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Abstract

Modern deep models for summarization at-
tains impressive benchmark performance, but
they are prone to generating miscalibrated
predictive uncertainty. This means that they
assign high confidence to low-quality pre-
dictions, leading to compromised reliability
and trustworthiness in real-world applications.
Probabilistic deep learning methods are com-
mon solutions to the miscalibration prob-
lem. However, their relative effectiveness in
complex autoregressive summarization tasks
are not well-understood. In this work, we
thoroughly investigate different state-of-the-
art probabilistic methods’ effectiveness in im-
proving the uncertainty quality of the neu-
ral summarization models, across three large-
scale benchmarks with varying difficulty us-
ing our newly introduced evaluation protocol.
We show that the probabilistic methods con-
sistently improve the model’s generation and
uncertainty quality, leading to improved selec-
tive generation performance (i.e., abstaining
from low-quality summaries) in practice. We
also reveal notable failure patterns of proba-
bilistic methods widely-adopted in NLP com-
munity (e.g., Deep Ensemble and Monte Carlo
Dropout), cautioning the importance of choos-
ing appropriate method for the data setting.

1 Introduction

In recent years, autoregressive deep models for
text summarization have achieved impressive per-
formance. However, despite their success, these
models often suffer from a critical flaw: they gen-
erate prediction with high confidence even when
the quality of the summary is low (Xu et al., 2022).
This can severely compromise the reliability and
trustworthiness of the generated summaries in real-
world applications. In the probabilistic forecast
literature, such issue is known under the term mis-
calibration, i.e., the model’s predictive confidence
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is mis-aligned with its prediction quality. For ex-
ample, in classification tasks, a model is said to
be miscalibrated if for all test examples where it
predicts with probability 0.9, the model’s actual
accuracy for these examples deviates far from 90%
(Guo et al., 2017; Gneiting et al., 2007). Despite
its practical importance, this notion of uncertainty
calibration has received much less attention in the
summarization literature until recently, with the
proposed techniques mostly focusing on training
deterministic models (Cao and Wang, 2021; Sun
and Li, 2021; Zhao et al., 2022; Liu et al., 2022;
Jung et al., 2021).

In the uncertainty literature, probabilistic deep
learning has emerged as a principled approach
to tackle model miscalibration while maintain-
ing prediction quality (Nado et al., 2021). In-
tuitively, probabilistic DNNs generate multiple
plausible predictions from its posterior predictive
p̄m(y|x) = 1

M

∑M
m=1 pm(y|x) and report the aver-

age, thereby mitigating the overconfidence of the
individual model prediction. Although well-tested
in classification tasks, the effectiveness of differ-
ent state-of-art probabilistic methods in improving
neural summarization models’ uncertainty quality
has been less explored. The existing study mostly
focuses on a particular classic method (e.g., Monte
Carlo Dropout or MCD) and tested on relatively
simple datasets that doesn’t fully capture the realis-
tic usage (Gidiotis and Tsoumakas, 2022).

In this work, we address this by conducting
a comprehensive investigation of the relative ef-
fectiveness of state-of-the-art probabilistic meth-
ods in improving the uncertainty quality of neu-
ral summarization models. We interrogate both
classic approaches such as Monte Carlo Dropout
(MCD) and Deep Ensemble (DE), and more recent
state-of-art methods such as Batch Ensemble (BE)
Spectral-normalized Gaussian process (SNGP) and
their combinations that address the latency and
quality caveats of the classic methods (Gal and



Ghahramani, 2016; Lakshminarayanan et al., 2017;
Liu et al., 2020; Wen et al., 2020). Furthermore,
we evaluate method performance across multiple
benchmarks of varying difficulty to ensure the prac-
tical relevance of our result, and to uncover poten-
tial failure patterns of different approaches. Our
contributions are:
•We adapt the various probabilistic deep learning
methods to the Pre-trained Language Model (PLM)
setup and conduct an extensive study on their ef-
fect on both uncertainty and prediction aspects of
model performance.
•We propose a new evaluation protocol to measure
the uncertainty calibration performance of summa-
rization models, tailored toward domain-specific
quality scores (e.g., ROUGE).
• We show that using probabilistic methods gen-
erally leads to improved summarization and cali-
bration performance, and consequently improved
selective generation. We also discuss the failure
patterns of the popular methods such Deep Ensem-
bles (Lakshminarayanan et al., 2017) and Monte
Carlo Dropout (Gal and Ghahramani, 2016).

