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Abstract

We study when the neural tangent kernel (NTK) approximation is valid for training a model
with the square loss. In the lazy training setting of Chizat et al. (2019), we show that
rescaling the model by a factor of α = O(T ) suffices for the NTK approximation to be valid
until training time T . Our bound is tight and improves on the previous bound of Chizat
et al. (2019), which required a larger rescaling factor of α = O(T 2).

1 Introduction

In the modern machine learning paradigm, practitioners train the weights w of a large neural network model
fw : Rdin → Rdout via a gradient-based optimizer. Theoretical understanding lags behind, since the training
dynamics are non-linear and hence difficult to analyze. To address this, Jacot et al. (2018) proposed an
approximation to the dynamics called the NTK approximation, and proved it was valid for infinitely-wide
networks trained by gradient descent1. The NTK approximation has been extremely influential, leading to
theoretical explanations for a range of questions, including why deep learning can memorize training data
(Du et al., 2018; 2019; Allen-Zhu et al., 2019a;b; Arora et al., 2019a; Cao & Gu, 2019; Lee et al., 2019),
why neural networks exhibit spectral bias (Cao et al., 2019; Basri et al., 2020; Canatar et al., 2021), and
why different architectures generalize differently (Bietti & Mairal, 2019; Mei et al., 2021; Wang et al., 2021).
Nevertheless, in practice the training dynamics of neural networks often diverge from the predictions of the
NTK approximation (see, e.g., Arora et al. (2019b)) Therefore, it is of interest to understand exactly under
which conditions the NTK approximation holds. In this paper, we ask the following question:

Can we give tight conditions for when the NTK approximation is valid?

1.1 The “lazy training" setting of Chizat et al. (2019)

The work of Chizat et al. (2019) showed that the NTK approximation actually holds for training any
differentiable model, as long as the model’s outputs are rescaled so that the model’s outputs change by a
large amount even when the weights change by a small amount. The correctness of the NTK approximation
for infinite-width models is a consequence of this observation, because by the default the model is rescaled as
the width tends to infinity; see the related work in Section 1.3 for more details.

Rescaling the model Let h : Rp → F be a smoothly-parameterized model, where F is a separable Hilbert
space. Let α > 0 be a parameter which controls the rescaling of the model and which should be thought of as
large. We train the rescaled model αh with gradient flow to minimize a smooth loss function R : F → R+.2

1Under a specific scaling of the initialization and learning rate as width tends to infinity.
2We use the Hilbert space notation as in Chizat et al. (2019). We can recover the setting of training a neural network fw :

Rd → R on a finite training dataset {(x1, y1), . . . , (xn, yn)} ⊆ Rd × R with empirical loss function L(w) = 1
n

∑n

i=1 ℓ(fw(xi), yi)
as follows. Let H = Rn be the Hilbert space, let h(w) = [fw(x1), . . . , fw(xn)], and let R(v) = 1

n

∑n

i=1 ℓ(vi, yi).
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Namely, the weights w(t) ∈ Rp are initialized at w(0) = w0 and evolve according to the gradient flow

dw

dt
= − 1

α2 ∇wR(αh(w(t))) . (1)

NTK approximation Define the linear approximation of the model around the initial weights w0 by

h̄(w) = h(w0) + Dh(w0)(w − w0) , (2)

where Dh is the first derivative of h in w. Let w̄(t) be weights initialized at w̄(0) = w0 that evolve according
to the gradient flow from training the rescaled linearized model αh̄:

dw̄

dt
= − 1

α2 ∇w̄R(αh̄(w̄(t))) . (3)

The NTK approximation states that
αh(w(t)) ≈ αh̄(w̄(t)).

In other words, it states that the linearization of the model h is valid throughout training. This allows for
much simpler analysis of the training dynamics since the model h̄ is linear in its parameters, and so the
evolution of h̄(w̄) can be understood via a kernel gradient flow in function space.

When is the NTK approximation valid? Chizat et al. (2019) proves that if the rescaling parameter α
is large, then the NTK approximation is valid. The intuition is that the weights do not need to move far from
their initialization in order to change the output of the model significantly, so the linearization (2) is valid for
longer. Since the weights stay close to initialization, Chizat et al. (2019) refer to this regime of training as
“lazy training.” The following bound is proved.3 Here

R0 = R(αh(w0))

is the loss at initialization, and
κ = T

α
Lip(Dh)

√
R0 ,

is a quantity that will also appear in our main results.
Proposition 1.1 (Theorem 2.3 of Chizat et al. (2019)). Let R(y) = 1

2 ∥y − y∗∥2 be the square loss, where
y∗ ∈ F are the target labels. Assume that h is Lip(h)-Lipschitz and that Dh is Lip(Dh)-Lipschitz in a ball of
radius ρ around w0. Then, for any time 0 ≤ T ≤ αρ/(Lip(h)

√
R0),

∥αh(w(T )) − αh̄(w̄(T ))∥ ≤ TLip(h)2κ
√

R0 . (4)

Notice that as we take the rescaling parameter α to infinity, then κ goes to 0, so the right-hand-side of (4) is
small and the NTK approximation is valid.

1.2 Our results

Our contribution is to refine the bound of Chizat et al. (2019) for large time scales. We prove:
Theorem 1.2 (NTK approximation error bound). Let R(y) = 1

2 ∥y − y∗∥2 be the square loss. Assume that
Dh is Lip(Dh)-Lipschitz in a ball of radius ρ around w0. Then, at any time 0 ≤ T ≤ α2ρ2/R0,

∥αh(w(T )) − αh̄(w̄(T ))∥ ≤ min(6κ
√

R0,
√

8R0) . (5)

Furthermore, the converse is true. Our bound is tight up to a constant factor.
Theorem 1.3 (Converse to Theorem 1.2). For any α, T, Lip(Dh), and R0, there is a model h : R → R,
an initialization w0 ∈ R, and a target y∗ ∈ R such that, for the risk R(y) = 1

2 (y − y∗)2, the initial risk is
R(αh(w0)) = R0, the derivative map Dh is Lip(Dh)-Lipschitz, and

∥αh(w(T )) − αh̄(w̄(T ))∥ ≥ min(1
5κ
√

R0,
1
5
√

R0) .

3See Section 1.3 for discussion on the other results of Chizat et al. (2019).
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Comparison to Chizat et al. (2019) In contrast to our theorem, the bound (4) depends on the Lipschitz
constant of h, and incurs an extra factor of TLip(h)2. So if Lip(Dh), Lip(h), and R0 are bounded by constants,
our result shows that the NTK approximation (up to O(ϵ) error) is valid for times T = O(αϵ), while the
previously known bound is valid for T = O(

√
αϵ). Since the regime of interest is training for large times

T ≫ 1, our result shows that the NTK approximation holds for much longer time horizons than previously
known.

1.3 Additional related literature

Other results of Chizat et al. (2019) In addition to the bound of Proposition 1.1 above, Chizat et al.
(2019) controls the error in the NTK approximation in two other settings: (a) for general losses, but α must
be taken exponential in T , and (b) for strongly convex losses and infinite training time T , but the problem
must be “well-conditioned.” We work in the setting of Proposition 1.1 instead, since it is more aligned with
the situation in practice, where we have long training times and the problem is ill-conditioned. Indeed, the
experiments of Chizat et al. (2019) report that for convolutional neural networks on CIFAR10 trained in the
lazy regime, the problem is ill-conditioned, and training takes a long time to converge.

