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Abstract

This paper introduces a new empirical methodology, the Cross-environment Hyper-
parameter Tuning Benchmark, that compares RL algorithms across environments
using a single hyperparameter setting, encouraging algorithmic development which
is insensitive to hyperparameters. We demonstrate that this benchmark is robust
to statistical noise and obtains qualitatively similar results across repeated ap-
plications, even when using few samples. This robustness makes the benchmark
computationally cheap to apply, allowing statistically sound insights at low cost. We
demonstrate two example instantiations of the CHTB, on a set of six small control
environments (SC-CHTB) and on the entire DM Control suite of 28 environments
(DMC-CHTB). Finally, to illustrate the applicability of the CHTB to modern RL
algorithms on challenging environments, we conduct a novel empirical study of an
open question in the continuous control literature. We show, with high confidence,
that there is no meaningful difference in performance between Ornstein-Uhlenbeck
noise and uncorrelated Gaussian noise for exploration with the DDPG algorithm on
the DMC-CHTB.

1 Introduction
One of the major benefits of the Atari suite is the focus on more general reinforcement learning
agents. Numerous agents have been shown to exhibit learning across many games with a single
architecture and a single set of hyperparameters, and to a lesser extent, OpenAI Gym (Brockman
et al., 2016) and DM control suite (Tassa et al., 2018) are used in the same way. As the ambitions of
the community have grown, Atari and OpenAI Gym tasks have been combined into larger problem
suites, with subsets of environments chosen to test algorithms. In many ways we are back to where
we started with Cartpole, Mountain Car and the like: where environment-specific hyperparameter
tuning and problem subselection is prominent. Instead of proposing a new and bigger challenge suite,
we explore a modification to standard empirical methodology for comparing agents across a given
set of environments, complementing the existing empirical toolkit for investigating the scalability of
deep RL algorithms.

In order to make progress towards impactful applications of reinforcement learning and the broader
goals of AGI, we need benchmarks that clearly highlight the generality and reliability of learning
algorithms. Empirical work in Atari, Mujoco, and simulated 3D worlds typically use networks with
millions of parameters, dozens of GPUs, and up to billions of samples (Beattie et al., 2016; Espeholt
et al., 2018). Many results are demonstrative, meaning that the primary interest is not the reliability
and sensitivity, nor the resources required to achieve the result, rather that the result could be
achieved. It is infeasible to combine these large scale demonstrations with hyperparameter studies
and sound empirical methodology. More evidence is emerging that such state-of-the-art systems (1)
rely on environment-specific design choices that are sensitive to minor changes to hyperparameters
(Henderson et al., 2018; Engstrom et al., 2019), (2) are less data efficient and stable compared with
simple baselines (van Hasselt et al., 2019; Taïga et al., 2019), and (3) cannot solve simple toy tasks
without extensive re-engineering (Obando-Ceron and Castro, 2021; Patterson et al., 2021). It is
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abundantly clear that modern RL methods can be adapted to a broader spectrum of challenging
tasks—well beyond what was possible with linear methods and expert feature design. However, we
must now progress to the next phase of empirical deep RL research: focusing on generality and
reliability.

There is a growing movement to increase the standards of empirical work in RL. Long before the
advent of deep networks, researchers called out the environment overfitting that is rampant in RL
and proposed sampling from parameterized variants of classic control domains to emphasize general
methods (Whiteson et al., 2009). Noisy results, inconsistent evaluation practices, and divergent code
bases have fueled calls for more open-sourcing of agent architecture code, experiment checklists,
and using more than three samples in our experiments (Henderson et al., 2018; Pineau et al., 2020;
Patterson et al., 2023). Recent work has highlighted our poor usage of basic statistics, including
confidence intervals and hypothesis tests (Colas et al., 2018; Agarwal et al., 2021; Patterson et al.,
2023). Finally, and most related to our work, Jordan et al. (2020) proposed a methodology to better
characterize the performance of an algorithm across environments, evaluated with randomly sampled
hyperparameters. We build on this direction, but focus on a simpler and more computationally frugal
evaluation that examines the single best hyperparameter setting across environments, rather than a
randomly sampled one, and allows for a smaller number of runs per environment.

Table 1: Chance of incorrect claims
3 runs 10 30 100

Acrobot 47% 31% 22% 1%
Cartpole 7% 0% 0% 0%
CliffWorld 54% 19% 14% 0%
LunarLander 16% 7% 1% 0%
MountainCar 22% 9% 7% 0%
PuddleWorld 18% 16% 8% 0%

Experiments with many runs, hyperparameters, and en-
vironments can be computationally prohibitive, making
these computational constraints a primary culprit for mis-
leading or incorrect claims in RL experiments. Typical
strategies sacrifice one of these three axes to reduce costs,
either using too few samples to draw statistically sound
conclusions, providing an incomplete sensitivity analysis of
the hyperparameters, or using a limited number of testbed

environments to meaningfully evaluate the generality of the claims. Table 1 illustrates the effect of
using a limited number of seeds while tuning hyperparameters. We ran four algorithms 250 times
for every environment and hyperparameter setting in an extensive sweep to get a high confidence
approximation of the correct ordering between algorithms. We then used bootstrap sampling to
simulate 10k papers—each using far fewer random seeds—and counted the frequency that incorrect
algorithm orderings were reported. Even with 30 runs in these small domains, incorrect rankings
were not uncommon. Further details are described in Section 5.

It is surprising that 30 runs would be insufficient to reliably identify the correct ordering over four
distinct algorithms for some environments. This failure stems from a poor interaction between the
statistical properties of RL algorithm performance and the challenge of identifying the best performing
hyperparameter for an algorithm. This is further exacerbated by modern RL algorithms, which require
tuning an increasing number of hyperparameters and presenting increasingly complex hyperparameter-
performance landscapes. To combat this, several strategies have emerged in the literature including
far more efficient tuning strategies than the commonplace gridsearch (Eggensperger et al., 2019),
relying on default hyperparameter values (Schaul et al., 2016; Wang et al., 2016; Van Hasselt et al.,
2016; Agarwal et al., 2021), tuning hyperparameters on a subset of domains (Bellemare et al., 2013),
or eroding standards of sufficient statistical power for publication (Henderson et al., 2018; Colas
et al., 2018; Agarwal et al., 2021).

