
Under review as submission to TMLR

Remember to correct the bias when using deep learning for
regression!

Anonymous authors
Paper under double-blind review

Abstract

When training deep learning models for least-squares regression, we cannot expect that
the training error residuals of the final model, selected after a fixed training time or based
on performance on a hold-out data set, sum to zero. This can introduce a systematic
error that accumulates if we are interested in the total aggregated performance over many
data points. We suggest adjusting the bias of the machine learning model after training
as a default post-processing step, which efficiently solves the problem. The severeness of
the error accumulation and the effectiveness of the bias correction are demonstrated in
exemplary experiments.

1 Problem statement

We consider regression models f : X → Rd of the form

fθ(x) = aThw(x) + b (1)

with parameters θ = (w, a, b) and x ∈ X. Here X is some arbitrary input space and w.l.o.g. we assume
d = 1. The function hw : X → RF is parameterized by w and maps the input to an F -dimensional real-
valued feature representation, a ∈ RF , and b is a scalar. If X is a Euclidean space and h the identity, this
reduces to standard linear regression. However, we are interested in the case where hw is more complex. In
particular,

• fθ can be a deep neural network, where a and b are the parameters of the final output layer and hw

represents all other layers (e.g., a convolutional or point cloud architecture);

• h : X 7→ R can be any regression model (e.g., a random forest or deep neural network) and fθ

denotes hw with an additional wrapper, where a = 1 and initially b = 0.

In the following, we call b the distinct bias parameter of our model (although w may comprise many
parameters typically referred to as bias parameters if hw is a neural network). Given some training data D =
{(x1, y1), . . . , (xN , yN)} drawn from a distribution pdata over X × R, we assume that the model parameters
θ are determined by minimizing the mean-squared-error (MSE)

MSED(fθ) = 1
|D|

N∑
(x,y)∈D

(y − fθ(x))2 , (2)

potentially combined with some form of regularization. Typically, the goal is to achieve a low expected NEW
error MSE(fθ) = E(x,y)∼pdata [(y − fθ(x))2] = E[MSEDtest(fθ)], where the second expectation is over all test
data sets drawn i.i.d. based on pdata. However, here we are mainly concerned with applications where the
(expected) absolute total error defined as the absolute value of the sum of residuals

∆Dtest(fθ) =
∣∣∣∣ ∑

(x,y)∈Dtest

(y − fθ(x))
∣∣∣∣ (3)

1

Under review as submission to TMLR

is of high importance. That is, we are interested in the total aggregated performance over many data points. NEW
A related error measure is the relative total error given by

δDtest(fθ) = ∆Dtest(fθ)∣∣ ∑
(x,y)∈Dtest

y
∣∣ , (4)

which is similar to the relative systematic error 100
|Dtest|

∑
(x,y)∈Dtest

y−fθ(x)
y (in %, e.g., Jucker et al., 2017)

and the mean error

MEDtest(fθ) = ∆Dtest(fθ)
|Dtest|

=
∣∣∣∣ 1
|Dtest|

∑
(x,y)∈Dtest

(y − fθ(x))
∣∣∣∣ . (5)

The measures defined by equation 3 to equation 5 are used to quantify the prediction bias of the model, that NEW
is, how well

∑
(x,y)∈Dtest

fθ(x) approximates
∑

(x,y)∈Dtest
y for a test set Dtest. For |Dtest| → ∞ a constant

model predicting ŷ = E(x,y)∼pdata [y] would minimize ∆Dtest(fθ)/|Dtest|. However, in practice 1
|D|

∑
(x,y)∈D y

and 1
|Dtest|

∑
(x,y)∈Dtest

y can be considerably different from each other and from ŷ because of finite sample
effects and violations of the i.i.d. assumption (e.g., due to covariate shift or sample selection bias), so
optimization of individual predictions (e.g., minimizing equation 2) is preferred.

Our study is motivated by applications in large-scale ecosystem monitoring such as convolutional neural
network-based systems estimating tree canopy area from satellite imagery (Brandt et al., 2020) applied for
assessing the total tree canopy cover of a country and learning systems trained on small patches of 3D
point clouds to predict the biomass (and thus stored carbon) of large forests (Jucker et al., 2017; Oehmcke
et al., 2021). For recent reviews of regression methods including deep neural networks for biomass prediction NEW
we refer to Zhang et al. (2020), where also the root of the MSE as well as the mean error are considered
as evaluation criteria and Morais et al. (2021). However, there are many other application areas in which
accumulated predictions matter, such as estimating the overall performance of a portfolio based on estimates
of the performance of the individual assets or overall demand forecasting based on forecasts for individual
consumers.

