
EBFT: Effective and Block-Wise Fine-Tuning for Sparse LLMs

Anonymous ACL submission

Abstract

Existing methods for fine-tuning sparse001
LLMs often suffer from resource-intensive002
requirements and high retraining costs.003
Additionally, many fine-tuning methods004
often rely on approximations or heuristic005
optimization strategies, which may lead006
to suboptimal solutions. To address these007
issues, we propose an efficient and fast008
framework for fine-tuning sparse LLMs based009
on minimizing reconstruction error. Our010
approach involves sampling a small dataset for011
calibration and utilizing backpropagation to012
iteratively optimize block-wise reconstruction013
error, on a block-by-block basis, aiming for014
optimal solutions. Extensive experiments on015
various benchmarks consistently demonstrate016
the superiority of our method over other017
baselines. For instance, on the Wikitext2018
dataset with LlamaV1-7B at 70% sparsity,019
our proposed EBFT achieves a perplexity of020
16.88, surpassing the state-of-the-art DSnoT021
with a perplexity of 75.14. Moreover, with022
a structured sparsity ratio of 26%, EBFT023
achieves a perplexity of 16.27, outperforming024
LoRA (perplexity 16.44). Furthermore, the025
fine-tuning process of EBFT for LlamaV1-7B026
only takes approximately 30 minutes, and the027
entire framework can be executed on a single028
16GB GPU. The source code is available at029
https://github.com/anonymousACL2024/EBFT.030

