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Abstract

We address the problem of identifiability of an
arbitrary conditional causal effect given both the
causal graph and a set of any observational and/or
interventional distributions of the form QrSs :“
P pS|dopV zSqq, where V denotes the set of all
observed variables and S Ď V . We call this prob-
lem conditional generalized identifiability (c-gID
in short) and prove the completeness of Pearl’s
do-calculus for the c-gID problem by providing
sound and complete algorithm for the c-gID prob-
lem. This work revisited the c-gID problem in Lee
et al. [2020], Correa et al. [2021] by adding ex-
plicitly the positivity assumption which is crucial
for identifiability. It extends the results of [Lee
et al., 2019, Kivva et al., 2022] on general iden-
tifiability (gID) which studied the problem for
unconditional causal effects and Shpitser and Pearl
[2006b] on identifiability of conditional causal ef-
fects given merely the observational distribution
P pVq as our algorithm generalizes the algorithms
proposed in [Kivva et al., 2022] and [Shpitser and
Pearl, 2006b].

1 INTRODUCTION

This paper addresses the problem of identification of a con-
ditional post-interventional distribution from the combina-
tion of observational and/or interventional distributions. For-
mally, the relationships between the variables of interest are
established by a directed acyclic graph (DAG) Pearl [1995].
Each node in the causal graph represents some random vari-
able that may simulate real-life measurements, and each di-
rected edge encodes a possible causal relationship between
the variables. In general, a subset of the nodes in DAG are
observed and others may be hidden. The hidden nodes could
result in spurious correlations between observed variables

and complicate the question of identifiability. On the other
hand, when all the variables in the system are observable
and the distribution over them is known then any conditional
causal effect is identifiable.

The question of identification of the causal effect has been
one of the central focus of research in causal inference lit-
erature. The classical setting of the problem asks whether
the causal effect Pxpyq1 is identifiable in a given graph
G from observational distribution P pVq (V is a set of all
observed nodes in the graph G). The problem was solved
in Shpitser and Pearl [2006a], Huang and Valtorta [2006]
and later Shpitser and Pearl [2006b] extended the result
by answering the question when a conditional causal ef-
fect Pxpy|zq is identifiable in a given graph G. The work
of Bareinboim and Pearl [2012], Lee et al. [2019], Kivva
et al. [2022] solved a generalization of the classical iden-
tifiability problem, namely identifiability of unconditional
causal effect Pxpyq from a specific mix of observational
and interventional distributions. It is noteworthy that all
aforementioned works proved that the rules of do-calculus
are sound and complete for the identification of the causal
effect in their settings. Furthermore, the work of Tikka et al.
[2021], Mokhtarian et al. [2022], Bareinboim and Pearl
[2014], Bareinboim and Tian [2015] considers the problem
of identifiability in a presence of additional information
to observational/interventional distributions and the causal
graph G. More specifically, Mokhtarian et al. [2022] consid-
ers the identifiability problem in the presence of additional
knowledge in the form of context-specific independence for
some variables. Tikka et al. [2021] assumes that they have
access to multiple incomplete data sources and Bareinboim
and Tian [2015] studies the identifiability problem under a
selection bias.

In this paper, we extend both the general identifiability (gID)
result of Kivva et al. [2022] and the conditional identifiabil-
ity result of Shpitser and Pearl [2006b]. More specifically,

1This notation indicates causal effect on y after intervention
dopX “ xq, That is, P py|dopX “ xqq shortened to Pxpyq.
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our work answers the question of identifiability of an ar-
bitrary conditional causal effect Pxpy|zq under the same
set of assumptions as in gID problem. We call this prob-
lem conditional general identifiability, for short c-gID. This
problem has been studied in Lee et al. [2020], Correa et al.
[2021]. The authors of Lee et al. [2020] generalizes the prob-
lem of c-gID by assuming that observable data is available
from multiple domains and Correa et al. [2021] considers
the c-gID problem as an identifiability problem of coun-
terfactual quantities. However, both of the aforementioned
works are based on causal models that violate the positivity
assumption (See Appendix B) which is crucial for identifi-
cation as it is discussed in Kivva et al. [2022]. Since they
did not discuss whether their proposed models can be modi-
fied such that the positivity assumption holds and it is not
straightforward whether such modifications exist, herein we
present an alternative proof for the c-gID problem including
its soundness and completeness. The causal models devel-
oped here for proving the completeness of our algorithm are
novel and satisfy the positivity assumption.

2 PRELIMINARIES

2.1 NOTATION AND DEFINITIONS

We denote random variables by capital letters and their re-
alization by their lower-case version. Similarly, a set of
random variables and their realizations are denoted by bold
capital and bold lower-case letters, respectively. For two
integers a ď b, we define ra : bs :“ ta, a ` 1, . . . , bu. For
any random variable X , we denote its domain set by XpXq

and for any set of random variables X, we denote by XpXq,
the Cartesian product of the domains of the variables in X.
Suppose that X and Y are arbitrary sets of random vari-
ables, then we say that realizations x and y are consistent, if
the values of X X Y in x and y are the same. Also, we use
XypXq to denote a set of realizations of X that are consis-
tent with y. Suppose that X1 Ď X and x to be a realization
of X. Then, we use xrX1s to denote a realization of X1 that
is consistent with x. When it is clear from the context, we
write x1 instead of xrX1s.