At a first glance, it seems that low E[MSEDtest(fθ)] guarantees low E[∆Dtest(fθ)], where the expectations are
again with respect to data sets drawn i.i.d. based on pdata. Obviously, MSED(fθ) = 0 implies ∆D(fθ) = 0 for
any data set D. More general, optimal parameters θ∗ minimizing MSED(fθ) result in ∆D(fθ∗) = 0. Actually,
∂MSED(fθ)

∂b = 0 is necessary and sufficient for the error residuals to sum to zero and thus ∆D(fθ) = 0. This NEW
well known fact can directly be seen from equation 7 below. However, if the partial derivative of the error NEW
with respect to b is not zero, a low MSED(fθ) may not imply a low ∆D(fθ). In fact, if we are ultimately
interested in the total aggregated performance over many data points, a wrongly adjusted parameter b may
lead to significant systematic errors. Assume that f∗ is the Bayes optimal model for a given task and that
fδ is the model where the optimal bias parameter b∗ is replaced by b∗ − δb. Then for a test set Dtest of
cardinality Ntest we have ∑

(x,y)∈Dtest

(y − fδb
(x)) = Ntest · δb +

∑
(x,y)∈Dtest

(y − f∗(x)) . (6)

That is, the errors δb accumulate and, thus, even a very small δb can have a drastic effect on aggregated NEW
quantities. While one typically hopes that errors partly cancel out when applying a model to a lot of data
points, the aggregated error due to a badly chose bias parameter increases. This can be a severe problem
when using deep learning for regression, because in the canonical training process of a neural network for
regression minimizing the (regularized) MSE the partial derivative of the error w.r.t. the parameter b of the NEW
final model cannot be expected to be zero:

• Large deep learning systems are typically not trained until the partial derivatives of the error w.r.t the NEW
model parameters are close to zero, because this is not necessary to achieve the desired performance
in terms of MSE and/or training would take too long.

2

Under review as submission to TMLR

• The final weight configuration is often picked based on the performance on a validation data set (e.g.,
Prechelt, 2012), not depending on how close the parameters are to a local optimum as measured, NEW
for example, by the maximum norm of the gradient.

• Mini-batch learning introduces a random effect in the parameter updates, and therefore in the bias
parameter value in the finally chosen network.

Thus, despite low MSE, the performance of a (deep) learning system in terms of the total error as defined
in equation 3 can get arbitrarily bad. For example, in the tree canopy estimation task described above, you
may get a decently accurate biomass estimate for individual trees, but the prediction over a large area (i.e.,
the quantity you are actually interested in) could be very wrong.

Therefore, we propose to adjust the bias parameter after training a machine learning model for least-squares
regression as a default post-processing step. This post-processing can be regarded as playing a similar role as NEW
model calibration in classification (e.g. Guo et al., 2017). In the next section, we show how to simply compute
this correction that exactly removes the prediction bias on the training data (or a subset thereof) and discuss
the consequences. Section 3 presents experiments demonstrating the problem and the effectiveness of the
proposed solution.

2 Solution: Adjusting the bias
NEW

If the sum of residuals on the training data set D does not vanish, ∆D(fθ) > 0, we can also not expect
that the residuals will cancel each other on some test set Dtest, showing a systematic error leading to a large
∆Dtest(fθ). Thus, we suggest to apply the minimal change to the model that leads to ∆D(fθ) = 0, namely
minimizing the MSE on D = {(x1, y1), . . . , (xN , yN)} w.r.t. b while fixing all other model parameters w and
a. For the resulting bias parameter b∗ the first derivative w.r.t. b vanishes

∂MSED(fθ)
∂b

∣∣∣∣
b=b∗

= 2
N

N∑
i=1

(yi − aThw(xi) − b∗) = 0 (7)

implying ∆D(f(w,a,b∗)) = 0. Thus, for fixed w and a we can simply solve for the new bias parameter:

b∗ =
∑N

i=1(yi − aThw(xi))
N

=
∑N

i=1 yi −
∑N

i=1 aThw(xi)
N

=
∑N

i=1 yi −
∑N

i=1 fθ(xi)
N︸ ︷︷ ︸
δb

+b (8)

In practice, we can either replace b in our trained model by b∗ or add δb to all model predictions. The
costs of computing b∗ and δb are the same as computing the error on the data set used for adjusting the
bias. The proposed post-processing step can be related to an algorithm for updating models using additional NEW
labelled data (e.g., in a transfer learning setting) described by Rodgers et al. (2007), see the discussion in
the appendix.

