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ABSTRACT

Human vision involves parsing and representing objects and scenes using struc-
tured representations based on part-whole hierarchies. Computer vision and ma-
chine learning researchers have recently sought to emulate this capability using
capsule networks, object reference frames and active predictive coding, but a
generative model formulation has been lacking. We introduce Recursive Neural
Programs (RNPs), a neural generative model that addresses the part-whole hier-
archy learning problem by modeling images as hierarchical trees of probabilis-
tic sensory-motor programs. These programs recursively reuse learned sensory-
motor primitives to model an image within different reference frames, enabling
intuitive and explainable composition and allowing for forming recursive image
grammars. We express RNPs as structured variational autoencoders (sVAEs) for
inference and sampling, and demonstrate parts-based parsing, sampling and one-
shot transfer learning for MNIST, Omniglot and ETH-80 datasets. Our results
show that RNPs provide an intuitive and explainable way of composing objects
and scenes, allowing rich compositionality and intuitive interpretations of objects
in terms of part-whole hierarchies.

1 INTRODUCTION

Human visual cognition relies heavily on hierarchical relationships between objects and their parts.
For example, a human face can be modeled as a hierarchical tree of parts, each part’s relative position
specified within a local reference frame: eyes, nose, mouth etc. positioned within the face’s reference
frame, the parts of an eye (eyebrow, eyelid, iris, pupil etc.) positioned within the eye’s reference
frame, and so on. To emulate such a capability, a computer vision system needs to not only learn
what a part looks like (shapes, contours, colors etc. as in current deep convolutional networks) but
also the relative transformation of the part within a local reference frame, and do this recursively in
order to compose a human face (or a Picasso painting).

Beyond vision, nested structure and hierarchical parts-based decompositions are ubiquitous in hu-
man attributes such as natural language (texts, chapters, paragraphs, sentences, words, characters)
and complex behaviors (cooking a recipe, driving to work, etc.). Such recursive modeling confers
the important property of compositionality Lake et al. (2015): the same building blocks can be hier-
archically and recursively composed into an endless variety of possible patterns, allowing an agent
to ”imagine” novel configurations of parts (e.g., for creating new solutions to problems), and recog-
nize new configurations of known parts for zero-shot generalization. The challenge lies in learning a
model of the parts and their transformations that is recursive and composable. Existing approaches
for parsing tree-structured data Eslami et al. (2016); Lake et al. (2015); Hinton et al. (2018); Hinton
(2021); Mnih et al. (2014); Socher et al. (2011) are either not recursive Eslami et al. (2016); Mnih et
al. (2014), not compositional Socher et al. (2011), not generative Hinton et al. (2018); Hinton (2021),
or not differentiable Lake et al. (2015). Indeed, the lack of a smooth “program space” has been a
challenge in this regard.

We introduce recursive neural programs (RNPs), which address this problem by creating a fully dif-
ferentiable recursive tree representation of sensory-motor programs. Our model builds on past work
on Active Predictive Coding Networks Gklezakos & Rao (2022) in using state and action networks
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but is fully generative, recursive, and probabilistic, allowing a structured variational approach to
inference and sampling of neural programs. The key differences between our approach and existing
approaches are: 1) Our approach can be extended to arbitrary tree depth, creating a ”grammar” for
images that can be recursively applied 2) our approach provides a sensible way to perform gradient
descent in hierarchical “program space,” and 3) our model can be made adaptive by letting infor-
mation flow from children to parents in the tree, e.g., via prediction errors Jiang, Preston L et al.
(2021); Gklezakos & Rao (2022).

2 RECURSIVE NEURAL PROGRAMS

We describe a 2-level Recursive Neural Program (RNP), though the architecture can be generalized
to more levels. Consider the problem of parsing an image of a digit at two levels (k = {1, 2}) of an
abstraction tree (fig. 1), e.g., in terms of larger parts and smaller strokes (henceforth referred to as
parts and sub-parts). A top-level program (k = 2) generates the digit in terms of parts and a bottom-
level program (k = 1) generates each large part as a sequence of smaller parts and their transforma-
tions within the larger part’s reference frame. Each program is expressed as an interaction between
two recurrent functions, a state-transition function (or state-based forward model) that predicts the
next state zkt+1 = fk

state(z
k
t , a

k
t ), and an action transition function (policy) akt+1 = fk

policy(z
k
t , a

k
t )

(fig. 1b, fig. 2, algorithm 1); in this paper, we assume actions correspond to transformations of parts).
This is similar to the next-state and policy functions in a partially observable Markov decision pro-
cess (POMDP Kaelbling et al. (1998)).