Causal Graph: Consider a directed graph G :“ pVYU,Eq

over node V Y U in which V and U denote the set of
observed and hidden variables, respectively and E Ď pV Y

Uq ˆ pV Y Uq denotes the set of directed edges. A causal
graph G is a directed acyclic2 graph (DAG). We say that
node X is a parent of another node Y (subsequently, Y is
a child of X) if and only if there exists a direct edge from
X to Y in G, e.g. pX,Y q P E. Similarly, X is said to be an
ancestor of Y (subsequently, Y is a descendant of X) if and
only if there is a directed path from X to Y in G. We denote
the set of parents, children, ancestors, and descendants of
X by PaGpXq, ChGpXq, AncGpXq,DeGpXq respectively.

2It contains no directed cycle.
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Figure 1: A semi-Markovian DAG over the set of observed
variable V “ tX1, X2, Y1, Y2u and the set of hidden vari-
ables U “ tU1, U2u.

We assume that X belongs to all the aforementioned sets.
Additionally, for a subset of nodes X, we define PaGpXq :“
Ť

XPX PaGpXq and analogously, define ChGpXq, AncGpXq

and DeGpXq.

A causal graph G is called a semi-Markovian, if any node
from U has exactly two children without any parents. Sup-
pose that G is a semi-Morkovain graph and X Ď V. In
this case, we use GrXs to denote the induced subgraph of
G over variables in X including all unobserved variables
that have both children in X. We also use pGrXs to denote
the dual graph of GrXs that is a mixed3 graph and it is con-
structed from GrXs by replacing unobserved variables and
their outgoing arrows with bidirected edges. By the abuse
of notation, we use GrXs and pGrXs interchangeably.

Definition 1 (c-component). C-components of a subset
X in G are the connected components in pGrXs after re-
moving all directed edges, i.e., nodes in each c-component
are connected via bidirected edges. X is called a single
c-component if X has only one c-component, i.e., pGrXs is a
connected graph after removing all directed edges.

For instance in Figure 1, c-components of tX1, X2, Y2u are
tX1, X2u and tY2u. In this DAG, tX1, X2, Y1u and tY2u

are each single c-components.

Definition 2 (c-forest). Let F be a subgraph of G over a set
of nodes X. The maximal subset of X with no children in
F is called the root set and denoted by R. F is a R-rooted
c-forest if X is a single c-component with root set R, and
all observable nodes in X have at most one child in F .

In Figure 1, GrtX1, X2, Y1us is a tY1, X2u-rooted c-forest.

Causal Model: A causal model M is defined over a set of
random variables V Y U via Structural Equation Model
(SEM) [Pearl, 2009] with a causal graph G. In a SEM
with a causal graph G, each variable X P V Y U is de-
termined by its parents and an exogenous variable ϵX , i.e.
X “ fXpPaGpXq, ϵXq. It is assumed that the set of exoge-
nous variables, tϵX |X P V Y Uu, are mutually indepen-
dent. If graph G is a semi-Markovian, then M is said to
be a semi-Markovian causal model. Because, the problem

3It contains both directed and bidirected edges.



of identifiability in a DAG is equivalent to a relative iden-
tifiability problem in a semi-Markovian DAG [Huang and
Valtorta, 2006], in this work, we only consider the problem
of identifiability in semi-Markovian models.

In a semi-Markovian causal model, by Markov property
[Pearl, 2009], the induced joint distribution can be factorized
as follows

PMpvq “
ÿ

u

ź

XPV

PMpx|PaGpXqq
ź

UPU

PMpuq,

where the summation is over latent variables in U. We use
MpGq to denote the set of causal models with graph G such
that for any M P MpGq and any realization v P XpVq,
PMpvq ą 0. In the remainder of this work, we assume
that all causal models belong to M. This is known as the
positivity assumption in the causality literature and as it is
discussed in Kivva et al. [2022], it is crucial for developing
sound identification algorithm.

In a causal model M, post-interventional distribution is
defined using do-operation. An intervention dopX “ xq

modifies the corresponding SEM by replacing the equation
of X “ fXpPaGpXq, ϵXq by X “ x. The conditional post-
interventional distribution of y given s after intervening on
dopX “ xq is denoted by P py|dopX “ xq, sq :“ Pxpy|sq.

