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Abstract

Few-shot learning (FSL) aims to classify unseen examples (query set) into labeled
data (support set) through low-dimensional embeddings. However, the diversity
and unpredictability of environments and capture devices make FSL more chal-
lenging in real-world applications. In this paper, we propose Dual Support Query
Shift (DSQS), a novel challenge in FSL that integrates two key issues: inter-set
shifts (between support and query sets) and intra-set shifts (within each set), which
significantly hinder model performance. To tackle these challenges, we introduce
a DUal ALignment framework (DUAL), whose core insight is that clean features
can improve optimal transportation (OT) alignment. Firstly, DUAL leverages a
robust embedding function enhanced by a repairer network trained with perturbed
and adversarially generated “hard” examples to obtain clean features. Addition-
ally, it incorporates a two-stage OT approach with a negative entropy regularizer,
which aligns support set instances, minimizes intra-class distances, and uses query
data as anchor nodes to achieve effective distribution alignment. We provide
a theoretical bound of DUAL and experimental results on three image datasets,
compared against 10 state-of-the-art baselines, showing that DUAL achieves a re-
markable average performance improvement of 25.66%. Our code is available at
https://github.com/siyang-jiang/DUAL.

1 Introduction

Few-shot learning (FSL) addresses the challenge of limited labeled data by extracting features and
leveraging the similarity between support and query sets, rather than training a separate classifier for
each class. This characteristic makes FSL suitable for tasks with scarce data and unseen scenarios,
as exemplified by methods such as MatchingNet [45], which assigns a query example the label of
its most similar counterpart in the support set. Conventional studies on FSL often focus on cross-
domain settings [37, 52], where distribution shifts occur between training and testing data [41, 26].
To mitigate this issue, previous approaches have enhanced robustness through data augmentation [49,
50] or adversarial training [18, 53].

However, these methods assume that each support or query set is internally consistent, i.e., they
share the same domain during testing. In practice, Support-Query Shift (SQS) [3] frequently arises
due to differences in environments (e.g., foggy vs. high-luminance scenes) or capture devices (e.g.,
mobile phones vs. SLR cameras), leading to misclassification. To address SQS, Bennequin et al. [3]
first employed optimal transportation (OT) [7] to align embeddings into a shared latent space. More
recently, Jian et al. [21] introduced a noise-aware data augmentation scheme to alleviate distribution
misalignment, while Aimen et al. [1] highlighted the growing distribution mismatch between support
and query sets during testing.
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Yet prior studies on SQS have primarily addressed inter-set shifts, i.e., differences between support
and query sets, while often overlooking intra-set shifts, where instances within the same set experi-
ence distinct disturbances. These intra-set shifts further complicate the problem by blurring decision
boundaries. We term this overlooked issue Dual Support-Query Shift (DSQS), which encompasses
both inter-set and intra-set shifts during meta-testing. Intra-set variations can be as significant as
inter-set shifts, posing substantial challenges for existing SQS mitigation methods.

Figure 1: An illustrative example of
Support-Query Shifts (SQS), where col-
ors indicate classes, circles denote support
samples, and triangles denote query sam-
ples: (a) no shift, (b) inter-set shift, (c)
intra-set shift, and (d) dual shifts (DSQS).

As shown in Fig. 1, panel (a) illustrates that conven-
tional FSL, with no shift between support and query
sets, exhibits clear decision boundaries. These bound-
aries, however, become blurred under either inter-set
shifts (b) or intra-set shifts (c). In the inter-set case,
samples of the same class in the support and query sets
may still cluster, yet the comparison module fails to
classify query instances correctly because the two sets
lie in different domains. In the intra-set case, instances
of the same class within a set are scattered across do-
mains, preventing clustering. Consequently, even if a
query is classified to a nearby support instance, it may
not belong to the same class. When both shifts occur
simultaneously, as shown in (d), the boundaries blur
even further, severely reducing generalization and lead-
ing to poor inference performance under DSQS.

