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Abstract

Existing methods for fine-tuning sparse
LLMs often suffer from resource-intensive
requirements and high retraining costs.
Additionally, many fine-tuning methods
often rely on approximations or heuristic
optimization strategies, which may lead
to suboptimal solutions. To address these
issues, we propose an efficient and fast
framework for fine-tuning sparse LLMs based
on minimizing reconstruction error. Our
approach involves sampling a small dataset for
calibration and utilizing backpropagation to
iteratively optimize block-wise reconstruction
error, on a block-by-block basis, aiming for
optimal solutions. Extensive experiments on
various benchmarks consistently demonstrate
the superiority of our method over other
baselines. For instance, on the Wikitext2
dataset with LlamaV1-7B at 70% sparsity,
our proposed EBFT achieves a perplexity of
16.88, surpassing the state-of-the-art DSnoT
with a perplexity of 75.14. Moreover, with
a structured sparsity ratio of 26%, EBFT
achieves a perplexity of 16.27, outperforming
LoRA (perplexity 16.44). Furthermore, the
fine-tuning process of EBFT for LlamaV1-7B
only takes approximately 30 minutes, and the
entire framework can be executed on a single
16GB GPU. The source code is available at
https://github.com/anonymousACL2024/EBFT.

1 Introduction

LLMs have demonstrated remarkable potential in
various NLP tasks. However, the large sizes of
these models pose challenges in terms of resource
requirements for deployment. For instance, the
inference of GPT-3 (Brown et al., 2020) in half-
precision floating-point format demands at least
5 80G A100 GPUs. To address this issue, sev-
eral model compression methods, such as network
quantization (Lin et al., 2023; Frantar et al., 2022),
network pruning (Frantar and Alistarh, 2023), and

knowledge distillation (Hsieh et al., 2023), have
been proposed to compress and accelerate these
Large Language Models. Among these methods,
network pruning has gained increasing attention.
However, pruning often leads to a decline in the
performance of sparse models. To address this is-
sue, recent works (Zhang et al., 2023d; Frantar and
Alistarh, 2023; Zhang et al., 2023a) have emerged
that can fine-tune the pruned models to recover
their performance through regression reconstruc-
tion, costly retraining, or other heuristic methods.
In this paper, we introduce EBFT, a framework de-
signed to effectively fine-tune sparse LLMs, signif-
icantly enhancing the performance and generality
of pruned models.

Dataset used for fine-tuning. Some existing
pruning then fine-tuning approaches require signif-
icant retraining resources, partly due to the large
size of the retraining dataset. For example, LLM-
Pruner (Ma et al., 2023) employs Alpaca-cleaned
(Taori et al., 2023) as its fine-tuning dataset to re-
store the performance of sparse LLMs. Alpaca-
cleaned consists of 51.8K rows of data, resulting in
substantial time costs for fine-tuning LLMs. Sim-
ilarly, Sheared Llama (Xia et al., 2023) employs
RedPajama (Computer, 2023), containing 2.17M
rows of data, for LLM pruning and fine-tuning,
which incurs huge resource costs. In this paper,
we sample a small calibration dataset comprising
only 256 1024-token segments extracted from C4
(Raffel et al., 2020). By fine-tuning sparse LLMs
using these samples, we effectively reduce the re-
source requirements and time costs associated with
the process.

Optimization algorithm. Current LLM prun-
ing methods, like SparseGPT (Frantar and Alistarh,
2023), construct reconstruction errors based on fea-
ture maps before and after pruning. They approx-
imate the reconstruction error using the second-
order term of Taylor’s Formula and optimize it by
regression reconstruction. Wanda (Sun et al., 2023)
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can be viewed as an approximation of the pruning
criteria used in SparseGPT. DSnoT (Zhang et al.,
2023d) utilizes masks from Wanda or SparseGPT
as initialization and designs a heuristic criterion to
reselect masks that can reduce the reconstruction
error further. These algorithms only optimize an
approximation and often rely on heuristic experi-
ences, leading to sub-optimal solutions. In contrast,
our method defines the block-wise reconstruction
error and directly optimizes it through backpropa-
gation (Werbos, 1990), ensuring the attainment of
an optimal and convergent solution.