2 Related work

Probabilitistic Learning for Seq2seq Models.
Developed primarily in the context of discrim-
inative models, the state-of-art probabilistic ap-
proaches can be applied to large neural models
without sacrificing performance (Gal and Ghahra-
mani, 2016; Lakshminarayanan et al., 2017; Wen
et al., 2020; Liu et al., 2020). Recently, however,
initial investigations into unsupervised uncertainty
estimation for structured prediction have appeared,
primarily focusing on more basic approaches such
as Monte Carlo Dropout (MCD) or Deep Ensemble
(DE) (Xiao and Wang, 2019; Wang et al., 2019;
Fomicheva et al., 2020; Malinin and Gales, 2021;
Lin et al., 2022), with a few work looking into
summarization tasks (Xu et al., 2020; Gidiotis and
Tsoumakas, 2022). In comparison, this work fo-
cuses on an unbiased evaluation of a wide range
of state-of-the-art probabilistic methods on tasks
with varying difficulty, and reveals failure patterns
of classic approaches such as MCD and DE.

Calibration Technique in Language Processing.
Guo et al. (2017) proposed improving calibration
of document classifier using of temperature scal-
ing. Müller et al. (2019) and Wang et al. (2020a)
explored improving calibration in neural machine
translation using label smoothing. Desai and Dur-

rett (2020) noted that calibration methods can be
used to improve the accuracy of pre-trained lan-
guage models. Jung et al. (2021) proposed a novel
training approach to improve calibration by mini-
mizing a combined loss of cross-entropy and cali-
bration. In the summarization literature, (Cao and
Wang, 2021; Xu et al., 2022; Sun and Li, 2021;
Zhao et al., 2022; Liu et al., 2022) explored cali-
brating model probability using contrastive learn-
ing approaches. Most of these techniques focus on
deterministic models. They are orthogonal to and
can be combined with the probabilistic approaches
we explore in this work.

3 Methods

Probabilistic methods have been adopted to in-
crease the reliability of pre-trained language mod-
els. Plex paper (Tran et al., 2022) provided a nice
survey on the robustness of uncertainty methods
on text classification tasks. In this study, we opted
for the methods that are widely recognized and
used. Section A.7 contains in-depth details, here
we provide a general overview:

Single-model Methods:
• Deterministic Baseline - we use the base T5
model 1 (Raffel et al., 2020) as the baseline model.
•Monte Carlo Dropout (MCD) (Gal and Ghahra-
mani, 2016) which estimates uncertainty using
the Monte Carlo average of 10 dropout samples.
Those samples are generated using the same model
and parameters but with different random seeds at
dropout.
• Batch Ensemble (BE) (Wen et al., 2020) - an
ensemble method which has much lower computa-
tional costs comparing to MC Dropout and Deep
Ensemble. We replace the last transformer’s MLP
block by a batch ensemble block with ensemble
size be 5.2

• Spectral-normalized Neural Gaussian Pro-
cess (SNGP) (Liu et al., 2020) - a recent state-
of-the-art approach which improves uncertainty
quality by transforming a neural network into an
approximate Gaussian process model. The Gaus-
sian Process last layer is able to reflect the distance
between a test example and the training set, hence
potentially be helpful in improving calibration.
• SNGP+MCD which is the MC Dropout on top
of an SNGP model;

1All methods can be applied to larger models.
2BE requires more memory on a single machine, so we

keep the ensemble size below 10.



Multi-model Methods:
• Deep Ensemble (DE) (Lakshminarayanan et al.,
2017) which trains 10 deterministic models indi-
vidually and averages all. We use the same model
architecture but changing the initial seeds.
• Gaussian Process Ensemble (SNGP+DE) is
the combination of deep ensemble and SNGP.

For all methods, we use the official base T5
checkpoint, which are pretrained on a large cor-
pus like C4 (Raffel et al., 2020). We then fine-
tune the parameters on summarization tasks. To
generate prediction from the model posterior in
all, we perform beam inference with respect to
the model’s conditional posterior mean probabil-
ity, i.e., p̄(yt|y<t, x) = 1

M

∑M
m=1 pm(yt|y<t, x),

where M = 10 is the number of samples from
model posterior (for the deterministic baseline and
SNGP-only method M = 1). To quantify model
uncertainty, we consider the length-normalized pre-
dicted log-probabilities following previous work,
i.e., u(y|x) := 1

T

∑T
t=1 p̄(yt|y<t, x) (Wu et al.,

2016; Liu et al., 2022) where x is the input se-
quence, y is the output sequence, yt is the t-th
token of y, and T is the length of the sequence, i.e.
the number of tokens in y.