Other works on the validity of the NTK approximation The NTK approximation is valid for infinitely-
wide neural networks under a certain choice of hyperparameter scaling called the “NTK parametrization”
Jacot et al. (2018). However, there is another choice of hyperparameter scaling, called the “mean-field
parametrization”, under which the NTK approximation is not valid at infinite width (Chizat & Bach, 2018;
Rotskoff & Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2022; Mei et al., 2018; 2019; Yang & Hu, 2021).
It was observed by Chizat et al. (2019) that one can interpolate between the “NTK parametrization” and the
“mean-field parametrization” by varying the lazy training parameter α. This inspired the works Woodworth
et al. (2020); Geiger et al. (2020; 2021), which study the effect of interpolating between lazy and non-lazy
training by varying α. Most work points towards provable benefits of non-lazy training (Allen-Zhu & Li,
2019; Bai & Lee, 2019; Bai et al., 2020; Chen et al., 2020; Nichani et al., 2022; Ghorbani et al., 2020; Malach
et al., 2021; Abbe et al., 2022; 2023; Mousavi-Hosseini et al., 2022; Damian et al., 2022; Bietti et al., 2022;
Ba et al., 2022) although interestingly there are settings where lazy training provably outperforms non-lazy
training (Petrini et al., 2022).

Finally, our results do not apply to ReLU activations because we require twice-differentiability of the model
as in Chizat et al. (2019). It is an interesting future direction to prove such an extension. One promising
approach could be to adapt a technique of Cao & Gu (2020), which analyzes ReLU network training in the
NTK regime by showing in Lemma 5.2 that around initialization the model is “almost” linear and “almost”
smooth, even though these assumptions are not strictly met because of the ReLU activations.

2 Application to neural networks

The bound in Theorem 1.2 applies to lazy training of any differentiable model. As a concrete example, we
describe its application to neural networks (a similar application was presented in Chizat et al. (2019)). We
parametrize the networks in the mean-field regime, so that the NTK approximation is not valid even as the
width tends to infinity. Therefore, the NTK approximation is valid only when we train with lazy training.

Let fw : Rd → R be a 2-layer network of width m in the mean-field parametrization Chizat & Bach (2018);
Rotskoff & Vanden-Eijnden (2018); Sirignano & Spiliopoulos (2022); Mei et al. (2018; 2019), with activation
function σ : R → R,

fw(x) = 1√
m

m∑
i=1

aiσ(
√

m⟨xi, ui⟩) .

The weights are w = (a, U) for a = [a1, . . . , am] and U = [u1, . . . , um]. These are initialized at w0 with i.i.d.
Unif[−1/

√
m, 1/

√
m] entries. Given training data (x1, y1), . . . , (xn, yn), we train the weights of the network
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with the mean-squared loss

L(w) = 1
n

n∑
i=1

ℓ(fw(xi), yi), ℓ(a, b) = 1
2(a − b)2 . (6)

In the Hilbert space notation, we let H = Rn, so that the gradient flow training dynamics with loss (6)
correspond to the gradient flow dynamics (1) with the following model and loss function

h(w) = 1√
n

[fw(x1), . . . , fw(xn)] ∈ Rn, R(v) = 1
2∥v − y√

n
∥2 .

Under some regularity assumptions on the activation function (which are satisfied, for example, by the
sigmoid function) and some bound on the weights, it holds that Lip(Dh) is bounded.
Lemma 2.1 (Bound on Lip(Dh) for mean-field 2-layer network). Suppose that there is a constant K such that
(i) the activation function σ is bounded and has bounded derivatives ∥σ∥∞, ∥σ′∥∞, ∥σ′′∥∞, ∥σ′′′∥∞ ≤ K, (ii)
the weights have bounded norm ∥a∥ + ∥U∥ ≤ K, and (iii) the data points have bounded norm maxi ∥xi∥ ≤ K.
Then there is a constant K ′ depending only K such that

Lip(Dh) ≤ K ′.

Proof. See Appendix C.

Note that our bounds hold at any finite width of the neural network, because we have taken initialization
uniformly bounded in the interval [−1/

√
m, 1/

√
m]. Since the assumptions of Theorem 1.2 are met, we obtain

the following corollary for the lazy training dynamics of the 2-layer mean-field network.
Corollary 2.2 (Lazy training of 2-layer mean-field network). Suppose that the conditions of Lemma 2.1, and
also that the labels are bounded in norm ∥y∥ ≤

√
nK. Then there are constants c, C > 0 depending only on

K such that for any time 0 ≤ T ≤ cα2,

∥αh(w(T )) − αh̄(w̄(T ))∥ ≤ C min(T/α, 1) .

Notice that training in the NTK parametrization corresponds to training the model
√

mfw, where fw is the
network in the mean-field parametrization. This amounts to taking the lazy training parameter α =

√
m in

the mean-field setting. Therefore, under the NTK parametrization with width m, the bound in Corollary 2.2
shows that the NTK approximation is valid until training time O(m) and the error bound is O(T/

√
m).

3 Proof ideas

3.1 Proof ideas for Theorem 1.2

Proof of Chizat et al. (2019) In order to give intuition for our proof, we first explain the idea behind
the proof in Chizat et al. (2019). Define residuals r(t), r̄(t) ∈ F under training the original rescaled model
and the linearized rescaled model as r(t) = y∗ − αh(w(t)) and r̄(t) = y∗ − αh̄(w̄(t)). It is well known that
these evolve according to

dr

dt
= −Ktr and dr̄

dt
= −K0r̄ ,

for the time-dependent kernel Kt : F → F which is the linear operator given by Kt := Dh(w(t))Dh(w(t))⊤.
To compare these trajectories, Chizat et al. (2019) observes that, since K0 is p.s.d.,

1
2

d

dt
∥r − r̄∥2 = −⟨r − r̄, Ktr − K0r̄⟩ ≤ −⟨r − r̄, (Kt − K0)r⟩ ,
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which, dividing both sides by ∥r − r̄∥ and using that ∥r∥ ≤
√

R0 implies

d

dt
∥r − r̄∥ ≤ ∥Kt − K0∥∥r∥ ≤ 2Lip(h)Lip(Dh)∥w − w0∥

√
R0 . (7)

Using the Lipschitzness of the model, Chizat et al. (2019) furthermore proves that the weight change is
bounded by ∥w(t) − w0∥ ≤ t

√
R0Lip(h)/α. Plugging this into (7) yields the bound in Proposition 1.1,

∥αh(w(T )) − αh̄(w̄(T ))∥ = ∥r(T ) − r̄(T )∥ ≤ 2Lip(h)2Lip(Dh)R0α−1
∫ T

0
tdt

= T 2Lip(h)2Lip(Dh)R0/α .

First attempt: strengthening of the bound for long time horizons We show how to strengthen
this bound to hold for longer time horizons by using an improved bound on the movement of the weights.
Consider the following bound on the weight change.
Proposition 3.1 (Bound on weight change, implicit in proof of Theorem 2.2 in Chizat et al. (2019)).

