
Approximate Probabilistic Inference
with Composed Flows

Jay Whang
University of Texas at Austin
jaywhang@cs.utexas.edu

Erik M. Lindgren
Google Research

erikml@google.com

Alexandros G. Dimakis
University of Texas at Austin

dimakis@austin.utexas.edu

Abstract

We study the problem of probabilistic inference on the joint distribution defined
by a normalizing flow model. Given a pre-trained flow model p(x), we wish
to estimate p(x2 | x1) for some partitioning of the variables x = (x1,x2).
We first show that this task is computationally hard for a large class of flow
models. Motivated by this, we propose a framework for approximate probabilistic
inference. Specifically, our method trains a new flow model with the property
that its composition with the given model approximates the target conditional
distribution. We describe how we can train this new model using variational
inference and handle conditioning under arbitrary differentiable transformations.
Experimentally, our approach outperforms Langevin Dynamics in terms of sample
quality, while requiring much fewer parameters and training time compared to
regular variational inference. We further validate the flexibility of our method on a
variety of inference tasks with applications to inverse problems.

1 Introduction
Deep generative models have seen an unprecedented growth in the recent years. Among them,
normalizing flow models [1] stand out due to their computational flexibility, as they offer efficient
sampling, likelihood evaluation, and inversion. Even with such computational flexibility, however,
efficient probabilistic inference on a flow model still remains largely unsolved. This question
is becoming increasingly important as generative models increase in size and the computational
resources necessary to train them from scratch are out of reach for many researchers and practitioners1.
If it was possible to perform probabilistic inference on flow models, we could re-purpose these
powerful pre-trained generators for numerous custom tasks.

We propose a novel method that leverages a powerful pre-trained flow model by constructing carefully
designed latent codes to generate conditional samples. Specifically, we use variational inference to
learn a distribution in the latent space of the given model such that, when fed into the pre-trained
model, the output approximately matches the samples from the true conditional.

Our contributions:

• We establish a hardness result that, even though flow models are designed to provide efficient
inversion and sampling, exact conditional sampling is provably computationally intractable
for a wide class of flow models. This motivates our approach of approximate inference.

1For example, Kingma and Dhariwal [2] report that their largest model had 200M parameters and was trained
on 40 GPUs for a week.

NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, virtual.

z

x2

x1 x̃1

f pσ

p(x | x̃1 = x∗1)

(a) Ambient VI

z

x2

x1 x̃1

f pσ

p(z | x̃
1 = x ∗

1)

(b) Latent VI

z

x y ỹ

f

T pσ

p(z | ỹ = y ∗)

(c) Latent VI with transformation
Figure 1: Graphical models depicting different ways we perform variational inference. Solid arrows represent
the generative direction, and dotted arrows indicate the variational direction.

• We develop a method to estimate the target conditional distribution by composing a second
generative model (which we call the pre-generator) with the given model. Specifically, we
show how to train the pre-generator to yield structured noise so that the composed model
approximately matches the target conditional distribution.

• We experimentally show that our approach is competitive with MCMC methods in terms of
speed and widely-used sample quality metrics. We also demonstrate that it achieves superior
conditional likelihood estimation performance compared to regular variational inference.
We further extend and validate the flexibility of our method on conditioning under arbitrary
differentiable transformations with applications to inverse problems.

2 Hardness of Conditional Sampling on Flows
Before we present our method, we first establish a hardness result for exact conditional sampling for
flow models that use additive coupling layer. Specifically, if an algorithm is able to efficiently sample
from the conditional distribution of a flow model with additive coupling layers, then this algorithm
can be used to solve NP-complete problems efficiently. Our hardness result holds even if we allow
the conditional sampler to approximately match the conditional distribution. The formal statement of
the below theorem and its corollary to the approximate case can be found in Appendix A.

Theorem 1. (Informal) Suppose there is an efficient algorithm that can draw samples from the
conditional distribution of a normalizing flow model implemented with additive coupling layers as
defined in Dinh et al. [3]. Then RP = NP .