Fine-tuning costs. EBFT can be integrated with
any pruning method and optimizes the block-wise
reconstruction error through a backpropagation al-
gorithm. Our framework can avoid the simulta-
neous loading of all LLM blocks onto the GPU
and require only a few samples, significantly re-
ducing costs. Experimental results indicate that
the time required of EBFT for fine-tuning each
block in Llama-7B (Touvron et al., 2023a) ranges
between 50 and 60 seconds, resulting in a total
time cost of approximately 30 minutes. EBFT en-
ables fine-tuning Llama-7B with a single 16GB
GPU, making LLM fine-tuning feasible even under
resource-constrained conditions.

In summary, our contributions can be summa-
rized as follows:

* We introduce EBFT, a block-by-block fine-
tuning framework for sparse LLMs, which
requires only a few samples, significantly re-
ducing resource dependencies.

* EBFT updates the network based on the min-
imization of block-wise reconstruction error
through backpropagation, resulting in an opti-
mal and convergent solution.

* EBFT consistently surpass other state-of-the-
art algorithms on various benchmarks and
models, demonstrating the strong efficiency
of our method.

2 Related Work

Network pruning. According to different levels
of granularity, pruning can be categorized into un-
structured pruning, structured pruning, and semi-
structured pruning. (1) Unstructured pruning.
Unstructured pruning methods involve removing
individual weights in the weight matrix. Han et
al. (Han et al., 2015) proposed an algorithm based

on /1 and ls regulation, suggesting that smaller-
norm weights are less important. LTH (Frankle
and Carbin, 2018) increases the sparsity ratio dur-
ing training and utilizes magnitude for pruning.(2)
Structured pruning. Structured pruning involves
removing entire rows or columns of the weight ma-
trix. Li et al. (Li et al., 2016) use the {;-norm as the
importance scores for channels. A pruning method
(Sanh et al., 2020) called movement pruning was
proposed, which used the product of weight value
and its gradient as the criterion for importance,
surpassing magnitude pruning on BERT (Devlin
et al., 2018). Cofipruning (Xia et al., 2022) gener-
ates masks for BERT pruning via 10 regularization
(Louizos et al., 2017; Wang et al., 2019). Guo et al.
(Guo et al., 2023b) analyze existing pruning criteria
and propose a method based on the information bot-
tleneck principle (Tishby et al., 2000; Tishby and
Zaslavsky, 2015).(3) Semi-structured pruning.
Semi-structured pruning, also known as N:M spar-
sity (Zhou et al., 2021; Zhang et al., 2022), ensures
that for every continuous M weights in the weight
matrix, only N weights are non-zero. N:M sparsity
can accelerate the sparse model on specific devices.
Zhang et al. (Zhang et al., 2023c) proposed trans-
posable (Hubara et al., 2021) bi-directional masks
to accelerate sparse models in both the forward and
backward processes.

Fine-tuning for pruned LLMs. For LLMs, spe-
cific pruning methods (Ashkboos et al., 2024; An
et al., 2023; Syed et al., 2023; Li et al., 2023) have
been proposed. LoraPruner (Zhang et al., 2023a),
LLM-pruner (Ma et al., 2023), and Compresso
(Guo et al., 2023a) aim to remove entire attention
heads or FFN units in the transformers (Vaswani
et al., 2017), followed by fine-tuning on a large
dataset using PEFT (Hu et al., 2021). However,
these methods suffer from performance degrada-
tion and high retraining costs. SparseGPT (Frantar
and Alistarh, 2023) employs OBS (Hassibi et al.,
1993) to prune the weights of LLMs and recovers
their performance through regression reconstruc-
tion. Wanda (Sun et al., 2023) proposes a new
importance criterion, which approximates the cri-
terion used in SparseGPT. DSnoT (Zhang et al.,
2023d) aims to fine-tune sparse LLMs and designs
a criterion to further reduce reconstruction error by
reselecting masks. These methods require costly
retraining or rely on approximation and heuristic
optimization strategies, resulting in significant re-
source consumption or sub-optimal solutions.To
address these challenges, we propose a fine-tuning
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Figure 1: EBFT can be integrated with any other pruning methods, requiring only a small number of samples from
C4. When the initial mask M¢ and weight W} are provided, EBFT updates the weight W} through backpropagation
to optimize the reconstruction error L mentioned in Eq.4, ultimately achieving a convergent and optimal solution.
Here, W/ represents the weight vector of the I-th block of the LLM in the t-th iteration.

framework called EBFT, which helps us obtain an
optimal and convergent sparse model.

