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Abstract
Supervised approaches to single-channel speech
separation rely on synthetic mixtures, so that the
individual sources can be used as targets. Good
performance depends upon how well the syn-
thetic mixture data match real mixtures. How-
ever, matching synthetic data to the acoustic prop-
erties and distribution of sounds in a target do-
main can be challenging. Instead, we propose
an unsupervised method that requires only single-
channel acoustic mixtures, without ground-truth
source signals. In this method, existing mixtures
are mixed together to form a mixture of mixtures,
which the model separates into latent sources. We
propose a novel loss that allows the latent sources
to be remixed to approximate the original mix-
tures. Experiments show that this method can
achieve competitive performance on speech sepa-
ration compared to supervised methods. In a semi-
supervised learning setting, our method enables
domain adaptation by incorporating unsupervised
mixtures from a matched domain. In particular,
we demonstrate that significant improvement to
reverberant speech separation performance can be
achieved by incorporating reverberant mixtures.

1. Introduction
Audio perception is fraught with a fundamental problem:
individual sounds are convolved with unknown acoustic re-
verberation functions and mixed together at the acoustic sen-
sor in a way that is impossible to disentangle without prior
knowledge of the source characteristics. It is a hallmark of
human hearing that we are able to hear the nuances of differ-
ent sources, even when presented with a monaural mixture
of sounds. Significant progress has been made on extracting
estimates of each source from single-channel recordings,
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using supervised deep learning methods. These techniques
have been applied to tasks such as speaker-independent
enhancement (separation of speech from nonspeech inter-
ference) (Huang et al., 2014; Weninger et al., 2015) and
speech separation (separation of speech from speech) (Her-
shey et al., 2016; Isik et al., 2016; Yu et al., 2017).

These approaches have used supervised training, in which
ground-truth source waveforms are considered targets for
various loss functions. Deep clustering (Hershey et al.,
2016) is an embedding-based approach that implicitly repre-
sents the assignment of elements of a mixture, such as time-
frequency bins of a spectrogram, to sources in a way that is
independent of any ordering of the sources. In permutation-
invariant training (Isik et al., 2016; Yu et al., 2017), the
model explicitly outputs the signals in an arbitrary order,
and the loss function finds the permutation of that order
that best matches the estimated signals to the references, i.e.
treating the problem as a set prediction task. In both cases
the ground-truth signals are inherently part of the loss.

A major problem with supervised training for source sep-
aration is that it is not feasible to record both the mixture
signal and the individual ground-truth source signals in a
real acoustic environment, because source recordings are
contaminated by cross-talk. Therefore supervised training
has relied on synthetic mixtures created by adding up iso-
lated ground-truth sources, with or without a simulation
of the acoustic environment. Although supervised training
has been effective in training models that perform well on
data that match the same distribution of mixtures, they fare
poorly when there is mismatch in the distribution of sound
types (Manilow et al., 2019), or in acoustic conditions such
as reverberation (Maciejewski et al., 2018). It is difficult
to match the characteristics of a real dataset because the
distribution of source types and room characteristics may
be unknown and difficult to estimate, data of every source
type in isolation may not be readily available, and accurately
simulating realistic acoustics is challenging.

One approach to avoiding these difficulties is to use acoustic
mixtures from the target domain, without references, di-
rectly in training. To that end, weakly supervised training
has been proposed to substitute the strong labels of source
references with another modality such as class labels, visual
features, or spatial information. In (Pishdadian et al., 2019)
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class labels were used as a substitute for signal-level losses.
The spatial locations of individual sources, which can be
inferred from multichannel audio, has also been used to
guide learning of single-channel separation (Tzinis et al.,
2019; Seetharaman et al., 2019; Drude et al., 2019). Visual
input corresponding to each source has been used to super-
vise the extraction of the corresponding sources in (Gao
& Grauman, 2019), where the targets included mixtures
of sources, and the mapping between source estimates and
mixture references was given by the video correspondence.
Because these approaches rely on multimodal training data
containing extra input modalities, they cannot be used in
settings where only single-channel audio is available.

We propose a novel unsupervised training framework that
requires only single-channel acoustic mixtures. This frame-
work is related to permutation-invariant training (PIT) (Yu
et al., 2017), in which the permutation used to match source
estimates to source references is relaxed to allow summation
over some of the sources. In our proposed mixture invariant
training (MixIT), instead of single-source references, we
use mixtures from the target domain as references, form-
ing the input to the separation model by summing together
these mixtures to form a mixture of mixtures. The model
is trained to separate this input into a variable number of
latent source estimates, such that the separated sources can
be remixed to approximate the original mixtures.

