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Abstract

There has been significant research done on developing methods for improving
robustness to distributional shift and uncertainty estimation. In contrast, only
limited work has examined developing standard datasets and benchmarks for
assessing these approaches. Additionally, most work on uncertainty estimation
and robustness has developed new techniques based on small-scale regression or
image classification tasks. However, many tasks of practical interest have different
modalities, such as tabular data, audio, text, or sensor data, which offer significant
challenges involving regression and discrete or continuous structured prediction.
Thus, given the current state of the field, a standardized large-scale dataset of tasks
across a range of modalities affected by distributional shifts is necessary. This
will enable researchers to meaningfully evaluate the plethora of recently developed
uncertainty quantification methods, as well as assessment criteria and state-of-
the-art baselines. In this work, we propose the Shifts Dataset for evaluation of
uncertainty estimates and robustness to distributional shift. The dataset, which has
been collected from industrial sources and services, is composed of three tasks,
with each corresponding to a particular data modality: tabular weather prediction,
machine translation, and self-driving car (SDC) vehicle motion prediction. All of
these data modalities and tasks are affected by real, “in-the-wild” distributional
shifts and pose interesting challenges with respect to uncertainty estimation. In this
work we provide a description of the dataset and baseline results for all tasks.

1 Introduction

Machine learning models are being applied to numerous areas [1, 2, 3, 4, 5, 6] and are widely deployed
in production. An assumption which pervades all of machine learning is that the training, validation,
and deployment data are independent and identically distributed (i.i.d.). Thus, good performance and
generalization on validation data imply that the model will perform well in deployment. Unfortunately,
this assumption seldom holds in real, “in the wild”, applications. In practice, data are subject to
a wide range of possible distributional shifts — mismatches between the training data, and test
or deployment data [7, 8, 9]. In general, the greater the degree of shift, the poorer is the model’s
performance. The problem of distributional shift is of relevance not only to academic researchers, but
to the machine learning community at-large. Indeed, all ML practitioners have faced the issue of
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mismatch between the training and test sets. This is especially important in high-risk applications of
machine learning, such as finance, medicine, and autonomous vehicles. Indeed, in such applications
a mistake on part of an ML system may incur financial or reputational loss, or possible loss of life. It
is therefore increasingly important to assess both a model’s robustness to distribution shift and its
estimates of predictive uncertainty, which enable it to detect distributional shifts [10, 11, 12].

The area of uncertainty estimation and robustness has developed rapidly in recent years. Model
averaging [13, 14, 15, 16] has emerged as the de-facto standard approach to uncertainty estimation.
Ensemble- and sampling-based uncertainty estimates have been successfully applied in detecting
misclassifications, out-of-distribution inputs, adversarial attacks [17, 18], and for active learning [19].
Recently, such approaches have been extended to structured prediction tasks such as machine
translation and speech recognition [20, 21, 22, 23, 24]. However, these approaches require large
computational and memory budgets. Works using temperature scaling [25, 26] and other recent
approaches in deterministic uncertainty estimation [27, 28, 29, 30, 31] aim to tackle this issue, but
have only recently become comparable to ensemble methods [30, 31]. Prior Networks [32, 33, 34] —
models which emulate the mechanics of an ensemble — have been proposed as a deterministic single
model approach to uncertainty estimation which are competitive with ensembles. However, they
require distributionally shifted training data, which may not be feasible in many applications. Prior
Networks have also been used for Ensemble Distribution Distillation [35, 34, 36] — a distillation
approach through which the predictive performance and uncertainty estimates of an ensemble are
captured within a single Prior Network, reducing the inference cost to that of a single model.

While much work has been done on developing methods, limited work has focused on new datasets
and benchmarks. In [37, 38], the authors introduced benchmarks for uncertainty quantification in
Bayesian deep learning but only considered the image-based task of classifying diabetic retinopathy.
Recently, a range of works by Hendrycks et al. [39, 40, 41] proposed a set of datasets based on
ImageNet [42] for evaluating model robustness to various types of distributional shifts. These
datasets — ImageNet C, A, R, and O — include synthetically added noise, natural adversarial attacks,
renderings, and previously unseen classes of objects.1 The release of WILDS, a collection of datasets
containing real-world distributional shifts [8], similarly represents a significant step forward, but
again mostly focuses on images. Finally, the MTNT dataset [43], which contains many examples of
highly atypical usage of language, such as acronyms, profanity, emojis, slang, and code-switching,
has been used at the Workshop on Machine Translation (WMT) robustness track. However, it has not
been considered by the uncertainty community in the context of detecting distributional shift.