Suppose that S “ S1 YS2, where S1 and S2 are two disjoint
subsets of observed variables V. We define Q-notations,
QrSsp¨q and QrS1|S2sp¨q as follows:

QrSspvq :“ Pvzspsq, (1)

QrS1|S2spvq :“ Pvzsps1|s2q, (2)

where s “ vrSs,vzs “ vrVzSs, s1 “ vrS1s, and s2 “

vrS2s. Note that QrVspvq “ P pV “ vq. By Markov prop-
erty and basic probabilistic manipulation, we have

QrSspvq “
ÿ

U

ź

SPS

P ps|PaGpSqq
ź

UPU

P puq (3)

QrS1|S2spvq “
QrSspvq

ř

v1PXvzs1 pVq QrSspv1q
(4)

Definition 3 (Blocked path). A path in G is a non-repeated
sequence of connected nodes. A path p in G is said to be
blocked by a set of nodes in Z if and only if

• p contains a chain X Ñ W Ñ Y or fork X Ð W Ñ Y ,
such that W P Z, or

• p contains a collider X Ñ W Ð Y (node W is called a
collider), such that Z X DeGpW q “ H.

Two disjoint sets of nodes X and Y are d-separated by Z in
G if any path between X and Y are blocked by Z and denote
it by pX KK Y|ZqG . Using d-separation, we introduce rules
of do-calculus [Pearl, 2009] as the main tools for causal
effect identification.

Z1 W1

X1 Y1

Z2

Figure 2: A semi-Markovian DAG over
V “ tX1, Y1, Z1, Z2,W1u

• Rule 1: Pxpy|z,wq “ Pxpy|wq if pZ KK Y|X,WqGX
.

• Rule 2: Px,zpy|wq “ Pxpy|z,wq if pZ KK

Y|X,WqGX,Z
.

• Rule 3: Px,zpy|wq “ Pxpy|wq if pZ KK

Y|X,WqGX,ZW
,

where GX,Y denotes an edge subgraph of G where all in-
coming arrows into X and all outgoing arrows from Y are
deleted and ZW :“ ZzAncGX

pWq.

2.2 CLASSICAL IDENTIFIABILITY (ID)

Classical identifiability problem refers to computing a causal
effect Pxpyq from a given joint distribution P pVq in a
causal graph G. This problem was solved independently by
Shpitser and Pearl [2006a] and Huang and Valtorta [2006].
Shpitser and Pearl [2006b] extended this result to identifia-
bility of a conditional causal effect, i.e., Pxpy|zq.

Definition 4 (conditional ID). Suppose X, Y, and Z are
three disjoint subsets of V. The causal effect Pxpy|zq is
said to be conditional ID in G if for any x P XpXq, y P

XpYq, and z P XpZq, PM
x py|zq is uniquely computable

from PMpVq in any causal model M P MpGq.

Knowing Pxpy, zq, it is straightforward to uniquely com-
pute Pxpy|zq from Pxpy|zq “ Pxpy, zq{

ř

Y1 Pxpy1, zq.
On the other hand, Tian [2004] showed that Pxpy|zq might
be identifiable in G even if Pxpy, zq is not identifiable. This
happens when the “non-identifiable parts” of Pxpy, zq in
the nominator cancel out with the non-identifiable parts of
Pxpzq in the denominator. Next example demonstrates such
a scenario.

Example: Consider the causal graph G as on Figure 2. As-
sume that one wants to compute the causal effect Pxpy|zq,
where X “ tX1u, Y “ tY1u and Z “ tZ1, Z2u. Then,

Px1
py1|z1, z2q “

Px1
py1, z1, z2q

Px1
pz1, z2q

.

where

Px1py1, z1, z2q “
ÿ

w1PXpW1q

Px1py1, w1, z1, z2q,



Table 1: Different types of identifiability problems.

Problem Target Input Solved
Causal effect identifiability (ID)

Shpitser and Pearl [2006a] Pxpyq G, P pVq ✓
Huang and Valtorta [2006]

Conditional causal effect identifiability (c-ID) Pxpy|zq G, P pVq ✓
Shpitser and Pearl [2006b]

z-identifiability (zID) Pxpyq G, P pVq, tPVzA1 pA1q|@A1 Ă Au ✓
Bareinboim and Pearl [2012]

g-identifiability (gID)
Lee et al. [2019], Kivva et al. [2022] Pxpyq G, tP pAi|dopVzAqqumi“0 ✓

Conditional general identifiability (c-gID) Pxpy|zq G, tP pAi|dopVzAqqumi“0 ✓our work
Lee et al. [2020], Correa et al. [2021]

Generalized identifiability Pxpy|zq G, tP pAi|dopBiq,Ciqumi“0 ?

and

Px1
pz1, z2q “

ÿ

w1PXpW1q

y1PXpY1q

Px1
py1, w1, z1, z2q.

In terms of Q-notation, we have

Px1
py1, z1, z2q “

ÿ

W1

QrY1,W1, Z1, Z2s,

Px1pz1, z2q “
ÿ

W1,Y1

QrY1,W1, Z1, Z2s.

Using results of Huang and Valtorta [2006], the above equa-
tions can be simplified as follows,

Px1py1, z1, z2q “QrZ1s
ÿ

W1

QrY1,W1, Z2s,

Px1
pz1, z2q “QrZ1s

ÿ

W1,Y1

QrY1,W1, Z2s.

Results of Huang and Valtorta [2006], Shpitser and Pearl
[2006a] imply that QrZ1s is not ID from G, however
QrY1,W1, Z2s is ID in G. Therefore, both causal effects
Pxpy, zq and Pxpzq are not ID in G, but clearly

Pxpy|zq “

ř

W1
QrY1,W1, Z2s

ř

W1,Y1
QrY1,W1, Z2s

is identifiable in G.