1 Introduction031

LLMs have demonstrated remarkable potential in032

various NLP tasks. However, the large sizes of033

these models pose challenges in terms of resource034

requirements for deployment. For instance, the035

inference of GPT-3 (Brown et al., 2020) in half-036

precision floating-point format demands at least037

5 80G A100 GPUs. To address this issue, sev-038

eral model compression methods, such as network039

quantization (Lin et al., 2023; Frantar et al., 2022),040

network pruning (Frantar and Alistarh, 2023), and041

knowledge distillation (Hsieh et al., 2023), have 042

been proposed to compress and accelerate these 043

Large Language Models. Among these methods, 044

network pruning has gained increasing attention. 045

However, pruning often leads to a decline in the 046

performance of sparse models. To address this is- 047

sue, recent works (Zhang et al., 2023d; Frantar and 048

Alistarh, 2023; Zhang et al., 2023a) have emerged 049

that can fine-tune the pruned models to recover 050

their performance through regression reconstruc- 051

tion, costly retraining, or other heuristic methods. 052

In this paper, we introduce EBFT, a framework de- 053

signed to effectively fine-tune sparse LLMs, signif- 054

icantly enhancing the performance and generality 055

of pruned models. 056

Dataset used for fine-tuning. Some existing 057

pruning then fine-tuning approaches require signif- 058

icant retraining resources, partly due to the large 059

size of the retraining dataset. For example, LLM- 060

Pruner (Ma et al., 2023) employs Alpaca-cleaned 061

(Taori et al., 2023) as its fine-tuning dataset to re- 062

store the performance of sparse LLMs. Alpaca- 063

cleaned consists of 51.8K rows of data, resulting in 064

substantial time costs for fine-tuning LLMs. Sim- 065

ilarly, Sheared Llama (Xia et al., 2023) employs 066

RedPajama (Computer, 2023), containing 2.17M 067

rows of data, for LLM pruning and fine-tuning, 068

which incurs huge resource costs. In this paper, 069

we sample a small calibration dataset comprising 070

only 256 1024-token segments extracted from C4 071

(Raffel et al., 2020). By fine-tuning sparse LLMs 072

using these samples, we effectively reduce the re- 073

source requirements and time costs associated with 074

the process. 075

Optimization algorithm. Current LLM prun- 076

ing methods, like SparseGPT (Frantar and Alistarh, 077

2023), construct reconstruction errors based on fea- 078

ture maps before and after pruning. They approx- 079

imate the reconstruction error using the second- 080

order term of Taylor’s Formula and optimize it by 081

regression reconstruction. Wanda (Sun et al., 2023) 082

1

https://github.com/anonymousACL2024/EBFT

can be viewed as an approximation of the pruning083

criteria used in SparseGPT. DSnoT (Zhang et al.,084

2023d) utilizes masks from Wanda or SparseGPT085

as initialization and designs a heuristic criterion to086

reselect masks that can reduce the reconstruction087

error further. These algorithms only optimize an088

approximation and often rely on heuristic experi-089

ences, leading to sub-optimal solutions. In contrast,090

our method defines the block-wise reconstruction091

error and directly optimizes it through backpropa-092

gation (Werbos, 1990), ensuring the attainment of093

an optimal and convergent solution.094

Fine-tuning costs. EBFT can be integrated with095

any pruning method and optimizes the block-wise096

reconstruction error through a backpropagation al-097

gorithm. Our framework can avoid the simulta-098

neous loading of all LLM blocks onto the GPU099

and require only a few samples, significantly re-100

ducing costs. Experimental results indicate that101

the time required of EBFT for fine-tuning each102

block in Llama-7B (Touvron et al., 2023a) ranges103

between 50 and 60 seconds, resulting in a total104

time cost of approximately 30 minutes. EBFT en-105

ables fine-tuning Llama-7B with a single 16GB106

GPU, making LLM fine-tuning feasible even under107

resource-constrained conditions.108

In summary, our contributions can be summa-109

rized as follows:110

• We introduce EBFT, a block-by-block fine-111

tuning framework for sparse LLMs, which112

requires only a few samples, significantly re-113

ducing resource dependencies.114

• EBFT updates the network based on the min-115

imization of block-wise reconstruction error116

through backpropagation, resulting in an opti-117

mal and convergent solution.118

• EBFT consistently surpass other state-of-the-119

art algorithms on various benchmarks and120

models, demonstrating the strong efficiency121

of our method.122

2 Related Work123

Network pruning. According to different levels124

of granularity, pruning can be categorized into un-125

structured pruning, structured pruning, and semi-126

structured pruning. (1) Unstructured pruning.127

Unstructured pruning methods involve removing128

individual weights in the weight matrix. Han et129

al. (Han et al., 2015) proposed an algorithm based130

on l1 and l2 regulation, suggesting that smaller- 131

norm weights are less important. LTH (Frankle 132

and Carbin, 2018) increases the sparsity ratio dur- 133

ing training and utilizes magnitude for pruning.(2) 134

Structured pruning. Structured pruning involves 135

removing entire rows or columns of the weight ma- 136

trix. Li et al. (Li et al., 2016) use the ll-norm as the 137

importance scores for channels. A pruning method 138

(Sanh et al., 2020) called movement pruning was 139

proposed, which used the product of weight value 140

and its gradient as the criterion for importance, 141

surpassing magnitude pruning on BERT (Devlin 142

et al., 2018). Cofipruning (Xia et al., 2022) gener- 143

ates masks for BERT pruning via l0 regularization 144

(Louizos et al., 2017; Wang et al., 2019). Guo et al. 145

(Guo et al., 2023b) analyze existing pruning criteria 146

and propose a method based on the information bot- 147

tleneck principle (Tishby et al., 2000; Tishby and 148

Zaslavsky, 2015).(3) Semi-structured pruning. 149

Semi-structured pruning, also known as N:M spar- 150

sity (Zhou et al., 2021; Zhang et al., 2022), ensures 151

that for every continuous M weights in the weight 152

matrix, only N weights are non-zero. N:M sparsity 153

can accelerate the sparse model on specific devices. 154

Zhang et al. (Zhang et al., 2023c) proposed trans- 155

posable (Hubara et al., 2021) bi-directional masks 156

to accelerate sparse models in both the forward and 157

backward processes. 158

Fine-tuning for pruned LLMs. For LLMs, spe- 159

cific pruning methods (Ashkboos et al., 2024; An 160

et al., 2023; Syed et al., 2023; Li et al., 2023) have 161

been proposed. LoraPruner (Zhang et al., 2023a), 162

LLM-pruner (Ma et al., 2023), and Compresso 163

(Guo et al., 2023a) aim to remove entire attention 164

heads or FFN units in the transformers (Vaswani 165

et al., 2017), followed by fine-tuning on a large 166

dataset using PEFT (Hu et al., 2021). However, 167

these methods suffer from performance degrada- 168

tion and high retraining costs. SparseGPT (Frantar 169

and Alistarh, 2023) employs OBS (Hassibi et al., 170

1993) to prune the weights of LLMs and recovers 171

their performance through regression reconstruc- 172

tion. Wanda (Sun et al., 2023) proposes a new 173

importance criterion, which approximates the cri- 174

terion used in SparseGPT. DSnoT (Zhang et al., 175

2023d) aims to fine-tune sparse LLMs and designs 176

a criterion to further reduce reconstruction error by 177

reselecting masks. These methods require costly 178

retraining or rely on approximation and heuristic 179

optimization strategies, resulting in significant re- 180

source consumption or sub-optimal solutions.To 181

address these challenges, we propose a fine-tuning 182

2

 2

 0

-6

 0

 3

 0

 0

 5

W t
l

 After
Fine-tuning

�
� Next Iteration t+1l-th Block

 1

 0

 1

 0 1

 0 0

 1

M 0
l

...

Calibration Dataset

Wl
t

L

-1 2

 3 4

-2 1

 5 -6

W 0
l M0

l

 3

 0

-7

 0

 2

 0

 0

 4

W t+1
lM0

l

min L = || z - z ||2
W t

l ffn ffn
l l一

Figure 1: EBFT can be integrated with any other pruning methods, requiring only a small number of samples from
C4. When the initial mask M l

0 and weight W l
0 are provided, EBFT updates the weight W l

t through backpropagation
to optimize the reconstruction error L mentioned in Eq.4, ultimately achieving a convergent and optimal solution.
Here, W l

t represents the weight vector of the l-th block of the LLM in the t-th iteration.