A program at tree depth k, represented by the state vector zkt , generates a fixed-length sequence of
τk lower level states Sk−1 = {zk−1

1 , ..., zk−1
τk } and their transformations T k−1 = {ak−1

1 , ..., ak−1
τk }.

The state zkt can be decoded into an image patch x̂k
t that corresponds to a stroke or other image fea-

ture, then transformed according to g(x̂k
t , a

k
t ) to place it on a “canvas” (here a refers to parameters

of an affine transform on a grid, where g is the bilinear interpolation function Jaderberg et al. (2015).
The transformed images are added together at each time step, such that each step increasingly ap-
proximates the target image represented by zk (fig. 2b). This method allows us to reuse the same
strokes with different transformations. For example, if zkt represents a 4, Sk−1 can represent three
straight lines, and T k−1 are the transformations that orient and place them in the configuration of a
4 (fig. 1a).

The above model can be made recursive, with generation performed in a depth-first manner: each zkt
generates the program for a sequence {zk−1

1 , ..., zk−1
τk−1}. zkt+1 begins after zkt terminates. Here we

use the decoded patches {x̂k−1
1 , ..., x̂k−1

τk−1} as accumulated evidence to update zkt (similar to other
predictive coding models Jiang, Preston L et al. (2021); Gklezakos & Rao (2022)).

2.1 MODEL ARCHITECTURE

In a two-level RNP (fig. 1, fig. 2), the top-level program z2 parameterizes two recurrent neu-
ral networks (RNNs) f2

state and f2
policy via hypernetworks (state hypernetwork Hstate and pol-

icy hypernetwork Hpolicy) Ha et al. (2016) (fig. 2b,c). Each hypernetwork generates parame-
ters for the level-specific networks responsible for state or policy: a single-layer encoder ê =
Enckstate/policy(ẑkt, a

k
t ), where ê is the input to the fk

state/policy network; fk
state/policy, an RNN

with hidden state |z|, and their initial hidden states; and a decoder Dk(zk) that generates an image
patch x̂k

t+1 (state network) or affine transform parameters akt+1 (policy network; scaling, translation,
rotation and shear) that transform the image patch x̂k

t+1. The hypernetworks provide initialization
values x̂k

0 , a
k
0 to initialize the sequence generation. More implementation and training details can

be found in the Appendix.

We train the model described above by exploiting the end-to-end differentiability of the architec-
ture, minimizing the reconstruction loss between all transformed sub-parts and the target image x̂,
regularized by the reconstruction at the level of parts:
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Figure 1: Image Parsing as a Sequence of Transformed Primitives. (a) A 4 can be constructed
by generating three identical straight lines (black circles) and transforming them according to pa-
rameters a to place them in the appropriate location. (b) As in (a), but a digit (here an eight, left)
is generated by a two-level RNP that uses only transformations of one straight line to generate parts
(right) that are then transformed into a full digit (placement order: red→ green→ purple) (c) Left:
An MNIST digit decomposed into an abstraction tree of parts, each of which is further decomposed
into smaller sub-parts. Right: Schematic representation of a parsing tree produced by a recursive
neural program. The digit is described as a “program,” represented by the vector zk, which gen-
erates functions fk

state and fk
policy to construct the digit by generating parts and transforming them

according to the action vector ak (position, scale, ...) within the digit’s reference frame. Each part is
in turn described by a program zk−1, which generates smaller parts transformed according to ak−1

within that part’s reference frame.

L =∥
τ2∑

t2=1

g(

τ1∑
t1=1

g(x̂1
t1 , a

1
t1), a

2
t2)− x∥22 +

1

τ2
∥

τ2∑
t2=1

g(x̂2, a2t2)− xpatch
t2 ∥22 (1)

where τ2 and τ1 are the number of level-2 and level-1 time steps respectively, x is the target image
and xpatch

t2 is the image patch generated by transforming x with g−1(a2t2) (i.e. zooming in instead
of scaling down). We note that RNPs can be trained one depth at a time to decrease training time
and resources.

To allow probabilistic sampling of programs, we can express an RNP as a structured variational auto-
encoder Kingma & Welling (2014) (VAE) to learn an approximate posterior q(zK |x) ≈ p(zK |x) of
an image x given prior p(zK) ∼ N (0, 1), where zK is the highest level state vector. We therefore
use an encoder network to parameterize the approximate posterior q(zK |x) and regularize eq. (1)
with the KL(q||p) term.