∥w(T ) − w0∥ ≤
√

TR0/α and ∥w̄(T ) − w0∥ ≤
√

TR0/α . (8)

Proof of Proposition 3.1. By (a) Cauchy-Schwarz, and (b) the nonnegativity of the loss R,

∥w(T ) − w(0)∥ ≤
∫ T

0
∥dw

dt
∥dt

(a)
≤

√
T

∫ T

0
∥dw

dt
∥2dt =

√
− T

α2

∫ T

0

d

dt
R(αh(w(t)))dt

(b)
≤
√

TR0/α .

The bound for w̄ is analogous.

This bound (8) has the benefit of
√

t dependence (instead of linear t dependence), and also does not depend
on Lip(h). So if we plug it into (7), we obtain

∥αh(w(T )) − αh̄(w̄(T ))∥ ≤ 2Lip(h)Lip(Dh)R0α−1
∫ T

0

√
tdt

= 4
3T 3/2Lip(h)Lip(Dh)R0/α .

This improves over Proposition 1.1 for long time horizons since the time dependence scales as T 3/2 instead of
as T 2. However, it still depends on the Lipschitz constant Lip(h) of h, and it also falls short of the linear in
T dependence of Theorem 1.2.

Second attempt: new approach to prove Theorem 1.2 In order to avoid dependence on Lip(h) and
obtain a linear dependence in T , we develop a new approach. We cannot use (7), which was the core of
the proof in Chizat et al. (2019), since it depends on Lip(h). Furthermore, in order to achieve linear T
dependence using (7), we would need that ∥w − w0∥ = O(1) for a constant that does not depend on the time
horizon, which is not true unless the problem is well-conditioned.

In the full proof in Appendix A, we bound ∥r(T ) − r̄(T )∥ = ∥αh(w(T )) − αh̄(w̄(T ))∥, which requires working
with a product integral formulation of the dynamics of r to handle the time-varying kernels Kt (Dollard &
Friedman, 1984). The main technical innovation in the proof is Theorem A.8, which is a new, general bound
on the difference between product integrals.

To avoid the technical complications of the appendix, we provide some intuitions here by providing a proof of
a simplified theorem which does not imply the main result. We show:
Theorem 3.2 (Simplified variant of Theorem 1.2). Consider r′(t) ∈ F which is initialized as r′(0) = r(0)
and evolves as dr′

dt = −KT r′. Then,

∥r′(T ) − r̄(T )∥ ≤ min(3κ
√

R0,
√

8R0) . (9)
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It is at the final time t = T that the kernel Kt can differ the most from K0. So, intuitively, if we can prove in
Theorem 3.2 that r′(T ) and r̄(T ) are close, then the same should be true for r(T ) and r̄(T ) as in Theorem 1.2.
For convenience, define the operators

A = Dh(w0)⊤ and B = Dh(w(T ))⊤ − Dh(w0)⊤ .

Since the kernels do not vary in time, the closed-form solution is

r′(t) = e−(A+B)⊤(A+B)tr(0) and r̄(t) = e−A⊤Atr(0)

We prove that the time evolution operators for r′ and r̄ are close in operator norm.

Lemma 3.3. For any t ≥ 0, we have ∥e−(A+B)⊤(A+B)t − e−A⊤At∥ ≤ 2∥B∥
√

t.

Proof of Lemma 3.3. Define Z(ζ) = −(A + ζB)⊤(A + ζB)t. By the fundamental theorem of calculus

∥e−(A+B)⊤(A+B)t − e−A⊤At∥ = ∥eZ(1) − eZ(0)∥ = ∥
∫ 1

0

d

dζ
eZ(ζ)dζ∥ ≤ sup

ζ∈[0,1]
∥ d

dζ
eZ(ζ)∥.

Using the integral representation of the exponential map (see, e.g., Theorem 1.5.3 of (Dollard & Friedman,
1984)),

∥deZ(ζ)

dζ
∥ = ∥

∫ 1

0
e(1−τ)Z(ζ)( d

dζ
Z(ζ))eτZ(ζ)dτ∥

= ∥t

∫ 1

0
e(1−τ)Z(ζ)(A⊤B + B⊤A + 2ζB⊤B)eτZ(ζ)dτ∥

≤ ∥t

∫ 1

0
e(1−τ)Z(ζ)(A + ζB)⊤BeτZ(ζ)dτ∥︸ ︷︷ ︸

(Term 1)

+ ∥t

∫ 1

0
e(1−τ)Z(ζ)B⊤(A + ζB)eτZ(ζ)dτ∥︸ ︷︷ ︸

(Term 2)

.

By symmetry under transposing and reversing time, (Term 1) = (Term 2), so it suffices to bound the first
term. Since ∥eτZ(ζ)∥ ≤ 1,

(Term 1) ≤ t

∫ 1

0
∥e(1−τ)Z(ζ)(A + ζB)⊤∥∥B∥∥eτZ(ζ)∥dτ

≤ t∥B∥
∫ 1

0
∥e(1−τ)Z(ζ)(A + ζB)⊤∥dτ

= t∥B∥
∫ 1

0

√
∥e(1−τ)Z(ζ)(A + ζB)⊤(A + ζB)e(1−τ)Z(ζ)∥dτ

=
√

t∥B∥
∫ 1

0

√
∥e(1−τ)Z(ζ)Z(ζ)e(1−τ)Z(ζ)∥dτ

≤
√

t∥B∥
∫ 1

0
sup
λ≥0

√
λe−2(1−τ)λdτ

=
√

t∥B∥
∫ 1

0

√
1/(2e(1 − τ))dτ

=
√

2t/e∥B∥ .

where in the third-to-last line we use the Courant-Fischer-Weyl theorem and the fact that Z(ζ) is negative
semidefinite. Combining these bounds ∥e−(A+B)⊤(A+B)t − e−A⊤At∥ ≤ 2

√
2t/e∥B∥ ≤ 2∥B∥

√
t.
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Finally, let us combine Lemma 3.3 with the weight-change bound in Proposition 3.1 to prove Theorem 3.2.
Notice that the weight-change bound in Proposition 3.1 implies

∥B∥ ≤ Lip(Dh)∥w(T ) − w0∥ ≤ Lip(Dh)
√

TR0/α .

So Lemma 3.3 implies

∥r′(T ) − r̄(T )∥ ≤ 2Lip(Dh)T
√

R0α−1∥r(0)∥ = 2κ∥r(0)∥.

Combining this with ∥r′(T ) − r̄(T )∥ ≤ ∥r′(T )∥ + ∥r̄(T )∥ ≤ 2∥r(0)∥ = 2
√

2R0 implies (9). Thus, we have
shown Theorem 3.2, which is the result of Theorem 1.2 if we replace r by r′. The actual proof of the theorem
handles the time-varying kernel Kt, and is in Appendix A.

3.2 Proof ideas for Theorem 1.3

The converse in Theorem 1.3 is achieved in the simple case where h(w) = aw + 1
2 bw2 for a = 1√

T
and

b = Lip(Dh), and w0 = 0 and R(y) = 1
2 (y −

√
2R0)2, as we show in Appendix B by direct calculation.

4 Discussion

A limitation of our result is that it applies only to the gradient flow, which corresponds to SGD with
infinitesimally small step size. However, larger step sizes are beneficial for generalization in practice (see, e.g.,
Li et al. (2021); Andriushchenko et al. (2022)), so it would be interesting to understand the validity of the
NTK approximation in that setting. Another limitation is that our result applies only to the square loss, and
not to other popular losses such as the cross-entropy loss. Indeed, the known bounds in the setting of general
losses require either a “well-conditioning” assumption, or taking α exponential in the training time T (Chizat
et al., 2019). Can one prove bounds of analogous to Theorem 1.2 for more general losses, with α depending
polynomially on T , and without conditioning assumptions?