framework called EBFT, which helps us obtain an183

optimal and convergent sparse model.184

3 Methodology185

3.1 Preliminaries186

Large Language Model. The structure of a large187

language model is based on the transformer, which188

consists of multiple stacked blocks. Each block189

consists of two modules: multi-head self-attention190

(MHA) and multi-layer perceptron (MLP). MHA191

typically comprises four linear layers, while MLP192

consists of two or three linear layers. For the l-193

th block in the large language model, it can be194

formulated as follows:195

zlattn = MHA(W l
mha, LN(zl−1

ffn)) + zl−1
ffn,

zlffn = MLP (W l
mlp, LN(zlattn)) + zlattn,

(1)196

where W l
mha represents the weight vector of the197

multi-head self-attention module, and W l
mlp repre-198

sents the weight vector of the multi-layer percep-199

tron module in the i-th block. LN represents the200

layer normalization function. zl−1
ffn denotes the out-201

put of the (l-1)-th block, which serves as the input202

to the l-th block. The input zl−1
ffn is first passed203

through the MHA module and then through the204

MLP module.205

Pruning for LLMs. Existing pruning methods206

for LLMs (Frantar and Alistarh, 2023; Zhang et al.,207

2023d; Boža, 2024; Das et al., 2023) typically em-208

ploy the reconstruction error of the layer-wise fea-209

ture maps before and after pruning as the optimiza-210

tion objective. This objective can be defined as211

follows: 212

min
M,W̄

||WX−(M⊙W̄)X||2, s.t. 1−
||M ||0
N

= S,

(2) 213

where X represents the input activation. W and W̄ 214

represent the original and remaining weight vectors, 215

respectively, of any layer in the block of the LLM. 216

M∈ {0, 1}N is the mask for this layer, indicating 217

whether the corresponding weights should be pre- 218

served (1) or discarded (0). S is the pre-designed 219

target sparsity, and N denotes the total number of 220

weights in the layer. 221

These methods often employ the second-order 222

term of the Taylor formula to approximate the layer- 223

wise reconstruction error in Eq. 2 or design heuris- 224

tic criteria to optimize Eq. 2. However, these ap- 225

proaches may result in suboptimal solutions. 226

3.2 EBFT 227

Overview. We propose a framework called EBFT 228

for the fine-tuning of sparse LLMs, aiming to 229

achieve optimal solutions. Unlike other costly 230

methods that involve pruning and then fine-tuning 231

on a large dataset (Xia et al., 2023; Ma et al., 2023; 232

Zhang et al., 2023a), EBFT only requires a small 233

calibration dataset consisting of a few samples. 234

Specifically, we extract 256 1024-token samples 235

from C4 and use them as the calibration dataset 236

denoted as Dc. The principle of EBFT is based 237

on minimizing the block-wise reconstruction error. 238

An overview of our algorithm is depicted in Fig. 1. 239

Optimization objective. For the l-th block in 240

3

the sparse LLM, it can be formulated as:241

z̄lattn = MHA(W̄ l
mha, LN(z̄l−1

ffn)) + z̄l−1
ffn,

z̄lffn = MLP (W̄ l
mlp, LN(z̄lattn)) + z̄lattn,

(3)242

where W̄ l
mha = M l

mha ∗ W l
mha and W̄ l

mlp =243

M l
mlp ∗W l

mlp represent the remain weight vector244

of the multi-head self-attention module and multi-245

layer perceptron module, respectively, in the l-th246

block. M l
mha and M l

mlp represent their correspond-247

ing masks. z̄lffn denotes the output of the l-th block248

after pruning.249

we define our block-wise optimization objective250

as:251

min
W̄ l

mha,W̄
l
mlp

||zlffn − z̄lffn||2 (4)252

In Eq. 4, we preserve the masks obtained from253

other pruning methods unchanged and focus on op-254

timizing the remaining weights within the current255

block.256

Compared to the layer-wise reconstruction er-257

ror in Eq.2, the block-wise optimization process258

in Eq.4 allows for interaction and information ex-259

change among different layers within the block.260

This enables the model to avoid potential issues as-261

sociated with local optima in layer-wise optimiza-262

tion and explore the solution space more effectively,263

leading to the discovery of a globally optimal solu-264

tion. Our EBFT is to directly optimize Eq.4 without265

relying on any approximations or heuristic meth-266

ods.267

Optimization algorithm. Unlike some meth-268

ods (Kwon et al., 2022; Frantar and Alistarh, 2023;269

Zhang et al., 2023a) that update the weights of270

LLM based on regression reconstruction or costly271

retraining, we employ the backpropagation algo-272

rithm to minimize Eq. 4 by updating the value of273

the variable W̄ l
mha and W̄ l

mlp block by block on274

the Dc, without utilizing any heuristic methods.275

The workflow of our EBFT framework is illus-276

trated in Alg. 1. Prior to the fine-tuning process,277

we establish a maximum iteration T to control the278

overall fine-tuning cost. Specifically, we set T to279

10 epochs. During the fine-tuning phase, if the280

loss remains unchanged or changes within a small281

range, we consider the loss to have converged. At282

this point, the fine-tuning algorithm for the current283

block will terminate early, allowing us to proceed284

to the subsequent block for a new round of fine-285

tuning.286

In Alg. 1, m0 can be obtained from any pruning287

methods. α represents the learning rate which de-288

Algorithm 1: Pseudocode of EBFT
input :sparse LLM F with L blocks; Initial Mask

m0; Calibration dataset Dc; Max fine-tuning
iterations T; Learning rate α;

output :Fine-tuned sparse LLM FT

for block l = 1 to L do
for iteration t = 0 to T do

E ← Calculating the reconstruction error
via Eq. 4.

If E is convergent:
break

∇W̄ l
t ← Calculating the gradient of W̄ l

t

with respect to E through Bp algorithm.
W̄ l

t+1 ← W̄ l
t -α∇W̄ l

t

end
end
return FT ;

termines the size of updating step for the variable 289

W̄ t
l . Specifically, we set the learning rate to 2e-4. 290

4 Experiments 291

Models and Baselines. We apply magnitude prun- 292

ing, SparseGPT, and Wanda techniques to the 293

widely adopted LLMs, LlamaV1 (Touvron et al., 294

2023a) and LlamaV2 (Touvron et al., 2023b). Sub- 295

sequently, we compare the evaluation results of 296

the state-of-the-art method DsnoT (Zhang et al., 297

2023d) with our approach on the pruned LlamaV1 298

and LlamaV2, considering both unstructured spar- 299

sity and N:M sparsity. To further assess the effec- 300

tiveness of our method, we also compare EBFT 301

with LoRA (Hu et al., 2021) under structured spar- 302

sity using FLAP (An et al., 2023). 303

Evaluation. To evaluate the performance of our 304

method and other baselines, we conduct compar- 305

isons on the widely-used dataset Wikitext2 (Merity 306

et al., 2016) to calculate perplexity scores. Ad- 307

ditionally, we perform a series of zero-shot tasks, 308

including PIQA (Bisk et al., 2020), StoryCloze 309

(Mostafazadeh et al., 2017), ARC-Easy and ARC- 310

Challenge (Clark et al., 2018), HellaSwag (Zellers 311

et al., 2019), Winogrande (Sakaguchi et al., 2021), 312

and Boolq (Clark et al., 2019). These tasks aim to 313

assess the generality of the pruned model. 314

4.1 Language Modeling 315

Unstructured Pruning. We perform comprehen- 316

sive comparative experiments on the Wikitext2 317

dataset, and the results are presented in Table.1 318

We compare the perplexity of pruned LlamaV1 and 319

LlamaV2 models using our method, DsnoT, mag- 320

nitude pruning, Wanda, and SparseGPT across a 321

range of sparsity levels, from 50% to 90%. The 322

4

LlamaV1-7B LlamaV2-7B

Method
Sparsity

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Magnitude 17.29 559.99 48415 132176 317879 16.03 1924.81 49906 nan nan
w. DsnoT 13.80 127.67 9614795 37474 202562 13.90 3749.55 14271e4 21760e2 34462e2
w. Ours 7.11 9.53 26.30 659.12 9718.99 6.59 9.29 33.50 462.32 2930.51