3 Approximate Probabilistic Inference with Composed Flows
Notation. Let pf (x) denote the base model, a fixed flow model defined by the invertible mapping
f : z 7→ x. The pre-generator pf̂ (z) is similarly defined by the invertible mapping f̂ : ε 7→ z
and represents a distribution in the latent space of the base model. We assume that all flow models
use standard Gaussian prior, i.e. z ∼ N (0, Id) → x = f(z) and ε ∼ N (0, Id) → z = f̂(ε). By
composing the base model and the pre-generator, we obtain the composed model pf◦f̂ (x) whose

samples are generated via ε ∼ N (0, Id)→ x = f(f̂(ε)).

Our method. Motivated by the hardness of exact conditional sampling, we propose to perform
variational inference in the latent space on a smoothed version of the problem where we allow the
observed variable to approximately match the given observation. We do this by creating a dummy
variable x̃1 distributed according to pσ(x̃1 | x1) = N (x̃1;x1, σ

2Id). Here, σ is the smoothing
parameter that controls the tightness of this relaxation. The objective we minimize is the KL
divergence between our variational distribution and the smoothed conditional density:

DKL(pf◦f̂ (x2) ‖ pf (x2 | x̃1 = x∗1)). (1)
For comparison, a direct application of variational inference in the image space (which we refer to as
Ambient VI) would minimize the following objective:

DKL(pf̂ (x2) ‖ pf (x2 | x̃1 = x∗1)), (2)
where we write pf̂ to denote the variational distribution which directly models f(x | ỹ = y∗).
Note that in our setting, we cannot directly model pf (x2 | x̃1 = x∗1) because we only have access
to the joint distribution pf (x1,x2) through the base model. Thus we instead approximate the joint
distribution conditioned on our observation, i.e. pf (x | x̃1 = x∗1). Figures 1a and 1b show the
graphical models describing this formulation.

Conditioning under differentiable transformations. The flexibility of VI allows us to easily extend
our method to conditioning under an arbitrary transformation. Concretely, let T (x) be a differentiable

2

Original Observed Conditional Samples Variance

(a) Conditional samples generated by our method
from observing the upper half of CelebA-HQ faces.
We see that our approach is able to produce diverse
completions with different jaw lines, mouth shapes,
and facial expression.

Original Observed Conditional Samples Variance

SR
 (2

x)
C

ol
or

iz
at

io
n

C
om

pr
es

se
d

Se
ns

in
g

(b) Results for various inverse problem tasks.

Figure 2: Image inpainting (left) and inverse problem (right) results. Best viewed electronically.

function and y∗ be some fixed observation in the range of T . We now observe y = T (x) instead, so
we similarly define a dummy variable ỹ distributed according to pσ(ỹ | y) = N (ỹ;y, σ2Id). We
estimate the conditional density pf (x | ỹ = y∗) by minimizing the following objective:

LOurs(f̂) = DKL(pf̂ (z) ‖ pf (z)) + Ez∼pf̂

[
1

2σ2
‖T (f(z))− y∗‖22

]
, (3)

where pf (z) denotes the prior distribution of the base model, i.e. N (0, Id). We provide the derivation
of eq. (3) in Appendix C. See Figure 1c for a comparison to eq. (1). Notice that the above expectation
can be rewritten in terms of ε to employ the reparametrization trick to obtain a low-variance gradient
estimator for training.

4 Quantitative Experiments
We validate the efficacy of our proposed method in terms of both sample quality and likelihood
on various inference tasks against three baselines: Ambient VI (as defined by the loss in eq. (2)),
Langevin Dynamics, and PL-MCMC. We also conduct our experiments on three different datasets
(MNIST, CIFAR-10, and CelebA-HQ) to ensure that our method works across a range of settings.

We report four different sample quality metrics: Frechet Inception Distance (FID), Learned Perceptual
Image Patch Similarity (LPIPS), and Inception Score (IS) for CIFAR-10 [4–6]. While not strictly a
measure of perceptual similarity, average mean squared error (MSE) is also reported for completeness.

