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ABSTRACT

During brain development, an excess number of synapses are initially created,
which are progressively eliminated through a process known as synaptic pruning.
This procedure is activity-dependent, shaped by the brain’s experiences. While
creating an overabundance of synaptic connections only to later remove many
might appear inefficient, research suggests that networks formed by this procedure
demonstrate significant efficiency and robustness. Inspired by this biological
process, we propose a neural network architecture utilizing long connections instead
of traditional short residual connections. When long connection neural networks
(LCNGs) are trained with gradient descent, information is naturally "pushed" down
to the first few layers, leading to a sparse network. Even more surprising is that this
simple architectural modification leads to networks that exhibit behaviors similar
to biological brain networks, namely: early overconnectivity to later sparsity,
enhanced robustness to noise, efficiency in low-data settings and longer training
times. Specifically, starting with a traditional neural network architecture with
initial depth d and k connections, long connections are added from all layers to the
last layer and summed up. During LCN training, 30-80% of the top layers become
effective identity mappings as all relevant information is concentrated in the bottom
layers. Pruning the top layers results in a refined network with a reduced depth
d’ and final connections k', achieving significant efficiencies without any loss in
performance compared to residual baselines. We apply this architecture to various
classification tasks and show that, in all experiments, the network converges to
utilizing only a subset of the initially defined pre-training connections, and the
amount of compression is dependent on the task complexity.

1 INTRODUCTION

Deep learning has achieved significant breakthroughs across diverse tasks and domains (Krizhevsky
et al.;,|2012; [LeCun et al.| [2015} |[Brown et al.| 2020)); however, it still lacks the flexibility, robustness,
and efficiency of biological networks. Modern models rely on deep architectures with billions of
parameters, leading to high computational, storage, and energy costs. In contrast, biological brains
are remarkably efficient, constrained by physical limitations and refined through evolution to develop
low-power, fast-acting, effective networks (Bassett & Bullmore, [2006). These biological circuits
achieve robust performance and rapid learning while maintaining low cost and power consumption.
One key efficiency mechanism in the brain is synaptic pruning. During early development, an excess
of synapses is formed and progressively eliminated through activity-dependent pruning (Sakai, 2020).
Early studies (Peter R.||1979) measured synaptic density across different ages and found that it peaks
around 1-2 years of age, followed by a decline to approximately 50% by adulthood. Although creating
an overabundance of connections only to remove many may seem inefficient, research indicates that
this approach leads to networks exhibiting significant efficiency and robustness (Navlakha et al.|
2015). Synaptic pruning is a gradual process that unfolds over the years and allows the brain to
explore a large parameter space while learning and to identify key circuits by eliminating redundant
connections. The result is a low-cost, sparse and efficient network that retains only the necessary
pathways for information processing and routing, achieving strong performance and robustness.

Simply put, synaptic pruning is the evolutionary mechanism that dynamically optimizes the number
of neural connections, effectively addressing the question: “How can we determine the essential
parameters for efficient brain function during the learning process?” Contemporary deep learning
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Figure 1: Main concept: (a) Start from a neural network with L layers either randomly initialized or
pretrained. (b) Add residual long connections from each layer to the ouput of the network and sum
them (also remove any existing short residual connections - if any). During training/fine-tuning of
the resulting LCN network the majority of the information (shown here as darker vs lighter circles)
will naturally concentrate at the lower layers. (c) You may now safely remove the top (two in our
example) layers during inference without any performance loss.

architectures aim for overparameterization; however, they lack a straightforward mechanism to
identify and prune redundant connections. To address this, additional techniques are employed on
top of the training process. L; and Ls regularization (Ng, [2004)) constrain network parameters to
obtain small norms, often leading redundant parameters to have zero norm and be effectively pruned,
especially in the case of L; regularization. Pruning techniques (Cheng et al., [2024) remove groups of
redundant parameters without significantly affecting performance, usually after the full network is
trained. Dynamic inference (Han et al.,|2021) adjusts which parts of the network are used based on
the input. However, these methods do not explicitly detect redundancy but instead bypass it using
heuristic criteria layered on top of the training process.

In this work, we propose an architectural modification that replaces residual (short) connections
with long connections, forming Long Connection Networks (LCNs). When long connections neural
networks (LCNs) are trained with gradient descent, information is naturally "pushed" down to the
first few layers, leading to a sparse network. This simple architectural modification leads to networks
that exhibit behaviors similar to biological brain networks, namely: early overconnectivity to later
sparsity, enhanced robustness to noise, efficiency in low-data settings and longer training times.
Specifically, starting from an overparameterized network of depth L and %k connections, LCNs refine
it to depth L’ and connections &, significantly accelerating inference and reducing memory usage
without sacrificing performance. Our analysis shows that architectures with residual connections (He
et al.,[2016) or deep supervision (Lee et al.,|2015)) do not exhibit this behavior. We implement LCNs
in fully connected and transformer-based architectures and find experimentally that they achieve
similar or superior performance compared to residual baselines, while 30-80% of the top layers
become effective identity mappings, as all relevant information is concentrated in the bottom layers.
This approach is practical with current hardware and does not require specialized software. Finally,
we highlight that this architecture can be used complementary with pruning or dynamic inference
techniques.

