive.

The leading term for the first principle minor is given by 6κ
3
2−ϵ and is therefore positive. Likewise, the second principle

minor is dominated by the positive term 24(2 − α)κ 7
2−ϵ. For the third leading principle minor, there are two different

cases. If ϵ = 0, the leading term of the third leading principle minor is 16κ5(α4 − 4α3 − 4α2 + 22α − 12)/α, which
is positive for α ∈ (0.675, 2). If ϵ > 0, the leading term of the third principle minor becomes 192κ5(2 − α), which is
positive for α ∈ (0, 2). Finally, for the fourth principle minor, there are also two different cases. If ϵ = 0, the leading term
is 64κ

13
2 (α4 − 4α3 − 4α2 + 22α− 12)/α2, which is positive for α ∈ (0.675, 2). If ϵ > 0, the leading term of the fourth

principal minor becomes 768κ
13
2 (2− α)/α, which is positive for α ∈ (0, 2). In conclusion, for all sufficiently large κ, all

four leading principle minors are positive, which implies that L is positive definite.

It remains to bound the second term σ̄(Q)/(
¯
σ(P )(1− τ2)). We again investigate the symbolic expression, and conclude

that the term is always bounded by 60κ2+2ϵ/(α(1− |α− 1|)) for large enough κ. This concludes the proof.
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E. Bound on Event-Based Error Variables
We restate Prop. 2.1 and present its proof.

Proposition. The error ζ̂k−ζk at iteration k is bounded by |ζ̂k−ζk|≤∆d+T χ̄d, where T denotes the reset period (see
Alg. 1) and χ̄d is a bound on the disturbance χdi

k .

Proof. We note that the error ζ̂k − ζk can be expressed as

ζ̂k − ζk =
1

N

N∑
i=1

(di[k+1] − d
i
k+1)︸ ︷︷ ︸

I

+

k∑
l=T[k]

χdi
l+1︸ ︷︷ ︸

II

,

where T[k] denotes the last time instant where a reset has been performed. The terms I and II have each a clear interpretation:
In the absence of communication failures, ζ̂ is an average over the primal and dual variables, xi[k+1] and ui[k], that were last
communicated, which leads to the term I. The term II captures the dropped information through failures. The communication
protocol ensures that |dik+1−di[k+1]|≤∆d, for all k ≥ 0, which means that the term I is bounded by ∆d. The bound for the
term II arises from the triangle inequality, which yields, χ̄d and concludes the proof.

The previous proposition required the variable χdi
k+1 to be bounded. Prop. E.1 establishes such a bound under standard

conditions on f and g.

Proposition E.1. Let f be L-smooth and convex and let {z ∈ Rn | g(z) <∞} be contained in a ball of radius R. Then,
the disturbances χdi

k and χzi
k are bounded by

|χzi
k | ≤ 2R, |χdi

k | ≤ (α+ 1)
2(ρ+ L)

ρ
|xi∗|+ 2R,

for all i=1, . . . , N and all k≥ 0, where xi∗ := argminx∈Rn f i(x)+ρ|x|2/2, and where χzi
k denotes the communication

drops when communicating zk between agent N + 1 and agent i.

Proof. Due to the assumption that the domain of g is contained in a ball of radius R, we conclude |zk| ≤ R for all k ≥ 0.
This also implies that |ẑik| ≤ R and concludes the bound on χ̄z . For obtaining the remaining two bounds, we analyze the
xi, ui dynamics of agent i, where we introduce the convex conjugate

f̄ i(u, z) = sup
x∈Rn

uTx− f i(x)− ρ

2
|x− z|2.

We note that the supremum is attained for xik+1, if u = −ρuik and z = ẑik in the previous equation. In addition, due to the
properties of the convex conjugate, we conclude that f̄ i(·, z) is 1/ρ-smooth and 1/(ρ+ L)-strongly convex. The conjugate
subgradient theorem implies,

∇uf̄
i(−ρuik, ẑik) = xik+1,

which means that the updates for uik can now be expressed as:

uik+1 = uik +∇uf̄
i(−ρuik, ẑik)− ẑik.