For all our experiments, we use the multiscale RealNVP architecture [7] for both the base model and
the pre-generator. We use Adam optimizer [8] to optimize the weights of the pre-generator using
the loss defined in Equation (3). The images used to generate observations were taken from the
test set and were not used to train the base models. We refer the reader to Appendix D for model
hyperparameters and other details of our experiment setup.

Table 1: Sample quality metrics for image inpainting tasks on different datasets. The best value is
bolded for each metric. As shown below, our method achieves superior sample quality to all baselines.

MNIST CIFAR-10 (5-bit) CelebA-HQ (5-bit)

FID MSE LPIPS FID IS↑ MSE LPIPS FID MSE LPIPS

Ours 4.11 21.67 0.074 41.14 7.189 9.71 0.176 33.61 223.06 0.208
Langevin 14.34 36.51 0.135 47.53 6.732 9.31 0.201 30.33 323.47 0.229
Ambient VI 114.59 65.56 0.290 84.78 5.156 16.74 0.296 289.64 1060.66 0.587

PL-MCMC 21.20 59.89 0.190 N/A N/A

4.1 Image Inpainting

We perform inpainting tasks using our approach, where we sample missing pixels conditioned on the
visible ones. We consider three different conditioning schemes: the bottom half (MNIST), the upper
half (CelebA-HQ), and randomly chosen subpixels (CIFAR-10). For MNIST, we use the smoothing
parameter value of σ = 0.1 and for CIFAR-10 and CelebA-HQ, we use σ = 0.05.

3

In Figure 2a we see that our approach produces natural and diverse samples for the missing part of
the image. The empirical pixelwise variance (normalized and averaged over the color channels) also
confirms that, while the observation is not perfectly matched, most of the high-variance regions are in
the unobserved parts as we expect.

We also quantitatively evaluate the quality of the generated samples using widely used sample quality
metrics, as shown in Table 1. As we can see, our method outperforms the baseline methods on most
of the metrics. Note that PL-MCMC results for CIFAR-10 and CelebA-HQ are omitted because it
was prohibitively slow to run for hundreds of images, as each MCMC chain required over 20,000
proposals. Cannella et al. [9] also report using 25,000 proposals for their experiments.

Observing Table 1 closely, one might notice that Ambient VI performs significantly worse than other
methods. While it may seem strange at first, this is actually a natural consequence of the Ambient VI
formulation (see eq. (2)). We provide a detailed explanation for this in Appendix B.

4.2 Likelihood Estimation

Next, we evaluate our method on the task of conditional likelihood estimation. By varying the size
of the pre-generator, we observe the parameter efficiency of our method compared to Ambient VI.
Results are shown in Table 2; we see that our method produces reasonable samples using only about
1% of the base model’s parameters, confirming the effectiveness of inference in the latent space.
Table 2: Conditional likelihood estimation performance (measured in bits per dimension) for different pre-
generator sizes on the MNIST imputation task. The first row shows the parameter count of the pre-generator
relative to the base model.

Observations

Parameters Ours Ambient VI Conditional Completions (ours)

1.2% 1.73 6.75
3.2% 1.64 3.17

10.6% 1.52 2.71
39.1% 1.47 2.99

5 Qualitative Experiments
Extracting Class-conditional Models: Here we present an interesting application of conditioning
under a transformation T parameterized by a neural network. If T is a pre-trained binary classifier
for a specific attribute, we can extract a model conditioned on the presence (or the absence) of
that attribute from an unconditional base model. We test this idea on the MNIST dataset. We train
10 binary classifiers, one for each digit k = 0, . . . , 9, to predict whether the given image is k or
not. By setting T to be each of those classifiers, we are able to extract the class-conditional model
pf (x | Label(x) ≈ k). See Figure 3 for samples generated from the extracted models.

Figure 3: Each column contains
uncurated samples from the pos-
terior conditioned on a specific
MNIST class.