Unfortunately, with a few exceptions, most work on uncertainty estimation and robustness has focused
on developing new methods on small-scale tabular regression or image classification tasks, such
as UCI, MNIST [44], Omniglot [45], SVHN [46], and CIFAR10/100 [47]. Few works have been
evaluated on the ImageNet variations A, R, C, and O, or WILDS. However, even evaluation on
these datasets is limited, as they mainly focus on classification of images, and sometimes text. In
contrast, many tasks of practical interest have different modalities, such as tabular data (in medicine
and finance), audio, text, or sensor data. Furthermore, these tasks are not always classification; they
often involve regression and discrete or continuous structured prediction. Given the current state of
the field, we aim to draw the attention of the community to the evaluation of uncertainty estimation
and robustness to distributional shift on a realistic set of large-scale tasks across a range of modalities.
This is necessary to meaningfully evaluate the plethora of methods for uncertainty quantification and
improved robustness, and to accelerate the development of this area and safe ML in general.

In this work, we propose the Shifts Dataset2 for evaluation of uncertainty estimates and robustness
to distributional shift. This dataset consists of data taken directly from large-scale industrial sources
and services where distributional shift is ubiquitous — settings as close to “in the wild” as possible.
The dataset is composed of three parts, with each corresponding to a particular data modality: tabular

weather prediction data provided by the Yandex Weather service; machine translation data taken from
the WMT robustness track and mined from Reddit, and annotated in-house by Yandex Translate; and,
self-driving car (SDC) data provided by Yandex SDG, for the task of vehicle motion prediction. All
of these data modalities and tasks are affected by distributional shift and pose interesting challenges
with respect to uncertainty estimation. This paper provides a detailed analysis of the data as well as
baseline uncertainty estimation and robustness results using ensemble methods.

1ImageNet has only “natural” images; thus, renderings represent a shift in texture, but not content.
2Data and example code are available at https://github.com/yandex-research/shifts
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2 Evaluation Paradigm, Metrics, and Baselines

Paradigm In most prior work, uncertainty estimation and robustness have been assessed separately.
Robustness to distributional shift is typically assessed via metrics of predictive performance on a
particular task — given two (or more) evaluation sets, where one is considered matched to the training
data and the other(s) shifted, models which have a smaller degradation in performance on the shifted
data are considered more robust. The quality of uncertainty estimates is often assessed via the ability
to classify whether an example came from the “in-domain” dataset or a shifted dataset using measures
of uncertainty. Here, performance is assessed via Area under a Receiver-Operator Curve (ROC-AUC
%) or Precision-Recall curve (AUPR %). While these evaluation paradigms are meaningful, we
believe that they are two halves of a common whole. Instead, we consider the following paradigm:

As the degree of distributional shift increases, so does the likelihood that a model makes an error and

the degree of this error. Models should yield uncertainty estimates which correlate with the degree of

distributional shift, and therefore are indicative of the likelihood and the degree of the error.

This paradigm is more general, as a model may be robust to certain examples of distributional
shift and yield accurate, low uncertainty predictions. A model may also perform poorly and yield
high estimates of uncertainty on underrepresented data matched to the training set. Thus, splitting
a dataset into “in-domain” and “out-of-distribution” may not yield partitions on which a model
strictly performs well or poorly, respectively. Instead, it is necessary to jointly assess robustness and
uncertainty estimation, in order to see whether uncertainty estimates at the level of a single prediction
correlate well with the likelihood or degree of error. Thus, we view the problems of robustness and
uncertainty estimation as having equal importance — models should be robust, but where they are
not, they should yield high estimates of uncertainty, which enables risk-mitigating actions to be taken
(e.g., transferring control of a self-driving vehicle to a human operator).

Additionally, we assume that at training or test time we do not know a priori about alternative domains
and whether or how our data is shifted. This setup aims to emulate real-world deployments in which
the variation of conditions is vast and one can never collect enough data to cover all situations. It is for
this reason we view robustness and uncertainty as equally important — we assume that one can never
be fully robust in all situations, and it is in these situations that high-quality uncertainty estimation is
crucial. This is a strictly more challenging setting than one in which auxiliary information about the
degree or nature of shift is available at training or test time (e.g., in WILDS [8]).