Wanda 7.26 10.69 88.84 5671.52 12748 6.94 10.96 78.26 3136.23 6995.88
w. DsnoT 7.14 10.40 75.14 3635.94 9043.63 6.85 10.85 75.55 4197.74 7311.58
w. Ours 6.81 8.59 16.88 118.38 2993.32 6.18 7.90 16.94 72.80 903.45

SparseGPT 7.20 10.40 27.00 167.55 3912.78 7.09 10.54 29.37 131.17 1542.22
w. DsnoT 9.25 9.68 46.99 8038.14 198898 6.97 10.23 59.62 2510.54 49639
w. Ours 6.73 8.33 16.07 141.15 3366.39 6.20 7.88 18.13 130.89 1233.80

Table 1: Comparison of perplexity for pruning and fine-tuning LlamaV1-7B and LlamaV2-7B on Wikitext2 dataset
at unstructured sparsity levels ranging from 50% to 90%.

experimental results show the strong effectiveness323

of our EBFT. We can observe that regardless of the324

magnitude pruning method used, be it SparseGPT325

or Wanda, our method enhances the performance326

of the sparse model. For instance, with magni-327

tude pruning, our method achieves a perplexity of328

7.11, surpassing the perplexity of 17.29 before fine-329

tuning, and even outperforming Wanda (7.26) and330

SparseGPT (7.20).331

We also find that as the sparsity increases,332

two observations emerge: (1) The state-of-the-333

art DsnoT loses its effectiveness as a fine-tuning334

method. For example, when using SparseGPT,335

DsnoT degrades the performance of the sparse336

model at sparsity levels of 70%, 80%, and 90%.337

This demonstrates the limitations of heuristic opti-338

mization strategies, which lack theoretical support.339

(2) The advantage of our method becomes more340

pronounced, indicating that our method enhances341

the ability of pruned models even at extremely high342

sparsity levels.343

In Table 1, we further observe that SparseGPT,344

which updates the values of the remaining weights,345

outperforms Wanda, which leaves the remaining346

weights unchanged. As sparsity increases, the ad-347

vantage of SparseGPT over Wanda becomes more348

evident, particularly at high sparsity levels. Addi-349

tionally, the DsnoT approach, which reselects the350

masks after pruning and keep weights unchanged,351

also faces challenges. For example, when the spar-352

sity exceeds 70%, regardless of LlamaV1 or Lla-353

maV2, DsnoT significantly decreases the perfor-354

mance of the sparse model pruned by SparseGPT.355

In contrast, our method effectively and efficiently356

fine-tunes the weights of the LLM block by block,357

surpassing other baselines overall. In the later sec-358

LlamaV1-7B LlamaV2-7B

Method
Sparsity

2 : 4 4 : 8 2 : 4 4 : 8

Magnitude 42.54 16.83 54.39 16.53
w. DsnoT 38.32 17.01 40.81 18.34
w. Ours 9.62 8.10 9.14 7.56

Wanda 11.50 8.57 12.11 8.66
w. DsnoT 10.95 8.46 11.98 8.57
w. Ours 8.89 7.66 8.30 7.11

SparseGPT 11.05 8.55 10.44 8.01
w. DsnoT 10.00 8.26 10.06 8.06
w. Ours 8.82 7.59 8.25 7.06

Table 2: Comparison of perplexity for pruning and fine-
tuning LlamaV1-7B and LlamaV2-7B on the Wikitext2
dataset at N:M sparsity levels, including two patterns,
2:4 and 4:8.