3 Methodology

3.1 Preliminaries

Large Language Model. The structure of a large
language model is based on the transformer, which
consists of multiple stacked blocks. Each block
consists of two modules: multi-head self-attention
(MHA) and multi-layer perceptron (MLP). MHA
typically comprises four linear layers, while MLP
consists of two or three linear layers. For the 1-
th block in the large language model, it can be
formulated as follows:

Zéttn = MHA(anhm LN(Z;}}I)) + Zﬁ‘}ql—n

1

zi‘fn = MLP(WJnlp’ LN('Z(lzttn)) + Zéttn? ( )
where ernh ., Tepresents the weight vector of the
multi-head self-attention module, and ernlp repre-
sents the weight vector of the multi-layer percep-
tron module in the i-th block. LN represents the
layer normalization function. z}}}b denotes the out-
put of the (I-1)-th block, which serves as the input
to the 1-th block. The input z;}; is first passed
through the MHA module and then through the
MLP module.

Pruning for LLMs. Existing pruning methods
for LLMs (Frantar and Alistarh, 2023; Zhang et al.,
2023d; BozZa, 2024; Das et al., 2023) typically em-
ploy the reconstruction error of the layer-wise fea-
ture maps before and after pruning as the optimiza-
tion objective. This objective can be defined as

follows:

= M
min [[W X — (MOW) X[, s.t. 1— Mo _ g
MW N
@)

where X represents the input activation. W and W
represent the original and remaining weight vectors,
respectively, of any layer in the block of the LLM.
Me {0,1}" is the mask for this layer, indicating
whether the corresponding weights should be pre-
served (1) or discarded (0). S is the pre-designed
target sparsity, and N denotes the total number of
weights in the layer.

These methods often employ the second-order
term of the Taylor formula to approximate the layer-
wise reconstruction error in Eq. 2 or design heuris-
tic criteria to optimize Eq. 2. However, these ap-
proaches may result in suboptimal solutions.

3.2 EBFT

Overview. We propose a framework called EBFT
for the fine-tuning of sparse LLMs, aiming to
achieve optimal solutions. Unlike other costly
methods that involve pruning and then fine-tuning
on a large dataset (Xia et al., 2023; Ma et al., 2023;
Zhang et al., 2023a), EBFT only requires a small
calibration dataset consisting of a few samples.
Specifically, we extract 256 1024-token samples
from C4 and use them as the calibration dataset
denoted as D.. The principle of EBFT is based
on minimizing the block-wise reconstruction error.
An overview of our algorithm is depicted in Fig. 1.

Optimization objective. For the 1-th block in



the sparse LLM, it can be formulated as:
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where Wmha - Mmha mlp
M}, * WL, represent the remain weight vector
of the multi-head self-attention module and multi-
layer perceptron module, respectively, in the I-th

block. M Tln he and anlp represent their correspond-

ing masks. 29 n denotes the output of the 1-th block
after pruning.
we define our block-wise optimization objective
as:
min
wt. Wi

mha’ " mlp

In Eq. 4, we preserve the masks obtained from
other pruning methods unchanged and focus on op-
timizing the remaining weights within the current
block.

Compared to the layer-wise reconstruction er-
ror in Eq.2, the block-wise optimization process
in Eq.4 allows for interaction and information ex-
change among different layers within the block.
This enables the model to avoid potential issues as-
sociated with local optima in layer-wise optimiza-
tion and explore the solution space more effectively,
leading to the discovery of a globally optimal solu-
tion. Our EBFT is to directly optimize Eq.4 without
relying on any approximations or heuristic meth-
ods.

Optimization algorithm. Unlike some meth-
ods (Kwon et al., 2022; Frantar and Alistarh, 2023;
Zhang et al., 2023a) that update the weights of
LLM based on regression reconstruction or costly
retraining, we employ the backpropagation algo-
rithm to minimize Eq. 4 by updating the value of
the variable Wélha and anlp block by block on
the D., without utilizing any heuristic methods.

The workflow of our EBFT framework is illus-
trated in Alg. 1. Prior to the fine-tuning process,
we establish a maximum iteration T to control the
overall fine-tuning cost. Specifically, we set T to
10 epochs. During the fine-tuning phase, if the
loss remains unchanged or changes within a small
range, we consider the loss to have converged. At
this point, the fine-tuning algorithm for the current
block will terminate early, allowing us to proceed
to the subsequent block for a new round of fine-
tuning.