We have constructed the Shifts Dataset within the context of this paradigm. Specifically, the dataset
is constructed with the following attributes. First, the annotations of distributional shift are meant
to be used for analysis rather than model construction. Second, we have “canonically” partitioned
the datasets such that the shifts are realistic but significant and to which it is challenging to be fully
robust — this allows us to assess the quality of uncertainty estimates. However, the weather and
motion prediction datasets can be repartitioned in alternative ways which are different from our
canonical partitioning, such that alternative robustness paradigms can be evaluated.3

Assessment Metrics We jointly assess robustness and uncertainty via error-retention curves [12,
14] and F1-retention curves. Given an error metric, such as MSE or GLEU, error-retention curves
trace the error over a dataset as a model’s predictions are replaced by ground-truth labels in order of
decreasing uncertainty. F1-retention curves depict the F1 for predicting whether a model’s predictions
are sufficiently good based on uncertainties (here we vary retention fraction, i.e., the fraction of data
with the smallest uncertainty values that we classify as acceptable). Both assess the performance of a
hybrid human-AI system, where a model can consult an oracle (human) for assistance in difficult
situations. The area under this curve can be decreased (error retention) or increased (F1 retention)
either by improving the predictive performance of the model, such that it has lower overall error, or
by providing better estimates of uncertainty, such that more errorful predictions are rejected earlier.
Thus, the area under the error (R-AUC) and F1 (F1-AUC) retention curves are metrics which jointly
assess robustness to distributional shift and the quality of uncertainty estimates. We also quote F1 at
95% retention rate. These metrics, detailed in Appendix A, are used for all tasks in this paper.

Choice of Baselines In this work we consider ensemble-based baselines. This was done for a
number of reasons. First, ensemble-based approaches are a standard way to obtain both improved

3Tools for partitioning and repartitioning are provided in our GitHub repository.
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robustness versus single models and interpretable uncertainty estimates. Ensembles improve ro-
bustness because each model represents a functionally different explanation of the data. Thus, even
if each individual model in an ensemble is subject to spurious correlations, the models will have
different spurious correlations. When the models are combined, the effects of spurious correlations
are cancelled out to a certain degree, improving generalization performance. Second, ensemble
methods are straightforward to apply to any task of choice and require little adaptation. Uncertainty
estimates can be obtained from measures of ensemble diversity — if the predictions are highly diverse,
then the ensemble members cannot agree on what the prediction should be and therefore are highly
uncertain. Other than ensemble methods, there are few alternative approaches which are known to
yield improved robustness and interpretable uncertainty estimates, can be easily applied to a broad
range of large-scale tasks without significant adaptation, and do not require information about the
nature of distributional shift at training or test time. We leave the exploration of these alternatives
and the development of new ones to future work. We do not examine robust learning methods, such
as IRM [48, 8], as they require domain annotations at training time and do not yield uncertainty
estimates.

3 Tabular Weather Prediction

Uncertainty estimation and robustness are essential in applications like medical diagnostics and
financial forecasting. In such applications, data is often represented in a heterogeneous tabular form.
While it is challenging to obtain either a large medical or financial dataset, the Yandex Weather service
has provided a large tabular Weather Prediction dataset that features a natural tendency for the data
distribution to drift over time (concept drift [49, 50]). Furthermore, the locations are non-uniformly
distributed around the globe based on population density, land coverage, and observation network
development, which means that certain climate zones, like the Polar regions or the Sahara, are
under-represented. We argue that this tabular Weather Prediction data represents similar challenges to
the ones faced on financial and medical data, which is often combined from different hospitals/labs,
consists of population-groups that are non-uniformly represented, and has a tendency to drift over
time. Thus, the data we consider in this paper can be used as an appropriate benchmark for developing
more robust models and uncertainty estimation methods for tabular data.

Dataset The Shifts Weather Prediction dataset contains a scalar regression and a multi-class
classification tasks: at a particular latitude, longitude, and timestamp, one must predict either the
air temperature at two meters above the ground or the precipitation class, given targets and features
derived from weather station measurements and weather forecast models. The data consists of
10 million 129-column entries: 123 meteorological features, 4 meta-data attributes (time, latitude,
longitude and climate type) and 2 targets — temperature (target for regression task) and precipitation
class (target for classification task). The full feature list is provided in Section C.2. It is important to
note that the features are highly heterogeneous, i.e., they are of different types and scales. The full
data is distributed uniformly between September 1st, 2018, and September 1st, 2019, with samples
across all climate types. This data is used by Yandex for real-time weather forecasts and represents a
real industrial application.

To provide a standard benchmark that contains both in-domain and shifted data, we use a particular
“canonical partitioning”4 of the full dataset into training, development (dev), and evaluation (eval)
datasets. The training, in-domain dev (dev_in) and in-domain eval (eval_in) data consist of
measurements made from September 2018 till April 8th, 2019 for climate types Tropical, Dry, and
Mild Temperate. The shifted dev (dev_out) data consists of measurements made from 8th July till
1st September 2019 for the climate type Snow. 50K data points are sub-sampled for the climate type
Snow within this time range to construct dev_out. The shifted eval data is further shifted than the
out-of-domain development data; measurements are taken from 14th May till 8th July 2019, which is
more distant in terms of the time of the year from the in-domain data compared to the out-of-domain
development data. The climate types are restricted to Snow and Polar. Further details are provided in
Appendix C.1. Details on use and support plan are in Appendix B.