To address the DSQS problem, we propose the DUal ALignment Framework (DUAL), designed to
mitigate the adverse effects of two types of distribution shifts: inter-set shifts (between support and
query sets) and intra-set shifts (within each set). Based on our theoretical analysis, DUAL alleviates
the challenges in optimal transportation by combining a robust embedding function with a pixel-
level repairer to obtain clean features. The repairer, trained on predefined shifts that simulate query
distortions, rectifies them by minimizing the feature-space distance between original and repaired
data, thereby counteracting both inter-set and intra-set shifts.

In addition, the robust embedding function is trained using a generator that adversarially produces
perturbed "hard" samples that are less similar in the embedding space yet still correctly classified.
DUAL then employs a dual-regularized optimal transport approach, which identifies class-oriented
anchors within the support set by minimizing intra-class distances and aligns the distribution of other
instances to these anchors using optimal transport with a negative entropy regularizer. Additional
query samples are incorporated as anchors to enhance the robustness of the transportation plan.

The main contributions of this work are summarized as follows.

• We propose the Dual Support-Query Shift (DSQS) challenge, which investigates the inter-set
and intra-set shift problems in FSL. We theoretically show that both types of shifts can misguide
the domain alignment process under optimal transportation.

• To address DSQS, we introduce the DUal ALignment Framework (DUAL), which leverages a
repairer together with a robust embedding function adversarially trained by a generator to obtain
clean features. These features are then used to align support and query distributions through dual-
regularized optimal transportation.

• We provide both theoretical and empirical analyses of DUAL. In particular, we theoretically char-
acterize its behavior, and extensive experiments demonstrate that DUAL consistently outperforms
10 state-of-the-art methods, achieving an average improvement of 25.66% across three benchmark
datasets.

2 Related Work

Support-Query Shift in Few-shot Learning Conventional few-shot learning (FSL) methods can
be broadly categorized into three groups: hallucination-based, optimization-based, and metric-based
approaches [36]. Hallucination- and optimization-based methods typically aim to obtain a strong
initial model that can quickly adapt to new tasks with minimal updates [24, 33, 47, 48]. Our work
is more closely related to metric-based FSL, which focuses on learning a similarity-based classi-
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fier [45, 42, 17]. Representative methods include MatchingNet [45], which uses pairwise metrics,
and ProtoNet [42], which relies on class-wise metrics to assign labels to query samples based on
their proximity to support set representations. More recently, the support-query shift (SQS) set-
ting has emerged, where the support and query sets are drawn from different domains. To address
this challenge, TP [3] leverages optimal transport (OT) to align the support and query distributions.
However, image perturbations can distort the transport plan and lead to suboptimal alignment. To
mitigate this issue, PGADA [21] integrates a regularized OT framework with an adversarial gener-
ator to produce challenging examples for self-supervised adaptation. Similarly, AQP [1] enhances
model robustness by generating challenging instances but relies on a projection method rather than
adversarial generation.

Robust Few-shot Learning Robust few-shot learning aims to defend against adversarial samples
by developing robust embedding functions [12, 35, 28]. One research direction focuses on the use
of adversarial queries. AQ [12] employs adversarial queries to enhance model robustness, while
LCAT [29], a meta-learning-based method, achieves comparable performance to AQ with reduced
training time. In addition, Dong et al. [10] propose a non-meta-learning method that learns a robust
embedding function and applies a post-processing feature purifier to reduce computational overhead
further. SimpleFS [43] trains a robust network on base samples and classifies new samples by as-
signing them to the nearest base-category centroids in the feature space. Another line of research
leverages high-frequency spectrum information or self-distillation, both of which are sensitive to
adversarial perturbations in those regions [46, 27, 35]. For instance, LFI [27] shows that publicly
available robust models prefer the low-frequency spectrum, thereby avoiding other adversarial per-
turbations. SSL-ProtoNet [28] employs self-distillation to build robust classifiers, while RAS [35]
uses adversarial self-distillation to achieve robustness without explicitly using adversarial samples.

3 Preliminary

Few-shot Learning. Conventional FSL methods can be broadly categorized into three groups:
hallucination-based, optimization-based, and metric-based approaches. In metric-based FSL, a sup-
port set S =

⋃
c∈C Sc consists of C classes, where each class c contains |Sc| labeled instances. The

objective of FSL is to correctly assign each element of the query set Q =
⋃

c∈C Qc to one of these
C classes.