A natural question raised by our bounds in Theorems 1.2 and 1.3 is: how do the dynamics behave just outside
the regime where the NTK approximation is valid? For models h where Lip(h) and Lip(Dh) are bounded by
a constant, can we understand the dynamics in the regime where T ≥ Cα for some large constant C and
α ≫ C, at the edge of the lazy training regime?
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A Proof of Theorem 1.2

A.1 Notations

We let R0 := R(αh(w0)) denote the loss at initialization. We define the residuals r(t), r̄(t) ∈ F under training
the original model and the linearized model as

r(t) = y∗ − αh(w(t)), and r̄(t) = y∗ − αh̄(w̄(t)).

Since the evolution of w and w̄ is given by the gradient flow in (1) and (3), the residuals evolve as follows.
We write Dh⊤ =

(
dh
dw

)⊤ to denote the adjoint of Dh = dh
dw .

dr

dt
= dr

dw

dw

dt
= −αDh(w)(−∇Fα(w)) = αD(w)( 1

α
Dh(w)⊤∇R(αh(w))) = −Dh(w)Dh(w)⊤r ,

since ∇R(αh(w)) = −(y∗ − αh(w)) = −r. An analogous result can be derived for the residual r̄ under the
linearized dynamics:

dr̄

dt
= −Dh̄(w̄)Dh̄(w̄)⊤r̄.

For any time t ≥ 0, define the kernel Kt : F → F as

Kt := Dh(w(t))Dh(w(t))⊤ .

Since K0 = Dh(w(0))Dh(w(0))⊤ = Dh̄(w̄(t))Dh̄(w̄(t))⊤, we can write the dynamics in compact form:

dr

dt
= −Ktr and dr̄

dt
= −K0r̄ . (10)

A.2 Proof overview

Our proof of Theorem 1.2 is outlined in the flowchart in Figure 1. First, we use Lemma A.1 to argue that
the change in the weights is bounded above during training. This implies several basic facts about the
continuity and boundedness of the kernel Kt over time, which are written as Lemmas A.2, A.3, A.4 A.5.
These lemmas allow us to write the dynamics of r and r̄ using product integrals Dollard & Friedman (1984)
in Lemma A.6. Product integrals are a standard tool in differential equations and quantum mechanics,
but known results on product integrals do not suffice to prove our theorem. Thus, in Theorem A.8, we
prove a new operator-norm bound between differences of product integrals. Theorem A.8 implies our main
Theorem 1.2 when we specialize to the case of gradient-flow training of a model, and combine it with the
weight-change bound from Lemma A.1. The bulk of the proof is dedicated to showing Theorem A.8. The
proof is an interpolation argument, where we interpolate between the two product integrals being compared,
and show that the operator norm of the derivative of the interpolation path is bounded. In order to show
this, we require several new technical bounds – most notably Claim 6, which shows that for any matrices
X, Y ∈ Rn×d and any t ≥ 0 we have

∥e−(X+Y )(X+Y )⊤t(X + Y ) − e−XX⊤tX∥ ≤ 3∥Y ∥ .
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Theorem 1.2
(NTK approximation

error bound)

Theorem A.8
(Bound on difference

between product integrals)

Lemma A.6
(Product integral
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Finite-dimensional case of
Theorem A.8

(Bound on difference
between product integrals)

Lemmas A.1, A.2, A.3, A.4, A.5
(Weight change bounded)

(Weights in ball around init)
(Dh − Dh̄ bounded)

(Kt bounded)
(t 7→ Kt continuous)

Lemma A.9
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Claim 2
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Claim 4
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integral with exponential)

Claim 6
(Telescoping argument,
asymmetric matrices)

Claim 5
(Telescoping argument,

symmetric matrices)

Figure 1: Proof structure.
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A.3 Basic facts about boundedness and continuity of the kernel

We begin with a series of simple propositions. Recall Proposition 3.1, which we restate below with a slight
strengthening in (11) which will be needed later on.
Lemma A.1 (Restatement of Proposition 3.1). For any time t,

∥w(t) − w0∥ ≤
√

tR0/α and ∥w̄(t) − w0∥ ≤
√

tR0/α .

and furthermore ∫ t

0
∥dw

dτ
∥dτ ≤

√
tR0/α and

∫ t

0
∥dw̄

dτ
∥dτ ≤

√
tR0/α . (11)

Proof. The statement (11) is also implied by the proof of Proposition 3.1 in the main text.

The first implication is that the weights w(t) stay within the ball of radius ρ around w0, during the time-span
that we consider.
Lemma A.2. For any time 0 ≤ t ≤ T , we have ∥w(t) − w0∥ ≤ ρ.

Proof. Immediate from Lemma A.1 and the fact that T ≤ ρ2α2/R0.

This allows to use the bounds Lip(h) and Lip(Dh) on the Lipschitz constants of h and Dh. Specifically, the
kernels Kt and K0 stay close during training, in the sense that the difference between Dh and Dh̄ during
training is bounded.
Lemma A.3. For any time 0 ≤ t ≤ T , we have

∥Dh(w(t)) − Dh̄(w̄(t))∥ ≤ Lip(Dh)
√

tR0/α

Proof. Since (a) h̄ is the linearization of h at w0, and (b) ∥w(t) − w0∥ ≤ min(ρ,
√

tR0/α) by Lemma A.2
and Lemma A.1,

∥Dh(w(t)) − Dh̄(w̄(t))∥ (a)= ∥Dh(w(t)) − Dh(w0)∥
(b)
≤ Lip(Dh)

√
tR0/α .

And therefore the kernel Kt is bounded at all times 0 ≤ t ≤ T in operator norm.
Lemma A.4. For any time 0 ≤ t ≤ T , we have ∥Kt∥ ≤ 3∥Dh(w(0))∥2 + 2Lip(Dh)tR0/α2.

Proof. By triangle inequality and Lemma A.3,

∥Kt − K0∥ = ∥Dh(w(t))Dh(w(t))⊤ − Dh(w(0))Dh(w(0))⊤∥
≤ ∥Dh(w(t))∥2 + ∥Dh(w(0))∥2

≤ (∥Dh(w(t)) − Dh(w(0))∥ + ∥Dh(w(0))∥)2 + ∥Dh(w(0))∥2

≤ 3∥Dh(w(0))∥2 + 2Lip(Dh)tR0/α2 .

And finally we note that the kernel evolves continously in time.
Lemma A.5. The map t 7→ Kt is continuous (in the operator norm topology) in the interval [0, T ].