2.3 GENERALIZED IDENTIFIABILITY (GID)

In this problem, the goal is to identify a causal effect in a
given graph G from a set of observational and/or interven-
tional distributions instead of only observational distribution
P pVq. This problem, to the best of our knowledge, remains
open when the set of given distributions are arbitrary. In

the special case, when the set of given distributions are in
the form of Q-notations, the problem is called generalized
identifiability (gID) (See below for a formal definition) and
was solved by [Lee et al., 2019, Kivva et al., 2022]. See
Table 1 for a summary of solved and unsolved problems in
the causal identifiability context.

Definition 5 (gID). Suppose X and Y are two disjoint
subsets of V and A :“ tAiu

m
i“0 is a collection of subsets

of V, i.e., Ai Ď V for all i P r0 : ms. The causal effect
Pxpyq is said to be gID from pA,Gq if for any x P XpXq

and y P XpYq if PM
x pyq is uniquely computable from

tQMrAisu
m
i“0 in any causal model M P MpGq.

Note that the classical ID problem is a special case of the
gID problem when A “ tVu. More than a decade after
Shpitser and Pearl [2006b] proposed a sound and complete
algorithm for ID, Kivva et al. [2022] solved the gID problem
by showing that gID problem can be reduced to a series of
separated ID problems. Formally, they showed the following
result.

Theorem 1 (Kivva et al. [2022]). Suppose that S Ď V is a
single c-component in G. Then, QrSs is gID from pA,Gq if
and only if there exists A P A, such that S Ď A and QrSs

is identifiable from GrAs.

2.4 CONDITIONAL GENERALIZED
IDENTIFIABILITY (C-GID)

In this work, we address an extension of both conditional
ID and g-ID problem in which the goal is to identify a
conditional causal effect from a set of observational and/or
interventional distributions.

Definition 6. (c-gID) Suppose X, Y and Z are three dis-
joint subsets of V and A :“ tAiu

m
i“0 is a collection of

subsets of V, i.e., Ai Ď V for all i P r0 : ms. The causal



effect Pxpy|zq is said to be c-gID from pA,Gq if for any
x P XpXq, y P XpYq, and z P XpZq, PM

x py|zq is
uniquely computable from tQMrAisu

m
i“0 in any causal

model M P MpGq.

From this definition, it is clear that c-gID covers both con-
ditional ID and gID. Namely, when Z “ H, then c-gID
reduces to the gID problem, studied by Lee et al. [2019],
Kivva et al. [2022]. When A “ tVu, c-gID becomes the con-
ditional ID problem studied by Shpitser and Pearl [2006b].
Both Lee et al. [2020] and Correa et al. [2021] proposed al-
gorithms for identification problems that can also be used for
solving c-gID problem. However, the completeness of their
algorithms rely on causal models that violate the positivity
assumption. For more details see Appendix B. Additionally,
they miss discussions on whether this issue in their proofs
can be resolved.

Next we propose an alternative solution for the c-gID prob-
lem under the positivity assumption. The soundness and
completeness of our solution are based on novel techniques
that we believe they are important for further generalizations
of identifiability problems.

3 MAIN RESULT

The main idea presented in this work for solving the c-gID
problem is to construct an equivalent gID problem and then
use the results of [Lee et al., 2019, Kivva et al., 2022] to
solve the equivalent gID problem.

Suppose X,Y and Z are three disjoint subsets of V and A is
a collection of subsets of V. We are interested in identifying
Pxpy|zq from pG,Aq. To this end, we define W to be the
maximal subset of Z, such that Pxpy|zq “ Px,wpy|zzwq.
Shpitser and Pearl [2006b] proved that such a maximal set
is unique and it is given by

W “
ď

W 1PZ

␣

W 1| Pxpy|zq “ Px,w1 py|zztw1uq
(

. (5)

More precisely, they showed the following result.

Theorem 2 (Shpitser and Pearl [2006b]). For a given graph
G and any conditional effect Pxpy|zq, there exists a unique
maximal set W “ tW P Z|Pxpy|zq “ Px,wpy|zztwuqu

such that rule 2 of do-calculus applies to W in G for
Pxpy|zq.

In a special case when W “ Z, it is trivial that the equiv-
alent gID problem boils down to identifying Px,zpyq from
pG,Aq. In the next result, we present the form of an equiva-
lent gID problem for a general c-gID problem.

Theorem 3. Let W be the maximal subset of Z, such that
Pxpy|zq “ Px,wpy|zzwq. Then, Pxpy|zq is c-gID from
pA,Gq if and only if Px,wpy, zzwq is gID from pA,Gq.