Inverse Problems: We additionally test the applicability of our
method to linear inverse problems on CIFAR-10 and CelebA-HQ im-
ages. In Figure 2b, we show the conditional samples obtained by our
method on three different tasks: image colorization, super-resolution
(2×), and compressed sensing with 500 random Gaussian measure-
ments. We notice that the generated samples look natural, even when
they do not match the original input perfectly, again showing our
method’s capability to generate semantically meaningful conditional
samples and also provide sample diversity.

6 Conclusion
We proposed a new inference algorithm for distributions parametrized by a flow. The need for
approximate inference is motivated by the hardness of exact inference. We also presented a detailed
empirical evaluation of our method with both quantitative and qualitative results on a wide range of
tasks and datasets. Overall, we believe that the idea of a pre-generator creating structured noise is a
useful and general method for leveraging pre-trained generators to solve new generative problems.

4

Acknowledgments and Disclosure of Funding
This research has been supported by NSF Grants CCF 1763702,1934932, AF 1901292, 2008710,
2019844 research gifts by Western Digital, WNCG IAP, computing resources from TACC and the
Archie Straiton Fellowship.

References
[1] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji

Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

[2] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Neural Information Processing Systems, pages 10215–10224, 2018.

[3] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. In International Conference on Learning Representations 2015 workshop track,
2015.

[4] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pages 6626–6637, 2017.

[5] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[6] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

[7] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
In International Conference on Learning Representations, 2016.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Chris Cannella, Mohammadreza Soltani, and Vahid Tarokh. Projected latent markov chain
monte carlo: Conditional sampling of normalizing flows, 2020.

[10] Kevin P. Murphy. Machine learning : a probabilistic perspective. MIT Press, Cambridge,
Mass. [u.a.], 2013. ISBN 9780262018029 0262018020. URL https://www.amazon.com/
Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/
ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2.

5

https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2

A Proof of Hardness Results
A.1 Preliminaries

A Boolean variable is a variable that takes a value in {−1, 1}. A literal is a Boolean variable xi or
its negation ¬xi. A clause is set of literals combined with the OR operator, e.g., x1 ∨ ¬x2 ∨ x3. A
conjunctive normal form formula is a set of clauses joined by the AND operator, e.g., (x1 ∨ ¬x2 ∨
x3) ∧ (x1 ∨ ¬x3 ∨ x4). A satisfying assignment is an assignment to the variables such that the
Boolean formula is true.

The 3-SAT problem is the problem of deciding if a conjunctive normal form formula with three literals
per clause has a satisfying assignment. We will show that conditional sampling from flow models
allows us to solve the 3-SAT problem.

We ignore the issue of representing samples from the conditional distribution with a finite number of
bits. However the reduction is still valid if the samples are truncated to a constant number of bits.

A.2 Design of the Additive Coupling Network

Given a Boolean formula, we design a ReLU neural network with 3 hidden layers such that the output
is 0 if the input is far from a satisfying assignment, and the output is about a large number M if the
input is close to a satisfying assignment.

We will define the following scalar function

δε(x) =ReLU

(
1

ε
(x− (1− ε))

)
− ReLU

(
1

ε
(x− (1− ε))− 1

)
−ReLU

(
1

ε
(x− 1)

)
+ ReLU

(
1

ε
(x− 1)− 1

)
.

This function is 1 if the input is 1, 0 if the input x has |x − 1| ≥ ε and is a linear interpolation on
(1− ε, 1 + ε). Note that it can be implemented by a hidden layer of a neural network and a linear
transform, which can be absorbed in the following hidden layer. See Figure 4 for a plot of this
function.

Figure 4: Plot of the scalar function used to construct an additive coupling layer that can generate
samples of satisfying 3-SAT assignments.

For each variable xi, we create a transformed variable x̃i by applying x̃i = δε(xi)− δε(−xi). Note
that this function is 0 on (−∞,−1− ε] ∪ [−1 + ε, 1− ε] ∪ [1 + ε,∞), −1 at xi = −1, 1 at xi = 1,
and a smooth interpolation on the remaining values in the domain.