Proof. First, t 7→ w(t) is continuous in time, since it solves the gradient flow. Second, we know that w(t) is
in the ball of radius ρ around w0 by Lemma A.2, and in this ball the map w 7→ Dh(w) is continuous because
Lip(Dh) < ∞. Finally, Dh 7→ DhDh⊤ is continuous.
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A.4 Product integral formulation of dynamics

Now we can present an equivalent formulation of the training dynamics (10) in terms of product integration.
For any 0 ≤ x ≤ y ≤ T , let P (y, x) : Rp → F solve the operator integral equation

P (y, x) = I −
∫ y

x

KtP (t, x)dt . (12)

A solution P (y, x) is guaranteed to exist and to be unique:
Lemma A.6. The unique solution to the integral equation (12) is given as follows. For any 0 ≤ x ≤ y ≤ T
define sm,j = (y − x)(j/m) + x and δ = (y − x)/m, and let P (y, x) be the product integral

P (y, x) :=
y∏
x

e−Ksds := lim
m→∞

m∏
j=1

e−δKsj = lim
m→∞

e−δKsm e−δKsm−1 . . . e−δKs2 e−δKs1 .

Proof. Existence, uniqueness, and the expression as an infinite product are guaranteed by Theorems 3.4.1,
3.4.2, and 3.5.1 of Dollard & Friedman (1984), since t 7→ Kt lies in L1

s(0, T ), which is the space of “strongly
integrable” functions on [0, T ] defined in Definition 3.3.1 of Dollard & Friedman (1984). This fact is guaranteed
by the separability of F and the continuity and boundedness of t 7→ Kt (Lemmas A.4 and A.5).

The operators P (y, x) are the time-evolution operators corresponding to the differential equation (10) for the
residual error rt. Namely, for any time 0 ≤ t ≤ T ,

rt = P (t, 0)r0 .

On the other hand, the solution to the linearized dynamics (10) is given by

r̄t = e−K0tr0 ,

since e−K0t is the time-evolution operator when the kernel does not evolve with time.

A.5 Error bound between product integrals

To prove Theorem 1.2, it suffices to bound ∥P (t, 0) − e−K0t∥, the difference of the time-evolution operators
under the full dynamics versus the linearized dynamics. We will do this via a general theorem. To state it,
we must define the total variation norm of a time-indexed sequence of operators:
Definition A.7. Let {Ct}t∈[x,y] be a sequence of time-bounded operators Ct : Rp → F so that t 7→ Ct is
continuous in the interval [x, y]. Then the total variation norm of {Ct}t∈[x,y] is

V({Ct}t∈[x,y]) = sup
P ∈P

nP −1∑
i=1

∥Cti
− Cti−1∥,

where the supremum is taken over partitions P = {P = {x = t1 ≤ t2 ≤ · · · ≤ tnP −1 ≤ tnP
= y}} of the

interval [x, y].

We may now state the general result.
Theorem A.8. Let F be a separable Hilbert space, and let {At}t∈[0,T ], {Bt}t∈[0,T ] be time-indexed sequences
of bounded operators At : Rp → F and Bt : Rp → F such that t 7→ At and t 7→ Bt are continuous in [0, T ].
Then,

∥
T∏
0

e−AsA⊤
s ds −

T∏
0

e−BsB⊤
s ds∥ ≤ ( sup

t∈[0,T ]
∥At − Bt∥)(2

√
T + 3T · V({At − Bt}t∈[0,T ])) .

If we can establish Theorem A.8, then we may prove Theorem 1.2 as follows.
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Proof of Theorem 1.2. for each t ≥ 0 we choose the linear operators At, Bt : Rp → F by At = Dh(w(t)) and
Bt = Dh(w(0)) so that AtA

⊤
t = Kt and BtB

⊤
t = K0. We know that At, Bt are bounded by Lemma A.4,

and that t 7→ At is continuous by Lemma A.5. (Also t 7→ Bt is trivially continuous). So we may apply
Theorem A.8 to bound the difference in the residuals.

We first bound the total variation norm of {At − Bt}t∈[0,T ], By (a) the fact from Lemma A.2 that w(t) is in
a ball of radius at most ρ around w0 where w 7→ Dh(w) is Lip(Dh)-Lipschitz; (b) the fact that t 7→ w(t) is
differentiable, since it solves a gradient flow; and (c) Lemma A.1,

V({At − Bt}t∈[0,T ]) = sup
P ∈P

nP −1∑
i=1

∥Dh(w(ti+1)) − Dh(w(0)) − Dh(w(ti)) + Dh(w(0))∥

= sup
P ∈P

nP −1∑
i=1

∥Dh(w(ti+1)) − Dh(w(ti))∥

(a)
≤ Lip(Dh) sup

P ∈P

nP −1∑
i=1

∥w(ti+1) − w(ti)∥

(b)= Lip(Dh)
∫ T

0
∥dw

dt
∥dt

(c)
≤ Lip(Dh)

√
TR0/α

When we plug the above expression into Theorem A.8, along with the bound ∥At − Bt∥ ≤ Lip(Dh)
√

tR0/α
from Lemma A.3, we obtain:

∥rT − r̄T ∥ = ∥(
T∏

s=0
e−Ksds −

T∏
s=0

e−K0ds)r0∥

≤ (Lip(Dh)
√

TR0/α)(2
√

T + 3Lip(Dh)T 3/2
√

R0/α)
√

2R0

= (2κ + 3κ2)
√

2R0,

where κ = T
α Lip(Dh)

√
R0.

Also note that

∥rT − r̄T ∥ ≤ ∥rT ∥ + ∥r̄T ∥ =
√

2R(αh(w(T ))) +
√

2R(αh̄(w̄(T ))) ≤ 2
√

2R0,

since the gradient flow does not increase the risk. So

∥rT − r̄T ∥ ≤ min(2κ + 3κ2, 2)
√

2R0 ≤ 6κ
√

R0 .

It remains only to prove Theorem A.8.

A.6 Reduction to the finite-dimensional case

We first show that in order to prove Theorem A.8, it suffices to consider the case where F is a finite-dimensional
Hilbert space. The argument is standard, and uses the fact that F has a countable orthonormal basis.
Lemma A.9. Theorem A.8 is true for general separable Hilbert spaces F if it is true whenever F is
finite-dimensional.

Proof. Suppose that F is a separable Hilbert space and At, Bt : Rp → F satisfy the hypotheses of Theorem A.8.
Let {fi}i∈N be a countable orthonormal basis for F , which is guaranteed by separability of F . For any n, let
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Pn : F → F be the linear projection operator defined by

Pn(fi) =
{

fi, 1 ≤ i ≤ n

0, otherwise
.

By (a) Duhamel’s formula in Theorem 3.5.8 of Dollard & Friedman (1984), (b) the fact that ∥e−AsA⊤
s ∥ ≤ 1

and ∥e−PnAsA⊤
s P⊤

n ∥ ≤ 1 because AsA⊤
s and PnAsA⊤

s P⊤
n are positive semidefinite.

∥
T∏
0

e−AsA⊤
s ds −

T∏
0

e−PnAsA⊤
s P⊤

n ds∥

(a)= ∥
∫ T

0

(
T∏
τ

e−AsA⊤
s ds

)
(Aτ A⊤

τ − PnAτ A⊤
τ P⊤

n )
(

τ∏
0

e−PnAsA⊤
s P⊤

n ds

)
dτ∥

≤
∫ T

0
∥

T∏
τ

e−AsA⊤
s ds∥∥Aτ A⊤

τ − PnAτ A⊤
τ P⊤

n ∥∥
τ∏
0

e−PnAsA⊤
s P⊤

n ds∥dτ

(b)
≤
∫ T

0
∥Aτ A⊤

τ − PnAτ A⊤
τ P⊤

n ∥dτ (13)

We have chosen Pn so that for any bounded linear operator M : F → F , we have limn→∞ PnMPn = M .
Since τ 7→ Aτ A⊤

τ is continuous in τ , and Aτ is bounded for each τ , the expression in (13) converges to 0 as
n → ∞. By triangle inequality, we conclude that

∥
T∏
0

e−AsA⊤
s ds −

T∏
0

e−BsB⊤
s ds∥ ≤ lim sup

n→∞
∥

T∏
0

e−PnAsA⊤
s P⊤

n ds −
T∏
0

e−PnBsB⊤
s P⊤

n ds∥ .