4Alternative partitionings can be made from the full data, but we use the canonical partitioning throughout
this work, and also for the Shifts Challenge: http://research.yandex.com/shifts
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Baselines To build baseline models for the temperature prediction and precipitation classification
tasks, we use the open-source CatBoost gradient boosting library that is known to achieve state-of-
the-art results on tabular datasets [51]. We use an ensemble-based approach to uncertainty estimation
for GBDT models [52]. For each task, an ensemble of ten models is trained on the training data
with different random seeds. For regression, the models predict the mean and variance of the
normal distribution by optimizing the negative log-likelihood. For classification, the models predict
a probability distribution over precipitation classes. Training details are provided in Appendix C.4.
Additional ensemble-based baselines and results are provided in Appendix C.5.

We first compare the predictive performance of ensembles and single models; the results are shown
in Table 1. Firstly, we observe that all models perform worse on shifted data than on in-domain
data. For regression, we observe that the RMSE of the ensemble (on the eval set) is about two
degrees Celsius. Note that ensembling allows us to reduce RMSE by about 0.16� compared to a
single model. Similarly, ensembling reduces the MAE by approximately 0.12�. For classification,
ensembling boosts the accuracy and macro-averaged F1 by about 2%. Note that the classification
task is unbalanced (see Appendix C.1 for details), so for better interpretability, we also report the
accuracy and Macro-F1 of the classifier always predicting the majority class.

Table 1: Predictive performance for Weather Prediction. Mean ± � is quoted for the single models.
Regression Classification

Data RMSE # MAE # Accuracy (%) " Macro F1 (%) "
Single Ens Single Ens Maj. Single Ens Maj. Single Ens

dev-in 1.59±0.00 1.51 1.18±0.00 1.11 37.9 67.0±0.075 68.5 17.2 48.8±0.8 51.0
dev-out 2.30±0.01 2.12 1.75±0.01 1.61 35.7 47.5±0.249 50.3 19.4 27.9±0.5 29.0

dev 1.98±0.01 1.84 1.47±0.01 1.36 36.8 57.2±0.117 59.4 17.2 43.3±0.8 45.6

eval-in 1.60±0.00 1.52 1.19±0.00 1.11 37.9 66.7±0.060 68.2 17.2 47.5±0.3 49.8
eval-out 2.60±0.03 2.37 1.91±0.01 1.75 30.0 44.5±0.184 46.7 17.4 27.4±0.2 28.8

eval 2.16±0.01 2.00 1.56±0.01 1.44 33.9 55.5±0.090 57.3 17.4 39.3±0.2 41.4

Next, we jointly evaluate the robustness and uncertainty estimates for ensembles and single models.
For the regression task, we use the predicted variance as the uncertainty measure of a single model.
For ensembles, we use the total variance (tvar) that is the sum of the variance of the predicted mean
and the mean of the predicted variance [11, 12, 52]. For the classification task, we use the entropy
of the prediction as the uncertainty measure of a single model. For ensembles, we use the (negated)
confidence. We measure the area under the error-retention and F1-retention curves as described
in Appendices A and C.3. These two performance metrics are denoted as R-AUC and F1-AUC,
respectively. A good uncertainty measure is expected to achieve low R-AUC and high F1-AUC.
Additionally, we report the F1 score at a retention rate of 95% of the most certain samples (F1@95%).
All these measures jointly assess the predictive performance and quality of uncertainty estimates.

Table 2: Retention performance for Weather Prediction. Mean ± � is quoted for the single models.

Data R-AUC # F1-AUC (%) " F1@95% "
Single Ens Single Ens Single Ens

Regression dev 1.894±0.017 1.227 44.35±0.2 52.20 62.72±0.1 65.83
eval 2.320±0.063 1.335 43.41±0.1 52.36 61.89±0.1 64.72

Classification dev 0.1666±0.001 0.1522 57.72±0.1 59.07 73.04±0.1 74.86
eval 0.1799±0.001 0.1640 56.25±0.1 58.22 71.56±0.1 73.17

The results are shown in Table 2. Here, as expected, ensembles significantly outperform single
models. This observation is consistent over all considered evaluation measures. The associated
retention curves are provided in Figure 1 for eval and Figure 11 in Appendix C for dev.

Finally, we conduct a comparison of different uncertainty measures. For this, we measure F1-AUC
discussed above and ROC-AUC that evaluates uncertainty-based out-of-distribution (OOD) data
detection. The results are shown in Table 3. In this experiment, we do not evaluate single models.
For regression, we consider the following uncertainty measures: total variance (tvar) discussed above
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Table 3: Comparing uncertainty measures of CatBoost ensembles for Weather Prediction.