In Alg. 1, mg can be obtained from any pruning
methods. o represents the learning rate which de-

Algorithm 1: Pseudocode of EBFT

input :sparse LLM F with L blocks; Initial Mask
mo; Calibration dataset D.; Max fine-tuning
iterations T; Learning rate o;
output : Fine-tuned sparse LLM Fr
for blockl =1 to L do
for iterationt = 0 to T" do
FE < Calculating the reconstruction error
via Eq. 4.
If E is convergent:
_break 3
VW] <« Calculating the gradient of W}
with respect to E through Bp algorithm.
Wil « Wi -aVW}
end

end
return Fr;

termines the size of updating step for the variable
W}. Specifically, we set the learning rate to 2e-4.

4 Experiments

Models and Baselines. We apply magnitude prun-
ing, SparseGPT, and Wanda techniques to the
widely adopted LLMs, LlamaV1 (Touvron et al.,
2023a) and LlamaV?2 (Touvron et al., 2023b). Sub-
sequently, we compare the evaluation results of
the state-of-the-art method DsnoT (Zhang et al.,
2023d) with our approach on the pruned LlamaV1
and LlamaV2, considering both unstructured spar-
sity and N:M sparsity. To further assess the effec-
tiveness of our method, we also compare EBFT
with LoRA (Hu et al., 2021) under structured spar-
sity using FLAP (An et al., 2023).

Evaluation. To evaluate the performance of our
method and other baselines, we conduct compar-
isons on the widely-used dataset Wikitext2 (Merity
et al., 2016) to calculate perplexity scores. Ad-
ditionally, we perform a series of zero-shot tasks,
including PIQA (Bisk et al., 2020), StoryCloze
(Mostafazadeh et al., 2017), ARC-Easy and ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), Winogrande (Sakaguchi et al., 2021),
and Boolq (Clark et al., 2019). These tasks aim to
assess the generality of the pruned model.

4.1 Language Modeling

Unstructured Pruning. We perform comprehen-
sive comparative experiments on the Wikitext2
dataset, and the results are presented in Table.l1
We compare the perplexity of pruned LlamaV1 and
LlamaV?2 models using our method, DsnoT, mag-
nitude pruning, Wanda, and SparseGPT across a
range of sparsity levels, from 50% to 90%. The



LlamaV1-7B | LlamaV2-7B
Sparsity
Metho 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
Magnitude 17.29 559.99 48415 132176 317879 16.03  1924.81 49906 nan nan
w. DsnoT 13.80 127.67 9614795 37474 202562 | 13.90 3749.55 14271e4 21760e2  34462e2
w. Ours 711 9.53 26.30 659.12 971899 | 6.59 9.29 33.50 462.32 2930.51
Wanda 7.26 10.69 88.84 5671.52 12748 6.94 10.96 78.26 3136.23  6995.88
w. DsnoT 7.14 10.40 75.14 3635.94 9043.63 6.85 10.85 75.55 4197.74  7311.58
w. Ours 6.81 8.59 16.88 118.38  2993.32 6.18 7.90 16.94 72.80 903.45
SparseGPT 7.20 10.40 27.00 167.55 3912.78 7.09 10.54 29.37 131.17 1542.22
w. DsnoT 9.25 9.68 46.99 8038.14 198898 6.97 10.23 59.62 2510.54 49639
w. Ours 6.73 8.33 16.07 141.15 3366.39 6.20 7.88 18.13 130.89 1233.80

Table 1: Comparison of perplexity for pruning and fine-tuning LlamaV1-7B and LlamaV2-7B on Wikitext2 dataset
at unstructured sparsity levels ranging from 50% to 90%.

experimental results show the strong effectiveness
of our EBFT. We can observe that regardless of the
magnitude pruning method used, be it SparseGPT
or Wanda, our method enhances the performance
of the sparse model. For instance, with magni-
tude pruning, our method achieves a perplexity of
7.11, surpassing the perplexity of 17.29 before fine-
tuning, and even outperforming Wanda (7.26) and
SparseGPT (7.20).

We also find that as the sparsity increases,
two observations emerge: (1) The state-of-the-
art DsnoT loses its effectiveness as a fine-tuning
method. For example, when using SparseGPT,
DsnoT degrades the performance of the sparse
model at sparsity levels of 70%, 80%, and 90%.
This demonstrates the limitations of heuristic opti-
mization strategies, which lack theoretical support.
(2) The advantage of our method becomes more
pronounced, indicating that our method enhances
the ability of pruned models even at extremely high
sparsity levels.