The trivial consequences of this adjustment are that the MSE on the training data set is reduced and
the residuals on the training set cancel each other. But what happens on unseen data? The model with NEW
∆D(f(w,a,b∗)) = 0 can be expected to have a lower ∆Dtest(f(w,a,b∗)) on a test set Dtest than a model with
∆D(fθ) > 0. The effect on the MSEDtest is expected to be small. Adjusting the single scalar parameter b
based on a lot of data is very unlikely to lead to overfitting. On the contrary, in practice we are typically
observing a reduced MSE on external test data after adjusting the bias. However, this effect is typically
minor. The weights of the neural network and in particular the bias parameter in the final linear layer are
learned sufficiently well so that the MSE is not significantly degraded because the single bias parameter is
not adjusted optimally – and that is why one typically does not worry about it although the effect on the
absolute total error may be drastic.

Which data should be used to adjust the bias? While one could use an additional hold-out set for
the final optimization of b, this is not necessary. Data already used in the model design process can be used,

3

Under review as submission to TMLR

because assuming a sufficient amount of data selecting a single parameter is unlikely to lead to overfitting. If
there is a validation data set (e.g., for early-stopping), then these data could be used. If data augmentation
is used, augmented data sets could be considered. We recommend to simply use all data available for model NEW
building (e.g., the union of training and validation set). This minimizes the prediction bias of the model
in the same way as standard linear regression. Using a large amount of data for the (typically very small)
adjustment of a single model parameter that has no non-linear influence on the model predictions is extremely
unlikely to lead to overfitting (as empirically shown in the experiments below), and the more data are used
to compute the correction the more accurate it can be expected to be.

How to deal with regularization? So far, we just considered empirical risk minimization. However, the
bias parameter can adjusted regardless of how the model was obtained. This includes the use of early-stopping
(Prechelt, 2012) or regularized risk minimization with an objective of the form 1

N

∑N
i=1(yi −fθ(xi))2 +Ω(θ).

Here, Ω denotes some regularization depending on the parameters. This includes weight-decay, however,
typically this type of regularization would not consider the bias parameter b of a regression model anyway
(e.g., Bishop, 1995, p. 342).

NEW
Why not adjust more parameters? The proposed post-processing serves a very well defined purpose.
If the error residuals do not sum to zero on the training data set, the residuals on test data can also not be
expected to do so, which leads to a systematic prediction error. The proposed adjustment of b is the minimal
change to the model that solves this problem. We assume that the model before the post-processing shows
good generalization performance in terms of MSE, so we want to change it as little as possible. As argued
above and shown in the experiments, just adjusting b, which has no non-linear effect on the predictions,
based on sufficient data is unlikely to lead to overfitting. On the contrary, in practice an improvement of the
generalization performance (e.g., in terms of MSE) is often observed (see also the experiments below).

Of course, there are scenarios where adjusting more parameters can be helpful. For example, it is straight-
forward to also adjust the factor a in the wrapper such that the partial derivative of the MSE with respect to
a vanishes. This has the effect that afterwards the residuals and training inputs are uncorrelated. However,
minimizing the unregularized empirical risk w.r.t. many parameters (in particular if we have non-linear
effects) bears the risk of overfitting.

3 Examples

In this section, we present experiments that illustrate the problem of a large total error despite a low MSE
and show that adjusting the bias as proposed above is a viable solution. We start with a simple regression
task based on a UCI benchmark data set (Dua & Graff, 2017), which is easy to reproduce (see supplementary
material). Then we move closer to real-world applications and consider convolutional neural networks for
ecosystem monitoring.