Contributions: (1) we propose the first purely unsuper-
vised learning method that is effective for audio-only single-
channel speech separation and find that it can achieve com-
petitive performance with supervised methods; (2) we pro-
vide extensive experiments with cross-domain adaptation to
show the effectiveness of MixIT for adaptation to different
reverberation characteristics in semi-supervised settings.

2. Relation to previous work
Discriminative source separation models generate synthetic
mixtures from isolated sources which are also used as train-
ing targets. Early methods posed the problem in terms
of time-frequency mask estimation, and considered restric-
tive cases such as speaker-dependent models, and class-
specific separation, e.g. speech versus music (Huang et al.,
2014), or noise (Weninger et al., 2015). However, more
general speaker-independent speech separation, and class-
independent universal sound separation (Kavalerov et al.,
2019; Tzinis et al., 2020) are now addressed using methods
such as deep clustering (Hershey et al., 2016) and PIT (Yu
et al., 2017). These frameworks handle the output permu-
tation problem caused by the lack of a unique source class
for each output. Recent state-of-the-art models have shifted
from mask-based recurrent networks to time-domain convo-
lutional networks (Luo & Mesgarani, 2019). MixIT follows
this trend and uses a signal-level discriminative loss. The

framework can be used with any architecture; in this paper
we use a modern time-convolutional network. Unlike super-
vised approaches, MixIT can use raw-mixtures as references
and enable training directly on target-domain mixtures for
which ground-truth source signals cannot be obtained. Previ-
ous methods proposed domain adaptation schemes by using
adversarial training to learn domain-invariant intermediate
network activations (Ganin et al., 2016; Tzeng et al., 2017)
or train student and teacher models to predict consistent sep-
arated estimates from supervised and unsupervised mixtures
(Lam et al., 2020). In contrast, MixIT not only works under
purely unsupervised settings, but it also enables a seamless
semi-supervised scheme to train a single network with both
supervised and unsupervised losses.

Similar to MixIT, (Gao & Grauman, 2019) uses mixtures of
mixtures (MoMs) as input, and sums over estimated sources
to match the target mixtures, using the co-separation loss.
However, this loss does not identify correspondence be-
tween sources and mixtures, since that is established by
the supervising video inputs, each of which is assumed to
correspond to one source. In MixIT this is handled in an
unsupervised manner, by finding the best correspondence
between sums of sources and the reference mixtures without
using other modalities, making the proposed methods the
first fully unsupervised separation work using MoMs.

Also related is adversarial unmix-and-remix (Hoshen, 2019),
which separates linear image mixtures in a GAN framework,
with the discriminator operating on mixtures rather than
single sources. Mixtures are separated, and the resulting
sources are remixed to form new mixtures which are pushed
to match the distribution of the original inputs. The authors
reported good separation results on image mixtures, but
their method failed on audio mixtures. In contrast, MixIT
avoids the difficulty of saddle-point optimization associated
with GANs and works well on audio mixtures. MixIT uses
MoMs and relies on generalization to work on single mix-
tures while unmix-and-remix has the advantage of being
trained with the original mixtures. However, unmix-and-
remix could be combined with MixIT in future work.

3. Method
We generalize the permutation-invariant training framework
to operate directly on unsupervised mixtures, as illustrated
in Figure 1. Formally, a supervised separation dataset is
comprised of pairs of input mixtures x =

∑N
n=1 sn and

their constituent sources sn ∈ RT , where each mixture
contains up toN sources with T time samples each. Without
loss of generality, for the mixtures that contain onlyN ′ < N
sources we assume that sn = 0 for N ′ < n ≤ N . An
unsupervised dataset only contains input mixtures without
underlying reference sources. We assume that the maximum
number of sources present in any mixture is known.
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(a) Supervised permutation invariant training (PIT).
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(b) Unsupervised mixture invariant training (MixIT).

Figure 1: Overview of (a) PIT separating a two-source
mixture into up to four sources and (b) MixIT separating a
mixture of mixtures into up to eight sources. Arrow color
indicates best match between estimates and references.