2 LONG CONNECTION NETWORKS

The core idea behind LCNs [1_-] is to force each layer to produce discriminative features that are directly
useful for prediction. In this manner, when the last layers are pruned, earlier layers can be used for
prediction directly without the need for further fine-tuning. Concretely, we propose replacing the
residual short connections with long connections, as described in Eq.[I]and shown in Figure/[I|for a
network of depth I}

!Code for the paper is available here!
We note that a classification head can be built on top of y.
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In LCNs the output of each layer is directly connected to the output of the network, and thus is
directly optimized by the objective function during gradient descent training. Furthermore, the
number of possible shortucts is equal to the number of layers, L. We find this simplification maintains
the improved signal flow that shortcut connections provide, while also introducing the ability to
determine the effective depth of the network, and thus perform layer pruninﬂ Compared to the
similar idea of deep supervision, which introduces a separate loss function and classification head
for each layer, LCNs are trained with a single loss function, aleviating the need for balancing
the contribution of multiple objectives through hyper-parameter tuning, and achieving superior
performance (see Appendix [C). We also note that LCNs differ structurally from other models
employing long connections, such as DenseNets Huang et al.[(2017) and DenseFormer |[Pagliardini
et al.[(2024), which are residual networks variants. These two models connect each layer to all

preceding layers whereas LCNs connect each layer only to the output, leading to a distinct structural
design. ﬁ

2.1 MATH INTUITION

Inspired by the intuitive analysis by |[Bachlechner et al.|(2021)), we
compare the Jacobian of a network, for a trivial one dimensional
(1D) linear feedforward network with L layers, where a weight w
is shared across all layers. We utilize three different architectures
for this comparison: the classic feedforward architecture (MLP),
the residual connections architecture, and LCNsﬂ The output y
of the network as a function of the input z is shown in Eqs. [2} B
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Their respective Jacobians for L = 20 are shown in Fig.[2] In the Figure 2: Jacobians of 1D MLP,
case of the MLP, we observe that for a large depth the Jacobian residual and LCN architectures
either vanishes or explodes as it traverses the layers of the net- for shared weight and L = 20.
work, depending on whether the value of w is below or above 1,

respectively. A similar behavior is observed in the residual architecture, but it is shifted such that
for w < 0, the network experiences vanishing signal flow, while for w > 0, the Jacobian grows
exponentially as a function of depth. The LCN architecture, however, exhibits a notable difference:
for a substantial range of values w around zero the Jacobian neither vanishes nor explodes as it
propagates through the network. Given that most widely-used initialization schemes (e.g., He (He
et al., [2015) and Xavier (Glorot & Bengio, |2010)) initialize weights around zero, LCNs offer a
broader range of initial weight values that ensure consistent signal transmission. This expanded
initialization window could enhance the effectiveness of the training process. Finally, we note that in
Appendix |G| we deliver a broader theoretical analysis of LCN’s training dynamics and discuss an
interesting connection to layer-wise training.

2.2 A Toy EXAMPLE

To demonstrate the ability of the proposed architecture to compress information in early layers, we
show a simple toy experiment involving a 1D linear feedforward network with three layers and
weights w1, wy and ws for each layer, respectively. The dataset comprises pairs drawn from the
function y = 2z. We consider two architectures: the first employs residual (short) connections, while

3A careful reader may observe that long connections are a strict subset of the 27 shortcut connections in
residual networks. The exponential number of shortcuts in residual networks may be the reason that their
effective depth is not easily determined.

“We mention more details about these models in Section
>A more analytic definition of the models and derivation of the equations is provided in Appendix
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the second utilizes long connections (LCN). Given a synthetic dataset of (z,y) pairs, the network
should require only a single layer to successfully accomplish the task, i.e., w; = 1:

Y1 =20+ a1 =2+ wx = 2, @)

effectively computing y utilizing only the first layer (z; is the output of the first layer). We perform
this simple training experiment multiple times (/N = 1000), each time generating 1000 examples with
values between —10 and 10. The models are trained for 500 epochs and the weights are initalized
with values around zero either uniformly or following a normal distribution. Fig. [3]illustrates the
distribution of learned w; values for both architectures.
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Figure 3: Distribution of w;, weight of the first hidden layer of a 1D linear feedforward network with
three layers solving y = 2z, utilizing either: (a) residual connections or (b) long connections.

For residual architectures we observe a pretty wide distribution of w; values centered around 0.25;
indeed 3/ = = + wix + wox + w3r ~ 2z, for w; = wy = wz = 0.25 is a valid solution. Thus,
in this example, residual networks have the tendency to utilize all layers equally, even if a sparse
solution exists. LCNs, however, typically converge to solutions where w; is close to 1, allowing
correct predictions from the first layelﬂ So in this simple example, long connections in LCNs induce
implicit depth regularization, guiding the network toward sparse solutions.

3 PREDICTING WITH INTERMEDIATE LAYERS

In this section, we evaluate our proposed architecture across various modalities, datasets, and models,
comparing its performance to the residual baselines.

3.1 EXPERIMENTAL SETUP

In our experiments, we utilize variants of the Transformer (2017)] and MLP-Mixer
[stikhin et al.| (2021)] architectures. For each input token, we compute a final output vector 3 (where
t is the sequence index) by summing the output representations of all intermediate layers along with
the input embedding, as shown in Eq.[I] To generate classification predictions, we either apply a
pooling layer to these vectors for image classification or use the final representation of the [CLS]

token for text classification. For a network of depth L, making predictions using k intermediate
layers involves computing y}, for each token, which is the sum of intermediate representations up
to layer k. This summed representation is then passed to the classification head. This approach
yields L + 1 sub-networks, ranging from using only the input embedding (the first sub-network) to
the full network (the last sub-network). For example, the network shown in Figure Ekc) would be
the L — 2 subnetwork (utilizing layers 1 to L — 2), whereas the network in in Figure [T(b) would

®Note that initialization plays a crucial role, as w; sometimes converges near —1 for LCNs.
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be the full network (all layers included). In baseline models with residual connections, the only
difference is that when predicting with k intermediate layers, we use the output representation of
layer k (that encapsulates all previous representations) as our y}, without summing over layers. All
other procedures remain the same. Additional experimental details and hyperparameters are provided
in the Appendix.
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Figure 4: Incorporating long connections into the Transformer architecture for text and image
classification tasks.