4 Experiments

For the first time, we benchmark the probabilis-
tic uncertainty calibration methods. We use our
proposed evaluation protocol, consisting of assess-
ing the ROUGE quality improvements, measur-
ing uncertainty calibration, which includes our
newly proposed sequence-level Expected Calibra-
tion Error (ECE), assessing rank correlation and
finally analysing selective generation via absten-
tion as a measure of language model calibration.
We evaluate all methods on three datasets: XSUM
(Narayan et al., 2018), CNN/DailyMail (Hermann
et al., 2015; See et al., 2017) and RedditTIFU-
long (Kim et al., 2019) due to their diversity in
abstractiveness, lengths, domain and style (see Sec-
tion A.6 for additional details). For all experiments
we use beam search decoding, which was adapted
to work with ensemble generation. We have also
adapted SNGP and BE algorithms to work with
the sequence generation and the corresponding loss
(see Section A.7 for more details).

4.1 ROUGE with Probabilistic Methods

We first study the effectiveness of different proba-
bilistic methods on summary prediction by compar-

ing them with the baseline deterministic model. We
use ROUGE-1/2/L (Lin, 2004) to measure general
summarization quality. As shown in Table 1, we
observe the consistent improvement of the ROUGE
scores in probabilistic models compared to base-
lines. For single model methods, SNGP achieves
the highest average ROUGE scores over the three
datasets. Other probabilistic methods also show
promising performance: SNGP+MCD is ranked
the second top regarding ROUGE-1, and BE is
ranked the second top regarding ROUGE-2 and
the top regarding ROUGE-L. For multiple model
methods, SNGP+DE improves over the determinis-
tic DE. Comparing multiple model methods with
single model methods, DE and SNGP+DE gener-
ally have higher ROUGE scores than single model
methods.

ROUGE-1↑
Method XSUM CNN/DM Reddit Average↑ Average Rank↓

Base 40.83 41.19 26.14 36.05 2.67
Base nucleus 40.03 40.66 24.54 35.08 5.33

SNGP 40.79 41.76 26.08 36.21 2.33
MCD 40.31 40.68 24.27 35.09 5.00

SNGP+MCD 40.90 41.49 24.60 35.66 2.33
BE 41.21 41.22 23.36 35.26 3.33

DE 41.51 41.20 26.65 36.45 1.67
SNGP+DE 42.14 41.99 26.57 36.90 1.33

ROUGE-2↑
Method XSUM CNN/DM Reddit Average↑ Average Rank↓

Base 19.14 19.77 7.76 15.56 2.67
Base nucleus 18.15 18.89 6.47 14.50 6.00

SNGP 18.91 20.19 7.76 15.62 2.00
MCD 18.63 19.78 7.12 15.18 4.33

SNGP+MCD 18.91 20.33 7.00 15.41 3.00
BE 19.41 19.81 7.31 15.51 2.33

DE 19.84 19.77 8.21 19.81 1.67
SNGP+DE 20.35 20.49 7.77 16.20 1.33

ROUGE-L↑
Method XSUM CNN/DM Reddit Average↑ Average Rank↓

Base 33.76 38.54 21.31 31.20 2.33
Base nucleus 33.04 38.13 19.79 30.32 5.67

SNGP 33.53 39.12 21.17 31.27 2.67
MCD 33.21 38.09 20.06 30.45 5.00

SNGP+MCD 33.59 38.97 20.00 30.85 3.00
BE 34.06 38.50 20.81 31.12 2.00

DE 34.38 38.54 21.72 31.55 1.33
SNGP+DE 34.92 36.55 21.18 30.88 1.67

Table 1: ROUGE scores and ranking of different probabilistic
methods across all datasets. Probablistic methods consistently
outperform base model, and SNGP-family models generally
lead to strong performance. For this experiment we addi-
tionally conduct evaluation of the Base model with nucleus
sampling (p = 0.5), which sometimes improves model perfor-
mance by truncating the less reliable tail of the distribution,
however it doesn’t change the model calibration. The best
and second-best results are denoted by bold and underlined
formats, respectively.