tion, we will conduct comprehensive and detailed 359

experiments to further compare mask-tuning and 360

weight-tuning. 361

Semi-structured Pruning. Semi-structured 362

pruning, also known as N:M sparsity, is considered 363

superior to unstructured pruning when it comes to 364

accelerating models on devices. We conducted ex- 365

tensive comparison experiments on the Wikitext2 366

dataset, and the results are presented in Table 2. 367

Irrespective of the 2:4 or 4:8 pattern, our method 368

consistently outperforms DsnoT, significantly en- 369

hancing the performance of the pruned models. For 370

example, when using the 2:4 pattern and Wanda 371

mask initialization, our method achieves a perplex- 372

ity of 8.30 for the sparse LlamaV2 model, which 373

even surpasses the performance of DsnoT using the 374

4:8 pattern. The sparse LLMs pruned by magnitude 375

pruning and fine-tuned with our method demon- 376

strate a remarkable improvement. Our fine-tuning 377

5

approach can effectively narrow the performance378

gap between magnitude pruning and the state-of-379

the-art baselines, Wanda and SparseGPT.380

4.2 Zero-Shot Tasks381

We conducted extensive experiments to evaluate382

the performance of the sparse model on 7 zero-383

shot tasks. The metric we used is accuracy. The384

experimental results of different methods at the un-385

structured sparsity level are shown in Table 3. It386

can be observed that EBFT significantly enhances387

the generality of the pruned model. For instance,388

with magnitude pruning, EBFT improves the ac-389

curacy by 16.28 on LlamaV1-7B and by 13.53 on390

LlamaV2-7B. With Wanda, our methods achieve391

a mean accuracy of 61.14 on LlamaV1-7B and392

61.12 on LlamaV2-7B. However, DSnoT hardly393

enhances the performance of the pruned model. It394

achieves a mean accuracy of 58.85 on LlamaV1-7B395

and 58.25 on LlamaV2-7B, respectively. For Lla-396

maV2, DSnoT even degrades the performance after397

fine-tuning. The mean accuracy before fine-tuning398

for Wanda and SparseGPT is 59.02 and 60.77, re-399

spectively. After fine-tuning, the mean accuracy400

drops to 58.25 for Wanda and 60.20 for SparseGPT,401

highlighting the limitations of DSnoT. In contrast,402

after fine-tuning with EBFT, the sparse LlamaV2403

model shows a significant improvement in overall404

accuracy, with a mean accuracy of 61.12 for Wanda405

and 61.96 for SparseGPT.406

N:M sparsity. We also investigated the gener-407

ality of our EBFT approach at N:M sparsity lev-408

els. Similar to unstructured sparsity, EBFT demon-409

strates significant advantages compared to other410

baselines. The experimental results for the 2:4411

pattern are presented in Tab.3. In the case of mag-412

nitude pruning, EBFT improves the mean accu-413

racy of sparse LlamaV1-7B by 6.39 and sparse414

LlamaV2-7B by 2.8. Conversely, DSnoT fails to re-415

store the performance of magnitude-pruned sparse416

models. When using Wanda initialization, EBFT417

enhances the mean accuracy of sparse LlamaV1-418

7B by 2.11 and sparse LlamaV2-7B by 2.33. Un-419

der SparseGPT initialization, EBFT improves the420

mean accuracy of sparse LlamaV1-7B by 1.93 and421

sparse LlamaV2-7B by 1.38. In contrast, DSnoT422

loses its effectiveness with the current pattern as423

a fine-tuning method. Excluding the SparseGPT424

initialization on LlamaV2-7B, DSnoT significantly425

degrades the accuracy of the sparse model. For426

instance, with Wanda initialization, it results in a427

drop of 2.85 in accuracy for LlamaV1-7B and 0.42428

for LlamaV2-7B.

8 16 32 64 128 256 512

Calibration Samples

6.8

6.9

7.0

7.1

7.2

7.3

7.4

7.5

Pe
rp

le
xi

ty

Ours
Wanda

Figure 2: The perplexity of the fine-tuned LlamaV1-7B
on Wikitext2, with a sparsity level of 50%, varies with
the number of samples in the calibration dataset.

429

4.3 Calibration Samples 430

We vary the number of samples in the calibration 431

dataset and generate a plot illustrating the perplex- 432

ity and number of samples for the fine-tuned sparse 433

LlamaV1-7B under Wanda initialization. The re- 434

sults are presented in Fig.2. The experimental find- 435

ings demonstrate the robustness of our proposed 436

method. Generally, as the number of samples in- 437

creases, the performance of the sparse model im- 438

proves. However, once the number of samples 439

reaches 512, the perplexity does not decrease fur- 440

ther. Notably, even with just 8 samples, the fine- 441

tuned sparse LlamaV1 model exhibits an improve- 442

ment compared to the model before fine-tuning. In 443

addition, as the number of samples decreases, the 444

fine-tuning speed can be further accelerated. 445

4.4 EBFT vs. LoRA 446

Low-Rank Adaptation (LoRA) has gained popu- 447

larity as a technique for retraining large language 448

models. Recent works such as (Ma et al., 2023; 449

Guo et al., 2023a; Li et al., 2023) have extensively 450

used LoRA for retraining pruned models. This in- 451

volves fine-tuning the low-rank parameters A and 452

B of an additional adapter on a large dataset to re- 453

store its performance. In this paper, we provide 454

a detailed comparison of the fine-tuning cost and 455

performance between LoRA and our EBFT. 456

In our study, we applied Low-Rank Adaptation 457

(LoRA) and EBFT to FLAP (An et al., 2023) with 458

structured sparsity levels. FLAP is a state-of-the-art 459

method that outperforms LLM-Pruner in various 460

tasks. It introduces a novel metric for channels in 461

large language models and utilizes this metric score 462

to search for the global structure of the model. We 463

6

Model Method PIQA ARC-E ARC-C WinoGrande HellaSwag Boolq StoryCloze Mean

Lla.1(60%)

Mag. 60.55 42.30 23.21 50.04 31.86 38.29 57.40 43.38
w.DSnoT 66.65 51.01 26.02 52.96 38.31 46.82 65.37 49.59
w.Ours 72.69 63.26 32.17 63.85 46.61 65.72 73.33 59.66
Wanda 72.74 62.67 30.03 62.67 43.71 68.90 71.25 58.85

w.DSnoT 73.07 63.38 30.80 61.56 43.51 68.20 71.46 58.85
w.Ours 73.67 65.57 32.17 65.11 47.80 69.79 73.86 61.14

SparseGPT 72.36 62.58 31.14 64.40 45.38 69.79 73.65 59.90
w.DSnoT 73.70 63.17 31.83 63.06 47.41 67.52 73.22 59.99
w.Ours 73.77 64.02 32.51 64.40 47.84 69.27 74.02 60.83

Lla.2(60%)

Mag. 62.73 44.78 25.00 53.12 34.99 47.86 62.21 47.24
w.DSnoT 69.42 63.13 30.89 61.56 40.48 54.77 67.93 55.46
w.Ours 72.63 64.94 32.25 65.11 46.40 71.01 73.06 60.77
Wanda 71.71 64.98 30.55 64.56 43.82 65.57 71.99 59.02

w.DSnoT 71.33 64.44 29.95 64.17 42.53 64.83 70.55 58.25
w.Ours 73.56 68.73 33.19 64.40 47.26 67.22 73.49 61.12

SparseGPT 71.44 63.72 31.48 66.69 45.25 72.54 74.29 60.77
w.DSnoT 72.85 66.58 33.19 62.83 46.71 65.72 73.54 60.20
w.Ours 73.29 67.42 32.59 66.98 47.10 72.60 73.70 61.96

Lla.1(2: 4)

Mag. 68.01 53.32 27.22 59.91 42.30 53.09 70.02 53.41
w.DSnoT 68.18 54.38 26.54 58.96 41.24 48.32 68.68 52.33
w.Ours 72.80 64.18 30.89 64.25 45.80 68.29 72.37 59.80
Wanda 70.40 60.82 27.79 63.22 42.08 69.08 70.71 57.76

w.DSnoT 70.62 61.78 28.07 61.56 42.35 48.32 70.71 54.91
w.Ours 72.42 64.81 30.97 65.19 46.05 67.25 72.42 59.87