Every clause has at most 8 satisfying assignments. For each satisfying assignment we will create a
neuron with the following process: (1) get the relevant transformed values x̃i, x̃j , x̃k, (2) multiply
each variable by 1/3 if it is equal to 1 in the satisfying assignment and −1/3 if it is equal to −1 in
the satisfying assignment, (3) sum the scaled variables, (4) apply the δε function to the sum.

We will then sum all the neurons corresponding to a satisfying assignment for clause Cj to get the
value cj . The final output is the value M × ReLU(

∑
j cj − (m− 1)), where M is a large scalar.

6

We say that an input to the neural network x corresponds to a Boolean assignment x′ ∈ {−1, 1}d
if for every xi we have |xi − x′i| < ε. For ε < 1/3, if the input does not correspond to a satisfying
assignment of the given formula, then at least one of the values cj is 0. The remaining values of cj
are at most 1, so the sum in the output is at most (m− 1), thus the sum is at most zero, so the final
output is 0. However, if the input is a satisfying assignment, then every value of cj = 1, so the output
is M .

A.3 Generating SAT Solutions from the Conditional Distribution

Our flow model will take in Gaussian noise x1, . . . , xd, z ∼ N(0, 1). The values x1, . . . , xd will be
passed through to the output. The output variable y will be z + fM (x1, . . . , xd), where fM is the
neural network described in the previous section, and M is the parameter in the output to be decided
later.

Let A be all the valid satisfying assignments to the given formula. For each assignment a, we will
define Xa to be the region Xa = {x ∈ Rd : ‖a− x‖∞ ≤ ε}, where as above ε is some constant less
than 1/3. Let XA =

⋃
a∈AXa.

Given an element x ∈ Xa, we can recreate the corresponding satisfying assignment a. Thus if we
have an element of XA, we can certify that there is a satisfying assignment. We will show that the
distribution conditioned on y = M can generate satisfying assignments with high probability.

We have that

p(XA | y = M) =
p(y = M,XA)

p(y = M,XA) + p(y = M,XA)

If we can show that p(y = M,XA)� p(y = M,XA), then we have that the generated samples are
with high probability satisfying assignments.

Note that,
p(y = M,XA) = p(y = M | XA)P (XA) ≤ p(y = M | XA).

Also notice that if x ∈ XA, then fM (x) = 0. Thus y ∼ N (0, 1) and P (y = M | XA) =
Θ(exp(−M2/2)).

Now consider any satisfying assignment xa. Let X ′a be the region X ′a = {x ∈ Rd : ‖a − x‖∞ ≤
1

2m}. Note that for every x in this region we have fM (x) ≥ M/2. Additionally, we have that
P (X ′a) = Θ(m)−d. Thus for any x ∈ X ′a, we have p(Y = M | x) & exp(−M2/8). We can
conclude that

p(y = M,XA) ≥ p(Y = M,X ′a) =

∫
X′a

p(Y = M | x)p(x) dx & exp(−M2/8−Θ(d logm)).

For M = O(
√
d logm), we have that p(y = M,XA) is exponentially smaller than p(y = M,XA).

This implies that sampling from the distribution conditioned on y = M will return a satisfying
assignment with high probability.

A.4 Hardness of Approximate Sampling

Definition 2. The complexity class RP is the class of decision problems with efficient random
algorithms that (1) output YES with probability 1/2 if the true answer is YES and (2) output NO
with probability 1 if the true answer is NO. It is widely believed that RP is a strict subset of NP .

A simple extension of the above theorem shows that even approximately matching the true conditional
distribution in terms of TV distance is computationally hard. The total variation (TV) distance is
defined as dTV(p, q) = supE |p(E)− q(E)| ≤ 1, where E is an event. The below corollary shows
that it is hard to conditionally sample from a distribution that is even slightly bounded away from 1.

Corollary 3. The conditional sampling problem remains hard even if we only require the algorithm
to sample from a distribution q such that dTV(p(· | x = x∗), q) ≤ 1 − 1/poly(d), where d is the
dimension of the distribution.