Data
Regression Classification

Total Unc. Knowledge Unc. Total Unc. Knowledge Unc.
tvar varm EPKL Conf Entropy MI EPKL RMI

dev F1-AUC (%) " 52.20 50.12 50.51 59.07 58.86 57.72 57.69 57.66
ROC-AUC (%) " 62.96 82.31 85.29 63.98 65.00 83.75 83.96 84.12

eval F1-AUC (%) " 52.36 49.81 50.40 58.22 57.89 56.99 56.96 56.93
ROC-AUC (%) " 65.99 78.32 79.90 66.20 66.76 83.44 83.59 83.68

(a) Regression, MSE. (b) Regression, F1. (c) Classification, error %. (d) Classification, F1.

Figure 1: Retention curves with CatBoost on eval for the Weather Prediction dataset.

that is a measure of total uncertainty, variance of the mean predictions across the ensemble models
(varm) and the expected pairwise KL-divergence (EPKL) that are measures of knowledge uncertainty.
The results show that uncertainty measures that capture knowledge uncertainty perform best at
OOD detection, as suggested by the high ROC-AUC values, while the measure of total uncertainty
performs best for detecting errors (F1-AUC). Thus, as expected, the choice of a metric to use depends
heavily on the task. Among measures of knowledge uncertainty, EPKL has better performance. For
classification, the measures of total uncertainty are the negative confidence (Conf) and the entropy of
the average prediction (Entropy). The measures of knowledge uncertainty are mutual information
(MI), EPKL, and reverse mutual information (RMI). Similar to regression, uncertainty measures
that capture knowledge uncertainty are better in terms of ROC-AUC. Among them, reverse mutual
information performs best. The measures of total uncertainty are better for F1-AUC, and the best
results are achieved with negative confidence.

4 Machine Translation

As part of the Shifts Dataset we examine the task of machine translation for the text modality.
Translation services, such as Google Translate or Yandex Translate, often encounter atypical and
unusual use of language in their translation queries. This typically includes slang, profanities,
poor grammar, orthography and punctuation, as well as emojis. This poses a challenge to modern
translation systems, which are typically trained on corpora with a more “standard” use of language.
Therefore, it is important for models to both be robust to atypical language use to provide high-quality
translations, as well as to indicate when they are unable to provide a quality translation.

Translation is inherently a structured prediction task, as there are dependencies between the tokens
in the output sequence. Often we must make assumptions about the form of these dependencies;
for example, most modern translation systems are left-to-right autoregressive. However, we could
consider conditionally independent predictions or other factorization orders. The nature of these
assumptions makes it challenging to obtain a theoretically sound measure of uncertainty. Only recently
has work been done on developing principled uncertainty measures for structured prediction [21, 22,
23, 24, 53]. Nevertheless, this remains an unsolved task and a fruitful area for research.

Dataset The dataset contains training, development (dev) and evaluation (eval) data, where each
set consists of pairs of source and target sentences in English and Russian, respectively. As most
production Neural Machine Translation (NMT) systems are built using a variety of general purpose
corpora, we use the freely available WMT‘20 En-Ru corpus as training data. This dataset primarily
focuses on parliamentary and news data that is, for the most part, grammatically and orthographically
correct with formal language use. The dev and eval datasets consist of an “in-domain” partition

6



matched to the training data, and an “out-of-distribution” or shifted partition, which contains examples
of atypical language usage. The in-domain dev and eval sets are Newstest‘19 En-Ru and a newly
collected news corpus from GlobalVoices [54], respectively. For the shifted development data we
use the Reddit corpus prepared for the WMT‘19 robustness challenge [43]. This data contains
examples of slang, acronyms, lack of punctuation, poor orthography, concatenations, profanity, and
poor grammar, among other forms of atypical language usage. This data is representative of the
types of inputs that machine translation services find challenging. As Russian target annotations
are not available, we pass the data through a two-stage process, where orthographic, grammatical,
and punctuation mistakes are corrected, and the source-side English sentences are translated into
Russian by expert in-house Yandex translators. The development set is constructed from the same
1400-sentence test-set used for the WMT‘19 robustness challenge. For the evaluation set we use the
open-source MTNT crawler which connects to the Reddit API to collect a further set of 3,000 English
sentences from Reddit, which is similarly corrected and translated. The shifted dev and eval data
are also annotated with 7 non-exclusive anomaly flags. Details regarding pre-processing, annotations
and licenses is available in Appendix D.1. Details on use and support plan are in Appendix B.

Metrics To evaluate the performance of our models we will consider corpus-level BLEU [55] and
sentence-level GLEU [56, 57, 58]. As machine translation is a multi-modal task and translation
systems often yield multiple translation hypothesis we will consider two GLEU-based metrics for
evaluating translation quality. First is the expected GLEU or eGLEU across all translation hypotheses,
where each hypothesis is weighted by a confidence score, and confidences across all hypotheses sum
to one. Second is the maximum GLEU maxGLEU across all hypotheses in the beam. Details of
these metrics can be found in Appendix D.2. These metrics are then used to compute the error- and
F1-retention curves which jointly assess uncertainty and robustness, as discussed in Appendix A.