In this paper, we evaluate the utility of selecting hyperparameters across environments using a
methodology we call the Cross-environment Hyperparameter Tuning Benchmark (CHTB). The basic
idea is simple: we evaluate an algorithm across a set of environments using a single hyperparameter
configuration in a two-stage approach. Though conceptually simple, this methodology is not widely
used. We first address some nuances in the CHTB, namely how to standardize performance across
environments to allow for aggregation, how to allow for robust measures of performance, and finally
how to reduce computation to make it more feasible to use the CHTB. We evaluate the effectiveness of
the CHTB itself by examining the stability of the conclusions from the CHTB under different numbers
of runs. We then demonstrate that the CHTB can result in different conclusions about algorithms
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Figure 1: An example experiment comparing four algorithms across six different environments. Each
learning curve shows the mean and 95% confidence interval of 250 independent runs for each algorithm
and environment. Hyperparameters are selected using three runs of every algorithm, environment,
and hyperparameter setting. Top shows the learning curves when the best hyperparameters are
chosen for each environment individually. Bottom shows the learning curves when hyperparameters
are chosen according to the CHTB.
compared to the conventional per-environment tuning approach and the more recent approach of
using a subset of environments for tuning. Finally, we conclude with a larger demonstration of the
CHTB on the DM Control Suite.

2 Contrasting Across-Environment versus Per-Environment Tuning

In this section, we introduce the basic procedure for the CHTB and provide an experiment showing
how it can significantly change empirical outcomes compared to the conventional per-environment
tuning approach. We provide specific details for each step later and here focus on outlining the basic
idea and its utility.

The CHTB consists of the following four steps summarized in the inset figure below. We assume we
are given a set of environments and a set of hyperparameters for the algorithm we are evaluating.
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Step 1 (Preliminary Sweep) Run the al-
gorithm for all hyperparameters and all envi-
ronments, for ntune runs (i.e., ntune < 30) and
record the performance of every combination.
Step 2 (Normalization) Normalize the scores
across environments. We use CDF normaliza-
tion, which is described in Section 4.
Step 3 (Hyperparameter Selection) Select
the hyperparameter setting with the highest
score averaged across environments.

Step 4 (Re-evaluation) With the single best hyperparameter setting, use many more runs in each
environment (e.g. 100) to produce a more accurate estimate of performance.

The last step is more lightweight than it appears since only a single hyperparameter configuration is
used for all environments. By using a small ntune in the preliminary sweep, we save a significant
amount of computational resources and can devote more resources to the re-evaluation step. Detecting
differences between hyperparameter configurations for each individual environment can be challenging,
especially in the presence of noise. For conventional per-environment tuning to yield reliable and
statistical sound results requires a large ntune for every algorithm, hyperparameter, and environment.
The CHTB, by contrast, seeks to only detect differences in hyperparameter configurations across
environments, significantly reducing the necessary ntune.
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The benefit of combining normalized scores across environments is primarily statistical—averaging
across more values typically results in a lower variance estimator. However, it is well-established
that finding a single hyperparameter configuration that works well across problems is challenging
(Eggensperger et al., 2019). This is precisely the goal of the CHTB, to reduce the statistical hurdle
of comparing algorithmic advances and focus on the challenge of designing algorithms which are less
sensitive to their hyperparameters.

We illustrate this effect in Figure 1. The per-environment tuning approach highlights the ideal
behavior of an algorithm per environment, whereas the CHTB highlights the (in)sensitivity of an
algorithm across environments. Experimental details can be found in Section 5. The environments
are relatively simple (most coming from the classic control suite of OpenAI Gym (Brockman et al.,
2016)) but difficult enough for our purposes: no one algorithm could reach near optimal performance
in all environments.

In Figure 1, the CHTB does not rank the algorithms differently than with per-environment tuning,
but the CHTB does alert us to potential catastrophic failure of some algorithms. The neural
network DeepQ agent performs terribly in Cliffworld and Lunar Lander under the CHTB, but
appears reliable under the per-environment approach. What is going on? Forced to select only one
hyperparameter across environments, the best outcome is to sacrifice performance in Cliffworld and
Lunar Lander—achieving worse performance than a uniform random policy.

3 Performance Distributions

In this section, we describe the distribution and random variables underlying an RL experiment. This
formalism allows us to reason about the summary statistics we consider for the CHTB in the next
section. We also visualize these distributions to provide intuition on the properties of the summary
statistics of these distributions and the implications for the single performance numbers used in RL.

In an RL experiment, we seek to describe the performance distribution of an algorithm for each
hyperparameter setting θ ∈ Θ, denoted as P(G, E | θ) where G is a random variable indicating
the performance of an algorithm on a given environment, E ∈ E . Most commonly, we report
an estimate of the average performance conditioned on environment and hyperparameter setting,
g(E, θ) ≊ E[G | E, θ] using a sample average and some measure of uncertainty about how accurately
g(E, θ) approximates E[G | E, θ].

The environment can be seen as a random variable for many RL experiments. The most common
case is to specify a set of MDPs that the authors believe represent the important applications of their
new algorithm. If results are uniformly aggregated across these environments, then this corresponds
to assuming a uniform distribution over this set of environments. Other times, random subsets of
environments from environment suites are chosen; the performance estimate on this subset provides
an estimate of performance across the entire suite. The idea of evaluating algorithms over a random
sample of MDPs has been studied explicitly previously. For example, the parameters determining
the physics of classical control domains were randomized and sampled to avoid domain overfitting
(Whiteson et al., 2009), and randomly generated MDPs (Archibald et al., 1995) have been used to
evaluate new algorithmic ideas (Seijen and Sutton, 2014; Mahmood et al., 2014; White and White,
2016). If we subselect after running the algorithms, then we bias the distribution over environments
towards those with higher performance.

Figure 2 Let us look at an example of these performance distributions to gain
some intuition for estimating statistics like the expected performance.
Consider the action-value nonlinear control method DQN, using the Adam
optimizer (Mnih et al., 2013; Kingma and Ba, 2015), on Cartpole (Barto
et al., 1983). We fix the hyperparameter setting θ to the default values
from Raffin et al. (2019). For this fixed environment, all randomness
is due to sampling algorithm performance on this environment, namely
sampling G according to P(G | E, θ). The performance, G, is the average
episodic return over all episodes completed during 100k learning steps.
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This environment is considered solved for G > 300. We repeat this
procedure for 250 independent trials to estimate the distribution P(G | E, θ), shown in Figure 2, with
x-axis possible outcomes of G and y-axis the probability density. The vertical solid line denotes mean
performance, and the vertical dotted line denotes mean performance of a random policy.