By applying Taylor’s theorem, we obtain

uik+1 = uik +∇2
uf̄

i(νk, ẑ
i
k)(−ρuik)− ẑik +∇uf̄

i(0, ẑik),

for some νk ∈ Rn. By leveraging the fact that, as a result of strong convexity and smoothness of f̄ i(·, z), the Hessian
∇2

uf̄
i(·, z) is upper and lower bounded by 1/ρ and 1/(ρ+ L), respectively, we conclude

|uik+1| ≤
(
1− ρ

ρ+ L

)
|uik|+ |ẑik −∇uf̄

i(0, ẑik)|. (54)
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By a similar argument based on Taylor’s theorem, we can bound the last term in the previous equation by

|ẑik −∇uf̄
i(0, ẑik)| ≤ |xi∗|+

L

ρ+ L
|ẑik|.

Unrolling the recursion in (54) and exploiting the fact that ui0 = 0 yields

|uik| ≤
ρ+ L

ρ
|xi∗|+ sup

k≥0
|ẑik|,

where the last term is bounded by R. Finally, due to the 1/ρ-smoothness of f̄ i(·, z), we conclude |xik+1| ≤ |uik|, which
yields the desired result as follows,

|χdi| = |αxik+1 + uik| ≤ α|xik+1|+ |uik| ≤ (α+ 1)|uik| ≤ (α+ 1)

(
ρ+ L

ρ
|xi∗|+ sup

k≥0
|ẑik|
)

≤ (α+ 1)

(
ρ+ L

ρ
|xi∗|+R

)
.
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F. Diminishing Communication Threshold
In the main text, we focused our presentation on fixed communication thresholds. However, it is important to note that our
approach and our analysis can be easily extended to the case where communication thresholds ∆ are varied as a function of
the number of iterations. For example, it is straightforward to show that for any vanishing sequence ∆k, our iterates indeed
converge to the minimizer of (3).

Corollary F.1. Let the assumptions of Thm. D.5 be satisfied and let ∆k ≥ 0 be such that ∆k → 0 for k → ∞. Then
limk→∞|ξk − ξ∗|2 → 0.

Proof. According to Thm. D.5, the following holds,

Vk+1 ≤ τ2Vk + σ̄(Q)∆2
k,

see (52). We now apply Lemma 3 in Sec. 2.2 in (Polyak, 1987), which yields the desired result.

We can also derive an explicit convergence rate. In fact, the following corollary proves that if ∆2
k is the form q/(k + 1)t,

where q > 0 and t > 0 are constants and k is the iteration number, |ξk − ξ∗|2 converges at a rate of O(1/kt).
Corollary F.2. Let the assumptions of Thm. D.5 be satisfied and let ∆2

k ≤
q

(k+1)t , ∀k ≥ 0, t > 0. Then, the following holds
for all k ≥ 0:

|ξk − ξ∗|2 ≤
1

¯
σ(P )

(
k0

k + k0

)t

c0,

where k0 = 1(
2

1+τ2

)t
−1

and c0 = max
{

2σ̄(Q)q
1−τ2 , σ̄(P )|ξ0 − ξ∗|2

}
.

Proof. According to (52), the following holds,

Vk+1 ≤ τ2Vk + σ̄(Q)
q

(k + 1)t
.

We make the following claim:

Vk ≤ c0
(

k0
k + k0

)t

, ∀k ≥ 0.

We prove the claim by induction. The claim holds for k = 0 due to the fact that c0 ≥ σ̄(P )|ξ0 − ξ∗|2. We therefore assume
that the claim holds for k and show that this implies that the claim holds for k + 1. This yields

Vk+1 ≤ τ2Vk + σ̄(Q)
q

(k + 1)t

≤ τ2c0
(

k0
k + k0

)t

+ σ̄(Q)
q

(k + 1)t

≤ c0
(

k0
k + k0 + 1

)t
(
τ2
(
k + k0 + 1

k + k0

)t

+
σ̄(Q)q

c0kt0

(
k + k0 + 1

k + 1

)t
)

≤ c0
(

k0
k + k0 + 1

)t
(
τ2
(
k0 + 1

k0

)t

+
σ̄(Q)q

c0

(
k0 + 1

k0

)t
)