3.1. Permutation invariant training

In the supervised case we are given a mixture x and its
corresponding sources s to train on. The input mixture x is
fed through a separation model fθ with parameters θ. The
model estimates M sources: ŝ = fθ(x) ∈ RM×T , where
M = N is the maximum number of sources co-existing in
any given mixture drawn from the supervised dataset. The
supervised separation loss can be written as:

LPIT (s, ŝ) = min
P

M∑
m=1

L (sm, [Pŝ]m) , (1)

where P is an M ×M permutation matrix and L is a signal-
level loss function. There is no predefined ordering of the
source signals. Instead, the loss is computed using the
permutation which gives the best match between ground-
truth reference sources s and estimated sources ŝ.

The loss function between a reference y ∈ RT and estimate
ŷ ∈ RT is the negative thresholded signal-to-noise ratio:

L(y, ŷ) = −10 log10
‖y‖2

‖y − ŷ‖2 + τ‖y‖2
, (2)

where τ = 10−SNRmax/10 acts as a soft threshold that
clamps the loss at SNRmax. This threshold prevents ex-
amples that are already well-separated from dominating the
gradients within a training batch. We use SNRmax = 30.

3.2. Mixture invariant training

PIT requires knowledge of the ground truth source signals
s, and therefore cannot directly leverage unsupervised data
where only mixtures x are observed. MixIT overcomes this

problem as follows. Consider two mixtures x1 and x2 are
drawn without replacement from an unsupervised dataset
where each one is comprised of up to N underlying sources
(any number of mixtures could be used, but here we use two
for simplicity). The mixture of mixtures is formed by adding
them together: x = x1+x2. The separation model fθ takes
x as input, and estimates M = 2N latent source signals.
In this way we make sure that the model is always capable
of estimating enough sources for any x. The unsupervised
MixIT loss is computed between the estimated sources ŝ
and the input mixtures x1, x2 as follows:

LMixIT (x1,x2, ŝ) = min
A

2∑
i=1

L (xi, [Aŝ]i) , (3)

where L is the same signal-level loss used in PIT (2) and
the mixing matrix A ∈ B2×M is constrained to the set of
2×M binary matrices where each column sums to 1. Thus,
each latent source ŝm can only be used once, and is assigned
to either x1 or x2. MixIT minimizes the total loss between
mixtures x and remixed latent sources Aŝ by choosing the
best match between sources and mixtures (analogous to PIT).
In practice, we optimize over A using an exhaustiveO(2M )
search, although more efficient methods are possible.

There is an implicit assumption in MixIT that the sources
are additive, and that they are independent of each other in
the original mixtures x1 and x2, in the sense that there is no
information in x about which sources belong to which mix-
tures. The two mixtures x ∈ R2×T are assumed to result
from mixing unknown sources s∗ ∈ RP×T using an un-
known 2×P mixing matrix A∗: x = A∗s∗. If the network
could infer which sources belong together in the references,
and hence knew the mixing matrix A∗ (up to a left per-
mutation), then the M source estimates, ŝ ∈ RM×T could
minimize the loss (3) without separating all the sources (i.e.,
by under-separating). That is, for a known mixing matrix
A∗, the loss (3) could be minimized, for example, by the
estimate ŝ = C+A∗s∗, with C+ the pseudoinverse of a
2 ×M mixing matrix C such that CC+ = I, at A = C,
since Cŝ = CC+A∗s∗ = x. However, if the sources
are independent, then the network cannot infer the mixing
matrix that produced the reference mixtures. Nevertheless,
the loss can be minimized with a single set of estimates,
regardless of the mixing matrix A∗, by separating all of the
sources. That is, the estimated sources must be within a mix-
ing matrix B ∈ BP×M of the original sources, s∗ = Bŝ,
so that (3) is minimized at A = A∗B, for any A∗. Hence,
the lack of knowledge about which sources belong to which
mixtures encourages the network to separate the sources as
much as possible. Note that when M > P , the network can
produce more estimates than there are sources (i.e., over-
separate). In this work, semi-supervised training may help
with this, and future work will address methods to penalize
over-separation in the fully unsupervised case.
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3.3. Semi-supervised training

When trained with M isolated reference sources, i.e. with
full supervision, the MixIT loss is equivalent to PIT. Specif-
ically, input mixtures xi are replaced with ground-truth
reference sources sm and the mixing matrix A becomes an
M ×M permutation matrix P. This makes it straightfor-
ward to combine both losses to perform semi-supervised
learning. In essence, each training batch contains p% unsu-
pervised mixtures, for which we do not know the constituent
sources and use the MixIT loss (3), and the remainder su-
pervised examples, for which we use the PIT loss (1).