Algorithm 1 c-gID

1: Function C-GID(X,Y,Z,A “ tAiu
m
i“0,G)

2: Output: True, if Pxpy|zq is c-gID from pA,Gq.
3: W Ð MaxBIpX,Y,Z,Gq

4: Return GIDpX Y W,Y Y pZzWq,A,Gq

1: Function MaxBI(X,Y,Z,G)
2: Output: set W
3: W Ð H

4: for Z in Z do
5: if pY KK Z|X,ZztZuqGX,ZztZu

then
6: W Ð W Y tZu

7: end if
8: end for
9: Return W

A sketch of the proof of this Theorem appears in Section 4.
This result extends the result of Shpitser and Pearl [2006b]
for conditional ID to c-gID. Furthermore, Theorem 3 allows
us to develop an algorithm for solving the c-gID problem.
Algorithm 1 summarizes the steps of the proposed algorithm.
The algorithm consists of two main steps:
1. Find the maximal set W Ď Z in G, such that Pxpy|zq “

Px,wpy|zzwq. For this part, we propose function MaxBI
presented in Algorithm 1 that is based on Equation (5).
2. Run any sound and complete gID algorithm (e.g., the
proposed algorithm by Kivva et al. [2022]) for checking the
gID of Px,wpy, zzwq from pA,Gq.

Theorem 4. Algorithm 1 is sound and complete.

Proof. The result immediately follows from Theorem 3
since the gID algorithm is sound and complete.

Corollary 1. Rules of do-calculus are sound and complete
for the c-gID problems.

Remark 1. Algorithm 1 is polynomial time in the input size.

In subroutine MaxBI, a conditional independence test is
performed for each variable in Z. Subsequently, the problem
is reduced to the gID problem, which can be solved in
polynomial number of steps by using any of the algorithms
proposed in Lee et al. [2019], Kivva et al. [2022].

4 PROOF OF THE THEOREM 3

In this section, we present the main steps of proof of Theo-
rem 3. Further details can be found in Appendix A. Before
going into the details and purely for simpler representa-
tion, we define the following notations, X1 :“ X Y W,
Y1 :“ Y, and Z1 :“ ZzW. Note that by the definition of
W and Theorem 2, we have Pxpy|zq “ Px1 py1|z1q.



The proof consists of two main parts: sufficiency and neces-
sity. In the sufficiency part, which is more straightforward,
we show that if Px1 py1, z1q is gID from pA,Gq, then Pxpy|zq

is c-gID. For the reverse, which is much more involved, we
use a proof by contradiction. That is we show if Px1 py1, z1q

is not gID from pA,Gq, then Pxpy|zq is also not c-gID.

Sufficiency: Suppose Px1 py1, z1q is gID from pA,Gq, then
the result follows immediately from the Bayes rule and the
fact that Px1 py1|z1q “ Pxpy|zq, i.e.,

Pxpy|zq “
Px1 py1, z1q

ř

y2PXpYq Px1 py2, z1q
. (6)

Necessity: Suppose that Px1 py1, z1q is not gID from pA,Gq.
To show the non-identifiability of Pxpy|zq “ Px1 py1|z1q

from pA,Gq, we construct two causal models M1 and M2

from MpGq, such that for each i P r0 : ms and any v P

XpVq,
QM1rAispvq “ QM2rAispvq,

but there exists a triple px1,y1, z1q P XpX1q ˆ XpY1q ˆ

XpZ1q, such that PM1

x1 py1|z1q ‰ PM2

x1 py1|z1q.

Huang and Valtorta [2006] showed that that Px1 py1, z1q can
be written as follows

Px1 py1, z1q “
ÿ

SzpY1YZ1q

QrSspvq,

where S :“ AncGrVzX1spY
1 Y Z1q and the marginaliza-

tion is over all variables in set SzpY1 Y Z1q. Suppose that
S1,S2, . . . ,Sn are the c-components of S in a graph GrSs.
It is known by Huang and Valtorta [2006] that

QrSspvq “

n
ź

i“1

QrSispvq.

Since Px1 py1, z1q is not gID from pA,Gq, using Proposition
4 and Theorem 1 in Kivva et al. [2022], we conclude that
there exists i P r1 : ns, such that for any j P r0 : ms, the
causal effect QrSis is not ID from GrAjs.

Analogously, let S1 :“ AncGrVzX1spZ
1q and assume

S1
1,S

1
2, . . . ,S

1
n1 are the c-components of S1 in graph GrS1s.

Then, we have

Px1 pz1q “
ÿ

S1zZ1

n1
ź

i“1

QrS1
ispvq. (7)

Consequently, we obtain the following expression

Px1 py1|z1q “

ř

SzpY1YZ1q

śn
i“1 QrSispvq

ř

S1zZ1

śn1

i“1 QrS1
ispvq

.

Note that S1 Ď S and for any i P r1 : ns and j P r1 : n1s

either S1
j and Si are disjoint or S1

j Ď Si.

Depending on the relationships between tQrSisu
n
i“1 and

tQrS1
jsun

1

j“1 and which parts are gID, in the remainder, we
consider two different cases and study each one separately.

4.1 FIRST CASE

In this case, we assume that there exists an index i P r1 : ns,
such that both QrSis is not gID from pA,Gq and Si ‰ S1

j

for all j P r1 : n1s.