Figure 2 is a typical example of the performance of an RL algorithm over multiple independent
trials. In this case, DQN is more likely to fail than to learn a policy which solves this relatively
simple environment. It is common practice to run an RL algorithm for some number of random
seeds—effectively drawing samples of performance from this distribution—then reporting the mean
over those samples (solid vertical line).

There are two implications from observing this bimodal performance distribution. First, using the
expected value of this distribution as the summary statistic does not aptly demonstrate that the poor
performance of DQN on Cartpole is due to occasional catastrophic failure—performing worse than or
equivalent to a random policy. Instead, mean performance might lead us to wrongly conclude that
DQN on Cartpole usually finds a sub-optimal, yet better than random, policy. An alternative might
be to consider percentile statistics or, if the goal is to evaluate mean performance, to avoid drawing
strong conclusions about individual runs.

If the goal is to report mean performance, then a second issue arises. Estimating the mean of these
non-normal performance distributions can be challenging. In Figure 2, approximately 70% of the
density is around a mode centered at 20 return, and the remaining 30% is around a mode centered
at 250 return. As a result, sample means constructed with only three runs are varied and skewed.

Further, to report the average performance of the best performing hyperparameter—that is
maxθ∈Θ E[G | θ, E]—we must first reliably estimate the conditional expected performance for each
hyperparameter. Computing this expectation can require a large number of samples to obtain a
reasonable estimate for each hyperparameter. This results in a tradeoff between measuring sensitivity
and reliability: between the breadth of hyperparameter settings that can be studied and the accuracy
to with which we can feasibly evaluate each hyperparameter.

The summary statistic used to select hyperparameters also interacts
with the form of the performance distribution. In the inset figure on the
left we show the performance distribution across four different choices
of stepsize parameter of DQN in Cartpole. If we are interested only in
the highest best case performance, then 2−10 is preferred. However, if
we are particularly concerned with reducing the chances of catastrophic
failure (i.e., highest worst case performance), then a stepsize 2−7 is
preferred. The most common case is to report results for the stepsize
with the highest average performance. In this case, a stepsize of 2−9

would be preferred.

These performance distributions can also look quite different for dif-
ferent environments, even with the same algorithm. For Cartpole
(above), the distribution is increasingly long-tailed with smaller step-
sizes. For Puddle World, shown in the inset figure on the right, the
distributions are always bimodal with one mode around -600 return
and a second mode around -200 return. With smaller stepsizes, the
density around the better performance mode increases, shifting the
mean of the distribution. Peak performance does not change; rather
the probability that DQN has a good run is higher with small stepsizes.
This analysis of performance distributions raises an important question:
do current RL algorithms have consistent hyperparameter settings which perform well across many
environments?
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4 The Cross-environment Hyperparameter Tuning Benchmark
In this section, we describe the Cross-environment Hyperparameter Tuning Benchmark (CHTB) in
detail. Although it seems natural to evaluate across environments, standard empirical practice in RL
is not done this way. Understanding across-environment sensitivity aligns nicely with the intent of
sensitivity analysis: elucidating how well an algorithm might perform on new environments without
extensive hyperparameter tuning. We argue that the CHTB 1) better aligns empirical practice with
the goals of applied RL, 2) is computationally feasible even in complex environments, 3) provides
novel insights on old ideas (even with small environments), and 4) reduces the chances of accidentally
publishing incorrect conclusions due to statistical noise.

The first step of the CHTB (preliminary sweep) is to draw a small number of samples ntune from
P(G | θ, E) for every hyperparameter setting and environment and get the summary estimate g(E, θ)
from those samples. Typically, we compute g(E, θ) as a sample average to estimate E[NE(G) | E, θ],
where NE : R → R is a normalization function that we describe below. Then we aggregate across
environments to estimate g(θ) ≈ E[E[NE(G) | E, θ]], where the outer expectation is with respect
to environments. Then we select a single hyperparameter setting with θCHTB = arg maxθ∈Θ g(θ).
Finally, we draw a large number of samples from P(G | θCHTB, E) for every environment and report
the same summary statistics g(E, θCHTB) and g(θCHTB) (re-evaluation).

Generally, we cannot expect each environment to produce normalized performance numbers, so to
compute the expectation across environments we must first normalize the performance measures. A
comprehensive discussion of normalization methods is given in Jordan et al. (2020). We use a lightly
modified version of the CDF normalization method from Jordan et al. (2020), NE(G) = CDF(G, E),
which is highly related to probabilistic performance profiles (Barreto et al., 2010).

To compute the CDF normalization, we first collect the performance g of each algorithm and
hyperparameter into a pool PE for each environment E. Then given some arbitrary score x from
environment E, the CDF normalization is

CDF(x, E) = 1
|PE |

∑
g∈PE

1(g < x)

where 1 is the indicator function. This mapping says: what percentage of performance values, across
all runs for all algorithms and all hyperparameter settings, is lower than my performance x on this
particular environment E? For example, if CDF(x, E) = 0.25, then this agent’s performance is
quite low in this environment, as only 25% of other agents’ performance was worse across agents
tested. This normalization accounts for the difficulty of the problem, and reflects relative performance
amongst agents tested. Note that this normalization uses an empirical CDF, rather than the true
CDF for the environment and set of hyperparameters and agents. This means there is a small
amount of bias when estimating E[E[NE(G) | E, θ]]. This bias dissipates with an increasing numbers
of samples and equally impacts all compared algorithms.

Selecting hyperparameters with the CHTB can require significantly fewer samples compared with
conventional per-environment tuning. Per-environment tuning requires a sufficiently accurate estimate
of the conditional expectation E[G | E, θ] for every θ ∈ Θ and for every E ∈ E , requiring a number
of runs proportional to |Θ||E|. The CHTB, on the other hand, requires only an accurate estimate
of E[NE(G) | θ] = E[E[NE(G) | E, θ]] which requires a number of runs proportional only to |E|. By
designing a process which selects hyperparameters first using a smaller number of runs, we can reserve
more computational resources for re-evaluation. Once we select the best hyperparameters, the cost
of collecting samples is independent of Θ, and so we can decouple the precision of our performance
estimate from the number of hyperparameter settings that we evaluate for each algorithm.