Let ϕ denote the embedding model, where ϕ(x) ∈ Rd maps a data point x into a d-dimensional
feature space. The model ϕ is trained on a labeled dataset D = {(xi, yi)}|D|

i=1, where xi denotes a
data point and yi its associated label. The learning of ϕ follows empirical risk minimization (ERM):

min
ϕ,θ

E(x,y)∼D[L(θ(ϕ(x)), y)],

where θ is a trainable classifier mapping the embedding ϕ(x) to label y, and L is the loss function.
Using the learned embedding model ϕ, data points in the support set (xs,i ∈ S) and query set
(xq,j ∈ Q) are transformed into their feature representations ϕ(xs,i) and ϕ(xq,j).

Optimal Transportation. Optimal transportation (OT) aims to realign distributions by minimiz-
ing the cost of transporting one distribution to another. This technique addresses discrepancies
between datasets, enhances model generalization from training to testing, and yields more robust
feature representations [7, 21]. A key concept in OT is the transport cost, which quantifies the effort
required to move probability mass between distributions, often measured using metrics such as the
Wasserstein distance.

Suppose there are finite samples in both the support set xs,i ∈ S and the query set xq,j ∈ Q. Discrete
OT employs empirical distributions to approximate the probability measures,

µ̂s =
∑
i

δs,i, µ̂q =
∑
j

δq,j , (1)

where δs,i and δq,j denote Dirac distributions. The discrete OT problem can then be formulated as

π∗ = argmin
π

∑
xs,i∼µ̂s, xq,j∼µ̂q

w(xs,i, xq,j)π(xs,i, xq,j), (2)
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Training Phase
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Figure 2: Overview of DUAL. In the training phase, we train a pixel-level repairer and a robust
embedding function, which are then utilized during inference. In the inference phase, the objective
is to align both intra-set and inter-set shifts using π′ and π∗.

where w(xs,i, xq,j) is the ground cost between samples.

To compute the transport plan π∗, Sinkhorn’s algorithm [8] is often applied. With the optimal plan,
the embeddings of the query set ϕ(xq,j) are transported to ϕ̂(xq,j) via barycentric mapping [7],
adapting the query set to the support set:

ϕ̂(xq,j) =

∑
xs,i∈S π∗(xs,i, xq,j)ϕ(xs,i)∑

xs,i∈S π∗(xs,i, xq,j)
, (3)

where ϕ̂(xq,j) denotes the transported embedding of xq,j . This allows the distance metric
M(ϕ(xs,i), ϕ̂(xq,j)) to be accurately computed within a shared embedding space.

Dual Support-Query Shift in FSL. Conventional FSL typically assumes a domain shift between
the training and testing phases, i.e., DTrain ∩ DTest = ∅. However, in the meta-testing phase, an
additional challenge arises: the support set S and the query set Q within each task may themselves
be drawn from different distributions, denoted as DS and DQ. As a result, the embeddings of
support samples ϕ(xs) and query samples ϕ(xq) may lie in different spaces, leading to an inter-set
shift that causes misclassification [3, 21]. This phenomenon, known as the Support-Query Shift
(SQS) problem [21, 3, 1], has been widely studied. Yet, prior work primarily focuses on inter-
set differences while overlooking variations within each set. We refer to this more general and
challenging scenario as the Dual Support-Query Shift (DSQS) problem. In addition to inter-set shifts,
DSQS accounts for intra-set shifts, where different instances within the same set (e.g., qi, qj ∈ Q)
may originate from distinct distributions. A similar issue arises in the support set. Moreover, under
DSQS, the distributions of instances across support and query sets can also be mutually disjoint due
to multiple unknown shifts, making alignment particularly difficult.