≤ c0
(

k0
k + k0 + 1

)t

,

and completes the induction argument.
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G. Additional Experiments and Hyperparameters
We ran various experiments in order to assess the performance of the event-based distributed learning algorithm (Alg. 1). In
the comparative studies, we choose FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020a), SCAFFOLD (Karimireddy
et al., 2020) and FedADMM (Zhou & Li, 2023) as baselines, since these methods have been developed to address challenges
such as data heterogeneity and communication efficiency. For a fair comparison in terms of computation resources in all
setups, each of the agents are run for the same number of local gradient steps.

We include the first example in Sec. 5, which showcases how two image classifiers (for MNIST and CIFAR-10 datasets) can
be trained in a distributed and communication efficient way. Our setup included N=10 agents for MNIST, each storing
data for a single digit, resulting in the most extreme non-i.i.d. distribution of data among agents. For a CIFAR-10 classifier,
the data are distributed among N=100 agents according to a Dirichlet distribution, i.e., we sample pa∼DirN(β), where
N is the number of agents and β=0.5. We then assign a pa,j proportion of the training data of class a to agent j.

We applied our implementation to train a fully connected neural network on the MNIST dataset and a convolutional network
on the CIFAR-10 dataset. The classifier model has 4 convolutional layers, each with 3×3 kernels and 32, 64, 128, and 256
filters, respectively, followed by three fully connected layers with ReLU activation functions. After each set of convolutions,
a 2×2 max pooling layer is applied, followed by a ReLU activation. We train the MNIST classifier model using Alg. 1,
where we replace the full minimization step of each local objective with five steps of stochastic gradient descent with a
learning rate of lr = 10−1, and the CIFAR-10 model with 3 epochs of stochastic gradient descent (batch size 20, learning
rate lr = 10−3). Further hyperparameters are listed in Tabs. 3 and 4.

Tab. 1 in Sec. 5 summarizes the main result of this paper, by comparing the performance of different methods. From this
table, it is clear that Alg. 1 achieves the same test accuracy with less communication cost. The communication configurations
for Tab. 1 are summarized in Tab. 2.

Fig. 8 illustrates the trade-off between accuracy and communication load. The results demonstrate that our event-based
approach consistently achieves higher accuracy with fewer communication events compared to baselines. Each point
in Fig. 8 represents a different value of ∆, where ∆ monotonically increases along the curve, demonstrating that with
our algorithm and a well-chosen ∆ threshold, communication among agents can be reduced while still achieving a high
classification accuracy. Our experimental results indicate that the approach can reduce communication costs by over 30%
without significant accuracy degradation. Notably, SCAFFOLD doubles the communication cost due to its dual-package
communication protocol. These findings directly translate to the results in Tab. 1 showing total communication events for
target accuracies. The extensive experimentation across both small-scale (MNIST) and large-scale (CIFAR-10) scenarios
demonstrates the scalability and effectiveness of our event-based communication strategy, particularly for large-scale
distributed learning problems.

The next sections provide additional numerical experiments. We first show an example based on LASSO where the
local objectives are strongly convex (Sec. G.1 and G.2). In this setup, our theoretical results apply. Sec. G.3 shows
how our algorithm can train an MNIST classifier, when only local communications are allowed, as specified by a given
communication graph. In such a setup, the baselines FedAvg, FedProx, SCAFFOLD and FedADMM are not applicable.

Algorithm MNIST Target Accuracy CIFAR-10 Target Accuracy

80% 85% 90% 70% 75% 77% 78%

Alg. 1-randomized (ptrig,∆d) (0.1, 5) (0.1, 4) (0.1, 1) (0.2, 4.5) (0.1, 3.75) (0.2, 3.5) (0.7, 3.75)
Alg. 1-Vanilla (∆d) (3) (2) (1) (4.25) (3.25) (3.25) (1.75)

FedADMM (part rate) 0.4 0.6 1.0 0.4 0.5 0.7 0.9
FedAvg (part rate) 0.4 1.0 - 0.1 - - -
FedProx (part rate) 0.5 1.0 - 0.2 - - -