3 RESULTS

We first demonstrate how our RNPs can recursively parse input images of MNIST digits LeCun et
al., Yann (1998), Omniglot characters Lake et al. (2015) and ETH-80 objects Leibe & Schiele (2003)
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Figure 2: Recursive Neural Program for Parsing Images. (a) Parsing tree for a digit, same as
fig. 1b. (b) Representation of parsing tree in (a) with a neural network, where zk is generated by
an encoder network. At time t, the network receives the most recent estimate of the part/sub-part
and akt−1 as input, and generates a prediction of the next transformed part or sub-part. Transformed
parts and sub-parts are summed at their respective levels. Purple lines indicate recurrence. In our
implementation, the top level k receives the output of the program k − 1 as input (dotted purple
line) as opposed to its own output (dashed purple line). (c) The RNP module consists of a two
hypernets Hstate and Hpolicy, which parameterize fk

state, fk
policy and auxiliary networks to perform

the computation shown in (b).

into parts and sub-parts. We then characterize the embedding space of state vectors at two levels and
show how learned representations at various tree-depths can be composed to generate previously
unseen image types.

3.1 IMAGE PARSING INTO PARTS AND SUB-PARTS

We trained RNPs to reconstruct MNIST digits and Omniglot characters as two-level generative pro-
grams. An encoder network was trained to map the input image to the top-level program (embedding
vector) z2. As described above, z2 parameterizes f1

state and f1
policy via the hypernetworks Hstate

and Hpolicy , and z1 is the latent code corresponding to the parts (larger patches, 6x6px - 12x12px;
fig. 1b). z1 is then passed through the same hypernetworks to synthesize sub-parts (smaller patches,
1.5x1.5px - 4x4px; fig. 2b). We force the network to learn a part-wise representation by constraining
each part to be smaller than its parent, therefore requiring a sequence of steps to reconstruct it. Fig-
ure 3 shows examples of MNIST digits (fig. 3a), Omniglot characters (fig. 3b) and ETH-80 objects
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Figure 3: Hierarchical Parts-Based Decomposition by the Model after Learning: Parsing of
(a) four MNIST digits, (b) four Omniglot characters and (c) four objects in the ETH-80 dataset by
the model.(a,b) Two levels of the hierarchical representation are shown, parts generated by z2 (left;
each part is denoted by a different color) and sub-parts generated by z1 (right, bordered boxes, each
sub-part is denoted by a different color). Order: blue → red → green → orange. Each bordered
box shows the output of a program generated by z1 to construct a part as a combination of sub-parts
transformed and placed within the reference frame of the part. (c) Leftmost column: original image;
middle column: reconstruction; right column: individual parts (sum of sub-parts).

(fig. 3c) generated by RNPs, with reconstructions at the level of parts (untiled-) and sub-parts (tiled
images).

3.2 TOPOGRAPHY OF NEURAL PROGRAMS

A notable challenge in optimizing and representing probabilistic programs has been the absence of a
continuous program space that can be interpretably manipulated. As we use the same hypernetworks
to generate programs at all levels, we should expect that programs at different tree depths inhabit
different areas of |z|-dimensional space, i.e. programs representing digits cluster separately from
programs representing parts. Analyzing the embedding space of z2 and z1 vectors that represent the
trained data (MNIST digits or Omniglot characters) reveals that z2 and z1 “neural program” vectors
do cluster separately (fig. 4a,b).

To test the expressiveness of our model, we investigated the space between learned z2 and z1 pro-
gram clusters by linearly interpolating in the latent “neural program” space occupied by the z2 and
z1 vectors. Sampling from regions between clusters produced programs that generated novel images
(fig. 5), showing that the model can exploit the latent structure of the program embedding space to
synthesize previously unseen patterns by combining the learned parts.

3.3 COMPOSITIONALITY AND TRANSFER LEARNING

Compositionality is a main goal of our architecture. With a generative model over programs, we are
able to sample program space in regions outside those representing the trained data (fig. 4). This can
be demonstrated by interpolating between clusters in {z2, z1} (fig. 4c), or sampling randomly from
z2 ∼ N (0, I) (fig. 5). Figure 5 shows that the model can generate novel characters by synthesizing
learned primitives in different, often novel, combinations of parts.
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Figure 4: Topography of Neural Program Space. (a) t-SNE clustering of z2 and z1 vectors in a
model trained on MNIST. A representative image is shown for each cluster. (b) Example clusters of
sampled images from z2 (left column) and z1 (remaining columns) for a model trained on Omniglot.
(c) Example linear interpolations in z space from the center of one cluster (leftmost image) to the
center of another cluster (rightmost image) show novel generated images from neural programs in
the intermediate space. Left: MNIST, right: Omniglot.

Figure 5: Sampling from the Prior. Sampling of z2 from N (0, 1) for a model trained on MNIST
digits (left), Omniglot characters (middle) and ETH-80 objects (right). As in (fig. 3), part order is
blue→ red→ green→ orange.