4 DUal ALignment Framework (DUAL)

To address DSQS, we present the DUal ALignment Framework (DUAL) for both training and
inference. The key idea of DUAL is that clean features facilitate more reliable OT alignment. We
first motivate DUAL by showing that both inter-set and intra-set shifts may mislead the OT plan
(§4.1). To mitigate this issue, DUAL first obtains clean features through a pixel-level repairer and
an adversarially trained embedding function (§4.2). It then reduces shifts using a dual-regularized
OT framework, aligning instances to handle both inter-set and intra-set variations (§4.3).
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In the training phase (Left Part of Fig. 2), we develop a pixel-level repairer R and a robust embedding
function ϕ for inference. Trainable network components are highlighted in pink. The yellow block
illustrates corrupting the original data x with shifts, which are then repaired by R. The repaired
data xr is compared with x using cosine similarity Lr to optimize R. In the orange block, Lg

denotes negative cosine similarity, while Ladv and Lori (Eq. (11)) represent KL divergence losses.
A generator G perturbs x to produce a hard example xp, which is less similar in the embedding
space but remains in the same class. These hard examples are generated via Ladv and Lg , while
Ladv and Lori jointly train the embedding function ϕ.

In the inference phase (Right Part of Fig. 2), features of support and query samples are extracted by
R and ϕ. As in Fig. 1, colors denote classes, while circles and triangles represent support and query
features. Transported support features (dashed circles) are aligned with class-wise centroids (gray
dashed circles with anchor symbols) according to the OT plan π′. Subsequently, transported query
features (green dashed circles) are obtained through the OT plan π∗.

4.1 Motivation

While earlier OT-based FSL methods [21, 3] assume a single domain on each side (one-to-one
alignment), the DSQS setting involves multiple domains in both the support and query sets. Follow-
ing [30], we model each domain as a component of a Gaussian mixture, with the overall distribution
represented as a class-weighted sum of Gaussians.

Assumption 1 (DSQS Gaussian-mixture). For every class c ∈ C, the latent feature ϕ(x) ∈ Rd

follows ϕ(x) ∼ N (µc,⋄,Σc,⋄), where ⋄ ∈ {s, q} denotes the support or query domain. The class
prior P (c) is shared across domains, but the component means µc,⋄ and covariances Σc,⋄ may differ.

Aggregating over classes yields the global moments

µ⋄ =
∑
c

P (c)µc,⋄, Σ⋄ =
∑
c

P (c)
(
Σc,⋄ + (µc,⋄ − µ⋄)(µc,⋄ − µ⋄)

⊤). (4)

Let W2(S,Q) denote the 2-Wasserstein distance between the empirical feature distributions of the
support set S and the query set Q.

Proposition 1 (OT cost under first-order Gaussian approximation). Approximating each domain by
its first-order moments gives

W 2
2 (S,Q) = ∥µs − µq∥22︸ ︷︷ ︸

inter-set mean gap

+ tr
(
Σs +Σq − 2(Σ1/2

s ΣqΣ
1/2
s )1/2

)︸ ︷︷ ︸
inter-set covariance gap

. (5)

Thus, the transport cost grows monotonically with (i) the inter-set mean gap ∥µs−µq∥2, and (ii) the
intra-set spreads tr(Σs) and tr(Σq).1

Proposition 2 (Error of transported embeddings). Let ϕ̂(xq,i) be the transported query embedding
obtained from the clean OT plan in Eq. (3), and ϕ̂σ(xq,i) its noisy counterpart. Assume additive
Gaussian noise η ∼ N (0, σ2

⋄I) is independently injected in both support and query domains ⋄ ∈
{s, q}. Then,

E
[
∥ϕ̂(xq,i)− ϕ̂σ(xq,i)∥22

]
= d

(
σ2
s + σ2

q

)
.

Higher noise levels σs, σq therefore increase the risk of mismatched OT plans, ultimately degrading
classification accuracy.

Summing up, Propositions 1 and 2 highlight two key sources of error under DSQS: (i) domain mis-
alignment (mean/covariance gaps), and (ii) feature noise. Our DUAL framework addresses both:
(i) it contracts domain gaps via dual-regularized OT, and (ii) it learns a noise-tolerant embedding,
thereby reducing W2(S,Q) and stabilizing transported features.

1If Σs and Σq commute, a common high-dimensional approximation [6], the cross term vanishes, reducing
the trace expression to tr(Σs +Σq).
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4.2 Dual Adversarial Training

During training, we adopt a two-level adversarial strategy to obtain clean features for subsequent
dual alignment, thereby enhancing model robustness by suppressing input noise and improving em-
bedding quality. Specifically, we first train a repairer R to remove noise from input images. Then, we
adversarially train an embedding function ϕ using a generator G, which produces "hard" examples
to strengthen its robustness.