Finally, we can contrast this benchmark with a recent evaluation scheme that uses random hy-
perparameter selection (Jordan et al., 2020). In order to capture variation in performance due
to hyperparameter sensitivity, Jordan et al. (2020) treats hyperparameters as random variables
and samples according to an experimenter-designated distribution over hyperparameters, reporting
the mean and uncertainty with respect to this added variance, similar to the procedure used in
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Jaderberg et al. (2016). This evaluation methodology provides some insight into the difficulty of
tuning, though requires a sensible distribution over hyperparameters to be chosen. The CHTB, on
the other hand, asks: is there a hyperparameter setting for which this algorithm can perform well
across environments? It motivates instead identifying that single hyperparameter, and potentially
fixing it in the algorithm, or suggesting that the algorithm needs to be improved so that such a
hyperparameter could feasibly be found. Both of these strategies help identify algorithms that are
difficult to tune, but the CHTB is easier to use and computationally cheaper.

5 Evaluating the Cross-environment Hyperparameter Tuning Benchmark

In this section, we evaluate the CHTB by comparing four algorithms across several classic control
environments. Evaluating the reliability of an evaluation strategy is challenging as we need to
understand the probability that the CHTB leads to drawing incorrect conclusions—similar to
ensuring that a methodology for computing 95% confidence intervals do in fact capture the mean
value 95% of the time. To achieve this, we gather an extensive dataset of 250 samples for every
algorithm, hyperparameter, and environment. We treat this large dataset as the source-of-truth and
draw (with replacement) subsamples of this dataset to simulate a single application of the CHTB.
Each of these simulated applications of the CHTB can be thought of as a single paper using the
CHTB to compare multiple algorithms. We then estimate what proportion of those papers using the
CHTB identify the correct ordering of algorithms. Nominally, using 95% confidence intervals, we
would expect to identify the correct ordering 95% of the time.

For this simulation of the CHTB, we use a dense and exhaustive gridsearch over hyperparameters. By
using an exhaustive gridsearch, we can ensure that a high-performing hyperparameter configuration
is captured in the set of tested hyperparameters—though at high computational cost. Using a
gridsearch also greatly simplifies the statistical simulation strategy used to evaluate the CHTB over
many simulated papers, without changing conclusions about the CHTB itself. However, the CHTB
is agnostic to the hyperparameter configuration strategy and typically a gridsearch is not the most
computationally efficient approach.

For this evaluation, we require environments where hundreds of independent samples of performance
can be drawn across a large hyperparameter sweep in a computationally tractable way. We emphasize
that this is not a general requirement of the CHTB and is required only in this case of evaluating
the CHTB’s responsiveness to perturbations in the experimental process. Because these classic
control environments are cheap to run and provide meaningful insights in differentiating modern RL
algorithms (Obando-Ceron and Castro, 2021), we name this specific benchmark the Small Control
CHTB (SC-CHTB). In Section 6 we provide a realistic demonstration of the CHTB on a larger
dataset with a more complex algorithm.

Algorithms. For the following investigations, we compare two deep RL algorithms based on DQN
(Mnih et al., 2013) and two control algorithms based on linear function approximation using tile-coded
features (Sutton and Barto, 2018). The deep RL algorithms, DQN and DeepQ, differ only in their
loss: DQN uses a clipped loss and DeepQ uses a mean squared error. For the two tile-coding agents,
QLearning is off-policy and bootstraps using the greedy action, while ESARSA is on-policy and
bootstraps using an expectation over actions. Further details on the algorithms can be found in
Appendix C.

Environments. The SC-CHTB consists of a suite of classic control environments commonly used in
RL: Acrobot (Sutton, 1996), Cartpole (Barto et al., 1983; Brockman et al., 2016), Cliff World (Sutton
and Barto, 2018), Lunar Lander (Brockman et al., 2016), Mountain Car (Moore, 1990; Sutton, 1996),
and Puddle World (Sutton, 1996). We used a discount factor of γ = 0.99 and a maximum episode
length of 500 steps (except in Cliff World which had a maximum length of 50 steps). We ran all
algorithms for 200k learning steps on each environment except Lunar Lander, where we used 250k
learning steps to ensure all algorithms have reliably converged. Further details motivating this choice
of environments can be found in Appendix C.1.
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Figure 3: Applying the CHTB to 10k simulated experiments. Error bars show 95% bootstrap
confidence intervals. Although only three runs were used to select hyperparameters, conclusions
about algorithm ranking using the CHTB are perfectly consistent across all 10k experiments.

Hyperparameters. For all algorithms we swept eight stepsize values, α ∈ {2−12, 2−11, . . . , 2−5}
for the deep RL algorithms and α ∈ {2−9, 2−8, . . . , 2−2} for the tile-coded algorithms. The deep
RL algorithms used experience replay and target networks, so we swept over replay buffer sizes of
{2000, 4000} and target network refresh rates of {1, 8, 32} steps where a one step refresh indicates
target networks are not used. The algorithms with tile-coding learn online from the most recent
sample; we select number of tiles in each tiling in {2, 4, 8} and number of tilings in {8, 16, 32}. More
details on the other hyperparameters and design decisions are in Appendix C.

Variance over simulated experiments. We start by demonstrating the low variance of conclusions
over 10k simulated applications of the CHTB. We simulate applying the CHTB with three random
seeds for every algorithm, environment, and hyperparameter to first select hyperparameters, then
using 250 random seeds to evaluate the performance of each algorithm on each environment with the
selected hyperparameter configuration. We compare the outcomes of each application of the CHTB
to estimate the variance in conclusions in Figure 3.

Using the full dataset, the true ordering of algorithms from best to worst is ESARSA, QLearning,
DeepQ, and DQN. Every simulated application of the CHTB detected this ranking successfully.
Conclusions on individual environments are less consistent, though this is to be expected. The CHTB
sacrifices the ability to draw conclusions about the ordering of algorithms on individual domains
by setting ntune, the number of tuning seeds, to be very small. In reality, the use of small ntune to
draw conclusions on individual domains is common practice and Figure 3 well demonstrates how this
practice can be misleading.