In Table 1, we further observe that SparseGPT,
which updates the values of the remaining weights,
outperforms Wanda, which leaves the remaining
weights unchanged. As sparsity increases, the ad-
vantage of SparseGPT over Wanda becomes more
evident, particularly at high sparsity levels. Addi-
tionally, the DsnoT approach, which reselects the
masks after pruning and keep weights unchanged,
also faces challenges. For example, when the spar-
sity exceeds 70%, regardless of LlamaV1 or Lla-
maV2, DsnoT significantly decreases the perfor-
mance of the sparse model pruned by SparseGPT.
In contrast, our method effectively and efficiently
fine-tunes the weights of the LLLM block by block,
surpassing other baselines overall. In the later sec-

LlamaV1-7B | LlamaV2-7B

arsity . . . .
m&j\ 2:4 4:8|2:4 4:8
Magnitude | 42.54 16.83 | 5439 16.53
w. DsnoT 38.32 17.01 | 40.81 18.34
w. Ours 9.62 8.10 9.14 7.56
Wanda 11.50 8.57 12.11 8.66
w. DsnoT 10.95 8.46 11.98 8.57
w. Ours 8.89 7.66 8.30 711
SparseGPT | 11.05 8.55 10.44 8.01
w. DsnoT 10.00 8.26 10.06 8.06
w. Ours 8.82 7.59 8.25 7.06

Table 2: Comparison of perplexity for pruning and fine-
tuning LlamaV1-7B and LlamaV2-7B on the Wikitext2
dataset at N:M sparsity levels, including two patterns,
2:4 and 4:8.

tion, we will conduct comprehensive and detailed
experiments to further compare mask-tuning and
weight-tuning.

Semi-structured Pruning. Semi-structured
pruning, also known as N:M sparsity, is considered
superior to unstructured pruning when it comes to
accelerating models on devices. We conducted ex-
tensive comparison experiments on the Wikitext2
dataset, and the results are presented in Table 2.
Irrespective of the 2:4 or 4:8 pattern, our method
consistently outperforms DsnoT, significantly en-
hancing the performance of the pruned models. For
example, when using the 2:4 pattern and Wanda
mask initialization, our method achieves a perplex-
ity of 8.30 for the sparse LlamaV2 model, which
even surpasses the performance of DsnoT using the
4.8 pattern. The sparse LLMs pruned by magnitude
pruning and fine-tuned with our method demon-
strate a remarkable improvement. Our fine-tuning



approach can effectively narrow the performance
gap between magnitude pruning and the state-of-
the-art baselines, Wanda and SparseGPT.

4.2 Zero-Shot Tasks

We conducted extensive experiments to evaluate
the performance of the sparse model on 7 zero-
shot tasks. The metric we used is accuracy. The
experimental results of different methods at the un-
structured sparsity level are shown in Table 3. It
can be observed that EBFT significantly enhances
the generality of the pruned model. For instance,
with magnitude pruning, EBFT improves the ac-
curacy by 16.28 on LlamaV1-7B and by 13.53 on
LlamaV2-7B. With Wanda, our methods achieve
a mean accuracy of 61.14 on LlamaV1-7B and
61.12 on LlamaV2-7B. However, DSnoT hardly
enhances the performance of the pruned model. It
achieves a mean accuracy of 58.85 on LlamaV1-7B
and 58.25 on LlamaV2-7B, respectively. For Lla-
maV2, DSnoT even degrades the performance after
fine-tuning. The mean accuracy before fine-tuning
for Wanda and SparseGPT is 59.02 and 60.77, re-
spectively. After fine-tuning, the mean accuracy
drops to 58.25 for Wanda and 60.20 for SparseGPT,
highlighting the limitations of DSnoT. In contrast,
after fine-tuning with EBFT, the sparse LlamaV?2
model shows a significant improvement in overall
accuracy, with a mean accuracy of 61.12 for Wanda
and 61.96 for SparseGPT.