3.1 Gas turbine emission prediction

First, we look at an artificial example based on real-world data from the UCI benchmark repository (Dua
& Graff, 2017), which is easy to reproduce. We consider the Gas Turbine CO and NOx Emission Data Set
(Kaya et al., 2019), where each data point corresponds to CO and NOx (NO and NO2) emissions and 9
aggregated sensor measurements from a gas turbine summarized over one hour. The typical tasks are to
predict the hourly emissions given the sensor measurements. Here we consider the fictitious task of predicting
the total amount of CO emissions for a set of measurements.

Experimental setup. There are 36 733 data points in total. We assumed that we know the emissions for
Ntrain = 21 733 randomly selected data points, which we used to build our models.

We trained a neural network with two hidden layers with sigmoid activation functions having 16 and 8
neurons, respectively, feeding into a linear output layer. There were shortcut connections from the inputs to
the output layer. We randomly split the training data into 16 733 examples for gradient computation and
5000 examples for validation. The network was trained for 1000 epochs using Adam (Kinga & Ba, 2015) with

4

Under review as submission to TMLR

Table 1: Results for the total CO emissions prediction tasks for the different models, where “linear” refers
to linear regression, “not corrected” to a neural network without bias correction, and “corrected” to the
same neural network with corrected bias parameter. The results are based on 10 trials. The mean and
standard error (SE) are given; values are rounded to two decimals; R2, ∆, δ, and ME denote the coefficient
of determinations, the absolute total error, the relative error, and the mean error; δ is given in percent; D
and Dtest refer to data available for model development and testing, respectively.

MODEL R2
D R2

Dtest
∆D ∆Dtest δDtest MEDtest

linear 0.56 ±0.0 0.57 ±0.0 0 ± 0 173 ±14 0.49 ±0.04 0.02 ±0.0
not corrected 0.78 ±0.0 0.72 ±0.0 1018 ±70 785 ±53 2.21 ±0.15 0.05 ±0.0
corrected 0.78 ±0.0 0.72 ±0.0 0 ± 0 122 ± 6 0.34 ±0.02 0.01 ±0.0

a learning rate of 1 · 10−2 and mini-batches of size 64. The network with the lowest error on the validation
data was selected. For adjusting the bias parameter, we computed δb using equation 8 and all Ntrain data
points available for model development. As a baseline, we fitted a linear regression model using all Ntrain
data points.

We used Scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 2019) in our experiments. The
input data were converted to 32-bit floating point precision. We repeated the experiments 10 times with 10
random data splits, network initializations, and mini-batch shufflings.

Results. The results are shown in Table 1 and Figure 1. The neural networks without bias correction
achieved a higher R2 (coefficient of determination) than the linear regression on the training and test data,
see Table 1. On the test data, the R2 averaged over the ten trials increased from 0.56 to 0.78 when using
the neural network. However, the ∆D and ∆Dtest were much lower for linear regression. This shows that a
better MSE does not directly translate to a better total error (sum of residuals).

Correcting the bias of the neural network did not change the networks’ R2, however, the total errors went
down to the same level as for linear regression and even below. Thus, correcting the bias gave the best of
both world, a low MSE for individual data points and a low accumulated error.

Figure 1 demonstrates how the total error developed as a function of test data set size. As predicted, with
a badly adjusted bias parameter the total error increased with the number of test data points, while for the
linear models and the neural network with adjusted bias this negative effect was less pronounced. The linear
models performed worse than the neural networks with adjusted bias parameters, which can be explained
by the worse accuracy of the individual predictions.

3.2 Forest Coverage

Deep learning holds great promise for large-scale ecosystem monitoring (Persello et al., 2022; Yuan et al.,
2020), for example for estimating tree canopy cover and forest biomass from remote sensing data (Brandt
et al., 2020; Oehmcke et al., 2021). Here we consider a simplified task where the goal is to predict the amount
of pixels in an image that belong to forests given a satellite image. We generated the input data from Sentinel
2 measurements (RGB values) and the accumulated pixels from a landcover map1 as targets, see Figure 2
for examples. Both, input and target are at the same 10 m spatial resolution, collected/estimated in 2017,
and cover the country of Denmark. Each sample is a 100 × 100 large image with no overlap between images.

Experimental setup. From the 127 643 data points in total, 70% (89 350) were used for training, 10%
(12 764) for validation and 20% (25 529) for testing. For each of the 10 trials a different random split of the
data was considered.