3.2 TRANSFORMER WITH LONG CONNECTIONS

Transformers [[Vaswani (2017)] are powerful architectures that utilize self-attention mechanisms,
achieving state-of-the-art performance across various modalities and tasks (Dosovitskiy| (2020)),
Brown et al.| (2020)). Increasing their depth provides greater expressivity and yields competitive
performance on complex tasks. However, for some simpler tasks the full utilization of all layers
in a deep transformer architecture may be redundant. In Fig. fal we assess the effect of long
connections in the Transformer architecture for binary sentiment classification using the Amazon
reviews dataset (Zhang et al.||2015). For this purpose, we train a 16-layer vanilla Transformer with
residual connections and a modified Transformer with long connections (LC-Transformer). To test
the depth reguralization capabilities of each architecture, we compute the classification performance
of the embeddings of each layer [ = 1...16 without further model tuning. We observe that LC-
Trans%)rmer can reach 90% accuracy, utilizing only 2 layers, while the vanilla transformer needs 13
layer:

To further demonstrate the effectiveness of the proposed long connections, we train a Vision Trans-
former (ViT) (Dosovitskiy, 2020) with long connections (LC-ViT) from scratch on the ILSVRC-2012
ImageNet-1K, following the training setup in the original paper. For both models we use 256 batch
size due to memory constraints. LC-ViT converges at 700 epochs, while the vanilla ViT converges at
300 epochsﬂ As shown in Fig. LC-ViT reaches top performance at only 7 layers while the vanilla
ViT needs all 12 layers to reach similar performance. So for both tasks and architectures, LCNs can
improve inference time and memory consumption without sacrificing performance.

3.3 STABLE TRAINING OF DEEP LCN NETWORKS

One possible concern when replacing residual connections with long connections is that the gradient
propagation suffers when increasing network depth. Next, we experimentally test the claim that LCNs
can compress information to the (same number of) first few layers during training, irrespective of the

7 Accuracy of just the input embeddings through the classification head here is 0.5 (2-classes).

81n this more challenging setting, we observe a trade-off between training and inference time, which is
partially aleviated using a parameterization similar to DiracNets (Zagoruyko & Komodakis},2017) for the MLP
layers, specifically W = (I 4+ W).
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network depth. Specifically, we train a transformers with fixed layer width and increasing depth (12,
22, and 40 layers) on the IMDDb binary sentiment classification dataset (Maas et al., 201T). In Fig.[5}
we compare the behavior of the LC-Transformer to that of its vanilla counterpart as a function of
layer performance. Overall, increasing the network depth does not lead to performance degradation
for LCNs. Further, for all three experiments LCNs reach good performance utilizing only 2 — 3 layers
during inference. Of interest, is also the behavior of the residual network: performance progresses
slowly with depth for L = 12 but more abruptly for L = 22, 40, a possible indication of overfitting.
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Figure 5: Performance of the intermediate layers of a Transformer with long vs residual connections
as a function of network depth L = 12, 22, 40 (IMDb binary sentiment classification task).

3.4 THE EFFECT OF TASK DIFFICULTY

Intuitivelly, overparameterized networks trained on easier tasks should demonstrate higher levels of
redundancy. Therefore, LCNs should converge to utilizing fewer layers as task difficulty decreases.
To verify this, we use the number of classes as a proxy for task difficulty for image classification on
the CIFAR-10 dataset (Krizhevsky, [2009). Specifically, we create subsets of 2, 5, and 10 classes,
the assumption being that binary classification should be easier than 10-class classification. For
this experiment we utilize MLP-Mixer (Tolstikhin et al.,[2021)) and train two variants, the original
MLP-Mixer and the modified MLP-Mixer with long connections (LC-Mixer). Results are presented
in Fig[6] We observe that indeed LC-Mixer converges to solutions with larger effective depth, as the
task “difficulty” increases. Specifically, in this experiment, LCN needs 8, 10 and 12 layers for the 2,
5 and 10-class classification problem, respectively. In contrast, the vanilla MLP-mixer converges to
solutions where the full depth of the network is utilized, irrespective of the task difficulty ﬂ

4 GENERALIZATION CAPABILITIES OF LCNs

An important difference between artificial deep neural networks and biological brains is their ro-
bustness to noisy input and sparse data. Biological brains excel in learning from limited data and
are significantly more robust to noisy inputs. As discussed in Section LCNs lead to sparser
representations and required more training time than vanilla transformers on the ImageNet experiment.
In this section, we experimentally test the generalization capabilities of LCNs to provide evidence for
the question: Does sparsity and longer training time of LCNs lead to “better” representations?

4.1 ROBUSTNESS TO INPUT NOISE

Next, we present results assessing the robustness of LCNs versus vanilla transformer architectures to
input noise. The experiments are performed with the LC-ViT and vanilla ViT architectures trained on
ImageNet-1K (see Fig. @b] for baseline results with no noise). In this experiment, we inject increasing
levels of additive Gaussian noise with standard deviation o = 0.1, 0.2, 0.4, and salt-and-pepper noise
with perentage of altered pixels p = 1%, 2%, 10%. Results are shown in Fig[7[a) for Gaussian and

Vanilla MLP-Mixer was trained for 300 epochs, while LC-Mixer for 420 epochs to reach the performance
of the vanilla counterpart.
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Figure 6: Performance of the intermediate layers as the number of classes (and examples) in the
CIFAR-10 dataset increases from 2, to 5 to 10 classes: (a) MLP vs (b) LCN.