4. Experiments
Our separation model fθ consists of a learnable convolu-
tional basis transform that produces mixture basis coeffi-
cients. These are processed by an improved time-domain
convolutional network (TDCN++) (Kavalerov et al., 2019),
similar to ConvTasNet (Luo & Mesgarani, 2019). This net-
work predictsM masks with values between 0 and 1 and the
same size as the basis coefficients. The M separated wave-
forms are produced by overlapping and adding the masks
elementwise multiplied with the coefficients. A mixture
consistency projection (Wisdom et al., 2019) is applied to
constrain separated sources to add up to the input mixture.
See Appendix A for architecture and training details.

Separation performance is measured using scale-invariant
signal-to-noise ratio (SI-SNR) (Le Roux et al., 2019). SI-
SNR measures fidelity between a signal y and its estimate
ŷ within an arbitrary scale factor:

SI-SNR(y, ŷ) = 10 log10
‖αy‖2

‖αy − ŷ‖2
, (4)

where α = argmina‖ay − ŷ‖2 = yT ŷ/‖y‖2. Generally
we report SI-SNR improvement (SI-SNRi), which is the
difference between the SI-SNR of each source estimate after
processing, and the SI-SNR obtained using the input mixture
as the estimate for each source. In our evaluations, mixtures
can contain fewer than the M sources output by the model.
To handle this, we zero-pad the references to M sources,
permute these references to match the separated sources,
and average SI-SNRi over non-zero references.

For speech separation experiments, we use the WSJ0-2mix
(Hershey et al., 2016), sampled at 8 kHz or 16 kHz, and
Libri2Mix (Cosentino et al., 2020) datasets, sampled at 16
kHz. We also employ the reverberant spatialized versions of
WSJ0-2mix (Wang et al., 2018) and a reverberant version
of Libri2Mix we created. Both datasets consist of utter-
ances from male and female speakers drawn from either
the Wall Street Journal (WSJ0) corpus or from LibriSpeech
(Panayotov et al., 2015). Reverberant versions are created
by convolving utterances with room impulse responses gen-

erated by a room simulator employing the image method
(Allen & Berkley, 1979). WSJ0-2mix and the train-360-
clean split of Libri2Mix provide 30 hours and 364 hours of
training mixtures, respectively. Note that for WSJ0-2mix
individual source utterances are drawn with replacement.

We sweep the amount of supervised versus unsupervised
data for both the anechoic and reverberant versions of WSJ0-
2mix. The proportion p of unsupervised data from the same
domain is swept from 0% to 100% where supervised train-
ing uses the PIT separation loss (2) between ground-truth
references and separated sources, and unsupervised train-
ing only uses the mixtures using MixIT (3) with the same
separation loss (2) between mixtures and remixed separated
sources. In both cases, the input to the separation model is
a mixture of two mixtures. For training, 3 second clips are
used for WSJ0-2mix, and 10 second clips for Libri2Mix.

We try two variants of this task: mixtures that always contain
two speakers (2-source) such that MoMs always contain four
sources, and mixtures containing either one or two speakers
(1-or-2-source) such that MoMs contain two to four sources.
Note that the network always has four outputs. Evaluation
always uses single mixtures of two sources. To determine if
unsupervised data can help with domain mismatch, we also
consider using supervised data from a mismatched domain,
by incorporating supervised anechoic data (from the same
task) when using the MixIT loss on reverberant mixtures and
vice versa. This simulates the realistic training scenario for
sound separation systems, where real acoustic mixtures from
a target domain are available without reference waveforms
and synthetic supervised data must be created to match the
distribution of the real data. It is difficult to perfectly match
the real data distribution, so synthetic supervised data will
inevitably have some mismatch to the target domain.

The results on anechoic and reverberant WSJ0-2mix and
Libri2Mix are shown in Figure 2. First, notice that reverber-
ant data is more challenging to separate because reverber-
ation smears out the spectral energy of sources over time,
and thus all models achieve lower performance on rever-
berant data. Two-source mixture trained models tends to
do less well compared to the 1-or-2-source variants. One
difference with the 1-or-2-source setup is that the model
observes some inputs that have two sources, which matches
the evaluation. Another difference is that as references, the
1-source mixtures act as supervised examples.