4.2 Measuring Uncertainty Calibration in
Summarization

We now study model’s uncertainty calibration qual-
ity. We consider both the classic metric Expected



Figure 1: ROUGE vs Abstention Curve for different probabilistic methods. Abstention rate α denotes the percentage of
examples that were excluded, after ranking according to log-probabilities. For single model methods (solid lines), SNGP+MCD
models have generally higher ROUGE scores in CNN/DM, and in regions of α > 0.6 in XSUM and Reddit. For multi-model
methods, SNGP+DE generally outperforms DE in all the three datasets. See Figure 4 for the results on other ROUGE scores.

Calibration Error (ECE), and also the uncertainty
score’s Spearman’s rank correlation with domain-
specific quality scores tailored for summarization
(e.g., ROUGE).

ECE. In order to evaluate whether the model es-
timated probabilities have been more calibrated we
assess the difference in expectation between confi-
dence and accuracy using ECE metric (Naeini et al.,
2015):

ECE =

K∑
k=1

|Bk|
n
|conf(Bk)− acc(Bk)|,

where we split the interval (0, 1] into K equal-
size bins and define Bk to be the set contain-
ing the indices of examples which have pre-
dicted probability lie in the k-th bin: Bk ={
i|p̂i ∈

(
k−1
K , kK

]}
, where the average accuracy

and confidence within each bin are defined
as acc(Bk) = 1

|Bk|
∑

i∈Bk
I(ŷi = yi) and

conf(Bk) = 1
|Bk|

∑
i∈Bk

p̂i.
In auto-regressive prediction, ŷi can be a se-

quence or a token,3 which corresponds to two dif-
ferent metrics sequence-level ECE and token-level
ECE respectively. When computing the sequence-
level ECE, we cast the problem into a binary classi-
fication task, where the probability p̂ of a predicted
sequence is the production of probabilities of all
tokens of that sequence. Regarding the token-level
ECE, other work (e.g. Wang et al. (2020b)) uses
translation edit rate (Snover et al., 2006) to relax
the condition that the tokens under consideration
need to be at the same position. In our work, we
say that a predicted token is correct if it matches
the target token at the same position in the target
sequence.

3During evaluation, we compute token probabilities from
the highest scoring beam sequence.

As shown in Table 2, across all methods,
SNGP+MCD and SNGP+DE generally leads to
lower ECE in single model and multi-model meth-
ods respectively, suggesting SNGP helps to reduce
ECE.

Sequence-level ECE×10−3 (↓) Token-level ECE×10−1 (↓)
Method XSUM CNN/DM Reddit Average XSUM CNN/DM Reddit Average

Base 2.70 0.28 0.32 1.10 5.89 7.69 4.56 6.05
SNGP 3.47 0.52 1.13 1.71 5.97 7.71 5.26 6.31
MCD 1.02 0.18 0.05 0.42 4.54 6.68 3.05 4.76

SNGP+MCD 0.93 0.11 0.13 0.39 4.54 6.69 3.44 4.89
BE 2.65 0.64 0.44 1.24 5.95 8.04 5.01 6.33
DE 1.89 0.13 0.63 0.88 5.58 7.78 4.82 6.06

SNGP+DE 0.83 0.36 0.90 0.70 5.39 7.62 5.15 6.05

Table 2: ECE on sequence and token levels of different
probabilistic methods across all datasets. SNGP+MCD and
SNGP+DE generally leads to lower ECE in single model and
multi-model methods, respectively.

Rank Correlation with Quality Score. We in-
vestigate how the Spearman’s rank correlation be-
tween the log-probabilities and ROUGE changes
with calibration. Overall we see a general trend
demonstrating the calibration increases the corre-
lation, as shown in Figure 2. For the ROC-AUC
scores please refer to the section A.1.

Figure 2: Spearman’s rank correlation between the length-
normalized log-probabilities and the ROUGE-1. We compute
the error bars using bootstrap standard deviation technique.
The best and second-best results are denoted by bold and
underlined formats, respectively.