Baselines In this work we considered an ensemble baseline based on [24]. Here, we use an
ensemble of 3 Transformer-Big [5] models trained on the WMT‘20 En-Ru corpus. Models were
trained using a fork of FairSeq [59] with a large-batch training set. Beam-Search decoding with a
beam-width of 5 is used to obtain translation hypotheses. Hypotheses confidence weights are obtained
by exponentiating the negative log-likelihood of each hypothesis and then normalizing across all
hypotheses in the beam. Individual models in the ensemble are used as a single-model baseline.

Table 4 presents the predictive performance on the dev and eval sets as well as on their in-domain
and shifted subsets. There is a performance difference of nearly 10 BLEU and GLEU points between
the in-domain news and shifted Reddit data, which shows the degradation in quality due to atypical
language usage. The ensemble is able to outperform the individual models, which is expected. These
results also show that BLEU correlates quite well with eGLEU. maxGLEU shows that significantly
better performance is obtainable if we were better at ranking the hypotheses in the beam.

Table 4: Predictive performance for Machine Translation. Mean ± � is quoted for the single models.

Data BLEU " eGLEU " maxGLEU "
Single Ens Single Ens Single Ens

dev-in 32.04±0.23 32.73 34.45±0.10 35.09 41.08±0.09 42.00
dev-out 20.65±0.16 21.06 22.66±0.07 23.00 28.28±0.19 28.63
dev 28.89±0.20 29.52 29.67±0.09 30.19 35.89±0.12 36.58

eval-in 29.52±0.21 30.08 30.39±0.10 30.88 36.19 ±0.19 36.82
eval-out 21.00 ±0.12 21.54 23.19±0.07 23.60 29.35±0.11 29.88
eval 26.39±0.17 26.92 26.76±0.06 27.20 32.74±0.14 33.31

Having evaluated the baselines’ predictive performance, we now jointly assess their uncertainty
and robustness using the area under the error-retention curve (R-AUC), area under the F1-retention
curve (F1-AUC) and F1 at 95% retention, as detailed in Appendices A and D.2. Additionally, we
evaluate in terms of % ROC-AUC whether it is possible to discriminate between the in-domain data
and the shifted data based on the measures of uncertainty provided by the models. As the measure
of uncertainty we use the negative log-likelihood, averaged across all 5 hypotheses. In the case of
individual models, this is a measure of data or aleatoric uncertainty, and in the case of the ensemble,
it is a measure of total uncertainty [24]. The results show that the ensemble consistently outperforms
the single-model baseline.

7



Table 5: Uncertainty and robustness for Machine Translation. Mean ± � is quoted for the single
models.

Data R-AUC # F1-AUC " F1@95% " ROC-AUC (%) "
Single Ens Single Ens Single Ens Single Ens

dev 33.22±0.48 32.87 0.43±0.00 0.44 0.42±0.01 0.43 68.90±0.28 69.30
eval 34.80±0.06 34.57 0.37 ±0.07 0.38 0.34 ±0.03 0.36 79.18 ±0.63 80.10

(a) Error (b) F1

Figure 2: Retention curves using eGLEU on eval data.

5 Vehicle Motion Prediction

We present the Shifts Vehicle Motion Prediction dataset to examine the implications of distributional
shift in self-driving vehicles. The area of autonomous vehicle (AV) technology is highly relevant
for uncertainty and robustness research, as the safety requirements and the risks associated with any
errors are high. Furthermore, distributional shift is ubiquitous in the autonomous driving domain.
During technology development, most self-driving companies concentrate their fleet in a limited
number of locations and routes due to the large cost of operating in a new location. Therefore, fleets
often face distributional shift when they begin operation in new locations. It is thus important to
transfer as much knowledge as possible from the old locations to new ones. It is also critical for
a planning model to recognize when this transferred knowledge is insufficient upon encountering
unfamiliar data, which could risk unpredictable and unsafe behavior.5 Uncertainty quantification
therefore has potentially life-critical application in this domain. For example, when the model’s
predictive uncertainty reaches a particular threshold, the vehicle can exercise extra caution or request
assistance from a remote operator.