Notice that for both anechoic and reverberant data, com-
pletely unsupervised training with MixIT (rightmost points)1

achieves performance on par with supervised training (left-
most points) with 1-or-2-source mixtures. For 2-source
mixtures, unsupervised performance is worse by up to 3 dB

1The rightmost matched and mismatched points use identical
training data since no supervision is used. Small performance
differences reflect randomness in model initialization and training.
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Figure 2: Sweeping proportion of matched unsupervised training examples with matched or mismatched supervised
examples on WSJ0-2mix 8kHz (left), WSJ0-2mix 16kHz (middle), and Libri2Mix (right). The leftmost points in each plot
correspond to 100% supervision using PIT, and the rightmost points are fully unsupervised using MixIT.

compared to fully or semi-supervised on anechoic data,
while performance is more comparable on reverberant data.
However, even a small amount of supervision (80% unsu-
pervised) dramatically improves anechoic SI-SNRi. When
the supervised data is mismatched, adding a small amount
of unsupervised data (10%) from a matched domain dras-
tically improves performance: using mismatched anechoic
supervised data and matched reverberant unsupervised data,
we observe boosts of 2-3 dB for 2-source mixtures on all
datasets. For 1-to-2-source mixtures, performance increases
by about 6 dB on WSJ0-2mix and 2.5 dB for Libri2Mix.

Although our primary focus is on less supervised learning,
MixIT models are competitive on anechoic datasets with
state-of-the-art approaches that do not exploit speaker iden-
tity information. Fig. 2 includes the best reported numbers
for 8 and 16 kHz WSJ0-2mix (Luo et al., 2020; Pariente
et al., 2020), and Libri2Mix (Cosentino et al., 2020).

4.1. Discussion

The experiments show the effectiveness of MixIT and that
unsupervised domain adaptation always helps: matched
fully unsupervised training is always better than mismatched
fully supervised training, often by a large margin. To the
best of our knowledge, this is the first single-channel purely
unsupervised separation method which obtains comparable
performance to state-of-the-art supervised approaches.

In some of the experiments reported here, the data prepara-
tion has some limitations. The WSJ0-2mix data have the
property that each unique source may be repeated across
multiple mixture examples, whereas Libri2Mix uses unique
sources in every mixture. Such re-use of source signals is
not a problem for ordinary supervised separation, but in the

context of MixIT, there is a possibility that the model may
abuse this redundancy. In particular in the 1-or-2 source
case, this raises the chance that each source appears as a
reference, which could make the unsupervised training act
more like supervised training. However, the unsupervised
performance on Libri2Mix, which does not contain redun-
dant sources, parallels the WSJ0-2mix results and shows
that if there is a redundancy loophole to be exploited in
some cases, it is not needed for good performance.

An ultimate goal is to evaluate separation on real mixture
data; however, this remains challenging because of the lack
of ground truth. As a proxy, future experiments may use
recognition or human listening as a measure of separation.

5. Conclusion
We have presented MixIT, a new paradigm for training sep-
aration models in a completely unsupervised manner where
ground-truth source references are not required. On a speech
separation task, we demonstrated that MixIT can approach
the performance of supervised PIT, and is especially helpful
in a semi-supervised setup to adapt to mismatched domains.
More broadly, MixIT opens new lines of research where
large amounts of previously untapped in-the-wild data can
be leveraged to train sound separation systems.
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A. Separation model architecture
In Table 1, we describe the separation network architecture
using a TDCN++ (Kavalerov et al., 2019). As compared to
the original ConvTasNet method (Luo & Mesgarani, 2019),
the changes to the model include the following:

• Instead of global layer norm, which averages statistics
over frames and channels, the TDCN++ uses instance
norm, also known as feature-wise global layer norm
(Kavalerov et al., 2019). This mean-and-variance nor-
malization is performed separately for each convolution
channel across frames, with trainable scalar bias and scale
parameters.

• Additional skip-residual connections from the outputs
of earlier residual blocks to the inputs of the later resid-
ual blocks. A skip-residual connection includes a trans-
formation in the form of a dense layer with bias of the
block outputs and all paths from residual connections are
summed with the regular block input coming from the
previous block. Note that all dense layers in the model
include bias terms.

• A scalar scale parameter is multiplied after each dense
layer stage, which is an over-parametrization trick that
improves convergence. The scale parameters for the sec-
ond dense layer in layer i are initialized using exponential
decay in the form of 0.9i. All other scales are initialized
to 1.0. This initial scaling controls the contribution of
each block into the residual sum. It also causes the initial
blocks train faster and the later blocks to train slower,
which is reminiscent of layer-wise training.