4.3 Selective Generation via Abstention
Selective generation refers to the procedure to se-
lectively generate higher-quality outputs while ab-
stain the low-quality outputs (Ren et al., 2022). It
evaluates the models’ uncertainty calibration, since



a well calibrated model is expected to have high
uncertainty for low-quality outputs such it can be
used to select examples to abstain. We use the
ROUGE vs Abstention Curve 4 to compare meth-
ods: specifically, at a given abstention rate α, we
remove the lowest α-fraction uncertain examples
and compute the average quality of the remaining
examples, as shown in Figure 1. For single model
methods (solid lines), SNGP+MCD models have
generally higher ROUGE scores in CNN/DM, and
in regions of α > 0.6 in XSUM and Reddit. For
multi-model methods, SNGP+DE generally outper-
forms DE in all the datasets.

Failure Patterns. When comparing multi-model
methods with single model methods, we observe
that XSUM and Reddit both have multi-model
methods outperforming single model methods, but
CNN/DM does not benefit from using multi-model
methods. This difference can be explained by the
fact that CNN/DM is an simpler task that is more
extractive in nature, and a single model already per-
forms well and relatively calibrated. In this case,
using a deep ensemble can in fact lead to under-
confidence (Rahaman et al., 2021). Furthermore,
in Reddit dataset, MCD-family methods seem to
lead to severe degradation of summarization quality.
Note that Reddit is a more challenging task with
much greater linguistic diversity when compared
to XSUM and CNN/DailyMail, cautioning the use
of MCD method in challenging test environments
where a single model does not perform well.

5 Conclusion

We have adapted the most popular probabilistic cal-
ibration methods to the PLMs use-case and have
conducted a novel and extensive study of the cali-
bration effect on PLMs uncertainty and summariza-
tion quality. We proposed a novel evaluation pro-
tocol for the uncertainty estimation in PLMs. We
demonstrated that probabilistic calibration meth-
ods can have a positive impact on the quality of
generated summaries and increase reliability of the
models. Our main findings can be summarized in
two points:

• When there is no time and memory con-
straints, our results point out that it is best
to choose Deep Ensembles in combination

4Different from the performance vs data retention curves
in Filos et al. (2019), we employ log probability rather than
predictive entropy as the metric for data retention.

with SNGP as an approach to language model
calibration, since they are effective in terms of
reducing the ECE and improving the quality
of summarization.

• Even when calibration methods appear to be
effective in reducing ECE it may not neces-
sarily suggest that they will be effective in
improving ROUGE or other language genera-
tion quality metrics.

We hope to see our efforts making a significant
contribution to the improvements of the reliability
of PLMs, enabling future researchers to effectively
leverage probabilistic calibration methods in the
development and analysis of these models.

6 Limitations

In our paper we investigated the effect of most com-
mon and widely used probabilistic deep learning
methods on Pre-trained Language Models. We ob-
served a positive effect of calibration on the variety
of metrics, however it is important to address the
limitations of this work. Even though we observed
the improvements on multiple metrics, we believe
more work needs to be done to fully understand-
ing the interplay between classic probabilistic deep
learning methods that were traditionally applied
in the context of classification and the unique set
up the language models pose: autoregressive gen-
eration and mismatch between the learning and
inference. Above mentioned unique properties of
PLMs make it harder to align the model predic-
tive probability with the distribution of the data.
In our work we have done very basic adaptation
of the existing methods to the PLM setting, but in
future more work needs to be done to address these
differences.

7 Ethical impact

Our work directly contributes to the topic of reli-
able deep learning. We believe our work should
positively affect the scientific community, since
we address one of the main problems that often
occurs in the machine learning research: how to
make the models more reliable and trustworthy. We
hope that in long run we can arrive at a standard-
ized benchmark set of techniques that can help the
NLP community develop PLMs that are universally
trustworthy.
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A Appendix