We show that the problem is still hard even if we require the algorithm to sample from a distribution
q such that dTV(p(x | y = y∗), q) ≥ 1/poly(d).

Consider the event XA from above. We saw that p(XA | y = M) ≥ 1− exp(−Ω(d)). We have that
dTV(p(· | y = M), q) ≥ 1− exp(−Ω(d)− q(XA)).

7

Suppose that the distribution q has q(XA) ≥ 1/poly(d). Then by sampling a polynomial number
of times from q we sample an element of XA, which allows us to find a satisfying assignment.
Thus if we can efficiently create such a distribution, we would be able to efficiently solve SAT
and RP = NP. As we are assuming this is false, we must have q(XA) ≤ 1/poly(d), which implies
dTV(p(· | y = M), q) ≥ 1− 1/poly(d).

B Why Ambient VI Fails
From Table 1, notice that Ambient VI achieves significantly worse sample quality compared to other
methods. The low-quality samples from the image inpainting task in Figure 5b further confirm that
Ambient VI is unable to produce good conditional samples, even though the observation is matched
well. This may seem initially surprising but is a natural consequence of the VI objective. Recall that
our loss function decomposes into two terms: the KL term and the reconstruction term.

LOurs(f̂) = DKL(pf̂ (z) ‖ pf (z)) + Ez∼pf̂

[
1

2σ2
‖T (f(z))− y∗‖22

]
.

If we alternatively derive the loss for Ambient VI, we arrive at an analogous objective:

LAmbient(f̂) = DKL(pf̂ (x) ‖ pf (x)) + Ex∼pf̂

[
1

2σ2
‖T (x)− y∗‖22

]
.

(a) Contour plot of pf (x) around a random
point in image space.

Original Inpainting Samples

(b) Various failure modes exhibited by naive VI.

While these two loss functions seem like simple reparametrizations of each other via f , they behave
very differently during optimization due to the KL term. Notice that for both loss functions, the
first term is the reverse KL divergence between the variational distribution and the base distribution
DKL(pf̂ ‖ pf). Because reverse KL divergence places no penalty whenever pf̂ is zero regardless
of pf , minimizing the reverse KL is known to have a mode-seeking behavior where pf̂ fits a single
mode of pf and ignores the rest of the support of pf [10, Chapter 21.2.2]. In contrast, minimizing the
forward KL has a zero-avoiding behavior and tries to cover all of pf ’s support.

For our method, this is not a problem because the prior distribution of the base model pf (z) is a
standard Gaussian and hence unimodal. However, for Ambient VI, pf (x) is the base model itself
and is highly multimodal. This can be empirically seen by visualizing the landscape of log pf (x)
projected onto a random 2D subspace. In Figure 5a, we clearly see that pf (x) has numerous local
maxima. For Ambient VI, the variational distribution collapses into one of these modes.

8

C Derivation of Equation (3)
Here we present a detailed derivation of Equation (3). Note that this equality is true up to a constant
w.r.t. f̂ , which is fine as we use this as the optimization objective.
LOurs(f̂) , DKL(pf◦f̂ (x) ‖ pf (x | ỹ = y∗))

= Ex∼pf◦f̂

[
log pf◦f̂ (x)− log pf (x, ỹ = y∗)

]
+ log pf (ỹ = y∗)

A
= Ex∼pf◦f̂

[
log pf◦f̂ (x)− log pf (x)− log pσ(ỹ = y∗ | x)

]
= Ex∼pf◦f̂

[
log pf◦f̂ (x)− log pf (x)

]
+ Ex∼pf◦f̂ [− log pσ(ỹ = y∗ | y = T (x))]

= DKL(pf◦f̂ (x) ‖ pf (x)) + Ex∼pf◦f̂ [− log pσ(ỹ = y∗ | y = T (x))]

B
= DKL(pf̂ (z) ‖ pf (z)) + Ez∼pf̂

[
1

2σ2
‖T (f(z))− y∗‖22

]

In (A), we drop the log pf (ỹ = y∗) term as it is constant w.r.t. f̂ .
In (B), we use the invariance of KL divergence under invertible transformation to rewrite the KL
divergence in terms of z.