SparseGPT 71.22 60.73 30.46 63.38 42.95 69.85 70.23 58.40
w.DSnoT 72.63 63.13 30.72 62.67 45.91 67.77 71.73 59.22
w.Ours 73.45 64.77 30.80 66.30 46.39 68.44 72.15 60.33

Lla.2(2: 4)

Mag. 70.08 61.91 30.12 60.93 45.43 59.85 72.31 57.23
w.DSnoT 69.10 61.45 29.01 59.12 43.75 65.37 70.82 55.76
w.Ours 73.07 67.17 30.72 64.64 45.27 66.73 72.63 60.03
Wanda 70.89 61.91 30.72 62.51 41.27 68.53 70.23 58.01

w.DSnoT 70.18 61.74 29.78 62.75 40.90 67.86 69.91 57.59
w.Ours 72.91 65.91 31.91 63.77 45.49 69.33 73.06 60.34

SparseGPT 70.40 63.80 31.23 65.75 43.83 68.04 73.06 59.44
w.DSnoT 73.34 65.24 32.17 63.14 45.41 67.55 73.76 60.09
w.Ours 73.34 66.33 30.80 65.88 45.80 69.79 73.76 60.82

Table 3: Accuracy results of pruning and fine-tuning LlamaV1-7B and LlamaV2-7B on a series of zero-shot tasks at
60% sparsity and 2:4 pattern sparsity.

utilized the masks generated by FLAP as initializa-464

tion for the fine-tuning process.465

When fine-tuning the model pruned by FLAP466

using LoRA, we selected the Alpaca-GPT4 dataset467

as the retraining dataset. The Alpaca-GPT4 dataset468

consists of 50k rows of data and was fine-tuned469

using GPT4. We performed fine-tuning with LoRA470

for 2 epochs on the Alpaca-GPT4 dataset, using a471

learning rate of 1e-4 and a batch size of 64, which472

is the same as LLM-Pruner.473

The fine-tuning methods employed in recent474

state-of-the-art works, as mentioned above, can475

incur a significant retraining cost. We compared476

their retraining methods with ours on a 40G A100477

GPU. The time costs and perplexity on Wikitext2478

of LoRA and EBFT are listed in Table 4. It is ob-479

served that compared to LoRA, our EBFT achieves480

a 10× speedup, resulting in a significant reduction481

in fine-tuning costs. Additionally, EBFT demon- 482

strates better performance compared to LoRA. As 483

shown in Table 4, when reducing 20% of the param- 484

eters of LlamaV2-7B, EBFT achieves a perplexity 485

of 15.71 on Wikitext2, which is superior to the 486

perplexity obtained by LoRA (16.08).

Method sparsity time perplexity
LoRA 20% 5h 16.08
Ours 20% 0.5h 15.71

Table 4: The time cost and perplexity of LoRA and
EBFT on the LlamaV2-7B at sparsity of 20%.

487
We further conducted detailed experiments to 488

compare our method with LoRA. We varied the pa- 489

rameters of the pruned models, including LlamaV1- 490

7B and LlamaV2-7B, and evaluated the perplexity 491

and accuracy of the fine-tuned models on Wikitext2 492

7

Model Param. Method ARC-E ARC-C PIQA WinoGrande StoryCloze Boolq Mean wiki.ppl

Lla.1

5.5B LoRA 64.31 37.46 76.66 64.64 77.28 71.47 65.30 15.46
5.5B Ours 72.52 38.65 75.46 66.46 75.63 71.19 66.65 14.81
5.0B LoRA 60.48 33.87 75.08 61.80 76.16 63.82 61.87 16.67
5.0B Ours 68.31 33.96 72.85 63.85 73.45 68.90 63.55 16.27

Lla.2

5.5B LoRA 64.35 34.90 75.84 62.51 75.47 50.06 60.52 16.08
5.5B Ours 68.81 35.24 74.81 63.93 72.31 60.73 62.64 15.71
5.0B LoRA 61.32 32.08 73.78 61.96 74.13 55.05 59.72 17.63
5.0B Ours 65.74 32.76 71.87 64.40 71.04 59.39 60.87 17.63

Table 5: The accuracy and perplexity of the fine-tuned LlamaV1-7B and LlamaV2-7B models on Wikitext2, as well
as their performance on a series of zero-shot tasks. The pruned models used in our experiments have parameters set
at 5.5B and 5B, respectively.

as well as a series of zero-shot tasks. The exper-493

imental results are summarized in Tab.5. Indeed,494

the comparison between EBFT and LoRA contin-495

ues to demonstrate the advantages of EBFT. For496

example, after fine-tuning LlamaV1-5.5B, EBFT497

achieves a perplexity of 14.81, surpassing LoRA,498

which achieves a perplexity of 15.46 on Wikitext2.499

Similarly, for LlamaV2-5.5B, EBFT achieves a per-500

plexity of 15.71, outperforming LoRA with a per-501

plexity of 16.08. This trend carries over to the zero-502

shot tasks as well, where the fine-tuned models503

using EBFT exhibit better performance compared504

to LoRA. The mean accuracy of our approach is505

higher than that of LoRA, regardless of whether it506

is applied to LlamaV1 or LlamaV2. While it is true507

that LoRA may achieve better scores on certain508

tasks such as PIQA and StoryCloze, the overall509

results consistently support the conclusion that the510

pruned models fine-tuned using EBFT outperform511

those fine-tuned using LoRA. When comparing512

EBFT to LoRA, EBFT demonstrates faster speed,513

lower cost, and superior performance.514

4.5 Weight Tuning vs. Mask Tuning515

Some optimization methods for sparse models,516

such as (Zhang et al., 2023b,d), solely update the517

positions of masks without adjusting weights. To518

explore the effectiveness of this strategy, we con-519

ducted experiments to compare two fine-tuning520

strategies: weight tuning and mask tuning.521

For mask tuning, we employed Eq.4 as the opti-522

mization objective, aiming to minimize the block-523

wise reconstruction error. The fine-tuning process524

of mask tuning is the same as that of EBFT, ex-525

cept that mask tuning only updates the positions of526

masks while keeping the weights unchanged. We527

recorded the experimental results in Tab.6. Specifi-528

cally, we conducted variations in the sparsity levels529

LlamaV1-7B

Method 50% 60% 70% 80% 90%

w.Mask 7.05 9.15 25.90 456.0 5378
w.Weight 6.81 8.59 16.88 118.4 2993

LlamaV2-7B

Method 50% 60% 70% 80% 90%

w.Mask 6.29 8.40 26.99 755.8 3793
w.Weight 6.18 7.90 16.94 72.80 903.4

Table 6: The Wikitext2 perplexity of mask-tuning
and weight-tuning were evaluated on LlamaV1-7B and
LlamaV2-7B at various sparsity levels with Wanda ini-
tialization.