A.1 ROC-AUC scores

Metric Method Type Method XSUM CNN/DailyMail Reddit Tifu

R
O

U
G

E
1 Single-model

Base 73.16 60.38 60.28
SNGP 74.34 59.96 65.01
MCD 75.06 62.29 69.98

SNGP+MCD 75.14 62.05 67.60
BE 73.30 60.45 64.08

Multi-model (10)
DE 73.90 59.97 64.07

SNGP+DE 75.19 59.25 63.65

R
O

U
G

E
-2 Single-model

Base 73.00 60.22 59.93
SNGP 73.46 60.47 63.96
MCD 74.57 62.38 61.27

SNGP+MCD 74.58 63.22 63.58
BE 72.82 59.90 63.23

Multi-model (10)
DE 74.03 59.93 62.59

SNGP+DE 74.52 60.27 61.79

R
O

U
G

E
-L Single-model

Base 71.75 59.25 61.34
SNGP 72.86 59.06 59.44
MCD 73.86 61.38 66.33

SNGP+MCD 74.61 61.35 62.99
BE 72.45 60.03 64.42

Multi-model (10)
DE 72.85 58.78 65.05

SNGP+DE 74.15 59.51 61.39

Table 3: We measure the Area Under Curve values, when using the log-probabilities as a signal for "good/bad"
summaries. Good and bad summaries are defined by a threshold θ we impose on the metric, i.e. when metric is
above certain θ then we treat the summary as good and when it is below we treat it as a bad summary. We used the
following θ for ROUGE1, ROUGE-2 and ROUGE-L correspondingly: 40, 15, and 305.

A.2 Spearman’s rank correlation ROUGE-2 and ROUGE-L

Spearman’s rank correlation for the rest of the metrics can be found on Figure 3.

Figure 3: Spearman’s rank correlation between the length-normalized log-probabilities and the ROUGE-2 and
ROUGE-L.

A.3 Abstention plots

We demonstrate the abstention plots for the rest of the metrics on Figure 4.

A.4 Experimental details

We ran all the experiments on the T5 base model (220 million parameters) using open-sourced T5X
framework (Roberts et al., 2022). We used the TPU v3 chips (Jouppi et al., 2020) for all experiments.
Reported metric results are collected from a single evaluation run, unless error bars are provided or

5The values were selected as round numbers on the SoTA performance circa 2020, when NLG fluency was human-like:
https://paperswithcode.com/sota/text-summarization-on-x-sum.



Figure 4: ROUGE-2 and ROUGE-L abstention plots.

stated otherwise. To select each model checkpoint we ran a hyperparameter sweep to find the best set of
parameters. Parameters we sweeped over were: checkpoint step, leaning rate, SNGP mean field factor,
number of checkpoints for the ensembles and number of training steps.

In all the experiments we use beam search (except where we stated "nucleus sampling") as a decoding
method and we use beam_size= 3. For the MCD we used dropout_rate = 0.1 everywhere. Covariance
matrix momentum in SNGP was set to 0.999. For the XSum the best mean field factor 10−4 and for CNN
and Reddit it was 10−6.



A.5 Qualitative results

Figure 5: Scatter plot for ROUGE 1 scores of SNGP+DE and Base models on RedditTifu task. Detailed contents
of I and N symbols can be founded in Tables 4 and 5 respectively.

A.6 Dataset

XSUM (Narayan et al., 2018) consists of 227k BBC articles from 2010 to 2017 with a single sentence
highly abstractive summary. The average length of each input document is 687 words, whereas the
summary is 53 words long. Sometimes the summary contains information not present in the article
(Maynez et al., 2020).
CNN/DailyMail (Hermann et al., 2015; See et al., 2017) contains 313k articles from the CNN and Daily
Mail newspapers with bullet point summaries. The summaries are on average 3-4 sentences and relatively
extractive. The average length of each input document is 375 words, whereas the summary is 21 words
long.
RedditTIFU-long (Kim et al., 2019) contains 42k posts of informal stories from sub-reddit TIFU from
2013-Jan to 2018-Mar with author written summaries. The style and length of the summaries are very
diverse. The average length of each input document is 433 words, whereas the summary is 23 words long.

A.7 Methods details

In this section, we delve into the methods, offering a comprehensive explanation of their individual
characteristics and how their combined properties can best help in model calibration. Deep Ensembles,
Monte Carlo dropout, SNGP, and Batch Ensemble are all techniques used in the field of machine learning
to improve the performance and robustness of neural network models. While they share the goal of
calibrating the model predictions, they differ in their underlying principles and methodologies. Let’s
discuss each method and highlight their fundamental differences.