D Experiment Details
D.1 Our Algorithm

Algorithm 1 Training the pre-generator for a given observation under transformation. We assume that
f̂ is an invertible neural network with parameters θ.

1: Input: y∗: observation we are conditioning on, T (x): differentiable transformation of x.
2: for i = 1 . . . num_steps do
3: for j = 1 . . .m do . generate m latent codes from pf̂ (z)

4: Sample ε(j) ∼ N (0, Id)

5: z(j) ← f̂(ε(j))
6: end for
7: L ← 1

m

m∑
j=1

[
log pf̂ (z(j))− log pnormal(z

(j)) + 1
2σ2

∥∥T (f(z(j)))− y∗
∥∥2
2

]
8: θ ← θ −∇θL . gradient step
9: end for

D.2 Hyperparameters: Base Model and Pre-generator

See Table 3 and Table 4 for the hyperparameters used to define the network architectures train them.
For the color datasets CIFAR-10 and CelebA-HQ, we used 5-bit pixel quantization following Kingma
and Dhariwal [2]. Additionally for CelebA-HQ, we used the same train-test split (27,000/3,000) of
Kingma and Dhariwal [2] and resized the images to 64× 64 resolution.

Table 3: Hyperparameters used to train the base models used in our experiments.
Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 6 6
Res. blocks per scale 8 12 10
Res. block channels 32 64 80
Bits per pixel 8 5 5
Batch size 128 64 32
Learning rate 0.001 0.001 0.001
Num. epochs 200

9

Table 4: Hyperparameters used to define and train the pre-generator for each of our experiments.
Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 4 3
Res. blocks per scale 3 4 3
Res. block channels 32 48 48
Batch size 64 32 8

D.3 Hyperparameters: Image Inpainting

We randomly chose 900/500/300 images from MNIST/CIFAR-10/CelebA-HQ test sets, applied
masks defined in Section 4.1, and generated samples conditioned on the remaining parts. FID and
other sample quality metrics were computed using 32 conditional samples per test image for VI
methods (ours and Ambient VI), 8 for Langevin Dynamics, and 6 for PL-MCMC. We note that using
more samples for VI methods do not unfairly affect the result of sample quality evaluation, i.e. there
was no appreciable difference when using 8 vs. 32 samples to compute FID. We used more samples
simply because it is much cheaper for VI methods to generate samples compared to MCMC methods.

For VI Methods (Ours & Ambient VI)

• Learning rate: 1e−3 for MNIST; 5e−4 for the others
• Number of training steps: 2000 for CelebA-HQ; 1000 for the others

For Langevin Dynamics

• Learning rate: 5e−4 for all datasets
• Length of chain: 1000 for CIFAR-10; 2000 for the others

For PL-MCMC

• Learning rate: 5e−4
• Length of chain: 2000 for MNIST
• σa = 1e−3, σp = 0.05

D.4 Hyperparameters: Inverse Problems

Colorization Compressed Sensing Compressed Sensing Super-resolution

Learning rate 5e−4 5e−4 5e−4 5e−4
σ 0.05 0.05 0.05 0.05
Dataset CelebA-HQ CelebA-HQ CIFAR-10 CIFAR-10
Batch size 8 8 32 32
Number of steps 1000 2000 1000 1000

10

	Introduction
	Hardness of Conditional Sampling on Flows
	Approximate Probabilistic Inference with Composed Flows
	Quantitative Experiments
	Image Inpainting
	Likelihood Estimation

	Qualitative Experiments
	Conclusion
	Proof of Hardness Results
	Preliminaries
	Design of the Additive Coupling Network
	Generating SAT Solutions from the Conditional Distribution
	Hardness of Approximate Sampling

	Why Ambient VI Fails
	Derivation of eqn:loss
	Experiment Details
	Our Algorithm
	Hyperparameters: Base Model and Pre-generator
	Hyperparameters: Image Inpainting
	Hyperparameters: Inverse Problems