If we show that Px1 py1|z1q remain not c-gID even af-
ter adding additional knowledge about the distributions
tQrS1

jsun
1

j“1 to tQrAksumk“0, then, we can conclude that
Px1 py1|z1q is also not c-gID from pA,Gq. To do so, let
A1 :“ A Y p

Ťn1

j“1tS1
iuq.

Clearly, Px1 pz1q is c-gID from pA1,Gq as all the terms in
(7) are given in A1. On the other hand, QrSis is not gID
from pA1,Gq. This is due to the assumptions of this setting,
that are QrSis is not gID from pA,Gq and Si Ć S1

j for
all j P r1 : n1s. The latter assumption implies that none
of the additional distributions tQrS1

jsun
1

j“1 can be used to
identify QrSis. Since, we have established that QrSis and
consequently Px1 py1, z1q are not gID from pA1,Gq, there
exists two models M1,M2 P MpGq, such that for any
v P XpVq,

QM1rAjspvq “ QM2rAjspvq, j P r0 : ms,

QM1rSj1 spvq “ QM2rSj1 spvq, j1 P r1 : n1s,

and there exists ppx1, py1,pz1q P XpX1qˆXpY1qˆXpZ1q, such
that

PM1

px1 ppy1,pz1q ‰ PM2

px1 ppy1,pz1q.

Because Px1 pz1q is gID from pA1,Gq and from (6), we have

PM1

xx1
p py1|pz1q ‰ PM2

xx1
p py1|pz1q.

This implies that Px1 py1|z1q is not c-gID from pA1,Gq.

4.2 SECOND CASE

Suppose that there is no i P r1 : ns, such that both QrSis is
not gID from pA,Gq and Si ‰ S1

j for all j P r1 : n1s.

Without loss of generality, suppose that for some k ď n, all
QrS1s, QrS2s, . . . , QrSks are not gID from pA,Gq and the
remaining QrSk`1s, . . . , QrSns are gID from pA,Gq. By
the assumption of this case, for each i P r1 : ks, there exists
ji P r1 : n1s such that Si “ S1

ji
. Without loss generality,

suppose that ji “ i for all i P r1 : ks, i.e., S1 “ S1
1, . . . ,

Sk “ S1
k. Therefore, Si Ă S1 “ AncGrVzX1spZ

1q, for all
i P r1 : ks.

To establish the result, we further consider three different
sub-cases:
1: Y1 X S1 ‰ H, 2: S1 Ď Z1, and 3: S1zpZ1 Y Y1q ‰ H.

Remark 2. Although, the above sub-cases may have non-
empty intersection, it is easy to see that their union covers
all possible scenarios of the second case.



4.2.1 Sub-case 1: Y1 X S1 ‰ H

Let Y denotes a random variable in Y1 X S1. Since Y
belongs to S1 “ S1

1, Y is an ancestor of a variable in Z1

in a graph GrVzX1s, i.e. Y P AncGrVzX1spZ
1q “ S1. This

implies that

Px1 py|z1q“
Px1 py, z1q

Px1 pz1q
“

ř

S1zpZ1YtY uq

śn1

i“1 QrS1
ispvq

ř

S1zZ1

śn1

i“1 QrS1
ispvq

(8)

We prove this sub-case by showing that Px1 py|z1q is not
c-gID from pA,Gq and subsequently Px1 py1|z1q is not c-gID
from pA,Gq. To this end, first, we prove I: QrtY u|S1

1ztY us

is not c-gID from pA,GtY uq, and then use it to show II:
QrtY u|S1

1ztY us is not c-gID from pA,Gq. Finally, we show
III: Px1 py|z1q is not c-gID from pA,Gq.

I: In graph GtY u and using (8), we obtain

Q
“

tY u|S1ztY u
‰

“

śn1

i“1 QrS1
is

ř

Y

śn1

i“1 QrS1
is

“
QrS1s

ř

Y QrS1s
“ Q

“

tY u|S1ztY u
‰

.

Recall that S1 “ S1
1. Next result shows that

QrtY u|S1ztY us is not c-gID from pA,GtY uq because
QrS1s is not gID from pA,GtY uq. A proof is presented in
Appendix A.

Lemma 1. Suppose L Ď V is a single c-component, such
that L “ L1YL2 for some disjoint sets L1 and L2. QrL1|L2s

is c-gID from pA,Gq if and only if QrL1 Y L2s is gID from
pA,Gq.

II: Shpitser and Pearl [2006a] showed the following result
for a non-identifiable causal effect.

Lemma 2 (Shpitser and Pearl [2006a]). Suppose
L Ď A Ď V. QrLs is not identifiable from GrAs if and
only if there exists at least one L-rooted c-forest F with the
set of observed variables B such that L ⊊ B Ď A, the
bidirected edges of pFrBs form a spanning tree, and pFrLs

is a connected graph with respect to the bidirected edges.