We provide more insight into the difficulty of selecting a single hyperparameter across problems, in
Appendix B.1. We additionally show that the distribution of selected hyperparameters with the
CHTB is narrow and consistent over simulated experiments, unlike parameters chosen independently
for each environment. Because conclusions are often drawn by aggregating results over environments—
either formally as in the CHTB or informally by counting the number of environments where
an algorithm outperforms others—reporting results over a consistent and narrow distribution of
hyperparameters leads towards lower variance claims and greater reproducibility. We include results
selecting hyperparameters according to the worst-case performance across environments in Appendix
B.4; the results are highly similar, albeit slightly lower variance.

The cost of running a single experiment represented in Figure 3 is quite low. The deep RL algorithms
test 48 hyperparameter settings at a cost of 20 minutes per run, while the tile-coded algorithms test
72 settings at the cost of two minutes per run. Timings are with respect to an older 2.1Ghz Intel
Xeon processor. This comes out to a total of 1762 hours of CPU time to complete three runs for
hyperparameter selection and 250 runs for evaluation, cheaper than the experiment using 10 runs and
conventional per-environment tuning shown in Table 1 which cost approximately 2208 hours. The
CHTB successfully detected the correct ordering of algorithms in every trial, while the conventional
per-environment tuning experiment failed to detect the correct ordering with surprising frequency.
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Figure 4: The change in performance for each algorithm on every environment when using the
CHTB versus conventional per-environment tuning. A larger drop in performance indicates a larger
degree of environment overfitting when results are reported with per-environment tuning. Error bars
show 95% confidence intervals over 10k bootstrap samples.

The CHTB is a less optimistic measure of performance. A motivating factor for the CHTB
is providing a more challenging benchmark to test across-environment insensitivity to selection of
hyperparameters. Because algorithms are limited to selecting a single champion hyperparameter
setting—as opposed to selecting a new hyperparameter setting for every environment—we expect a
considerable drop in performance under the CHTB. We evaluate the extent of this performance drop
for our four algorithms by first computing near optimal parameters θ∗ ∈ Θ for each environment using
the full 250 random seeds to obtain high confidence estimates of average performance E[NE(G) | E, θ∗].
We then apply the CHTB to select hyperparameters for each algorithm using three random seeds for
10k simulated experiments. We report sample estimates of E[NE(G) | E, θ∗] − E[NE(G) | E, θCHTB].

In Figure 4 we can see there is substantial drop in reported performance when using the CHTB
versus per-environment tuning. The variance is high, indicating that for some runs, the performance
drop was substantial: almost 0.4 under our normalization between [0,1]. Algorithms with a large
drop in performance indicate more environment-specific overfitting under per-environment tuning.
Because we swept over many more hyperparameter settings for the tile-coding algorithms than for
the deep RL algorithms—72 settings versus 48 settings—it is unsurprising that per-environment
tuning led to far more environment overfitting in the tile-coding algorithms.

Tuning on a subset of environments. An empirical practice that is highly related to the CHTB
is using a subset of environments to select hyperparameters, then reporting the performance of
the selected hyperparameters across an entire suite of environments. We refer to this practice
as subset-CHTB. This practice is used in the Atari suite for example, where it was suggested to
use five of the 57 games for hyperparameter tuning (Bellemare et al., 2013). To investigate the
variance of conclusions using the subset-CHTB, we run 10k simulated experiments using two of our
six environments to select hyperparameters. For each of the simulated experiments, we randomly
select two environments to use for hyperparameter selection. To reduce the variance, we allow each
algorithm 100 runs of every hyperparameter setting on every environment to perform hyperparameter
selection, then evaluate the performance on the full 250 runs for the hyperparameter selected by
the subset-CHTB. More results, including with varying number of runs and environments used for
hyperparameter selection, can be found in Appendix B.

In Figure 5, we see that the ordering of algorithms is extremely high-variance—especially compared
to Figure 3 which uses all six environments to select hyperparameters and only three runs. This
result also illustrates large differences between individual environments, where the variance on Lunar
Lander—especially for DQN—suggests that hyperparameters selected for other environments are
likely to cause worse-than-random performance on Lunar Lander. At least among the four tested
algorithms, it is clear that hyperparameter sensitivity is too high to use environment subselection to
reduce the computational burden of hyperparameter tuning.

Bias of the CHTB. Both the CHTB and conventional per-environment tuning
use biased sample estimates due to the maximization over hyperparameters. The
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Figure 5: Performance of each algorithm over 10k bootstrap samples, where sample means are com-
puted with 100 runs. Each bootstrap sample randomly selects two environments for hyperparameter
tuning, then evaluates the chosen hyperparameter setting on all six environments with 250 runs.
Error bars show 95% bootstrap confidence intervals.

bias due to maximization over random samples is exaggerated both as the set
Θ grows and as the number of samples used to evaluate E[G | E, θ] shrinks.

Figure 6: Bias of the CHTB vs.
per-environment tuning.

We first estimate the true per-environment maximizing parame-
ters θ∗ and the true CHTB parameter θ∗

CHTB using 250 samples for
every hyperparameter setting and environment. We then resample
three samples per hyperparameter and environment to simulate
an experiment using three seeds to compute sample averages, we
select the maximizing parameter of these sample averages, θ̂, and
we report E[G | E, θ∗] −E[G | E, θ̂]. The corresponding procedure
is used for the CHTB.

In Figure 6, we report the bias of each procedure applied to
DQN and the small control domain suite. On the vertical axis we
report the bias and on the horizontal axis we show the number
of random seeds used to select hyperparameters. As both proce-
dures approach a sufficiently large number of samples to select
hyperparameters, the bias of these procedures approaches zero.
However when using few random seeds—for instance ten or fewer

as is common in the literature—the bias of the conventional method is several times larger than that
of the CHTB. As a result of this overestimation bias, it is common for results in the literature to
present highly optimistic results especially for algorithms with more hyperparameters.

6 A Demonstrative Example of Using the CHTB

We finish with a large-scale demonstration of our benchmark across the 28 environments of the
DMControl suite (Tassa et al., 2018), which we will call the DMC-CHTB. For this comparison,
we test an open hypothesis in the continuous control literature: does Ornstein-Uhlenbeck (OU)
noise (Uhlenbeck and Ornstein, 1930) improve exploration over naive uncorrelated Gaussian noise?
Autocorrelated noise for exploration was shown to be beneficial for robotics (Wawrzyński, 2015),
inspiring the use of an OU noise process for DDPG (Lillicrap et al., 2016), where a single set of
hyperparameters was used across 20 Mujoco environments using five seeds. Later work replaced OU
noise with Gaussian noise, noting no difference in performance (Fujimoto et al., 2018; Barth-Maron
et al., 2018), but without empirical support for the claim. To the best of our knowledge, no careful
empirical investigation of this hypothesis has yet been published.