(b) for salt-and-peper noise. We observe that LCNs display improved robustness to noise, and the
performance gap in performance with the vanilla transformer increases as the noise levels increase.
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Figure 7: Robustness of ViT with long connections (LC-ViT) and with residual connections (vanilla
ViT) to additive Gaussian (left) and salt-and-pepper noise (right) on ImageNet-1K test set.

4.2 ROBUSTNESS TO DATA SPARSITY

Next, we experimentally compare the performance
of residual and long connections architectures in
low-data scenarios. For this purpose, we have cre-
ated a subset of CIFAR-10 (Krizhevsky, [2009) by
retaining only 100 samples per class, resulting in
a total of 1000 examples. Using the same training
settings and models as described in Section [3.4]
we train both architectures for 150 epochs to as-
sess how fast the training and test loss decrease,
as a proxy for the generalization capabilities of
each architecture. Results shown in Fig. [8] reveal
that LCNs converge significantly faster for both
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the training and test set, indicating that long con-
nections can be utilized in scenarios with limited
data.

5 EXAMPLE AND CLASS DIFFICULTY

An appealing feature of LCNss is their ability to determine the number of layers required for individual
examples in a dataset. Because each intermediate layer is connected directly to the final output, we
can evaluate each sub-network ¢ (comprising layers 1 to ¢) and check whether its prediction matches
that of the full network. We define the required number of layers for an example e as k, where k
is the smallest sub-network whose prediction matches the full network’s prediction. In Fig.[Dal we
show the histogram of the minimum number of layers e required for each sample of the CIFAR-10
dataset. It is interesting to observe that for the vast majority of samples the correct decision is reached
by layer 5 for CIFAR-10, even if 12 layers are required to reach top performance (see Fig. [6b).
Similarly, one may compute the histogram of e but separately for each class as shown in Fig. [9b]
This plot provides insights into the dataset’s properties and could prove useful for data analysis and
exploration. An interesting future direction is to dynamically adjust the network’s depth at inference
time on a per-sample basis, utilizing deeper layers only for more challenging samples and classes.
Sample-dependent layer depth inference for LCNs could further improve inference performance and
efficiency by an additional, e.g., 3-5 times on CIFAR-10 (similar to Dynamic Inference approaches
Han et al.| (2021)).
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Figure 9: Histogram of minimum number of layers e required for LCN to correctly classify a CIFAR-
10 sample computed: (a) per sample and (b) per class and sample.

6 SUMMARY OF RESULTS

From our experiments, we conclude that LCNs are able to "push" information down to the early neural
layers without performance degradation, resulting in a sparse high-performing network, effectively
revealing potential redundant layers and driving the pruning process. This pruning significantly
reduces memory requirements and accelerates inference. In all of the experiments we observed
that the converged depth between train and validation/test sets matched. Thus, pruning layer depth
is a meta-parameter determined directly on the validation set, eliminating the need for a separate
pruning procedure after training. Additionally, utilizing LCNs makes it straightforward to produce
and distribute differently sized variants of the same architecture with a single training run—for
example, distributing tiny, small, medium, and large versions of the model. In Tablem we show the
performance of the pruned LCN models compared to their respective baselines. We also note that
utilizing the pruned LC-ViT instead of the vanilla base-ViT, we can reduce inference time from 13.9
miliseconds to 8.3 miliseconds (CPU). Finally, to further validate the general applicability of our
proposed architecture we conducted a BERT [Devlin| (2018)] pre-training and fine-tuning experiment.
We direct the reader to Appendix [F
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Table 1: Summary of experimental results (detailed in the previous sections) using pruned LCN
models denoted with (p) vs full vanilla models denoted with (f).

Models Accuracy T  #Parameters | #Inference Layers | \ Storage Size (MB) |
Transformer on Amazon (f) 90.05 + 0.05 1.3M 12 6
Transformer on Amazon (p) 90.02 +0.07 0.75M 2 3
MLP-Mixer on C10 (f) 90.12 +0.06 2.5M 16 17.6
MLP-Mixer on C10 (p) 90.24 + 0.05 1.8M 12 13.2
ViT on ImageNet (f) 70.74 £ 0.09 86M 12 330
ViT on ImageNet (p) 70.76 = 0.12 5IM 7 195

7 BACKGROUND AND RELATED WORK

Residual Connections: Training deep neural networks with gradient descent becomes increasingly difficult as
network depth increases. |He et al.| (2016) found that deeper convolutional neural networks (CNNs) not only
suffer from declining generalization performance, often due to overfitting, but also experience a drop in training
performance. This suggests that the challenge goes beyond overfitting and points to the inherent difficulty
in optimizing deeper networks. To address this, they introduced residual connections (or identity mappings),
proposing that learning residual functions relative to identity mappings simplifies optimization. These skip
connections improve the training process and often enhance performance (Balduzzi et al|(2017), [Orhan &
Pitkow| (2017)), Zaeemzadeh et al.| (2020), [L1 et al.| (2018)). |Veit et al.| (2016) further argued that a residual
network with n layers can be viewed as a collection of 2" paths of varying lengths. At each layer, the signal
either skips the layer or passes through it, creating 2™ possible paths. Despite sharing weights, these paths
function as an ensemble of networks, as confirmed by experiments. In contrast, a traditional deep feedforward
network has only one path, so removing any random layer significantly degrades performance. Additionally, the
authors showed that these paths are typically shallow, with backward gradients often vanishing after passing
through only a small fraction of the total layers.