Notice that PnAt and PnBt are bounded maps from Rp to span{f1, . . . , fn}, and t 7→ PnAt and t 7→ PnBt

are continuous and bounded. So using the theorem in the case where F is finite-dimensional, the right-hand
side can be bounded by

lim sup
n→∞

∥
T∏
0

e−PnAsA⊤
s P⊤

n ds −
T∏
0

e−PnBsB⊤
s P⊤

n ds∥

≤ lim sup
n→∞

( sup
t∈[0,T ]

∥PnAt − PnBt∥)(2
√

T + 3T · V({PnAt − PnBt}t∈[0,T ])dt)

= ( sup
t∈[0,T ]

∥At − Bt∥)(2
√

T + 3T · V({At − Bt}t∈[0,T ])dt) .

A.7 Bound for the finite-dimensional case

We conclude by proving Theorem A.8 in the finite-dimensional case, where we write At, Bt ∈ Rn×d as
time-indexed matrices. In order to prove a bound, we will interpolate between the dynamics we wish to
compare. Let

Ct = Bt − At ∈ Rn×d

For any ζ ∈ [0, 1] and t ∈ [0, T ], we define the kernel

Kt,ζ = (At + ζCt)(At + ζCt)⊤ ∈ Rn×n.

This interpolates between the kernels of interest, since on the one hand, Kt,0 = AtA
⊤
t and on the other

Kt,1 = BtB
⊤
t . For any x, y ∈ [0, T ], let

P (y, x; ζ) =
y∏
x

e−Kt,ζdt ∈ Rn×n.
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The derivative ∂
∂ζ P (y, x; ζ) exists by Theorem 1.5.3 of Dollard & Friedman (1984), since (i) Kt,ζ is continuous

in t for each fixed ζ, (ii) Kt,ζ is differentiable in ζ in the L1 sense4, and (iii) has a partial derivative ∂Kt,ζ

∂ζ

that is integrable in t. The formula for ∂
∂ζ P (y, x; ζ) is given by the following formula, which generalizes the

integral representation of the exponential map:5

∂

∂ζ
P (y, x; ζ) = −

∫ y

x

P (y, t; ζ)∂Kt,ζ

∂ζ
P (t, x; ζ)dt (14)

Our main lemma is:
Lemma A.10. For all ζ ∈ [0, 1], we have the bound

∥∂P (T, 0; ζ)
∂ζ

∥ ≤ ( sup
t∈[0,T ]

∥Ct∥)(2
√

T + 3T · V({Ct}t∈[0,T ])) .

This lemma suffices to prove Theorem A.8.

Proof of Theorem A.8. Using the fundamental theorem of calculus,

∥
T∏
0

e−AtA⊤
t dt −

T∏
0

e−BtB⊤
t dt∥ = ∥P (T, 0; 1) − P (T, 0; 0)∥ ≤

∫ 1

0
∥∂P (T, 0; ζ)

∂ζ
∥dζ,

which combined with Lemma A.10 proves Theorem A.8.

A.8 Proof of Lemma A.10

By a direct calculation,
∂Kt,ζ

∂ζ
= (At + ζCt)C⊤

t + Ct(At + ζCt)⊤,

so, by (14),

∂

∂ζ
P (T, 0; ζ) = −

∫ T

0
P (T, t; ζ)((At + ζCt)C⊤

t + Ct(At + ζCt)⊤)P (t, 0; ζ)dt

= −
∫ T

0
P (T, t; ζ)(At + ζCt)C⊤

t P (t, 0; ζ)dt︸ ︷︷ ︸
M1

−
∫ T

0
P (T, t; ζ)Ct(At + ζCt)⊤P (t, 0; ζ)dt︸ ︷︷ ︸

M2

.

The arguments are similar for bounding M1 and M2, so we only bound M1. We will need two technical
bounds, whose proofs are deferred to Section A.9.
Claim 1. For any 0 ≤ t ≤ T , we have ∥P (t, 0; ζ)∥ ≤ 1.
Claim 2. For any 0 ≤ t ≤ T , we have ∥P (T, t; ζ)(At + ζCt)∥ ≤ 1

2
√

T −t
+ 3V({Cs}s∈[t,T ]).

Using (a) Claim 1, and (b) Claim 2,

∥M1∥
(a)
≤ ( sup

t∈[0,T ]
∥Ct∥)

∫ T

0
∥P (T, t; ζ)(At + ζCt)∥dt (15)

(b)
≤ ( sup

t∈[0,T ]
∥Ct∥)

(∫ T

0

1
2
√

T − t
+ 3V({Cs}s∈[t,T ])dt

)
(16)

= ( sup
t∈[0,T ]

∥Ct∥)(
√

T + 3
∫ T

0
V({Cs}s∈[t,T ])dt) . (17)

4For any ζ ∈ [0, 1], limζ′→ζ

∫ T

0 ∥
Kt,ζ′ −Kt,ζ

ζ′−ζ
− ∂Kt,ζ

∂ζ
∥dt = 0, since the matrices At, Bt are uniformly bounded.

5The proof is a consequence of Duhamel’s formula. This a tool used in a variety of contexts, including perturbative analysis
of path integrals in quantum mechanics Dollard & Friedman (1984).
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Lemma A.10 is proved by noting that, symmetrically,

∥M2∥ ≤ ( sup
t∈[0,T ]

∥Ct∥)(
√

T + 3
∫ T

0
V({Cs}s∈[0,t])dt) ,

and, for any t ∈ [0, T ],

V({Cs}s∈[0,t]) + V({Cs}s∈[t,T ]) = V({Cs}s∈[0,T ]) .

A.9 Deferred proofs of Claims 1 and 2

Claim 1. For any 0 ≤ t ≤ T , we have ∥P (t, 0; ζ)∥ ≤ 1.

Proof. This follows from the definition of the product integral as an infinite product, and the fact that each
term e−δKti,ζ in the product has norm at most 1 because Kti,ζ is positive semidefinite.

In order to prove Claim 2, we need two more claims:
Claim 3. For any X ∈ Rn×d and t ≥ 0,

∥e−XX⊤tX∥ ≤ 1
2
√

t

Proof. Since XX⊤ is positive semidefinite,

∥e−XX⊤
X∥ =

√
∥e−XX⊤tXX⊤e−XX⊤t∥ ≤ sup

λ≥0

√
e−λtλe−λt = sup

λ≥0
e−λ

√
λ/t ≤ 1

2
√

t
.