1https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/Land-cover_maps_of_Europe_from_
the_Cloud

5

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/Land-cover_maps_of_Europe_from_the_Cloud
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/Land-cover_maps_of_Europe_from_the_Cloud

Under review as submission to TMLR

2000 4000 6000 8000 10000 12000 14000
data set size

0

200

400

600

800

ab
so

lu
te

 e
rro

r

not corrected
corrected
linear

(a) Absolute total error CO

2000 4000 6000 8000 10000 12000 14000
data set size

0.02

0.04

0.06

0.08

m
ea

n
er

ro
r

not corrected
corrected
linear

(b) Mean error CO

Figure 1: Absolute errors (absolute value of the summed residuals) are shown on the left and the mean
errors on the right for the CO emission prediction task. Both are are presented in relation to the test set
size. The error bars show the standard error (SE). Here “linear” refers to linear regression, “not corrected”
to a neural network without bias correction, and “corrected” to the same neural network with corrected bias
parameter. The results are averaged over 10 trials, the error bars show the standard error (SE).

(a) y = 7567 (b) y = 247 (c) y = 11

Figure 2: Exemplary inputs and targets (y) for the forest coverage dataset. (a) shows a scene with 75.7%,
(b) with 2.5%, and (c) with 0.1% forest.

6

Under review as submission to TMLR

Table 2: Results of forest coverage prediction, R2 and ∆, δ, and ME denote the coefficient of determinations,
absolute total error, relative error, and mean error; D and Dtest are all data available for model development
and testing, respectively. The relative total error δ is given in percent. Average and standard error (SE) of
these metrics are given over 10 trials for the different models, where “mean” refers to predicting the constant
mean of the training set, “not corrected” to EfficientNet-B0 without bias correction, and “corrected” to the
same neural network with corrected bias parameter. Values are rounded to three decimals.

MODEL R2
D R2

Dtest
∆D ∆Dtest δDtest MEDtest

mean 0.000 ±0.000 −3 · 10−5 ±0.0 6 ± 2 169 666 ±48 944 0.955 ±0.272 665 ±192
not corrected 0.992 ±0.027 0.977 ±0.0 389 747 ±77 987 152 666 ±22 164 0.864 ±0.124 598 ± 87
corrected 0.992 ±0.027 0.977 ±0.0 3 ± 1 59 819 ±10 501 0.338 ±0.059 234 ± 41

(a) Absolute total error

0 5000 10000 15000 20000 25000
data set size

0

1000

2000

3000

4000

5000

m
ea

n
er

ro
r

not corrected
corrected
mean prediction

(b) Mean error

Figure 3: The absolute errors (absolute value of the summed residuals) are shown on the left and the relative
errors on the right for the forest coverage prediction task. Both are are presented in relation to the test
set size. The error bars show the standard error (SE). Results were averaged over 10 trials and show the
different models, where “mean” refers to predicting the constant mean of the training set, “not corrected”
to EfficientNet-B0 without bias correction, and “corrected” to the same neural network with corrected bias
parameter.

We employed the EfficientNet-B0 (Tan & Le, 2019), a deep convolutional network that uses mobile inverted
bottleneck MBConv (Tan et al., 2019) and squeeze-and-excitation (Hu et al., 2018) blocks. It was trained
for 300 epochs with Adam and a batch size of 256. For 100 epochs the learning rate was set to 3 · 10−4 and
thereafter reduced to 1·10−5. The validation set was used to select the best model w.r.t. R2. When correcting
the bias, the training and validation set were combined. We considered the constant model predicting the
mean of the training targets as a baseline.

Results. The results are summarized in Figure 3 and Table 2. The bias correction did not yield a better
R2 result, with 0.992 on the training set and 0.977 on the test set. However, ∆Dtest on the test set decreased
by a factor of 2.6 from 152 666 to 59 819. The R2 for the mean prediction is by definition 0 on the training
set and was close to 0 on the test set, yet ∆Dtest is 169 666, meaning that a shift in the distribution center
occurred, rendering the mean prediction unreliable.