Deep Supervision: The authors of [Lee et al.| (2015)] proposed adding complementary objectives to all
intermediate layers, not just the final one. They argue that these intermediate objectives encourage hidden layers
to learn more discriminative representations, improving the overall classification task. The intuition is that more
discriminative features lead to a better-trained classifier. In their approach, each intermediate objective 7 is a loss
function that captures the classification error of an SVM trained on the output features of layer ¢. The overall
loss is the sum of the intermediate and final objectives, and results show that this improves final classification
performance.

Structure Learning (Depth Optimization): Depth optimization focuses on learning the optimal network depth
while training. |Alturki et al.[(2023) introduced "weight relevance of a layer," a metric that measures each layer’s
importance in the classification task. Using this metric, they propose dynamically adjusting the network’s depth
by removing irrelevant layers. Similarly, |Cortes et al.|(2017) presents an algorithm for learning both width and
depth during training. Starting with a simple linear model, layers are added competitively based on a trade-off
between complexity and performance, resulting in a comprehensive structural learning algorithm, backed by
strong theoretical analysis.

Long Connections in the Literature: Brain networks combine short and long connections [Bassett & Bullmore
(2006)], where short connections form dense sub-network hubs, and long connections sparsely link these hubs.
Typically, short connections are more numerous and have stronger synaptic weights [Muldoon et al.|(2016)]. In
[Betzel & Bassett| (2018)], the authors show that short connections more efficiently route information across
brain areas and sub-networks. Removing short connections has a larger impact on network properties like
average path length. In contrast, long connections are key for functional diversity, offering unique inputs and
novel targets for outputs across sub-networks. DenseNet [Huang et al.| (2017)] incorporates a form of long
connections within CNN residual blocks, connecting every two layers within a block. This design enables
feature reuse and efficient signal propagation, mitigating vanishing gradients while reducing parameters and
computation without sacrificing performance. More recently, DenseNet’s concept was applied to transformers in
DenseFormer [Pagliardini et al.| (2024)], where each layer receives a weighted sum of outputs from all preceding
layers. This approach improves training efficiency, speeds up inference, and reduces memory requirements. The
learned weights show strong reuse of distant layers’ outputs, ensuring efficient information flow in the network.

8 DISCUSSION

In this work, we introduced Long Connection Networks (LCNs), where, starting with a traditional neural network
architecture, long connections are added from all layers to the last layer and summed up. During training with
gradient descent, these networks mimic synaptic pruning (albeit in a layer-wise fashion) by beginning with
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an overconnected network and gradually identifying the key connections needed for the task. LCNs require
longer training but ultimately produce more robust, efficient, and sparse networks, similar to the development of
biological neural networks. Additionally, their training dynamics align with those of layer-wise training, further
resembling processes observed in cognitive neural development in the prefrontal cortex [DeFelipe| (2011)]. By
training fully connected and transformer-based architectures with long connections, information is naturally
"pushed" down and concentrated in the bottom layers, rendering the top layers into effective identity mappings,
leading to significant inference time efficiencies. We also found that the amount of compression that LCNs
achieve is dependent on the number of classes, a simple proxy for task compexity in classification settings.

In our experiments, we observed a trade-off between training and inference cost when choosing between short
residual connections and long connections. It is possible that LCN’s inherent sparsity and longer training time is
what makes them more robust to noise and more efficient in low-data settings. Preliminary experiments further
strenghten this belief: as the representations learned by earlier layers become more discriminative focusing on
the task at hand, LCNs can still effectivelly transfer their knowledge to downstream tasks (Appendix D).

Future research could expand LCNs to self-supervised and multi-task settings, leveraging the pre-training
and fine-tuning paradigm. LCNs also hold promise for generative tasks, reducing inference costs and energy
consumption. Additionally, developing inference-time algorithms that dynamically adjust the number of layers
per sample for optimal performance and efficiency is an intriguing direction for future work. Last but not least,
LCNs are only one possible long-connection architecture out of the many that are worth investigating further.

9 LIMITATIONS

Due to resource constraints, our proposed architecture was evaluated solely on classification tasks; however,
it demonstrated robust and promising performance across various modalities, datasets, and state-of-the-art
architectures within this scope. To fully assess its potential and limitations, further testing on a broader range of
tasks is essential. Additionally, applying our method in self-supervised and multi-task learning settings, such
as training large-scale language models or multimodal models, represents a significant and exciting avenue for
future research.

Another limitation is the increased training time observed with LCNs compared to traditional architectures
with residual connections. While we partially addressed this issue by employing parameterizations similar to
DiracNets, a more comprehensive solution to reduce training time remains an open question. Of course this
could be both a blessing and a curse, as longer training times might lead to learning better representations. In
any case, further research into training schedules and initialization schemes is needed to resolve this trade-off.

10 BROADER IMPACT

Our work contributes to the development of more efficient and robust neural network architectures by drawing
inspiration from biological processes. By enabling networks to identify and prune redundant layers, we aim to
reduce computational, memory, and energy requirements during inference, which will have a significant impact
with broader adoption of Al technology. Conceptually, this line of research could lead to network architectures
with inherent System 1 and System 2 capabilities (Kahneman, |2011)), where networks adaptively use fewer
layers—analogous to fast thinking—for easier tasks, and engage more layers—resembling slow thinking—for
more complex tasks.

However, as with any advancement in Al, there is a potential for misuse. More efficient models could be
leveraged to deploy Al systems more broadly, including in areas with insufficient oversight or in applications
that may infringe on privacy or other ethical considerations.