Motion prediction is among the most important problems in the autonomous driving domain and has
recently drawn significant attention from both academia and industry [60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71]. It involves predicting the distribution over possible future states of agents around
the self-driving car at a number of moments in time. A model of possible futures is needed because
a self-driving vehicle needs a certain amount of time to change its speed, and sudden changes may
be uncomfortable or even dangerous for its passengers. Therefore, in order to ensure a safe and
comfortable ride, the motion planning module of a self-driving vehicle must reason about where
other agents might end up in a few seconds to avoid planning a potential collision. This problem is
complicated by the fact that the future is inherently uncertain. For example, we cannot know the
high-level navigational goals of other agents, or even their low-level tendency to turn right or left at
a T-junction if they fail to indicate one way or another.6 In order for the planning module to make
the right decision, this uncertainty must be precisely quantified. Finally, motion prediction is also
interesting because the predictions are both structured and continuous. This poses further challenges
in uncertainty estimation. Recently, ensemble-based uncertainty estimation for the related task of
autonomous vehicle planning was examined [72], where a variance-based measure was proposed.

5A case of knowledge, or epistemic uncertainty [11, 12].
6A case of data, or aleatoric uncertainty.
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However, there is still much potential for further development of informative measures of uncertainty
in continuous structured prediction tasks such as motion prediction.

Dataset The dataset for the Vehicle Motion Prediction task was collected by the Yandex Self-
Driving Group (SDG) fleet and is the largest vehicle motion prediction dataset released to date,
containing 600,000 scenes. These scenes span six locations, three seasons, three times of day, and
four weather conditions. Each scene includes information about the state of dynamic objects and
an HD map. Each scene is 10 seconds long and is divided into 5 seconds of context features and
5 seconds of ground truth targets for prediction, separated by the time T = 0. The goal is to
predict the movement trajectory of vehicles at time T 2 (0, 5] based on the information available
for time T 2 [�5, 0]. The data contains training, development (dev) and evaluation (eval) sets.
In order to study the effects of distributional shift, we partition the data such that the dev and
eval sets have in-domain partitions which match the location and precipitation type of the training
set, and out-of-domain or shifted partitions which do not match the training data along one or
more of those axes. As in the other Shifts tasks, we define a canonical partitioning which is used
throughout benchmarking.7 The training set and in-domain partition of the dev and eval sets are
taken from Moscow. Distributionally shifted dev data is taken from Skolkovo, Modiin, and Innopolis.
Distributionally shifted eval data is taken from Tel Aviv and Ann Arbor. We also remove all cases of
precipitation from the in-domain sets, while distributionally shifted datasets include precipitation. A
full description of the dataset is available in Appendix E, the support plan is detailed in Appendix B.

Metrics Here we consider five different performance metrics — minimum Average Displacement
Error (minADE), minimum Final Displacement Error (minFDE), confidence-weighed ADE and
FDE, and corrected Negative Log-Likelihood (cNLL). cNLL is a new metric we introduce that is
particilarly well-suited for assessing how models handle multi-modal situations. The minimum or
weighting is done across up to 5 trajectories predicted by the baseline models. See Appendix E.3 for
detailed explanations of the metrics.

Baselines We consider two variants of Robust Imitative Planning (RIP) [72] as baselines. We use an
ensemble of probabilistic models to stochastically generate multiple predictions for a given prediction
request. Predictions are aggregated across ensemble members via a model averaging (MA) approach.
We consider a simple RNN-based behavioral cloning network (RIP-BC) [73] and autoregressive
flow–based Deep Imitative Model (RIP-DIM) [74] as backbone models. We adapt RIP to produce
uncertainty estimates at two levels of granularity: per-trajectory and per–prediction request. Finally,
we vary the number of ensemble members K 2 {1, 3, 5} and the uncertainty estimation method
between Deep Ensembles [14] and Dropout Ensembles [13, 75]. See Appendix E for details on RIP,
uncertainty estimation methods, backbone models, experimental setup, and full results. Additional
results using Dropout Ensembles are provided in Appendix E.5.

Table 6: Predictive performance of BC & DIM RIP on in-domain, shifted, and full dev & eval data.

Dataset Model cNLL # minADE # weightedADE # minFDE # weightedFDE #
In Shifted Full In Shifted Full In Shifted Full In Shifted Full In Shifted Full

Dev

BC, MA, K=1 59.64 98.54 64.29 0.818 0.960 0.835 1.088 1.245 1.107 1.718 2.113 1.765 2.368 2.777 2.417
BC, MA, K=5 56.86 91.54 61.01 0.765 0.887 0.779 1.012 1.133 1.026 1.617 1.976 1.660 2.210 2.551 2.251
DIM, MA, K=1 50.66 73.00 53.34 0.750 0.818 0.758 1.523 1.583 1.530 1.497 1.720 1.524 3.472 3.639 3.492
DIM, MA, K=5 50.85 72.45 53.43 0.719 0.786 0.727 1.399 1.469 1.408 1.482 1.698 1.508 3.202 3.393 3.225