Claim 4. For any time-indexed sequence of matrices (Xt)t∈[0,T ] in Rn×d such that t 7→ Xt is continuous in
[0, T ], and any 0 ≤ a ≤ b ≤ T ,

∥e−XbX⊤
b (b−a)Xb −

(
b∏
a

e−XsX⊤
s ds

)
Xa∥ ≤ 3V({Xs}s∈[a,b])

This latter claim shows that we can approximate the product integral with an exponential. The proof is
involved, and is provided in Section A.10. Assuming the previous two claims, we may prove Claim 2.
Claim 2. For any 0 ≤ t ≤ T , we have ∥P (T, t; ζ)(At + ζCt)∥ ≤ 1

2
√

T −t
+ 3V({Cs}s∈[t,T ]).

Proof. By Claim 3, since KT,ζ = (AT + ζCT )(AT + ζCT )⊤,

∥e−KT,ζ(T −t)(AT + ζCT )∥ ≤ 1
2
√

T − t
.

By the triangle inequality, it remains to prove

∥e−KT,ζ(T −t)(AT + ζCT ) − P (T, t; ζ)(At + ζCt)⊤∥ ≤ 3V({Cs}s∈[t,T ]),

and this is implied by Claim 4, defining Xt = At + ζCt and a = t, b = T .
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A.10 Deferred proof of Claim 4

The proof will be by interpolation, using the integral representation of the exponential map provided in (14),
similarly to the main body of the proof, but of course interpolating with respect to a different parameter. We
begin the following claim, which we will subsequently strengthen.
Claim 5. For any symmetric X, Y ∈ Rn×n and t ≥ 0,

∥e−(X+Y )2t(X + Y ) − e−X2tX∥ ≤ 3∥Y ∥

Proof. For any τ ∈ [0, 1], define X(τ) = X + τY , which interpolates between X and Y . Then by (a) the
derivative of the exponential map in (14), and (b) the fact that X ′(τ) = Y and ∥e−X2(τ)t/2∥ ≤ 1,

∥e−(X+Y )2t(X + Y ) − e−X2tX∥

= ∥
∫ 1

0

d

dτ

(
e−X2(τ)tX(τ)

)
dτ∥

= ∥
∫ 1

0

d

dτ

(
e−X2(τ)t/2X(τ)e−X2(τ)t/2

)
dτ∥

≤ sup
τ∈[0,1]

∥ d

dτ
e−X2(τ)t/2X(τ)e−X2(τ)t/2∥

(a)= sup
τ∈[0,1]

∥e−X2(τ)t/2X ′(τ)e−X2(τ)t/2

− (t/2)
∫ 1

0
e−(1−s)X2(τ)t/2(X ′(τ)X(τ) + X(τ)X ′(τ))e−sX2(τ)t/2X(τ)e−X2(τ)t/2ds

− (t/2)
∫ 1

0
e−X2(τ)t/2X(τ)e−(1−s)X2(τ)t/2(X ′(τ)X(τ) + X(τ)X ′(τ))e−sX2(τ)t/2ds∥

(b)
≤ sup

τ∈[0,1]
∥Y ∥ + ∥(t/2)

∫ 1

0
e−(1−s)X2(τ)t/2(Y X(τ) + X(τ)Y )e−sX2(τ)t/2X(τ)e−X2(τ)t/2ds∥︸ ︷︷ ︸

T1

+ ∥(t/2)
∫ 1

0
e−X2(τ)t/2X(τ)e−(1−s)X2(τ)t/2(Y X(τ) + X(τ)Y )e−sX2(τ)t/2ds∥︸ ︷︷ ︸

T2

,

and by (a) supλ≥0 λe−λ2t/2 = 1/
√

et, and (b) ∥e−M ∥ ≤ 1 if M is p.s.d.,

T1 ≤ (t/2)
∫ 1

0
∥e−(1−s)X2(τ)t/2(Y X(τ) + X(τ)Y )e−sX2(τ)t/2∥∥X(τ)e−X2(τ)t/2∥ds

(a)
≤ (t/2)

∫ 1

0
∥e−(1−s)X2(τ)t/2(Y X(τ) + X(τ)Y )e−sX2(τ)t/2∥ 1√

et
ds

≤
√

t

2
√

e

∫ 1

0
∥e−(1−s)X2(τ)t/2∥∥Y ∥∥X(τ)e−sX2(τ)t/2∥ + ∥e−(1−s)X2(τ)t/2X(τ)∥∥Y ∥∥e−sX2(τ)t/2∥ds

(a)
≤

√
t

2e

∫ 1

0
∥e−(1−s)X2(τ)t/2∥∥Y ∥ 1√

st
+ 1√

(1 − s)t
∥Y ∥∥e−sX2(τ)t/2∥ds

(b)
≤ ∥Y ∥

2e

∫ 1

0

1√
s

+ 1√
(1 − s)

ds

= ∥Y ∥
2e

(2
√

s − 2
√

1 − s)1
0

≤ ∥Y ∥.

Similarly, T2 ≤ ∥Y ∥.
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Claim 6. For any X, Y ∈ Rn×d (not necessarily symmetric) and t ≥ 0,

∥e−(X+Y )(X+Y )⊤t(X + Y ) − e−XX⊤tX∥ ≤ 3∥Y ∥ .

Proof. We will use Claim 5, combined with a general method for lifting facts from symmetric matrices to
asymmetric matrices (see, e.g., Tao (2011) for other similar arguments). Assume without loss of generality
that n = d, since otherwise we can pad with zeros. Define n̄ = 2n and

X̄ =
[

0 X⊤

X 0

]
∈ Rn̄×n̄ and Ȳ =

[
0 Y ⊤

Y 0

]
∈ Rn̄×n̄.

These are symmetric matrices by construction. Furthermore,

X̄2 =
[
X⊤X 0

0 XX⊤

]
and (X̄ + Ȳ )2 =

[
(X + Y )⊤(X + Y ) 0

0 (X + Y )(X + Y )⊤

]
.

Because of the block-diagonal structure of these matrices,

e−X̄2t =
[

e−X⊤Xt 0
0 e−XX⊤t

]
and e−(X̄+Ȳ )2t =

[
e−(X+Y )⊤(X+Y )t 0

0 e−(X+Y )(X+Y )⊤t

]
.

So

e−X̄2tX̄ =
[

0 e−X⊤XtX⊤

e−XX⊤tX 0

]
.

Similarly,

e−(X̄+Ȳ )2t(X̄ + Ȳ ) =
[

0 e−(X+Y )⊤(X+Y )t(X + Y )⊤

e−(X+Y )(X+Y )⊤t(X + Y ) 0

]
.

For any matrix M ∈ Rn×n, we have ∥M∥ = supv∈Sn−1 ∥Mv∥. So for any matrices M1, M2 ∈ Rn×n, we have∥∥∥∥[ 0 M1
M2 0

]∥∥∥∥ ≥ sup
v∈Sn−1

∥∥∥∥[ 0 M1
M2 0

] [
v
0

]∥∥∥∥ = sup
v∈Sn−1

∥M2v∥ = ∥M2∥.

This means that, using Claim 5,

∥e−(X+Y )(X+Y )⊤t(X + Y ) − e−XX⊤tX∥ ≤ ∥e−(X̄+Ȳ )2t(X̄ + Ȳ ) − eX̄2tX̄∥ ≤ 3∥Ȳ ∥ .

Finally, using the symmetry of Ȳ and the block-diagonal structure of Ȳ 2,

∥Ȳ ∥ = ∥Ȳ 2∥1/2 =
∥∥∥∥[Y ⊤Y 0

0 Y Y ⊤

]∥∥∥∥1/2

= max(∥Y ⊤Y ∥1/2, ∥Y Y ⊤∥1/2) = ∥Y ∥.