N:M sparsity. We also investigated the gener-
ality of our EBFT approach at N:M sparsity lev-
els. Similar to unstructured sparsity, EBFT demon-
strates significant advantages compared to other
baselines. The experimental results for the 2:4
pattern are presented in Tab.3. In the case of mag-
nitude pruning, EBFT improves the mean accu-
racy of sparse LlamaV1-7B by 6.39 and sparse
LlamaV2-7B by 2.8. Conversely, DSnoT fails to re-
store the performance of magnitude-pruned sparse
models. When using Wanda initialization, EBFT
enhances the mean accuracy of sparse LlamaV1-
7B by 2.11 and sparse LlamaV2-7B by 2.33. Un-
der SparseGPT initialization, EBFT improves the
mean accuracy of sparse LlamaV1-7B by 1.93 and
sparse LlamaV2-7B by 1.38. In contrast, DSnoT
loses its effectiveness with the current pattern as
a fine-tuning method. Excluding the SparseGPT
initialization on LlamaV?2-7B, DSnoT significantly
degrades the accuracy of the sparse model. For
instance, with Wanda initialization, it results in a
drop of 2.85 in accuracy for LlamaV1-7B and 0.42

for LlamaV2-7B.
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Figure 2: The perplexity of the fine-tuned LlamaV1-7B
on Wikitext2, with a sparsity level of 50%, varies with
the number of samples in the calibration dataset.

4.3 Calibration Samples

We vary the number of samples in the calibration
dataset and generate a plot illustrating the perplex-
ity and number of samples for the fine-tuned sparse
LlamaV1-7B under Wanda initialization. The re-
sults are presented in Fig.2. The experimental find-
ings demonstrate the robustness of our proposed
method. Generally, as the number of samples in-
creases, the performance of the sparse model im-
proves. However, once the number of samples
reaches 512, the perplexity does not decrease fur-
ther. Notably, even with just 8 samples, the fine-
tuned sparse LlamaV 1 model exhibits an improve-
ment compared to the model before fine-tuning. In
addition, as the number of samples decreases, the
fine-tuning speed can be further accelerated.

4.4 EBFT vs. LoRA

Low-Rank Adaptation (LoRA) has gained popu-
larity as a technique for retraining large language
models. Recent works such as (Ma et al., 2023;
Guo et al., 2023a; Li et al., 2023) have extensively
used LoRA for retraining pruned models. This in-
volves fine-tuning the low-rank parameters A and
B of an additional adapter on a large dataset to re-
store its performance. In this paper, we provide
a detailed comparison of the fine-tuning cost and
performance between LoRA and our EBFT.

In our study, we applied Low-Rank Adaptation
(LoRA) and EBFT to FLAP (An et al., 2023) with
structured sparsity levels. FLAP is a state-of-the-art
method that outperforms LLM-Pruner in various
tasks. It introduces a novel metric for channels in
large language models and utilizes this metric score
to search for the global structure of the model. We



Model Method PIQA ARC-E ARC-C WinoGrande HellaSwag Boolq StoryCloze Mean
Mag. 60.55 42.30 23.21 50.04 31.86 38.29 57.40 43.38

w.DSnoT  66.65 51.01 26.02 52.96 38.31 46.82 65.37 49.59

w.Ours 72.69 63.26 32.17 63.85 46.61 65.72 73.33 59.66

L1a.1(60%) Wanda 72.74 62.67 30.03 62.67 43.71 68.90 71.25 58.85
) w.DSnoT  73.07 63.38 30.80 61.56 4351 68.20 71.46 58.85
w.Ours 73.67 65.57 32.17 65.11 47.80 69.79 73.86 61.14

SparseGPT  72.36 62.58 31.14 64.40 45.38 69.79 73.65 59.90

w.DSnoT  73.70 63.17 31.83 63.06 47.41 67.52 73.22 59.99

w.Ours 73.77 64.02 32.51 64.40 47.84 69.27 74.02 60.83

Mag. 62.73 44.78 25.00 53.12 34.99 47.86 62.21 47.24

w.DSnoT  69.42 63.13 30.89 61.56 40.48 54.77 67.93 55.46

w.Ours 72.63 64.94 32.25 65.11 46.40 71.01 73.06 60.77

L1a.2(60%) Wanda 71.71 64.98 30.55 64.56 43.82 65.57 71.99 59.02
) w.DSnoT  71.33 64.44 29.95 64.17 42.53 64.83 70.55 58.25
w.Ours 73.56 68.73 33.19 64.40 47.26 67.22 73.49 61.12