The main idea behind Monte Carlo Dropout, Deep Ensembles and Batch Ensembles is to get an
approximation of the predictive posterior of a model via computing a mean of token probabilities from
several unique models. Once we have access M predictions we can compute the predictive posterior the



Input: summarize: my family was out on our porch, having some drinks and horderves before giving dad
his father’s day gift. at some point my mom notices one of our neighbors walking down the street.
she points out that hes wearing these funny shoes and i turn around to see him shuffling his feet while
wearing these giant slippers that look like part of a goofy costume. as he’s crossing the street to check
on his daughter playing at her friends house my dad yells "love those shoes!" and the guy waves and
responds "thanks, they’re from her," while pointing to his daughter.
him and his daughter exchange a few words and he turns around to walk back home. you have to imagine
this guy moving his body side to side while walking, dragging his one foot and swinging the other around,
making it look like the slippers were heavy (since they were quite large).
as he passes in front of our house again, i decide to poke a little fun at the way he walked in the slippers
and yelled with a chuckle, "hey y’know you walk a little funny in those!" to which he replied, "heh, i
dont have much of a choice," and continues walking with his head down. in my brain, he was saying
"there’s no other way to walk in these damn things," so i laughed audibly so he could hear i appreciated
the response and attitude about the silly present.
once he’s inside, my mom turns to me and says, "yknow he used to weigh like 300 pounds, he’s lost over
120. he also has cerebral palsy so he’s always kinda walked with a limp."

Target: thought a guy’s shoes were the reason he walked funny, turns out he has cerebral palsy.

Base model: i made fun of a guy walking in giant slippers on father’s day.
SNGP+DE model: i laughed at the way a guy walked in his slippers, turns out he has cerebral palsy.

Table 4: An example where SNGP+DE model gives better ROUGE1 score than Base model. This is annotated by
I symbol in Figure 5.

following way:

p̄(y|x,D) = Eq(θ)[p(y|x,θ)] ≈ 1

M

M∑
m=1

pm(y|x,θ(m)),θ(m) ∼ q(θ) ≈ p(θ|D) (1)

Here, θ are the model parameters, y is the model prediction and x is the model input (for simplicity
we consider y to be a whole sentence instead of an individual token, that are dependent on the previous
tokens). q(θ) is the parameters prior distribution, in our case we used standard normal distribution to
initialize the model parameters. Once we have an approximation of the model’s predictive posterior we
can estimate the expected uncertainty:

u(p̄(y|x,D)) = H[p̄(y|x,D)] = Ep̄(y|x,D)[− ln p̄(y|x,D)] = −
∑
y∈Y

p̄(y|x,D) ln p̄(y|x,D) (2)

The uncertainty is essentially the Shannon entropy, and therefore can be easily calculated, once we
have the values and probabilities across the whole space of possible outputs Y , in practice we compute
everything at the token level, and Y just becomes the models’ vocabulary.
•Monte Carlo Dropout (MCD) (Gal and Ghahramani, 2016) is a technique that leverages dropout

regularization during training inference. Dropout is a regularization technique that randomly sets a
fraction of neural network units to zero during training. During inference, MCD involves performing
multiple forward passes with dropout enabled (but with different random seeds) and averaging the
predictions (more precisely, the probabilities of all tokens in the vocabulary). By sampling multiple
predictions, MCD provides a measure of model uncertainty or confidence in its predictions. In our case
MCD estimates uncertainty using the Monte Carlo average of 10 dropout samples.

• Batch Ensemble (BE) (Wen et al., 2020) - an ensemble method which has much lower computational
costs comparing to MC Dropout and Deep Ensemble. Batch Ensemble is a technique that involves
training multiple neural network models simultaneously within a single batch. Each model in the
ensemble receives a different subset of the data batch, and the models share their weights at the end of
each training iteration. By training models on different data subsets, Batch Ensemble encourages diversity
and reduces overfitting. In the experiments, we replaced the last transformer’s MLP block and the last
dense layer by batch ensemble blocks with ensemble size be 5.



Input: summarize: i[f] have small hairs on my lip and waxing doesn’t seem to work because of how tiny
and thin they are. shaving doesn’t help very much since it causes farther irritation. when i was feeling
extra self concious after trimming the hairs on valentines day, my fiancé brought up trying the cream hair
removal.
i went on amazon and bought the veet hair removal cream. last night, i got it in the mail and read the
precautions. i saw not to use it on the face but like an idiot, i thought to ignore it (as does every story
about the hair removal cream). it totally did the trick and my lip is hairless. i felt a bit of burning and
irritation on the lip after but it went away after using a bit of bio oil. didn’t think about it all night.
this morning on the other hand i woke up with more pain that you would feel after a burn. there was a
small patch of skin breakdown and irritation to the left of my lip and a bit of redness on my upper lip but
nothing more. i covered it up with makeup and it seemed to have done the trick.
fast forward about 8hrs. i now have small pin sized scabs all across my upper lip and pain. i look like a 15
year old boy who doesn’t know how to shave or someone with uncontrollable herpes cold sores. ontop of
that i got a venus razors ad while i write this on my smart phone to rub it in some more that i should’ve
used a razor. the next week will be ugly.