To apply the DMC-CHTB, we first evaluate 36 hyperparameter settings with three runs per envi-
ronment, for a total of 84 runs to estimate E[NE(G) | θ] for each θ ∈ Θ. Then we use 30 runs to
evaluate the chosen θCHTB for a total of 840 runs to estimate E[NE(G) | θCHTB]. We report the
swept hyperparameters as well as the selected θCHTB in Appendix B.5. We use 1k bootstrap samples
to compute confidence intervals and report the overall findings in the table in Figure 7. We find that
OU noise does not outperform Gaussian noise on the DMC-CHTB. Considering even the extremes of
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Figure 7: Comparing DDPG using OU noise vs. Gaussian noise across the DMControl suite. The
inset table shows the mean performance with 95% confidence interval for the two versions of DDPG
used in these experiments. Visualized in the bar plot is the performance of DDPG with OU noise,
per environment in the suite, considering DDPG with Gaussian noise as a baseline.

the confidence intervals there is no meaningful difference in performance between these exploration
methods, suggesting further runs would be unlikely to change our conclusion. We visualize the
performance of OU noise on the complete suite, considering Gaussian noise experiments as a baseline
in Figure 7. This visualization summarizes whether, and to what degree, OU noise improves upon
Gaussian noise in each environment of the DMControl suite. In only 10 of the 28 environments, OU
noise improves upon Gaussian noise, with a large improvement only in the WalkerRun environment.
Additional results are included in Appendix B.5.

7 Conclusion
In this work, we introduced a new benchmark for evaluating RL algorithms across environments, but
perhaps more important are the insights we gained. Of the five algorithms we tested (including DQN
and DDPG), none exhibited good performance on our CHTB benchmark; aligning with the common
view that we do not yet have generally applicable RL algorithms. The CHTB benchmark produces
reliable conclusions with only three runs in the preliminary sweep while providing a new challenging
aspect to small computationally-cheap environments, allowing small university labs and tech giants
alike to conduct rigorous and meaningful comparisons. Finally, prior work has disagreed on the benefit
of using OU or Gaussian noise in DDPG on Mujoco-based environments. Perhaps some combination
of too few runs, using default hyperparameters, or problematic environment sub-selection yielded
conflicting results. Our results with CHTB suggest there is no significant performance difference
across a suite of 28 Mujoco environments, putting this debate to bed. The CHTB benchmark can
play a role uncovering falsehoods and resolving disputes.

The CHTB is a general procedure for evaluating performance across environments. We provide two
example instantiations of the CHTB, the SC-CHTB for discrete action control on small domains and
the DMC-CHTB for continuous control on large simulated environments, however the CHTB can also
be extended to use arbitrary environment sets to allow targeted evaluation across environments with
certain desireable properties. For example, the taxonomies of Atari games identified in Bellemare
et al. (2016), the off-policy evaluation environments used in Sutton et al. (2009), or the taxonomy
of exploration environments from Yasui et al. (2019) are each sets of environments that have been
previously identified and used across the literature. Applying the CHTB to any one of the environment
sets provides a new challenge, and in some small way can push us towards generally applicable RL
agents.
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A Ethical considerations

Because the Cross-environment Hyperparameter Tuning Benchmark is applied to experimenter-picked
domains, it inherits the biases and ethical considerations of the studied domains. However, the
primary goal of the CHTB is to reduce algorithm design decisions which lead to overfitting to specific
attributes of studied domains. An example could be the use of layer-normalization within neural
networks, which highly disproportionately favor pixel-based domains. If the CHTB utilized only
pixel-based domains, the results would still follow the bias of the experiment designer; however
if even a single non-pixel domain was included in the benchmark, the biased design decision to
use layer-normalization would negatively impact the outcome of this particular algorithm on this
benchmark. Previous empirical practices are more likely to permit this form of biased design due to
statistical noise or domain subselection.

A major motivation for this paper is to advocate that meaningful and sound experiments in RL are
achievable at an inclusive and low cost. Running a complete experiment with four algorithms on the
six small control environments used in Section 5 would cost approximately $40 USD at current AWS
EC2 prices and would complete in approximate two days. This experiment is complete, sound, and
provides a meaningful ranking of four comparison algorithms; even detecting performance differences
across minute algorithmic differences. However, the CHTB is not perfectly resilient to gaming with
extensive hyperparameter tuning. Consider the highly common scenario where we wish to advocate
for one algorithm over competitive baselines, then performing extensive tuning or multiple iterations
of tuning with the CHTB still gives advantage to labs with greater access to resources.

For the studies performed in Section 5, we required far more compute than would be typical of a
study utilizing the CHTB. To evaluate the effectiveness of the CHTB required sufficient data to
simulate repeated applications of CHTB on new data. Our results were obtained using a cloud CPU
cluster using approximately 2000 Intel Xeon cores running at 2.1Ghz simultaneously. We utilized
approximately 2.4 CPU years to collect the small control experiments data used for this study, with
all post-processing, analysis, and plotting done locally on a laptop. The large demonstration on the
DMC-CHTB required approximately 1.3 GPU years of compute.

B Additional Results

In this section, we provide additional results of experiments run in Section 5. For these results, we
use the same experimental setup as in Section 5, namely we form a dataset of 250 runs of every
hyperparameter setting, environment, and algorithm tuple. From this extensive dataset, we use
bootstrap resampling to simulate experimental trials using the CHTB. We start by investigating a
slice of the sample distributions from which we perform resampling, then we provide additional results
demonstrating the high variance of conclusions drawn from tuning on a subset of environments.

B.1 Distribution of selected hyperparameters.

Figure 8: Bars represent the distribution of se-
lected stepsizes using conventional per-environment
tuning (red) or when using the CHTB (black).
Lines show the sensitivity curves for each environ-
ment. Confidence regions around the sensitivity
curves are negligibly small and are not visible when
plotted.

We show that the distribution of selected hyperparameters with the CHTB is narrow and consistent
over simulated experiments, unlike parameters chosen independently for each environment. Because
conclusions are often drawn by aggregating results over environments—either formally as in the
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CHTB or informally by counting wins—reporting results over a consistent and narrow distribution of
hyperparameters leads towards lower variance claims and greater reproducibility.