of LlamaV1-7B and LlamaV2-7B, and evaluated 530

the perplexity of the fine-tuned sparse models on 531

Wikitext2. The results consistently highlight the 532

clear advantage of weight tuning over mask tuning, 533

even though the mask tuning method used in this 534

study outperforms the SOTA mask-tuning method 535

DSnoT in Tab.1. However, mask tuning still falls 536

short when compared to EBFT. Regardless of the 537

sparsity level, weight tuning consistently outper- 538

forms mask tuning. These findings clearly indicate 539

the limitations of mask-tuning methods. 540

5 Conclusion 541

We propose EBFT, a unified fine-tuning framework 542

for sparse Language Models that can be integrated 543

with any pruning method. In EBFT, we define 544

the block-wise reconstruction error and optimize 545

it on a block-by-block basis through backpropaga- 546

tion algorithm, aiming to achieve a convergent and 547

optimal solution. This approach proves to be effec- 548

tive and efficient, requiring only a small number 549

of samples for calibration. Extensive experiments 550

demonstrate that EBFT achieves state-of-the-art 551

performance on various benchmark datasets. 552

8

6 Limitation553

Although the use of a small calibration dataset sig-554

nificantly reduces costs, the fine-tuning process of555

EBFT still incurs computation costs due to gradient556

calculations. In future work, we will continue to557

focus on fine-tuning with a limited number of sam-558

ples and explore gradient-free methods to further559

mitigate these costs.560

References561

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao562
Wang. 2023. Fluctuation-based adaptive structured563
pruning for large language models. arXiv preprint564
arXiv:2312.11983.565

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-566
nari do Nascimento, Torsten Hoefler, and James567
Hensman. 2024. Slicegpt: Compress large language568
models by deleting rows and columns. arXiv preprint569
arXiv:2401.15024.570

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,571
et al. 2020. Piqa: Reasoning about physical com-572
monsense in natural language. In Proceedings of the573
AAAI conference on artificial intelligence, volume 34,574
pages 7432–7439.575

Vladimír Boža. 2024. Fast and optimal weight update576
for pruned large language models. arXiv preprint577
arXiv:2401.02938.578

Tom Brown, Benjamin Mann, Nick Ryder, Melanie579
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind580
Neelakantan, Pranav Shyam, Girish Sastry, Amanda581
Askell, et al. 2020. Language models are few-shot582
learners. Advances in neural information processing583
systems, 33:1877–1901.584

Christopher Clark, Kenton Lee, Ming-Wei Chang,585
Tom Kwiatkowski, Michael Collins, and Kristina586
Toutanova. 2019. Boolq: Exploring the surprising587
difficulty of natural yes/no questions. arXiv preprint588
arXiv:1905.10044.589

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,590
Ashish Sabharwal, Carissa Schoenick, and Oyvind591
Tafjord. 2018. Think you have solved question an-592
swering? try arc, the ai2 reasoning challenge. arXiv593
preprint arXiv:1803.05457.594

Together Computer. 2023. Redpajama: an open dataset595
for training large language models.596

Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen.597
2023. Beyond size: How gradients shape pruning598
decisions in large language models. arXiv preprint599
arXiv:2311.04902.600

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and601
Kristina Toutanova. 2018. Bert: Pre-training of deep602
bidirectional transformers for language understand-603
ing. arXiv preprint arXiv:1810.04805.604

Jonathan Frankle and Michael Carbin. 2018. The lottery 605
ticket hypothesis: Finding sparse, trainable neural 606
networks. arXiv preprint arXiv:1803.03635. 607

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 608
sive language models can be accurately pruned in 609
one-shot. In International Conference on Machine 610
Learning, pages 10323–10337. PMLR. 611

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 612
Dan Alistarh. 2022. Gptq: Accurate post-training 613
quantization for generative pre-trained transformers. 614
arXiv preprint arXiv:2210.17323. 615

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. 616
2023a. Compresso: Structured pruning with col- 617
laborative prompting learns compact large language 618
models. arXiv preprint arXiv:2310.05015. 619

Song Guo, Lei Zhang, Xiawu Zheng, Yan Wang, Yuchao 620
Li, Fei Chao, Chenglin Wu, Shengchuan Zhang, and 621
Rongrong Ji. 2023b. Automatic network pruning via 622
hilbert-schmidt independence criterion lasso under 623
information bottleneck principle. In Proceedings of 624
the IEEE/CVF international conference on computer 625
vision, pages 17458–17469. 626

Song Han, Jeff Pool, John Tran, and William Dally. 627
2015. Learning both weights and connections for 628
efficient neural network. Advances in neural infor- 629
mation processing systems, 28. 630

Babak Hassibi, David G Stork, and Gregory J Wolff. 631
1993. Optimal brain surgeon and general network 632
pruning. In IEEE international conference on neural 633
networks, pages 293–299. IEEE. 634

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 635
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, 636
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 637
2023. Distilling step-by-step! outperforming larger 638
language models with less training data and smaller 639
model sizes. arXiv preprint arXiv:2305.02301. 640

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 641
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 642
and Weizhu Chen. 2021. Lora: Low-rank adap- 643
tation of large language models. arXiv preprint 644
arXiv:2106.09685. 645