REFERENCES

Arwa Alturki, Ouiem Bchir, and Mohamed Maher Ben Ismail. Depth-adaptive deep neural network based on
learning layer relevance weights. Applied Sciences, 13(1), 2023. ISSN 2076-3417. doi: 10.3390/app13010398.
URL https://www.mdpi.com/2076-3417/13/1/398!

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley. Rezero
is all you need: Fast convergence at large depth. In Uncertainty in Artificial Intelligence, pp. 1352—1361.
PMLR, 2021.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The
shattered gradients problem: If resnets are the answer, then what is the question? In International conference
on machine learning, pp. 342-350. PMLR, 2017.

10


https://www.mdpi.com/2076-3417/13/1/398

Under review as a conference paper at ICLR 2025

Danielle Smith Bassett and ED Bullmore. Small-world brain networks. The neuroscientist, 12(6):512-523,
2006.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep
networks. In B. Scholkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information Processing
Systems, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_files/
paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf.

Richard F. Betzel and Danielle S. Bassett. Specificity and robustness of long-distance connections in weighted,
interareal connectomes. Proceedings of the National Academy of Sciences, 115(21):E4880-E4889, 2018. doi:
10.1073/pnas.1720186115.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

Yixiong Chen, Alan Yuille, and Zongwei Zhou. Which layer is learning faster? a systematic exploration of
layer-wise convergence rate for deep neural networks. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=wlMDF1jQF 86,

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy,
comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet: Adaptive
structural learning of artificial neural networks. In International conference on machine learning, pp. 874-883.
PMLR, 2017.

Javier DeFelipe. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity.
Frontiers in neuroanatomy, 5:29, 2011.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256.
JMLR Workshop and Conference Proceedings, 2010.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7436-7456, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision, pp. 1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Geoftrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527-1554, 2006.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708,
2017.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32-33, 2009. URL https:
//www.cs.toronto.edu/~kriz/learning-features—-2009-TR.pdf.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25, 2012.

11


https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=wlMDF1jQF86
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Under review as a conference paper at ICLR 2025

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444, 2015.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised nets. In
Artificial intelligence and statistics, pp. 562-570. Pmlr, 2015.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural
nets. Advances in neural information processing systems, 31, 2018.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142—150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P11-1015.

Sarah Feldt Muldoon, Eric W Bridgeford, and Danielle S Bassett. Small-world propensity and weighted brain
networks. Scientific reports, 6(1):22057, 2016.

Saket Navlakha, Alison L Barth, and Ziv Bar-Joseph. Decreasing-rate pruning optimizes the construction of
efficient and robust distributed networks. PLoS computational biology, 11(7):¢1004347, 2015.

Andrew Y Ng. Feature selection, 1 1 vs. 12 regularization, and rotational invariance. In Proceedings of the
twenty-first international conference on Machine learning, pp. 78, 2004.

A Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. arXiv preprint arXiv:1701.09175,
2017.

Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer: Enhancing
information flow in transformers via depth weighted averaging. arXiv preprint arXiv:2402.02622, 2024.

Huttenlocher Peter R. Synaptic density in human frontal cortex — developmental changes and effects of aging.
Brain Research, 163(2):195-205, 1979. ISSN 0006-8993. doi: https://doi.org/10.1016/0006-8993(79)90349-4.
URL https://www.sciencedirect.com/science/article/pii/0006899379903494,

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250,
2016.

Jill Sakai. How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proceedings
of the National Academy of Sciences, 117(28):16096-16099, 2020. doi: 10.1073/pnas.2010281117. URL
https://www.pnas.org/doi/abs/10.1073/pnas.2010281117.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher
Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
2013 conference on empirical methods in natural language processing, pp. 1631-1642, 2013.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica
Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision.
Advances in neural information processing systems, 34:24261-24272, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of relatively
shallow networks. Advances in neural information processing systems, 29, 2016.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461,
2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? Advances in neural information processing systems, 27, 2014.

Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak Shah. Norm-preservation: Why residual networks can
become extremely deep? IEEE transactions on pattern analysis and machine intelligence, 43(11):3980-3990,
2020.

Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training very deep neural networks without skip-
connections. arXiv preprint arXiv:1706.00388, 2017.

12


http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://www.sciencedirect.com/science/article/pii/0006899379903494
https://www.pnas.org/doi/abs/10.1073/pnas.2010281117

Under review as a conference paper at ICLR 2025

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

Yukun Zhu. Aligning books and movies: Towards story-like visual explanations by watching movies and reading
books. arXiv preprint arXiv:1506.06724, 2015.

13



Under review as a conference paper at ICLR 2025

A 1-D LINEAR JACOBIAN DERIVATION

A.1 MLP
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B EXPERIMENTAL DETAILS

Amazon Polarity - Transformer We are using Transformers with pre-norm, hidden dimension equal to 64,
MLP dimension equal to 512 and the number of heads is 4. We are using the AdamW optimizer Loshchilov
(2017) with a maximum learning rate equal to 0.001. The number of layers is 12.

IMDDb - Transformer We are using Transformers with post-norm, hidden dimension equal to 64, MLP dimension
equal to 512 and the number of heads is 4. We are using the AdamW optimizer |Loshchilov| (2017) with a
maximum learning rate equal to 0.001. The number of layers changes as depicted in the respective Figures.

CIFAR-10 - MLP Mixer The MLP Mixers have 16 layers with a hidden size of 128. The patch size is 4
(the input is 32x32, 3 channels). The MLP dimension D¢ is 512, while Dgs is 64. We are using the AdamW
optimizer [Loshchilov|(2017)) with a maximum learning rate of 0.001 and a Cosine Scheduler with Warmup.