On the other hand, because QrS1s is not gID from pA,Gq,
by the results of Kivva et al. [2022], QrS1s is not ID from
GrAis for all i P r0 : ms. Lemma 2 implies that adding
or removing outgoing edges from Y P S1 will not affect
the non-identifiability of QrS1s from GrAis for all i P r0 :
ms. Thus, we have QrS1s is not gID from pA,GtY uq. This
means that exists two causal models M1 and M2 from
MpGtY uq which are consistent with all known distributions
but disagree on the causal effect QrS1s, i.e., there exists
rv P XpVq such that

QM1rS1sprvq ‰ QM2rS1sprvq.

Note that MpGtY uq Ă MpGq which in combination with the
above result yield that QrtY u|SztY us is not c-gID from
pA,Gq.

III: To prove this part, we first present the following result.
A proof is provided in Appendix A.

Lemma 3. Suppose that X, Y and Z are disjoint subsets of
V in graph G and variables Z1 P Z, Z2 P Y YZ, such that
there is a directed edge from Z1 to Z2 in G. If the causal
effect Pxpy|zq is not c-gID from pA,Gq, then the causal
effect Pxpy|zztz1uq is also not c-gID from pA,Gq.

Note that Px1 ps1q “ QrS1s since S1 “ AncGrVzX1spS
1q.

Therefore, by the definition of Q-notation, we have

Q
“

tY u|S1ztY u
‰

“ Px1 py|s1ztyuq,

which is shown to be not c-gID from pA,Gq in part II. In
the remainder of this part of our proof, we introduce a set of
nodes in S1 that satisfy the condition in Lemma 3 and thus,
can be eliminated without affecting the non-identifiability.
Bellow, we show that the nodes in S1zpZ1 Y tY uq satisfy
Lemma 3’s condition and by deleting them, we conclude
that Px1 py|z1q is not c-gID from pA,Gq.

Recall that S1 “ AncGrVzX1spZ
1q which means that from

any node in S1zpZ1 Y tY uq, there exists a directed path to
a node in Z1 in graph GrVzX1s. We assign a real num-
ber to each node in S1zpZ1 Y tY uq, namely, the length
of its shortest path to set Z. Let pW1,W2, . . . ,Wηq de-
note the nodes in S1zpZ1 Y tY uq sorted in a descending
order using their assigned numbers. Observe that for any
i P r1 : ηs, there is a direct edge from Wi to a node in
tY uYZ1

Ťη
j“i`1tWju. In other words, Lemma 3 allows us

to delete Wi from S1
z
`

tY u
Ťi´1

j“1tWju
˘

without violating
the non-identifiability.

4.2.2 Sub-case 2: S1 Ď Z1

In this sub-case, we prove non-identifiability of Px1 py1|z1q

from pA,Gq in two steps: I: we introduce a conditional
causal effect that is not c-gID from pA,Gq. II: Analogous
to the previous sub-case, we apply Lemma 3 to prune this
causal effect and conclude the result.

I: Let Z 1 be a node in S1. Recall that W is the maximal set
such that Px,wpy|zzwq “ Pxpy|zq, which means that we
can not apply the second rule of do-calculus to Z 1 in G for
Px1 py1|z1q, i.e.,

pY1 KK Z 1|X1,Z1ztZ 1uqG
X1,tZ1u

.

This implies that there exists at least a unblocked backdoor
path from Z 1 to Y1 given X1 YZ1ztZ 1u. We use p to denote
an unblocked path from Z 1 to Y1 with the least number of
colliders. Path p satisfies the following properties:



1. If path p contains a chain W 1 Ñ W Ñ W 2 or a fork
W 1 Ð W Ñ W 2, then node W does not belong to any of
the sets X1, Z1 or Y1.
2. If path p contains a collider W 1 Ñ W Ð W 2, then there
is a directed path pW from W to a node in Z1. Moreover,
none of the intermediate nodes in the path pW belong to the
set X1 Y Z1 Y Y1.
3. Path p does not contain any node from the set X1.

Proofs of the above statements are provided in Appendix A.
Suppose F is a set of all colliders on the path p. We use P
to denote a collection of paths tpu Y tpW |W P Fu and use
D to denote the set of all nodes on the paths in P excluding
the ones in Z1. Given the above definitions, we are ready to
introduce the non-identifiable conditional causal effect in
the next result.

Lemma 4. Let S :“ AncGrVzX1spY
1 Y Z1q and D denote

the set defined above. Then,

Px1 pd|szdq “
QrSs

ř

D QrSs
“ QrD|SzDs (9)

is not c-gID from pA,Gq.

Proof of this lemma is presented in Appendix A.

II: In order to complete the proof of this part, besides
Lemma 3, we require the following technical lemmas.

Lemma 5. Suppose that X, Y and Z are disjoint sub-
sets of V and Z P Z. If the conditional causal effect
Pxpy|zq is not c-gID from pA,Gq, the conditional causal
effect Pxpy, z|zztzuq is not c-gID from pA,Gq as well.

Proof. Proof is by contradiction. Suppose that
Pxpy, z|zztzuq is c-gID from pA,Gq. This implies
that Pxpz|zztzuq is also c-gID from pA,Gq. Applying
Bayes rule yields

Pxpy|zq “
Pxpy, z|zztzuq

Pxpz|zztzuq
,

which results in c-gID of Pxpy|zq from pA,Gq. This contra-
dicts the non-identifiability assumption on Pxpy|zq.