In Figure 3, we show ∆Dtest and δDtest while increasing the test set size. As expected, the total absolute error
of the uncorrected neural networks increases with increasing number of test data points. Simply predicting
the mean gave similar results in terms of the accumulated errors compared to the uncorrected model, which
shows how misleading the R2 can be as an indicator how well regression models perform in terms of the
accumulated total error. When the bias was corrected, this effect drastically decreased and the performance
was better compared to mean prediction.

7

Under review as submission to TMLR

4 Conclusions

Adjusting the bias such that the residuals sum to zero should be the default post-processing step when doing
least-squares regression using deep learning. It comes at the cost of at most a single forward propagation
of the training and/or validation data set, but removes a systematic error that accumulates if individual
predictions are summed.

References
Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

Martin Brandt, Compton J. Tucker, Ankit Kariryaa, Kjeld Rasmussen, Christin Abel, Jennifer Small, Jerome
Chave, Laura Vang Rasmussen, Pierre Hiernaux, Abdoul Aziz Diouf, Laurent Kergoat, Ole Mertz, Chris-
tian Igel, Fabian Gieseke, Johannes Schöning, Sizhuo Li, Katherine Melocik, Jesse Meyer, Scott Sinno, Eric
Romero, Erin Glennie, Amandine Montagu, Morgane Dendoncker, and Rasmus Fensholt. An unexpectedly
large count of trees in the western Sahara and Sahel. Nature, 587:78–82, 2020.

Pierre Bruneau and Nathan R McElroy. logd 7.4 modeling using bayesian regularized neural networks.
assessment and correction of the errors of prediction. Journal of Chemical Information and Modeling, 46
(3):1379–1387, 2006.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning (ICML), pp. 1321–1330, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141, 2018.

Tommaso Jucker, John Caspersen, Jérôme Chave, Cécile Antin, Nicolas Barbier, Frans Bongers, Michele
Dalponte, Karin Y van Ewijk, David I Forrester, Matthias Haeni, Steven I. Higgins, Robert J. Hold-
away, Zoshiko Iida, Craig Lorime, Peter L. Marshall, Stéphane Momo, Glenn R. Moncrieff, Pierre Ploton,
Lourens Poorter, Kassim Abd Rahman, Michael Schlund, Bonaventure Sonké, Frank J. Sterck, Anna T.
Trugman, Vladimir A. Usoltsev, Mark C. Vanderwel, Peter Waldner, Beatrice M. M. Wedeux, Christian
Wirth, Hannsjörg Wöll, Murray Woods, Wenhua Xiang, Niklaus E. Zimmermann, and David A. Coomes.
Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global
Change Biology, 23(1):177–190, 2017.

Heysem Kaya, Pinar Tüfekci, and Erdinç Uzun. Predicting CO and NOx emissions from gas turbines: novel
data and a benchmark PEMS. Turkish Journal of Electrical Engineering & Computer Sciences, 27(6):
4783–4796, 2019.

Diederik P. Kinga and Jimmy Lei Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Tiago G. Morais, Ricardo F.M. Teixeira, Mario Figueiredo, and Tiago Domingos. The use of machine
learning methods to estimate aboveground biomass of grasslands: A review. Ecological Indicators, 130:
108081, 2021.

Stefan Oehmcke, Lei Li, Jaime Revenga, Thomas Nord-Larsen, Katerina Trepekli, Fabian Gieseke, and
Christian Igel. Deep learning based 3D point cloud regression for estimating forest biomass. CoRR,
abs/2112.11335, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In Hanna
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems (NeurIPS), pp. 8024–8035. 2019.

8

Under review as submission to TMLR

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011.

Claudio Persello, Jan Dirk Wegner, Ronny Hansch, Devis Tuia, Pedram Ghamisi, Mila Koeva, and Gustau
Camps-Valls. Deep learning and earth observation to support the sustainable development goals: Current
approaches, open challenges, and future opportunities. IEEE Geoscience and Remote Sensing Magazine,
pp. 2–30, 2022.

Lutz Prechelt. Early stopping — but when? In Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert
Müller (eds.), Neural Networks: Tricks of the Trade: Second Edition, pp. 53–67. Springer, 2012.

Sarah L Rodgers, Andrew M Davis, Nick P Tomkinson, and Han van de Waterbeemd. QSAR modeling
using automatically updating correction libraries: application to a human plasma protein binding model.
Journal of Chemical Information and Modeling, 47(6):2401–2407, 2007.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning (ICML), pp. 6105–6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le.
MnasNet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2820–2828, 2019.