SCAFFOLD (part rate× 2) 0.4× 2 0.5× 2 0.8× 2 0.2× 2 - - -

Table 2: Communication configurations across algorithms. Values represent the probability of communication for baseline
methods. SCAFFOLD values are doubled due to double package transmission per round.
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Figure 8: The figure compares different federated learning methods on the MNIST and CIFAR-10 datasets with respect to
the resulting trade-off between total communication load and classification accuracy on the test set. In the MNIST case
(left), randomization includes agent-to-server communication with 0.1 probability. For CIFAR-10 (right), randomization
incorporates server-to-agent communication with 0.2 probability. Points along each curve represent different ∆ thresholds,
demonstrating the relationship between communication reduction and model accuracy.

Table 3: The table summarizes the hyperparameters used for distributed training of MNIST classifier (Fig. 8, Tab. 1)

Hyperparameter Value

number of agents (N ) 10
size of neural network layers [400, 200, 10]
learning rate (gradient descent step-size) 0.1
number of iterations 100
∆d = ∆, ∆z = 0.1×∆ range between [0, 10]
µ (FedProx) 0.1
augmented lagrangian parameter (ρ) (FedADMM, Alg. 1) 1
ng (SCAFFOLD) 1

Table 4: The table summarizes the hyperparameters used for the distributed training of CIFAR-10 classifier (Fig. 8, Tab. 1)

Hyperparameter Value

number of agents (N ) 100
augmented lagrangian parameter (ρ) (FedADMM, Alg. 1) 0.01
learning rate 0.01
momentum 0.9
number of iterations 150
number of local epochs 3
batch size 20
∆d = ∆, ∆z = 0.01×∆ range between [0, 4]
µ (FedProx) 0.1
ng (SCAFFOLD) 1

G.1. Linear Regression and LASSO with Non-i.i.d. Data

We conduct numerical experiments based on the following distributed learning problem:

min
x∈Rn,z∈Rn

N∑
i=1

1

2
|Aixi − bi|2 + λ|z|1,

subject to xi − z = 0, i = 1, . . . , N,

(55)

where Ai ∈ Rm×n, bi ∈ Rm. In the data generation process, we generate samples from three different distributions: a
standard normal distribution, a Student’s t distribution with one degree of freedom, and a uniform distribution in the range
[−5, 5]. These samples are concatenated to form a single dataset, which is then partitioned into subsets for each agent i to
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obtain (Ai, bi). Finally, we normalize the feature vectors and target values for each agent to prepare the data for the learning
problem. In this non-i.i.d. setting, local optimal points of individual agents xi∗ are far away from each other, and their
average

∑N
i=1 x

i
∗/N is also far away from the global optima x∗. The experiments were run for Tmax = 50 steps, which are

required for Alg. 1 to converge to the global optimal point with high accuracy. Fig. 9 illustrates the communication load
against the absolute difference between the objective function value f and the optimal value f∗, where the communication
load is defined as the number of communications accumulated over time.
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Figure 9: The figure shows the communication load versus accuracy trade-off for the different methods applied to two
distinct problems derived from (55): linear regression (λ = 0, left panel), and on the right, LASSO (λ = 0.1, right panel).

In the first scenario, we set λ = 0 to obtain a linear regression problem, where the proposed algorithm with relaxation
parameter α = 1.5 clearly outperforms baseline methods by a large margin. We note that the gap between the global and
local optimal points prevents FedAvg and FedProx from converging to the optimal point f∗.

For the second case, we set λ = 0.1 to solve the LASSO problem. By assumption, FedAvg, SCAFFOLD and FedADMM
require the local objective functions to be smooth. However, we allow handling nonsmooth local objective functions, which
is relevant to the distributed learning problems with ℓ1 regularization. To avoid a noncontinuous gradient for the local
minimization for SCAFFOLD, FedADMM, FedAvg and FedProx, the local update step is carried out by the following local
gradient,

∇xi f̃ i(xi) = Ai⊤(Aixi − bi) + λ

N

{
sgn(xi) |xi| > δ
1
δx

i |xi| ≤ δ
, (56)

where δ can be chosen as small as 1e − 16 (double precision machine epsilon). However, we found that the results are
largely unaffected by the choice of δ.