Figure 8 demonstrates the wide range of stepsizes used to draw conclusions using repeated applications
of the conventional per-environment tuning approach and the relatively narrow range used by repeated
applications of the CHTB. DQN does not have a consistently good stepsize setting that solves every
environment, or even a majority of environments. Several sensitivity curves have fairly opposite
performance for a given stepsize, demonstrating the difficulty in picking a single stepsize with which
to evaluate DQN.

Previous works generally investigate sensitivity over hyperparameters on each environment individu-
ally. This within-environment investigation empirically shows the deviation in performance of an
algorithm if different settings of a hyperparameter were used, indicating the difficulty of selecting
hyperparameters for just that environment. Our goal is slightly different. We seek to measure the
difficulty of selecting hyperparameters across multiple environments. Consider DQN’s sensitivities in
Figure 8. By looking at Acrobot, Cartpole, and Mountain Car—a commonly used suite of classic
control environments—we might conclude that DQN is across-environment insensitive because it
is simultaneously within-environment insensitive for these environment. However, expanding our
investigation by including Puddle World we see again that DQN is within-environment insensitive,
but across-environment highly sensitive; Cartpole and Puddle World have very few overlapping good
stepsizes. Adding the Lunar Lander environment and it is clear that DQN is not within-environment
insensitive, and as such is highly unlikely to be across-environment insensitive as well.

B.2 Tuning on a subset

Figure 9: Outcome of the CHTB when using two randomly selected domains to tune hyperparameters,
then evaluating hyperparameters on all six domains. Each of the 10k simulated experiments use
three seeds to select hyperparameters, then 250 seeds to evaluate performance.

In Section 5, we investigate the impact of using a subset of environments to tune hyperparameters
while reporting results on the full set of environments. We demonstrated the high variance of
conclusions using two randomly selected domains for each simulated experiment and using 100
random seeds to pick hyperparameters. In Figure 9, we demonstrate even greater variance in
conclusions when using only three seeds to pick hyperparameters; using a consistent number of seeds
as the rest of our prior evaluation. In this setting, the correct ordering of algorithms is detected
in only approximately 40% of experiments, with distinguishing between QLearning and ESARSA
providing the largest source of error. Notice also that the variance in Lunar Lander for DQN is such
that the 95% confidence interval about the mean states that the true mean is 95% likely to lie in
the interval [0.05, 0.98] where the performance metric is bounded between 0 and 1. In other words,
evaluating the performance of DQN on Lunar Lander using this experimental design is effectively
useless.
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Figure 10: Outcome of the CHTB when using three randomly selected domains to tune hyperpa-
rameters. Each of the 10k simulated experiments use 100 seeds to select hyperparameters, then 250
seeds to evaluate performance.

We continue our investigation of using a subset of environments to select hyperparameters in Figures 10
and 11 where we use three of six environments and four of six environments respectively. In both
figures we use 100 random seeds to select hyperparameters, consistent with Figure 5 in Section 5.
In Figure 10, the variance in overall conclusions is notably smaller than when using two of six
environments to select hyperparameters. This experimental design allows distinguishing between
DQN and DeepQ reliably, but still fails to distinguishing the performance of QLearning and ESARSA.
The variance of DQN on Lunar Lander still provides a comically large confidence region.

Figure 11: Outcome of the CHTB when using four randomly selected domains to tune hyperpa-
rameters. Each of the 10k simulated experiments use 100 seeds to select hyperparameters, then 250
seeds to evaluate performance.

Figure 11 uses four of six environments with 100 random seeds for each hyperparameter setting
to select hyperparameters. The confidence region around DQN and DeepQ indicates a clear and
meaningful ordering in the performance of the deep RL algorithms across these environments. Still
QLearning and ESARSA remain indistinguishable. The variance on individual environments is
sensible, allowing some conclusions to be drawn with confidence especially when comparing DeepQ
and DQN. We point out that the computational savings of using four of six environments is entirely
negated by the number of random seeds required to select hyperparameters in this experimental design,
calling to question the utility of subselecting environments. This suggests that this experimental
design is likely not yet appropriate for use in RL due to high variance in conclusions—at least until
future algorithm development yields algorithms with significantly less across-environment sensitivity.



RLJ | RLC 2024

B.3 Performance distributions

Figure 12 demonstrates that the shapes of the performance distributions are highly inconsistent
across environment and choice of stepsize parameter. It is clear that assuming normality of the
data is in general impossible, even for these simple algorithms and small domains. Experiments
that use only a small number of random seeds—especially when maximizing over repeated trials,
or cherry-picking over completed results—are highly unlikely to capture the bimodality and skew
present in many of these distributions. Consider, for instance, the Lunar Lander environment with
DQN. Using a small number of random seeds—for instance three—it is highly unlikely that the
long-tail of the distribution for stepsize α = 2−9 is accurately captured. Instead, the most likely
outcome is that the mean of the high-performing mode is reported, ignoring the instability of the
DQN algorithm.

Cartpole Acrobot CliffWorld

PuddleWorld Lunar Lander Mountain Car

Figure 12: Various slices of P(G | E, θ) for all E ∈ E and a subset of Θ for the DQN algorithm. Every
distribution is estimated with a Gaussian kernel density estimator and 250 samples. The supports
for the distributions are computed by finding the absolute min and max run for the visualized
hyperparameter settings. This means, for instance, that at least one run shown on Mountain Car
achieved a performance of approximately -200 return, but was such a low probability event it is not
visible in these plots.

B.4 Results when using worst-case performance across environments

The prior evaluations of the CHTB all estimated E[NE(G) | θCHTB] with hyperparameters se-
lected to maximize this expectation. However, we could instead select hyperparameters accord-
ing to other statistics, for instance those with best performance on the worst-case environment,
maxθ minE E[NE(G) | E, θ]. We demonstrate in Figure 13 the outcome of the CHTB when θCHTB is
selected according to maximizing performance on the worst-case environment. Note the nested opti-
mization means the environment chosen may be different per algorithm and even per hyperparameter
setting.
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Figure 13: Performance of each algorithm over 10k bootstrap samples, where sample means are
computed with 3 runs. Hyperparameters are selected for maximizing performance of the worst-case
environment. Error bars show 95% bootstrap confidence intervals.