Target: used hair remover cream on face, now have a chemical burn on the upper lip

Base model: i used veet hair removal cream on my lip and now i have small scabs all over my upper lip.
SNGP+DE model: veet hair removal cream made me look like an idiot.

Table 5: An example where SNGP+DE model gives worse ROUGE1 score than Base model. This is annotated by
N symbol in Figure 5.

• Deep Ensemble (DE) (Lakshminarayanan et al., 2017) which trains 10 deterministic models individ-
ually and averages all. Deep Ensembles involve training multiple neural network models independently
and then combining their predictions to make a final prediction. Each model in the ensemble is typically
trained with different initialization, architectures, or subsets of the training data. The main idea is that
the diverse models capture different aspects of the data and, when combined, produce more accurate and
robust predictions. Deep Ensembles are computationally expensive since they require training and storing
multiple models.

The above mentioned methods are very good at increasing the representation diversity, i.e. learning the
multiple modes of the underlying data distribution. However, when dealing with uncertainty it is also
important that model has a distance awareness, i.e. the property of the model that allows it to quantify
the distance of xtest and Xtrain in the input space ||xtest −Xtrain||x. Typical Neural Networks are not
distance aware. Spectral-normalized Neural Gaussian Process was proposed as a solution for this problem:
• SNGP (Liu et al., 2020) - a recent state-of-the-art approach which improves uncertainty quality by

transforming a neural network into an approximate Gaussian process model. The Gaussian Process last
layer is able to reflect the distance between a test example and the training set, hence potentially be
helpful in improving calibration. The model architecture includes a neural network that maps inputs to a
lower-dimensional feature space, and a Gaussian process layer that models the target variable using the
extracted features. We adapted SNGP to the sequence generation by letting all pre-logits (i.e. inputs of the
last dense layer) in a sequence go through the same GP layer.

Figure 6: Architecture changes for the SNGP model. Spectral normalization enforces bi-Lipschitz smoothness,
which discourages inputs that are far away in input space get mapped close in hidden space. For GP layer confi-
dence is a function of distance from the training data.



In summary, the fundamental differences among these techniques lie in their approaches to ensemble
learning, uncertainty estimation, and distance awareness. Deep Ensembles train multiple models inde-
pendently and combine their predictions, Monte Carlo dropout incorporates dropout during training and
testing, Batch Ensemble trains multiple models within a single batch and shares their weights and SNGP
combines neural networks with Gaussian processes. Each method offers unique advantages and can be
employed based on the specific requirements of the problem at hand, our experiments showed that the best
results can be achieved by combining the SNGP with Deep Ensembles, which gives us the best of both
worlds, i.e. representation diversity and distance awareness. See Table 6 for the summaries of different
methods properties.

Method
Distance
awareness

Number of
models

Number of
inference runs

Simplicity of
implementation

Representation
diversity

MCD 7 1 10 3 3

BE 7 1 1 7 3

SNGP 3 1 1 7 7

SNGP+MCD 3 1 10 7 3

DE 7 10 10 3 33

SNGP+DE 3 10 10 7 33

Table 6: Comparing studied calibration techniques against selected properties.

Finally, in order to compare the algorithms it is helpful to look at the total complexity:

• SNGP, BE: time complexity O(T ), space complexity O(S),

• MCD, SNGP+MCD: time complexity O(M × T ), space complexity O(S),

• DE, SNGP+DE: time complexity O(M × T ), space complexity O(M × S),

where T and S are time and space complexity of the base model and M is the ensemble size. To reduce
the memory required in DE models, we compute the predictions (i.e. the probabilities of all tokens in the
vocabulary) of each model sequentially before averaging them. For that reason, the DE models have a
time complexity O(M × T ). The actual time and memory required for each method depend on the TPU
topology, and they roughly align with the time and space complexity mentioned above.