Eval

BC, MA, K=1 60.20 98.82 67.93 0.829 1.084 0.880 1.104 1.407 1.164 1.733 2.420 1.870 2.394 3.197 2.555
BC, MA, K=5 57.75 95.00 65.20 0.777 1.014 0.824 1.028 1.299 1.082 1.636 2.278 1.765 2.238 2.957 2.382
DIM, MA, K=1 50.50 76.00 55.60 0.759 0.942 0.796 1.551 1.883 1.618 1.511 1.983 1.605 3.536 4.376 3.704
DIM, MA, K=5 51.19 78.85 56.73 0.728 0.918 0.766 1.424 1.754 1.490 1.493 2.000 1.595 3.256 4.093 3.424

Predictive performance results for the RIP variants are presented in Table 6. Performance is assessed
on the in-distribution (In), distributionally shifted (Shifted), and combined (Full) dev and eval
datasets. We observe that across all model configurations, performance on the shifted data is worse
than that on the in-distribution data. We also observe that RIP-BC consistently outperforms RIP-DIM
on the per-trajectory confidence weighted metrics (weightedADE and weightedFDE), and RIP (DIM)
outperforms RIP (BC) on minADE and minFDE. This result might occur if DIM has higher predictive
variance. In such a case, DIM might be more effective in modeling multimodality, and therefore

7This partitioning is also the one used in the Shifts Challenge: http://research.yandex.com/shifts
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would tend to produce at least one high accuracy trajectory on more scenes, improving performance
on min aggregation metrics. This is supported by DIM models yielding the best cNLL, which is a
metric particularly sensitive to correct treatment of multi-modal situations. In contrast, for “obvious”
scenes, DIM might then produce unnecessarily complicated trajectories which would be reflected in
poor performance on weightedADE.

Table 7: Uncertainty and robustness performance for Vehicle Motion Prediction. The error metric for
computing the area under the F1 curve (F1-AUC) and F1 at 95% retention rate (F1@95%) is cNLL.

Data Ensemble R-AUC cNLL # R-AUC weightedADE # F1-AUC (%) " F1@95% " ROC-AUC (%) "
Size (K) RIP-BC RIP-DIM RIP-BC RIP-DIM RIP-BC RIP-DIM RIP-BC RIP-DIM RIP-BC RIP-DIM

Dev 1 11.22 12.86 0.268 0.419 65.1 63.8 89.3 87.4 51.0 51.8
5 9.08 13.24 0.236 0.376 65.2 63.7 90.6 89.7 49.2 51.4

Eval 1 12.91 14.32 0.293 0.458 65.0 63.6 88.4 86.3 52.8 51.8
5 10.57 15.16 0.258 0.411 65.1 63.5 89.7 88.9 52.1 50.9

Table 7 presents a joint evaluation of the uncertainty quantification and robustness of our baselines.
We compute R-AUC with respect to cNLL and weightedADE, and the F1-AUC and F1@95% metrics
with respect to the cNLL metric, as detailed in Appendices A and E.3. We observe that an ensemble
of RIP-BC models outperforms RIP-DIM on these metrics. These results strongly suggest that
RIP-BC has more informative uncertainty estimates than RIP-DIM, because RIP-BC achieves better
R-AUC cNLL despite having greater overall error in terms of cNLL (in addition to minADE and
minFDE). Figure 3 depicts, for cNLL, error- and F1-retention curves on the full eval dataset which
reflect the trends observed in Table 7. Additionally, we find that across model configurations the per–
prediction request uncertainty scores do not perform particularly well in detecting distribution shift
(ROC-AUC). This may occur due to significant data uncertainty in all cases. Future work on detecting
distributional shift on this dataset could, for example, inspect the distribution of log-likelihood scores
on the in-distribution and shifted partitions in order to devise a metric for this task, aside from the
uncertainty scores U used for the retention analysis.

(a) cNLL error-retention. (b) cNLL F1-retention.

Figure 3: Retention curves for Vehicle Motion Prediction on full eval data.

6 Conclusion

In this paper, we proposed the Shifts Dataset: a large, standardized dataset for evaluation of
uncertainty estimates and robustness to realistic, curated distributional shift. The dataset — sourced
from industrial services — is composed of three tasks, with each corresponding to a particular data
modality: tabular weather prediction, machine translation, and self-driving car (SDC) vehicle motion

prediction. This paper describes this data and provides baseline results using ensemble methods.
Given the current state of the field, where most methods are developed on small-scale classification
tasks, we aim to draw the attention of the community to the evaluation of uncertainty estimation and
robustness to distributional shift on large-scale industrial tasks across multiple modalities. We believe
this work is a necessary step towards meaningful evaluation of uncertainty quantification methods,
and hope for it to accelerate the development of this area and safe ML in general.
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