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, 646
Joseph Naor, and Daniel Soudry. 2021. Acceler- 647
ated sparse neural training: A provable and efficient 648
method to find n: m transposable masks. Advances 649
in neural information processing systems, 34:21099– 650
21111. 651

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, 652
Joseph Hassoun, Kurt Keutzer, and Amir Gholami. 653
2022. A fast post-training pruning framework for 654
transformers. Advances in Neural Information Pro- 655
cessing Systems, 35:24101–24116. 656

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, 657
and Hans Peter Graf. 2016. Pruning filters for effi- 658
cient convnets. arXiv preprint arXiv:1608.08710. 659

9

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,660
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023.661
Losparse: Structured compression of large language662
models based on low-rank and sparse approximation.663
arXiv preprint arXiv:2306.11222.664

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,665
Xingyu Dang, and Song Han. 2023. Awq: Activation-666
aware weight quantization for llm compression and667
acceleration. arXiv preprint arXiv:2306.00978.668

Christos Louizos, Max Welling, and Diederik P Kingma.669
2017. Learning sparse neural networks through l_0670
regularization. arXiv preprint arXiv:1712.01312.671

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.672
Llm-pruner: On the structural pruning of large lan-673
guage models. arXiv preprint arXiv:2305.11627.674

Stephen Merity, Caiming Xiong, James Bradbury, and675
Richard Socher. 2016. Pointer sentinel mixture mod-676
els. arXiv preprint arXiv:1609.07843.677

Nasrin Mostafazadeh, Michael Roth, Annie Louis,678
Nathanael Chambers, and James Allen. 2017. Ls-679
dsem 2017 shared task: The story cloze test. In680
Proceedings of the 2nd Workshop on Linking Models681
of Lexical, Sentential and Discourse-level Semantics,682
pages 46–51.683

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine684
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,685
Wei Li, and Peter J Liu. 2020. Exploring the limits686
of transfer learning with a unified text-to-text trans-687
former. The Journal of Machine Learning Research,688
21(1):5485–5551.689

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-690
ula, and Yejin Choi. 2021. Winogrande: An adver-691
sarial winograd schema challenge at scale. Commu-692
nications of the ACM, 64(9):99–106.693

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.694
Movement pruning: Adaptive sparsity by fine-tuning.695
Advances in Neural Information Processing Systems,696
33:20378–20389.697

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico698
Kolter. 2023. A simple and effective pruning ap-699
proach for large language models. arXiv preprint700
arXiv:2306.11695.701

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sun-702
darapandiyan. 2023. Prune and tune: Improving703
efficient pruning techniques for massive language704
models.705

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann706
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,707
and Tatsunori B Hashimoto. 2023. Stanford alpaca:708
an instruction-following llama model (2023). URL709
https://github. com/tatsu-lab/stanford_alpaca.710

Naftali Tishby, Fernando C Pereira, and William Bialek.711
2000. The information bottleneck method. arXiv712
preprint physics/0004057.713

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn- 714
ing and the information bottleneck principle. In 2015 715
ieee information theory workshop (itw), pages 1–5. 716
IEEE. 717

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 718
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 719
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 720
Azhar, et al. 2023a. Llama: Open and effi- 721
cient foundation language models. arXiv preprint 722
arXiv:2302.13971. 723

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 724
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 725
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 726
Bhosale, et al. 2023b. Llama 2: Open founda- 727
tion and fine-tuned chat models. arXiv preprint 728
arXiv:2307.09288. 729

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 730
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 731
Kaiser, and Illia Polosukhin. 2017. Attention is all 732
you need. Advances in neural information processing 733
systems, 30. 734

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. 735
Structured pruning of large language models. arXiv 736
preprint arXiv:1910.04732. 737

Paul J Werbos. 1990. Backpropagation through time: 738
what it does and how to do it. Proceedings of the 739
IEEE, 78(10):1550–1560. 740

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 741
Chen. 2023. Sheared llama: Accelerating language 742
model pre-training via structured pruning. arXiv 743
preprint arXiv:2310.06694. 744

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022. 745
Structured pruning learns compact and accurate mod- 746
els. arXiv preprint arXiv:2204.00408. 747

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 748
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 749
machine really finish your sentence? arXiv preprint 750
arXiv:1905.07830. 751

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin 752
Ou, Xinyi Yu, Bohan Zhuang, et al. 2023a. Prun- 753
ing meets low-rank parameter-efficient fine-tuning. 754
arXiv preprint arXiv:2305.18403. 755

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, 756
Ke Li, Fei Chao, Yongjian Wu, and Rongrong Ji. 757
2022. Learning best combination for efficient n: M 758
sparsity. Advances in Neural Information Processing 759
Systems, 35:941–953. 760

Yuxin Zhang, Mingbao Lin, Yunshan Zhong, Fei Chao, 761
and Rongrong Ji. 2023b. Lottery jackpots exist in 762
pre-trained models. IEEE Transactions on Pattern 763
Analysis and Machine Intelligence. 764

Yuxin Zhang, Yiting Luo, Mingbao Lin, Yunshan 765
Zhong, Jingjing Xie, Fei Chao, and Rongrong Ji. 766
2023c. Bi-directional masks for efficient n: M sparse 767
training. arXiv preprint arXiv:2302.06058. 768

10

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun,769
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,770
and Rongrong Ji. 2023d. Dynamic sparse no train-771
ing: Training-free fine-tuning for sparse llms. arXiv772
preprint arXiv:2310.08915.773

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhi-774
jie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng775
Li. 2021. Learning n: m fine-grained structured776
sparse neural networks from scratch. arXiv preprint777
arXiv:2102.04010.778

11

	Introduction
	Related Work
	Methodology
	Preliminaries
	EBFT

	Experiments
	Language Modeling
	Zero-Shot Tasks
	Calibration Samples
	EBFT vs. LoRA
	Weight Tuning vs. Mask Tuning

	Conclusion
	Limitation