SparseGPT  71.44 63.72 31.48 66.69 45.25 72.54 74.29 60.77

w.DSnoT  72.85 66.58 33.19 62.83 46.71 65.72 73.54 60.20

w.Ours 73.29 67.42 32.59 66.98 47.10 72.60 73.70 61.96

Mag. 68.01 53.32 27.22 59.91 42.30 53.09 70.02 53.41

w.DSnoT  68.18 54.38 26.54 58.96 41.24 48.32 68.68 52.33

w.Ours 72.80 64.18 30.89 64.25 45.80 68.29 72.37 59.80

Lla1(2: 4) Wanda 70.40 60.82 27.79 63.22 42.08 69.08 70.71 57.76
T w.DSnoT  70.62 61.78 28.07 61.56 42.35 48.32 70.71 5491
w.Ours 72.42 64.81 30.97 65.19 46.05 67.25 72.42 59.87

SparseGPT  71.22 60.73 30.46 63.38 42.95 69.85 70.23 58.40

w.DSnoT  72.63 63.13 30.72 62.67 4591 67.77 71.73 59.22

w.Ours 73.45 64.77 30.80 66.30 46.39 68.44 72.15 60.33

Mag. 70.08 61.91 30.12 60.93 45.43 59.85 72.31 57.23

w.DSnoT  69.10 61.45 29.01 59.12 43.75 65.37 70.82 55.76

w.Ours 73.07 67.17 30.72 64.64 45.27 66.73 72.63 60.03

Lla.2(2: 4) Wanda 70.89 61.91 30.72 62.51 41.27 68.53 70.23 58.01
o w.DSnoT  70.18 61.74 29.78 62.75 40.90 67.86 69.91 57.59
w.Ours 7291 65.91 3191 63.77 45.49 69.33 73.06 60.34

SparseGPT  70.40 63.80 31.23 65.75 43.83 68.04 73.06 59.44

w.DSnoT  73.34 65.24 32.17 63.14 45.41 67.55 73.76 60.09

w.Ours 73.34 66.33 30.80 65.88 45.80 69.79 73.76 60.82

Table 3: Accuracy results of pruning and fine-tuning LlamaV1-7B and LlamaV2-7B on a series of zero-shot tasks at

60% sparsity and 2:4 pattern sparsity.

utilized the masks generated by FLAP as initializa-
tion for the fine-tuning process.

When fine-tuning the model pruned by FLAP
using LoRA, we selected the Alpaca-GPT4 dataset
as the retraining dataset. The Alpaca-GPT4 dataset
consists of 50k rows of data and was fine-tuned
using GPT4. We performed fine-tuning with LoRA
for 2 epochs on the Alpaca-GPT4 dataset, using a
learning rate of le-4 and a batch size of 64, which
is the same as LLM-Pruner.

The fine-tuning methods employed in recent
state-of-the-art works, as mentioned above, can
incur a significant retraining cost. We compared
their retraining methods with ours on a 40G A100
GPU. The time costs and perplexity on Wikitext2
of LoRA and EBFT are listed in Table 4. It is ob-
served that compared to LoRA, our EBFT achieves
a 10x speedup, resulting in a significant reduction

in fine-tuning costs. Additionally, EBFT demon-
strates better performance compared to LoRA. As
shown in Table 4, when reducing 20% of the param-
eters of LlamaV2-7B, EBFT achieves a perplexity
of 15.71 on Wikitext2, which is superior to the
perplexity obtained by LoRA (16.08).

Method sparsity time perplexity
LoRA 20% 5h 16.08
Ours 20% 0.5h 15.71

Table 4: The time cost and perplexity of LoRA and
EBFT on the LlamaV2-7B at sparsity of 20%.

We further conducted detailed experiments to
compare our method with LoORA. We varied the pa-
rameters of the pruned models, including LlamaV1-
7B and LlamaV2-7B, and evaluated the perplexity
and accuracy of the fine-tuned models on Wikitext2



Model Param. Method ARC-E ARC-C PIQA WinoGrande StoryCloze Boolg Mean wiki.ppl
5.5B LoRA 64.31 37.46 76.66 64.64 77.28 7147  65.30 15.46
5.5B Ours 72.52 38.65 75.46 66.46 75.63 71.19  66.65 14.81

Lla.1 5.0B LoRA 60.48 33.87 75.08 61.80 76.16 63.82 61.87 16.67
5.0B Ours 68.31 33.96 72.85 63.85 73.45 68.90 63.55 16.27
5.5B LoRA 64.35 34.90 75.84 62.51 7547 50.06  60.52 16.08
5.5B Ours 68.81 35.24 74.81 63.93 72.31 60.73  62.64 15.71