Lemma 6. Suppose that X, Y and Z are disjoint subsets
of V in graph G and variables Y1 P Y, Y2 P Y Y Z, such
that there is a directed edge from Y1 to Y2 in G. If the causal
effect Pxpy|zq is not c-gID from pA,Gq, then the causal
effect Pxpyzty1u|zq is also not c-gID from pA,Gq.

Proof of this lemma is presented in Appendix A.

Recall that the goal is to prune the conditional causal effect
in (9) to get Px1 py1|z1q. We do this in two pruning steps: first
using Lemma 5 and then via Lemmas 3, 6. Let Y2 :“ Y1zD.
Recall that S “ AncGrVzX1spY

1,Z1q. It is easy to see that

Y2 is a subset of SzD and thus we can apply Lemma 5
to the causal effect Px1 pd|szdq and conclude that Px1 pd Y

y1|szpd Y y1qq is not c-gID from pA,Gq.

To use Lemmas 3, 6 for the second pruning steps, we use
similar type of argument as in the first sub-case. More pre-
cisely, using the fact that there exists a direct path for each
node in SzpZ1 YY1q to a node in Z1 YY1, we sort the nodes
in

W1 :“ SzpZ1 Y Y1q

in a descending order based on the length of their corre-
sponding shortest direct path to the set Z1 Y Y1. We denote
these sorted nodes by pW 1

1,W
1
2, . . . ,W

1
η1 q. Note that for any

i P r1 : η1s, there exists a direct edge from W 1
i to a node in

Y1 Y Z1 Y tW 1
ju

η1

j“i`1.

Since W1 is a subset of SzpZ1 Y Y1q, similar to the second
sub-case, we apply Lemmas 3, 6 to the causal effect Px1 pdY

y1|szpdYy1qq and remove variables pW 1
1, . . . ,W

1
η1 q one by

one from the Px1 pd Y y1|szpd Y y1qq. From definitions of
D and Z1, we have D X Z1 “ H, which means

SzpW1 Y Y1 Y Dq “ Z1.

Therefore, after removing all nodes of W1 from the set
SzpD Y Y1q without affecting the non-identifiability of
Px1 pd Y y1|szpd Y y1qq , we can claim that Px1 py1|z1q is
not c-gID from pA,Gq.

4.2.3 Sub-case 3: S1zpZ1 Y Y1q ‰ H

The proof of this sub-case is quite similar to the second
sub-case with a few twists. Let T be an arbitrary node in
S1zpZ1 Y Y1q. Since S1 is a subset of the ancestors of Z1,
then there exists a directed path from T to the set Z1. Let pT
denote the shortest directed path from node T to a node Z 1

in the set Z1. Analogous to the second sub-case, we define
rp to be an unblocked backdoor path from Z 1 to Y1 given
X1,Z1ztZ 1u with the least number of colliders. Path rp satis-
fies the following properties:
1. Assume that path rp contains a chain W 1 Ñ W Ñ W 2 or
a fork W 1 Ð W Ñ W 2, then W does not belong to any of
the sets X1, Z1 or Y1.
2. Assume that path rp contains an inverted fork W 1 Ñ

W Ð W 2, then there is a directed path pW from the node
W to a node in the set Z1. Moreover, none of the intermedi-
ate nodes on this path pW belong to set X1 Y Z1 Y Y1.
3. Path rp does not contain any node from the set X1

Proofs of the above statements are provided in Appendix A.
Let rF be the set of all colliders on the path rp. Define rP :“
trpu Y tpT u Y trpW |W P rFu and rD to be a set containing
all nodes on the paths from rP excluding the nodes in Z1.

Lemma 7. Let S :“ AncGrVzX1spY
1,Z1q and rD denote the



set defined above. Then,

Px1 prd|szrdq “
QrSs

ř

rD QrSs
“ QrrD|SzrDs

is not c-gID from pA,Gq.

A proof for this lemma is presented in Appendix A. The
remainder of the proof of this sub-case is identical to the
proof of the second sub-case.

In both cases considered in Sections 4.1-4.2, we proved that
Px1 py1|z1q is not c-gID from pA,Gq. Recall that Pxpy|zq “

Px1 py1|z1q. This concludes the proof of the necessity part of
Theorem 3.

Summing up: Recall that the necessity part required us to
show when Px1 py1, z1q is not gID from pA,Gq, Pxpy|zq is
not c-gID from pA,Gq. In the sufficiency part, had to show
that Pxpy|zq is c-gID from pA,Gq whenever Px1 py1, z1q is
gID from pA,Gq. These two results together conclude the
proof of Theorem 3.

5 CONCLUSION

We considered the problem of identifying a conditional
causal effect from a causal graph G and a particular set of
known observational/interventional distributions in the form
of Q-notations. We called this problem c-gID and showed
that any c-gID problem has an equivalent g-ID problem.
Using this equivalency, we proposed the first sound and
complete algorithm for solving c-gID problem.
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