Table 5: The table summarizes the hyperparameters used for the distributed linear regression and LASSO experiments
(Fig. 9).

Hyperparameter Value

number of agents (N ) 50
augmented lagrangian parameter (ρ) 1
gradient descent step-size 1
number of iterations 50
∆d = ∆z = ∆ range between [0, 10−2]

G.2. Effect of Communication Drops

To observe the effect of communication drops, we repeated the same LASSO experiment in (55) with hyperparameters in
Tab. 6, but this time, we allow the transmission of information from the agents to the server to fail with a probability of 0.3.
As seen in the second panel of Fig. 10, if we have no reset, i.e., T =∞, the algorithm cannot converge and a significant
error remains. On the left panel, the trade-off between communication load and suboptimality is presented. More frequent
reset operations lead to a faster convergence and less error, in exchange for additional communication cost that comes with
the reset.
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Figure 10: The left panel presents the trajectory of communication load versus suboptimality of the objective function value.
The panel in the center shows the evolution of the objective function for different values of the reset period for a drop rate of
0.3 and for ∆ = 10−3, whereas the right panel shows the cumulative communication load over time in addition to the reset
communication at each T step.

Table 6: The table summarizes the hyperparameters used for the distributed LASSO experiment against communication
drops (Fig. 10).

Hyperparameter Value

number of agents (N ) 50
L1 regularization parameter (λ) 0.1
augmented lagrangian parameter (ρ) 1
relaxation parameter (α) 1
gradient descent step-size 1
number of iterations 50
∆d = ∆z = ∆ 10−3

G.3. Distributed Training on a Graph

Our distributed learning algorithm, Alg. 2, is general enough to train a machine learning classifier over a network of agents;
the network structure can be encoded by a proper selection of the linear constraint matrices A and B (see App. A for further
details). Our framework therefore generalizes well beyond server-client structures, and our theoretical analysis also captures
the influence of the network structure on the resulting convergence rate.

In order to highlight the versatility, we train an MNIST Classifier over a network of agents. We use a multi-layer perceptron
that has the same structure as in Sec. 5 and consider a situation where each agent has only access to the training data of a
single digit. Fig. 11 shows the resulting communication load and classification accuracy trade-off on the entire dataset (left),
whereas the diagram on the right shows the network structure (only communication along the edges of the graph is allowed).
The error bars indicate the range (minimum and maximum) of the classification accuracy among the different agents.

The results shown in Fig. 11 and highlight that a purely random selection of agents (suggested in (Yu & Freris, 2023) )
results in a worse trade-off curve, which further motivates our event-based strategy. We also apply our algorithm to a much
larger distributed learning problem with 50 agents and where the corresponding accuracy versus communication trade-off is
shown in Fig. 12, together with the agent network that has been used.

Table 8: The table summarizes the hyperparameters used for the distributed linear regression experiment over a graph
(Fig. 12).

Hyperparameter Value

number of agents (N ) 50
augmented lagrangian parameter (ρ) 10−5

number of iterations 17× 103

∆x range between [0, 1]
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Figure 11: The figure shows a comparison of the vanilla event-based and the randomized event-based communication
strategy (see Sec. 2) with a purely random selection of agents. The outcome of a purely random strategy is consistently
worse with respect to the resulting trade-off between communication load and classification accuracy. The right panel
visualizes the agent network with ten agents connected with 70 edges.

Table 7: The table summarizes the hyperparameters used for the distributed training of MNIST classifier over a graph
(Fig. 11).

Hyperparameter Value

number of agents (N ) 10
size of neural network layers [400, 200, 10]
learning rate (gradient descent step-size) 5× 10−3

augmented lagrangian parameter (ρ) 5× 10−3

number of iterations 103

number of gradient steps per iteration 5
∆x range between [0.0, 0.2]
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Figure 12: The first panel shows the comparison of the communication load versus solution accuracy for different
communication methods applied to the linear regression problem derived from (55) (λ = 0). The right panel visualizes the
agent network with 50 agents connected with 1762 edges.
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