C DEEP SUPERVISION DOES NOT EXHIBIT THE SAME BEHAVIOR

One could argue that since the deep supervision approach introduces losses for intermediate layers, it may poten-
tially converge to a similar behavior (as this approach intuitively encourages all layers to produce discrminative
representations). To evaluate the behavior of deep supervision-like methods, we trained two variants on the
CIFAR-10 task using the MLP-Mixer architecture: one with a shared classification head across all intermediate
layers but with a separate auxiliary loss for each layer, and another with a unique classification head (a linear
classifier) for each layer. Based on the results shown in Figure[I0} we conclude that deep supervision objectives
fail to demonstrate the expected behavior. Specifically, the sub-networks in these models behave similarly to
those in regular residual architectures.

D IMPACT ON EARLY LAYERS’ GENERALIZATION PROPERTIES

It is well established that early layers in deep neural networks tend to learn more general and transferable
features, while later layers specialize in task-specific representations|Yosinski et al.|(2014). Connecting all layers
to the output and "pushing" down information to the bottom layers could potentially lead to a model that is
more specialized for the task and less transferable to downstream tasks. To investigate this, we fine-tuned both
the vanilla Vision Transformer (ViT) and the long connections ViT (LC-ViT) that we trained on ImageNet, on
CIFAR-10. As shown in Figure[IT] our results indicate that this is not the case. Both models achieve similar final
accuracy, and they converge in roughly the same number of epochs (approximately 20 epochs). For LC-ViT, we
evaluated both the full and pruned versions (as shown in the dashed lines). It is important to note that we did not
optimize for top performance in this experiment, such as by using higher resolutions or additional techniques
from the original paper. The primary goal of this experiment was to demonstrate that the proposed architecture
does not suffer from a loss of transferability.

E VISION TRANSFORMER ON IMAGENET TRAINING CURVES

Here, we present the predictions of the sub-networks at various epochs during training for both vanilla and
LC-ViT. Two key observations emerge. First, the residual ViT architecture trains faster, something that is
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Figure 10: Deep supervision objectives fail to exhibit behavior similar to long connections architec-
tures, even though their objectives are somewhat similar.
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Figure 11: Fine-Tuning the previously trained ViTs on CIFAR-10. The long connections architecture
transfers to downstream tasks as effectively as the vanilla counterpart.

depicted also in the number of epochs its model is trained. Second, LC-ViT provides an indication of the required
number of layers early in training, with the converged depth becoming clearly apparent as early as epoch 30 out
of 700. This behavior could be leveraged to formalize an algorithm for early pruning of redundant layers, thus
effectively speeding up training.
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Figure 12: Behaviour of ViT sub-networks of residual and long connections architectures during
training on ImageNet 1.3M

F MASKED LANGUAGE MODELING AND TRANSFER LEARNING WITH LONG
CONNECTIONS

Since in the main paper we focused on classification tasks, we conduct here an experiment on BERT pre-training
and fine-tuning to further demonstrate the broad applicability of the LCN architecture. Due to limited resources,
we train vanilla BERT for one epoch, while LC-BERT with our proposed long connections, for two epochs
to match the performance of the vanilla counterpart (again requiring more training time). We utilize the same
pre-training corpus as the original model (BooksCorpus|Zhu| (2015) + English Wikipedia). After training, we
fine-tune the models using the original BERT Devlin| (2018) setup on three datasets from the GLUE benchmark
[Wang et al.|(2018)], namely SST-2 [Socher et al|(2013)], QQP and QNLI [Rajpurkar| (2016)]. In Figure@ we
observe that the LCN variant converges to significantly fewer layers (75% less) than the vanilla baseline, while
maintaining on-par performance. This introduces intriguing possibilities, such as pre-training LLMs with long
connections and adaptively leveraging only a subset of the full model by finetuning on downstream task.

SST-2 QNLI QQP

0.80

L0785 . .

% 8 0.70 g 0.75

g7 g g

3 0.65 g0 g 070
< <

o
o
G

—e— LC-BERT
—=— Vanilla BERT

—e— LC-BERT
—=— Vanilla BERT

—e— LC-BERT
—=— Vanilla BERT

o
2
3

0 2 10 12 0 2 10 12 0 2 10 12

1 6 8
Prediction Layer

(c) QQP

1 6 8
Prediction Layer

(b) QNLI

4 6 8
Prediction Layer

(a) SST-2

Figure 13: Downstream performance of LC-BERT vs vanilla BERT, pre-trained for one epoch on
original BERT’s pretraining corpus.

G ANALYSIS OF LCN TRAINING DYNAMICS

G.1 INTRODUCTION

For simplicity we consider linear neural networks of depth d and derive the equations for the 1-dimensional case
(they can be expanded to /N-dimensional inputs).
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Notation x; is the output of layer ¢ and w; is the weight of layer ¢ (the weight used to construct ;). Then, xo is
the input (after the embedding) and y is the output.

G.2 FFNs AND LCNs

FFN forward pass
d
y(=z4) = Hwil’o ®
i=1
FFN backward pass for weight ¢
dy oy Ox;
= 10
ay d i—1
k=i+1 m=1
"after" path "before" path

LCN forward pass
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Observations We see that the gradient of w; can be decomposed in two terms, which we coin as "before" and
"after" path. These two paths play a major role in the gradient of each weight as well as the general training
dynamics of the network. LCNs have "before" path equivalent to FFNs but different "after” path due to the long
connections. We will argue that this is the reason why LCNs behave in the way we saw in the experiments.