Qiangqiang Yuan, Huanfeng Shen, Tongwen Li, Zhiwei Li, Shuwen Li, Yun Jiang, Hongzhang Xu, Weiwei
Tan, Qianqian Yang, Jiwen Wang, Jianhao Gao, and Liangpei Zhang. Deep learning in environmental
remote sensing: Achievements and challenges. Remote Sensing of Environment, 241:111716, 2020.

Yuzhen Zhang, Jun Ma, Shunlin Liang, Xisheng Li, and Manyao Li. An evaluation of eight machine learning
regression algorithms for forest aboveground biomass estimation from multiple satellite data products.
Remote Sensing, 12(24), 2020.

A Local bias correction

Our bias correction can be related to other post-processing methods. There is a line of research that studies
how the output of a model h can be adjusted using an additional labelled data set D′ not used for building
the model, and the approach by Rodgers et al. (2007) resembles the recommended bias correction.

The idea is to correct the prediction h(x) of the model by the (weighted) mean error of h when applied to
the K nearest neighbors of x in D′. Let (x′

x:k, y′
x:k) denote the K-th nearest neighbor of x in a data set

D′. The distance is measured using a metric d, where ties can be broken at randomly or deterministically.
Following Bruneau & McElroy (2006) and Rodgers et al. (2007), we consider the Mahalanobis distance
d(x, z) =

√
(x − z)TC−1(x − z) for real vectors x and z, where C is empirical covariance matrix of the

features based on the sample in D′. The output h(x) is then corrected to f(x) using

f(x) = h(x) +
∑K

k=1 ωx:k(h(x′
x:k) − y′

x:k)∑K
i=1 ωx:k

. (9)

Here ωx:k is a weight depending on d(x, x′
x:k). The number K of neighbors is a hyperparameter. The term∑K

k=1
ωx:kh(x′

x:k)∑K

i=1
ωx:k

is the weighted K-nearest neighbor prediction for x using D′, and
∑K

k=1
ωx:ky′

x:k∑K

i=1
ωx:k

can be

viewed as the corresponding weighted target. For constant ωx:k = 1, we get f(x) = h(x)+ 1
K

∑K
k=1 h(x′

x:k)−
1
K

∑K
k=1 y′

x:k. If we further set D′ = D and K = |D| this correction is identical to the suggested bias
correction. For smaller K, we can think of this method as a local bias correction, which adjusts the bias
individually for each input based on neighboring training data points.

9

Under review as submission to TMLR

Our proposed post-processing step efficiently solves the well-defined problem that the error residuals on the
training data may not sum to zero. The method suggested – for a different purpose – by Rodgers et al.
(2007) is a heuristic with several crucial hyperparameters, obviously K but also the choice of the weighting
function for computing the ωx:k. Instead of a one-time correction of a single model parameter, which can be
done in linear time, the approach by Rodgers et al. (2007) requires evaluation of a K-nearest search in each
application of a model, which drastically increases storage and time complexity for training data sets. The
performance of their approach depends on the quality of the nearest neighbor regression. Nearest neighbor
regression with Mahalanobis distance or standard Euclidean distance is unsuited for image analysis tasks as
the one in Section 3.2. The input dimensionality is too high for the amount of training data and neither
Mahalanobis distance nor standard Euclidean distance between raw pixels are appropriate to measure image
similarity. In contrast, on the artificial problem in Section 3.1 with 9 inputs each representing a meaningful
feature, nearest neighbor regression can be expected to work.

We applied the local bias correction to the problem in Section 3.1 with K = 3 as suggested by Rodgers
et al. (2007). This resulted in R2

Dtest
= 0.73 ± 0.0, ∆D0.0 ± 0.0, ∆Dtest51 ± 5.0, δDtest = 0.38 % ± 0.02 %,

and MEDtest = 0.02 ± 0.0. In this toy example, the nearest-neighbor auxiliary model performs very well.
Still, while the bias correction reduced the systematic errors compared to the uncorrected neural network,
it performed worse than the proposed rigorous post-processing (see Table 1).

10

	Problem statement
	Solution: Adjusting the bias
	Examples
	Gas turbine emission prediction
	Forest Coverage

	Conclusions
	Local bias correction