In general, the variability of conclusions made over 10k simulated applications of the CHTB is
much smaller than when estimating the mean over environments, as shown in Figure 13. We still
see high variance in the Lunar Lander environment for the two DRL algorithms, suggesting still
high sensitivity to the chosen hyperparameters. Because the worst-case environment for DQN is
Cartpole for many choices of hyperparameter, likewise Mountain Car for DeepQ, it is likely that these
environments largely dictate the choice of hyperparameter without regard for performance on Lunar
Lander. Under this worst-case benchmark, algorithm development improving the performance of
DQN on Cartpole would be highly rewarded while development slightly improving its performance on
Acrobot would have no effect. This is unlike conventional benchmarks where minute improvements on
already well-solved problems are rewarded similarly to large improvements on challenging problems.

B.5 DMControl demonstration

Figure 14 shows the per-environment performance for DDPG using both OU noise and Gaussian noise
evaluated using 30 runs of the θCHTB setting. In most cases, the performance of each exploration
method was not statistically significantly different. Although there is a large difference in the
WalkerRun environment, we point out this may be due to the CHTB trading-off performance on
other environments in order to pick a single hyperparameter setting; without explicit per-environment
experimentation this remains unclear.

C Further Experimental Details
In this section we include all experimental details used in Section 5, descriptions of the environments
used are included in Appendix C.1, and details about the DMControl demonstration from Section 6
are included in Appendix C.2.

The tile-coded agents both learn directly from the most recent observations without the use of a
replay buffer. We use stochastic gradient descent to optimize the agents, with stepsizes scaled by the
number of active tiles in the representation—equal to the number of tilings used by the tile-coder
except in the special case of Lunar Lander. Like their deep RL counterparts, we use ϵ-greedy policies
to train the tile-coding agents with ϵ = 0.1 for all experiments.

C.1 Small control environments

In this section, we describe the environments used to evaluate the CHTB in Section 5. Our goal
in environment selection was to highlight differences between the demonstrative algorithms, while
simultaneously using small enough environments to feasibly collect an extensive dataset to justify
our experiment design. Because all of our demonstrative algorithms use ϵ-greedy action selection as
their sole form of exploration, we avoid environments where exploration is a particular challenge as
this would not help in distinguishing between algorithms.

For the Acrobot environment (Sutton, 1996), we use the implementation from Brockman et al.
(2016). Acrobot has a medium-sized observation dimension with six observable values, making
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feature representation challenging for tile-coding agents. Similarly, we include the Lunar Lander
environment (Brockman et al., 2016) as its observation dimension is too large for tile-coding to
successfully generate a useful representation. Lunar Lander additionally has a highly shaped reward
function, making the learning dynamics very different from all other included environments.

For the Cartpole (Barto et al., 1983) and Mountain Car (Moore, 1990) environments, we likewise
use the implementation from Brockman et al. (2016). Both environments have a small observation
dimension, making the feature representation amenable to tile-coding. Prior results have suggested a
stark difference in performance between DQN and DeepQ on these environments, suggesting their
utility in distinguishing between algorithms.

Lastly, CliffWorld (Sutton and Barto, 2018) and PuddleWorld (Sutton, 1996) are both two dimensional
gridworlds. The small observation dimension is easier for tile-coding agents to represent and presents a
challenge for neural network based agents. CliffWorld is commonly used to showcase large differences
between on-policy and off-policy algorithms (Sutton and Barto, 2018), making it a good choice for
differentiating between the three Q-learning based agents and ESARSA. Additionally, the sudden
large negative reward obtained from falling off the cliff could cause high variance updates for mean
squared based algorithms, suggesting a slight advantage for DQN. PuddleWorld uses a dense reward
function with shaping, making it similar to Lunar Lander.

C.2 Details about DM Control demonstration

The demonstration in Section 6 was generated using the Acme codebase of RL algorithms (Hoffman
et al., 2020). We reuse as much code from Acme as possible to maintain similarity in empirical setup
and computational cost with prior works coming from this lab, e.g Tassa et al. (2018); Lillicrap et al.
(2016); Barth-Maron et al. (2018). We use the default hyperparameters and network architectures for
all experiments and environments as in Acme, except for those which we swept. We used 3 random
seeds for each environment and hyperparameter setting to select hyperparameters according to the
CHTB, then we perform an additional 30 runs to evaluate θCHTB.

For the hyperparameter sweep, we evaluated stepsize α ∈ {10−4, 10−3, 10−2} for the critic and
η ∈ {100, 10−1, 10−2} where β = ηα and β is the stepsize for the actor network. We use the ADAM
optimizer with default parameters. We additionally swept over target network types, using either
Polyak averaging with moving average parameter βtn = 0.001 or a hard refresh every 100 steps.
Finally, we swept the standard deviation of the exploration noise σ ∈ {0.05, 0.1}—a slight deviation in
ranges tested by previous works as we noticed σ > 0.1 was rarely a good choice on most environments,
but σ < 0.1 was often required to obtain better than random performance on several environments
(e.g. Acrobot).

All experiments run for a maximum of 300k learning steps and use an infinite replay buffer. On every
environment interaction after the first 1000 steps, the DDPG agent made a mini-batch update using
a mini-batch size of 64. To maintain consistency with prior works, a soft-termination occurs after
1000 steps in an episode.

Finally, we include the hyperparameters selected by the DMC-CHTB. Both DDPG and DDPG-OU
selected the same hyperparameters when using the DMC-CHTB. Defaults taken from the Acme
codebase (Hoffman et al., 2020), as was the code implementation.
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{
" max_steps ": 300000 ,

" metaParameters ": {
" actor_stepsize_scale ": 1.0 ,
" critic_stepsize ": 1e-4,
" discount ": 0.99 ,
" target_update ": 0.001 ,

" buffer_size ": " infinite ",
" min_replay_size ": 1000 ,
" steps_per_update ": 1,
" batch ": 64,

" n_step ": 1,
" sigma ": 0.1 ,
" theta ": 0.15 ,
"mu ": 0.0 ,
" clipping ": false ,

" obs_weights ": [[400 , 400]] ,
" policy_weights ": [[300 , 200]] ,
" critic_weights ": [[400 , 300]] ,

}
}
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DDPG - Gaussian DDPG - OU

Figure 14: Per-environment performance differences for every environment in the DMControl suite.
Error bars show 95% confidence intervals using 1k bootstrap samples. Performance is averaged over
30 independent runs.