If we consider the extreme case where all weights are initialized to zero, we see that in the case of LCN in
the first training batch only the gradient of the first layer’s weight will be non-zero. Moreover, for a weight ¢
to have a non-zero gradient, all the previous weights need first to be trained (non-zero gradient). Also, in the
forward pass, only the trained subnetworks will have a contribution to the output addition, effectively solving
the task with only those. So there is a gradual hierarchical training from early layers to later ones. If the first k
layers achieve low task error, effectively minimizing the loss, then the gradient flow to all layers will be small
effectively rendering the last d — k layers “under-trained”m

Although initializing all weights to zero is unrealistic, most popular initialization methods today initialize
weights with small norms, close to zero. As a result, the earlier analysis remains applicable: early LCN layers
tend to have significantly larger gradients initially due to the small weight norms, causing them to train faster
and contribute more to solving the task early on. Gradually, as the early layers are trained, the deeper layers
begin to train as well, depending on the complexity of the task. For instance, if the early layers successfully
minimize the loss function and solve the task, the gradients for the deeper layers will remain small. On the
contrary, in FFNs all weights have gradients with similar magnitudes initially (since gradient of weight ¢ contains
the product of all other weights and the input) and so they are all trained in a similar rate. Also notice that as the
depth increases these products grow smaller and smaller, making the gradients also small and the training slow
(vanishing gradients).

!Note that this depends very much on the initialization. For example, in Fig 3, where a wide range of values
were used for initialization, the LCN does not always converge a solution that only uses the first layer.
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G.3 FORWARD VS BACKWARD PATHS (WHY RESNETS DON’T GET THE JOB DONE)

For residual networks, the functional form induced by adding the identity at each layer introduces an exponential
number of paths and thus makes the backward pass more complicated. For illustrative purposes, we will
consider a simplified version of residual networks with a smaller number of paths. Specifically we will consider
a residual network architecture that can be thought of as a reversed or forward LCN (rLCN) where each layer is
receiving as input the output of the previous layer plus the input embedding xo. In essence, in LCNs we draw a
residual connection from each layer to the last layer, while in rLCNs we add residual connections from the input
embedding xo to all layers. We argue that this “backward” vs “forward” residual connections is what makes a
difference to the derivative flow dynamics during training. Specifically for rLCNs:

rLCN forward pass
Y =Tq (15)
Ti = WiTi—1 + Xo (16)
rLCN backward pass for weight ¢
s = s a”

j i—1 i—1
(9851 = ( H wk> <1+ Z H wr> ) (18)

k=i+1 m=1r=m

"after" path "before" path

This simple modification (that can be thought as a proxy or simplified traditional residual network architecture)
changes only the “before” path of the network (compared to FENs). Although, the modification of the “before”
path adds significant robustness to the training process (by ameliorating the vanishing gradients effect) it does
little to encourage earlier layers to get trained first, i.e., the derivative flow dynamics are not much different than
in the FFN case because the “after” term is identical to FFNs. The analysis can be extended to other residual
architectures, as well as, to novel architectures that combine “forward” and “backward” residual connections.

To summarize, in FFNs and Residual Networks all layers are trained in a similar rate; in the case of FFNs the
rate is relatively slow especially as the depth increases (vanishing gradients), whereas in the residual connections
case training is efficient.

So based on this analysis we expect that in terms of training speed earler layers will be trained slowest for FFNs,
followed by residual networks (that might show a slight improvement due to the “before” term), while LCNs
train their earlier networks fastest (due to the “after” term).

G.4 IN PRACTICE

Layer Gradient Norm vs Epoch
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Figure 14: Layer Gradient Norms (normalized to sum up to 1) during training of LC-Mixer on
CIFAR-10.
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We validate the theoretical claims of the previous section by monitoring the gradient dynamics of LCNs during
training. Specifically, we track the gradient norms of LC-Mixer while training on CIFAR-10. For clarity we
show 50 epochs of training and we form blocks by summing every 2 layers’ gradient norms. Additionally, the
gradient norms are normalized to 1 at each epoch, allowing the plot to reflect the percentage contribution of each
block’s gradient norm to the total. Figure[[4] validates our analysis; we observe that bottom layers have larger
gradient norms than deeper layers throughout the training

Note: Our analysis is further verified by the recent publication [[Chen et al.|(2023)], e.g., see Figure 2. Compare
the results for FFNs, ResNets shown in the paper with the figure abov

H CONNECTION TO GREEDY LAYER-WISE TRAINING

Greedy layer-wise training [Hinton et al.| (2006), [Bengio et al.| (2006)] was a popular method for training
deep neural networks in a sequential manner, inspired by cognitive neural modeling. Based on the conducted
mathematical analysis on LCN’s dynamics, we argue that LCNs share similarities with the method and can be
viewed as a "one-shot" version of it. In layer-wise training, the process is sequential: starting from the first
layer, each layer is trained individually while the other layers remain frozen, with training progressing from
first to last layer. Our analysis of LCN’s dynamics shows that a similar sequential layer-wise training process
occurs in LCNs, where the early layers train first, followed by the deeper layers. The key difference is that
in LCNs, this layer-wise training happens naturally, without the need to freeze layer gradients or introduce
hyperparameters like the number of epochs for each layer’s training. Interestingly, this behavior is inherently
driven by the architecture of LCNs (the structure imposed by the long connections), rather than being externally
imposed.

""'We note that each Mixer layer comprises four fully connected layers. To calculate the gradient norm for a
Mixer layer, we take the average of the gradient norms of these four layers.

12Also in Figure 1/Chen et al.[(2023) we observe that deeper layers in both FFNs and ResNets have larger
gradients. In contrast, as demonstrated both theoretically and empirically, LCNs show the opposite behavior.
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