Lla.2 5.0B LoRA 61.32 32.08 73.78 61.96 74.13 55.05 59.72 17.63
5.0B Ours 65.74 32.76 71.87 64.40 71.04 59.39 60.87 17.63

Table 5: The accuracy and perplexity of the fine-tuned LlamaV1-7B and LlamaV2-7B models on Wikitext2, as well
as their performance on a series of zero-shot tasks. The pruned models used in our experiments have parameters set

at 5.5B and 5B, respectively.

as well as a series of zero-shot tasks. The exper-
imental results are summarized in Tab.5. Indeed,
the comparison between EBFT and LoRA contin-
ues to demonstrate the advantages of EBFT. For
example, after fine-tuning LlamaV1-5.5B, EBFT
achieves a perplexity of 14.81, surpassing LoRA,
which achieves a perplexity of 15.46 on Wikitext2.
Similarly, for LlamaV2-5.5B, EBFT achieves a per-
plexity of 15.71, outperforming LoRA with a per-
plexity of 16.08. This trend carries over to the zero-
shot tasks as well, where the fine-tuned models
using EBFT exhibit better performance compared
to LoRA. The mean accuracy of our approach is
higher than that of LoRA, regardless of whether it
is applied to LlamaV1 or LlamaV2. While it is true
that LoRA may achieve better scores on certain
tasks such as PIQA and StoryCloze, the overall
results consistently support the conclusion that the
pruned models fine-tuned using EBFT outperform
those fine-tuned using LoRA. When comparing
EBFT to LoRA, EBFT demonstrates faster speed,
lower cost, and superior performance.

4.5 Weight Tuning vs. Mask Tuning

Some optimization methods for sparse models,
such as (Zhang et al., 2023b,d), solely update the
positions of masks without adjusting weights. To
explore the effectiveness of this strategy, we con-
ducted experiments to compare two fine-tuning
strategies: weight tuning and mask tuning.

For mask tuning, we employed Eq.4 as the opti-
mization objective, aiming to minimize the block-
wise reconstruction error. The fine-tuning process
of mask tuning is the same as that of EBFT, ex-
cept that mask tuning only updates the positions of
masks while keeping the weights unchanged. We
recorded the experimental results in Tab.6. Specifi-
cally, we conducted variations in the sparsity levels

LlamaV1-7B
Method \ 50% 60%  T70% 80% 90%
w.Mask 7.05 9.15 2590 456.0 5378
w.Weight | 6.81 8.59 16.88 1184 2993
LlamaV2-7B
Method 50% 60%  70% 80% 90%
w.Mask 6.29 840 2699 7558 3793
w.Weight | 6.18 7.90 16.94 72.80 903.4

Table 6: The Wikitext2 perplexity of mask-tuning
and weight-tuning were evaluated on LlamaV1-7B and
LlamaV2-7B at various sparsity levels with Wanda ini-
tialization.

of LlamaV1-7B and LlamaV?2-7B, and evaluated
the perplexity of the fine-tuned sparse models on
Wikitext2. The results consistently highlight the
clear advantage of weight tuning over mask tuning,
even though the mask tuning method used in this
study outperforms the SOTA mask-tuning method
DSnoT in Tab.1. However, mask tuning still falls
short when compared to EBFT. Regardless of the
sparsity level, weight tuning consistently outper-
forms mask tuning. These findings clearly indicate
the limitations of mask-tuning methods.

5 Conclusion

We propose EBFT, a unified fine-tuning framework
for sparse Language Models that can be integrated
with any pruning method. In EBFT, we define
the block-wise reconstruction error and optimize
it on a block-by-block basis through backpropaga-
tion algorithm, aiming to achieve a convergent and
optimal solution. This approach proves to be effec-
tive and efficient, requiring only a small number
of samples for calibration. Extensive experiments
demonstrate that EBFT achieves state-of-the-art
performance on various benchmark datasets.



6 Limitation

Although the use of a small calibration dataset sig-
nificantly reduces costs, the fine-tuning process of
EBFT still incurs computation costs due to gradient
calculations. In future work, we will continue to
focus on fine-tuning with a limited number of sam-
ples and explore gradient-free methods to further
mitigate these costs.
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