As mentioned in the text, we also apply a mixture consis-
tency projection (Wisdom et al., 2019) to the resulting sepa-
rated waveforms, which projects them such that they sum up
to the original mixture. This projection solves the following
optimization problem to find mixture consistency separated
sources ŝ given initial separated sources s separated by the
model from a mixture x:

minimize
ŝ∈RM×T

1

2

∑
m

‖ŝm − sm‖2

subject to
∑
m

ŝm = x.
(5)

The projection operation is the closed-form solution of this
problem:

ŝm = sm +
1

M
(x−

∑
m′

sm′), (6)

which is differentiable and can simply be applied as a final
layer to the initial separated sources s.

B. Training details
For each task, we train all models to 200k steps, evaluating a
checkpoint every 10 minutes. For evaluation on the test set,
we select the checkpoint with the highest validation score.
As mentioned in the text, all models are trained with batch
size 256 with the Adam optimizer (Kingma & Ba, 2015)
using a learning rate of 10−3 on 4 Google Cloud TPUs (16
chips).

C. Ablations
In order to evaluate the contribution of different components
of the proposed model we compare several variations trained
on WSJ0-2mix with two-source mixtures: disabling mixture
consistency, and varying SNRmax. Performance is reported
on the validation set after 200k training steps.

Mixture consistency We observed modest improvement of
0.5 dB SI-SNRi by incorporating mixture consistency (6)
versus not.

SNR threshold Performance is not very sensitive to
SNRmax as long as it is 20 dB or larger, as shown in Table 2.

Zero source loss For speech separation tasks using 1-to-
2-source mixtures, the separation model needs to be able
to output near-zero signals for “inactive” source slots. For
separated signals that align to all-zeros reference source, we
tried using a variation on the negative SNR loss function
(2), where the mixture signal x instead of the source signal
s is used to determine the soft-thresholding, where we still
set τ corresponding to SNRmax of 30 dB:

L0(s = 0, ŝ,x) = 10 log10
(
‖ŝ‖2 + τ‖x‖2

)
, (7)

which means the loss will be clipped when the power of
the separated signal drops 30 dB below the power of the
mixture signal.

For WSJ0-2mix, where the models are trained on mixtures
of 1-to-2-source mixtures, and evaluated on single mixtures
from the validation set. Using the additional zero source
loss results in a SI-SNRi of 14.3 dB, while not using it leads
to a SI-SNRi of 15.9 dB. Thus, incorporating L0 decreases
SI-SNRi, and we did not use this loss to train our models.

D. Audio examples
Audio demos for speech separation on anechoic and
reverberant WSJ0-2mix 16 kHz and Libri2Mix are provided
at https://universal-sound-separation.
github.io/unsupervised_speech_
separation/.

https://universal-sound-separation.github.io/unsupervised_speech_separation/
https://universal-sound-separation.github.io/unsupervised_speech_separation/
https://universal-sound-separation.github.io/unsupervised_speech_separation/
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Table 1: Separation network with TDCN++ architecture configuration. Variables are number of encoder basis coefficients
N = 256, encoder basis kernel size L, which is 40 for 16 kHz data and 20 for 8 kHz data, number of waveform samples T ,
number of coefficient frames F , and number of separated sources M .

Module name Operation Output shape Kernel size Dilation Stride

Waveform Input T × 1 – – –
Encoder Conv F ×N 1× L×N 1 L/2
Coeffs Intermediate F ×N – – –

Initial bottleneck ReLU F ×N – – –
Dense F × 256 N × 256 1 1

i-th separable dilated
conv block (x32)

Input F × 256 Previous block output
+ sum of skip-residual inputs

Dense F × 512 256× 512 – –
with skip-residual
connections b/w blocks:

i � i+ 1,
0 � 8, 0 � 16, 0 � 24,

8 � 16, 8 � 24,
16 � 24,

Scale F × 512 1× 1 – –
PReLU F × 512 – – –
Instance norm F × 512 – – –
Depthwise conv F × 512 512× 3× 1 2mod(i,8) 1
PReLU F × 512 – – –
Instance norm F × 512 – – –
Dense F × 256 512× 256 – –
Scale F × 512 1× 1 – –

Final bottleneck Dense F × 256 512× 256 – –

Perform masking Dense F ×M ·N 256×M ·N – –
Sigmoid F ×M ·N – – –
Reshape F ×M ×N – – –
Multiply F ×M ×N Multiply with F × 1×N coeffs

Decoder Transposed conv T ×M L×N × 1 1 L/2
Separated waveforms Output T ×M – – –

Table 2: SI-SNRi in dB as a function of SNRmax for unsu-
pervised MixIT on WSJ0-2mix 2-source mixtures.

SNRmax 10 20 30 40 50

SI-SNRi 13.1 13.8 13.7 13.6 13.7