We conclude by using these results to prove Claim 4 with a telescoping argument.
Claim 4. For any time-indexed sequence of matrices (Xt)t∈[0,T ] in Rn×d such that t 7→ Xt is continuous in
[0, T ], and any 0 ≤ a ≤ b ≤ T ,

∥e−XbX⊤
b (b−a)Xb −

(
b∏
a

e−XsX⊤
s ds

)
Xa∥ ≤ 3V({Xs}s∈[a,b])
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Proof. We will do this by approximating the product integral by a finite product of m matrices, and taking
the limit m → ∞. For any m ≥ 0 and j ∈ {0, . . . , m}, and t ∈ [0, T ], let tm,j = (b − a)(j/m) + a, and define
the finite-product approximation to the product integral for any k ∈ {0, . . . , m}

Pm,k =

 m∏
j=k+1

Qm,j

Qk
m,k ,

where
Qm,j = e

−Xtm,j
X⊤

tm,j
(b−a)/m

.

Notice that for k = 0 we have

Pm,0 =

 m∏
j=1

e
−Xtm,j

X⊤
tm,j

(b−a)/m

 ,

and so by continuity of s 7→ Xs for s ∈ [0, T ] and boundedness of Xs, we know from Theorem 1.1 of Dollard
& Friedman (1984) that

lim
m→∞

Pm,0 =
b∏
a

e−XsX⊤
s ds .

This means that

∥e−XbX⊤
b (b−a)Xb −

(
b∏
a

e−XsX⊤
s ds

)
Xa∥ = ∥Pm,mXtm,m −

(
b∏
a

e−XsX⊤
s ds

)
Xa∥

= lim
m→∞

∥Pm,mXtm,m − Pm,0Xtm,0∥ .

Finally, telescoping and (a) using ∥Qm,j∥ ≤ 1 for all j, and (b) Claim 6,

∥Pm,mXtm,m
− Pm,1Xtm,1∥ ≤

m∑
k=1

∥Pm,kXtm,k
− Pm,k−1Xtm,k−1∥

=
m∑

k=1
∥

 m∏
j=k+1

Qm,j

 (Qk
m,kXtm,k

− Qm,k(Qm,k−1)k−1Xtm,k−1)∥

(a)
≤

m∑
k=1

∥(Qm,k)k−1Xtm,k
− (Qm,k−1)k−1Xtm,k−1∥

(b)
≤

m∑
k=1

3∥Xtm,k
− Xtm,k−1∥

≤ 3V({Xs}s∈[a,b]).

The lemma follows by taking m → ∞, since the bound is independent of m.

B Proof of Theorem 1.3

The converse bound in Theorem 1.2 is achieved in the simple case where h : R → R is given by h(w) =
aw + 1

2 bw2 for a = 1√
T

and b = Lip(Dh). We also let w0 = 0 and y∗ =
√

2R0 so that all conditions are
satisfied. The evolution of the residuals r(t) = y∗ − αh(w(t)) and r̄(t) = y∗ − αh̄(w̄(t)) is given by

dr

dt
= −Ktr and dr̄

dt
= −K0r̄,

where Kt = Dh(w(t))Dh(w(t))⊤ = (a + bw(t))2 and K0 = a2. Since r = y∗ − α(aw + b
2 w2), we can express

the evolution of the residuals r and r̄ as:
dr

dt
= −(a2 + 2b(y∗ − r)/α)r and dr̄

dt
= −a2r̄ . (18)
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Since b(y∗ − r)/α ≥ 0 at all times, we must have a2 + 2b(y∗ − r)/α ≥ a2. This means that at all times

r(t) ≤ r̄(t) = e−a2ty∗ .

So, at any time t ≥ T/2,

r(t) ≤ r(T/2) ≤ r̄(T/2) = e−(1/
√

T )2(T/2)y∗ = e−1/2y∗, .

By plugging this into (18), for times t ≥ T/2,

dr

dt
≤ −(a2 + 2Lip(Dh)(1 − e−1/2)

√
2R0/α)r ≤ −(a2 + 1.1κ/T )r.

So, at time T , assuming that κ ≤ 1 without loss of generality,

r(T ) ≤ r(T/2)e−(1/T +1.1κ/T )(T/2) = r(T/2)e−1/2−0.55κ ≤ y∗e−1e−0.55κ ≤ y∗e−1(1 − 0.4κ) .

So

|αh(w(T )) − αh̄(w̄(T ))| = |r(T ) − r̄(T )| ≥ |e−1y∗ − (1 − 0.4κ)e−1y∗| ≥ 0.4κe−1
√

2R0 ≥
√

R0/5.

C Deferred details from Section 2

The bound on Lip(Dh) for 2-layer networks is below.

Lemma C.1 (Bound on Lip(Dh) for mean-field 2-layer network). Suppose that there is a constant K such that
(i) the activation function σ is bounded and has bounded derivatives ∥σ∥∞, ∥σ′∥∞, ∥σ′′∥∞, ∥σ′′′∥∞ ≤ K, (ii)
the weights have bounded norm ∥a∥ + ∥U∥ ≤ K, and (iii) the data points have bounded norm maxi ∥xi∥ ≤ K.
Then there is a constant K ′ depending only K such that

Lip(Dh) ≤ K ′.

Proof. Let p = m + md be the number of parameters of the network. Then Dh ∈ Rn×p is

Dh = 1√
n

Dfw(x1)
...

Dfw(xn)

 .

So

Lip(Dh) ≤ max
i∈[n]

Lip(Dfw(xi)) .
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So for the 2-layer network,

Lip(Dh) ≤ max
i∈[n]

1
m

Lip(
[
σ(

√
m⟨u1, xi⟩) . . . σ(

√
m⟨um, xi⟩)

]
)

+ 1√
m

Lip(
[
a1σ′(

√
m⟨u1, xi⟩)x⊤

i . . . amσ′(
√

m⟨um, xi⟩)x⊤
i

]
)

= max
i∈[n]

1√
m

∥∥∥∥∥∥∥∥∥


σ′(

√
m⟨u1, xi⟩)x⊤

i 0 0 . . . 0
0 σ′(

√
m⟨u2, xi⟩)x⊤

i 0 . . . 0
...
0 . . . 0 σ′(

√
m⟨um, xi⟩)x⊤

i


∥∥∥∥∥∥∥∥∥

+ ∥xi∥√
m

Lip(
[
a1σ′(

√
m⟨u1, xi⟩) . . . amσ′(

√
m⟨um, xi⟩)

]
)

≤ ∥σ′∥∞∥xi∥√
m

+ ∥xi∥√
m

∥diag(
[
σ′(

√
m⟨u1, xi⟩) . . . σ′(

√
m⟨um, xi⟩)

]
)∥

+ ∥xi∥

∥∥∥∥∥∥∥
a1σ′′(

√
m⟨u1, xi⟩)x⊤

i 0 . . . 0
...

...
0 . . . 0 amσ′′(

√
m⟨um, xi⟩)x⊤

i


∥∥∥∥∥∥∥

≤ 2∥σ′∥∞∥xi∥√
m

+ ∥σ′′∥∞∥xi∥2∥a∥∞
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