We further tested the compositional ability of our model in two transfer learning tasks. Firstly,
we trained RNPs on all MNIST classes but one (7 or 8), or on the Omniglot training dataset. By
adjusting the weights of the encoder network (but not the decoder hypernetworks Hstate,Hpolicy ),
RNPs were able to synthesize parts for the unseen class (fig. 6a,b). Secondly, we adapted a model
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trained on the ETH-80 dataset to reconstruct colored Fashion-MNIST Xiao et al. (2017) objects by
keeping the Hstate network and training a new Encoder and Hpolicy network (fig. 6c).

Figure 6: Transfer Learning. RNPs trained on a training set of classes (see text) are able to explain
novel examples from unseen classes and synthesize the parts for MNIST digits (a) and Omniglot
characters (b). (c) Example Fashion-MNIST objects generated by an RNP with Hstate trained on
the ETH-80 dataset.

3.4 EXTENDING RNPS BEYOND TWO RECURSION LEVELS

To demonstrate that RNPs can be trained at a recursion depth greater than two, we trained a three-
level RNP on images containing pairs of MNIST digits (fig. 7a). We then show that the three-level
model constitutes a two-level RNP on MNIST digits, i.e. we reduce the recursion depth to two and
train a new Encoder to generate centered MNIST digits (fig. 7b).

4 CONCLUSION

In this paper, we introduced Recursive Neural Programs (RNPs), a new model for differentiably
learning tree-structured data as sensory-motor sequences in a way that allows flexible composition
of learned primitives using a recursive “grammar.” We demonstrated our model’s ability to generate
images using a hierarchy of parts and their transformations. Our architecture can also be applied
to learning in arbitrary domains, such as audio, video and other dynamical processes such as motor
behavior.

There are several potential directions for future research. Using the same hypernetworks at different
levels allows natural recursion, but limits the expressive power of the model. This can be addressed
by learning different hypernetworks for different levels, or introducing a level-specific input. Hy-
pernetworks describing different data modalities (e.g. audio, visual, etc.) could be combined to
generate richer multi-modal neural programs, provided constraints on the size of the primary net-
work are taken into account Galanti & Wolf (2020). Training deep RNPs across levels and across
time steps can be challenging. This could be addressed by training RNPs at different depths in
parallel. Another potential area for improvement is replacing bilinear interpolation (which is not
smoothly differentiable) used for transformation of image primitives, with smoother functions to
sample images (e.g. Klocek et al. (2019)).
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Figure 7: Three-level RNP RNPs trained on pairs of MNIST digits (a): Left column: digit pair;
right column: model reconstruction. (b): MNIST digits retrieved from two-level truncation of the
three-level model by training an encoder on centered (non-transformed) MNIST digits.

Finally, message passing between nodes at different tree depths could allow for bidirectional in-
formation flow: predictions from parents to children, and belief updates from children to parents
(using, e.g., prediction errors). We intend to explore such predictive coding-based architectures for
RNPs in future work.
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sizes of |z|). All networks for a given k consisted of fully connected layers of 64 units, except the
RNNs fk

state and fk
policy, which retained the dimensionality of |z|.

The encoder network consisted of five ResNet blocks (32 channels) He et al. (2016) and four fully
connected layers (64 units).

TRAINING

We trained all models using the ADAM optimizer Kingma & Ba (2017) with a learning rate of 4e-5,
which reliably showed convergence. We trained our models for 200 epochs, except on the Omniglot
dataset where we trained for 400 epochs. We used |z| = 32 on MNIST and Fashion-MNIST, and
|z| = 96 for Omniglot. Models were trained on a single GPU (Nvidia Quadro RTX 6000).

A.1 RNP ALGORITHM

Algorithm 1 Recursive image generation
1: procedure RNPDECODER(z, level)
2: enck−1

state, f
k−1
state, dec

k−1
state, z

k−1
0 ← Hstate(z

k)

3: enck−1
policy, f

k−1
policy, dec

k−1
policy, a

k−1
0 ← Hpolicy(z

k)

4: pk−1
t = 0

5: for t = 1 : τk−1 do
6: zk−1

t = fk−1
state(a

k−1
t−1 , z

k−1
t−1 )

7: ak−1
t = fk−1

policy(a
k−1
t−1 , z

1
t−1)

8: x̂k−1
t = deck−1

state(z
k−1
t−1 )

9: if level > 0 then
10: pk−1

t ← pk−1
t−1 +RNPdecoder(zk−1, level − 1)

11: else
12: return
13: return pk−1

t
14: procedure RNP(x, levels = k)
15: µk, logvark = Encoder(x)
16: zk = µk + exp(logvar) ∗ rand(N (0, 1))
17: return RNPdecoder(zk, k)
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