Training a Pixel-level Repairer. To mitigate pixel-level noise, we first train a repairer R to restore
shifted images, thereby helping ϕ extract cleaner features. The key idea of training R is to minimize
the embedding-space distance of ϕ between features before and after repair. In this way, R preserves
the original semantic structure while reducing noise. Notably, R provides ϕ with low-noise inputs,
which theoretically tightens the feature-noise upper bound σ′ ≤ Lεp (detailed in Lemma 1).

As illustrated in the yellow block of Fig. 2, we add a predefined shift to the original data x, and the
repairer network R generates the restored data xr. The training objective is:

min
ϕ

Ex∼D
[
min
xr

M(ϕ(xr), ϕ(x))
]
, (6)

where M denotes the comparison metric in FSL, such as Euclidean distance or cosine similarity. We
encourage ϕ(xr) to be closer to ϕ(x) so that R learns to correct the imposed shift, producing cleaner
representations that reduce semantic distortion during inference.

To train R, we minimize the embedding-space distance between the repaired data xr and the original
data x, formulated as

min
R

M(ϕ(xr), ϕ(x)). (7)

In this way, the repairer R learns to correct diverse shifts with a single model, showing that our
framework is a bias-agnostic solution applicable to real-world scenarios.

Training a Robust Embedding Function. After corrupted data are restored by the repairer R,
we further enhance the robustness of the embedding function ϕ through adversarial training with
hard examples generated by a network G. As shown in the orange block (upper part) of Fig. 2, G
is trained to produce perturbed samples xp that are less similar to the original data point x in the
embedding space, by maximizing the comparison loss. To make ϕ resilient to such perturbations,
we adopt the following minmax objective:

min
ϕ

Ex∼D

[
max
xp

M(ϕ(xp), ϕ(x))
]
. (8)

In practice, we sample a batch of augmented candidates {xp} and select the one that maximizes the
loss L, so that ϕ is updated against the hardest instance. As illustrated in the orange block (bottom
part) of Fig. 2, we realize G as a semantic-aware generator:

xp = G(x) s.t. ∥θ(ϕ(xp))− θ(ϕ(x))∥22 ≤ ϵ, (9)

where G perturbs x into xp while preserving its class semantics. We adopt dropout [14] for
stochasticity. Unlike conventional adversarial training that perturbs inputs via i.i.d. noise (e.g.,
xp ∼ N (x, σ2I)) [39, 47], our generator encodes semantic structure directly, requiring fewer sam-
ples to achieve convergence [13].

We enlarge the embedding distance between x and its perturbed counterpart xp. To ensure that G
retains sufficient class semantics, we enforce that the generated example xp can still be classified
as the same label y, using KL divergence [37] as a regularizer. In practice, we adopt the soft-label
vector form of y for the KL term. The generator is therefore trained with the following objective:

max
G

M(ϕ(G(x)), ϕ(x)) − KL
(
θ(ϕ(G(x))), y

)
. (10)

Following [21], we optimize both G and R via stochastic gradient descent (SGD). During this stage,
the parameters of the embedding functions ϕ and θ are kept fixed [2].
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Once the hard examples are derived, we train the embedding functions to acquire more robust fea-
tures. As shown in the orange block (bottom part) of Fig. 2, we jointly minimize the empirical risk
of both the original data x and the perturbed example xp using KL divergence:

min
ϕ,θ

λKL(θ(ϕ(x)), y)︸ ︷︷ ︸
Lori

+ (1− λ)KL(θ(ϕ(xp)), y)︸ ︷︷ ︸
Ladv

, (11)

where λ controls the trade-off. During inference, DUAL extracts robust features through the repairer
R and the embedding function ϕ. While their combination may appear straightforward, our design
enforces a clear separation of roles: R acts as a pixel-level denoiser, whereas ϕ operates at the feature
level. Since G challenges ϕ by generating semantically perturbed samples, R must instead preserve
proximity to the original semantic space. Jointly training R and ϕ would thus lead to conflicting
objectives and hinder convergence, making the decoupled design crucial for stability.

4.3 Dual Regularized Optimal Transportation

Previous OT-based methods for SQS assume a single-domain alignment, which becomes insufficient
under the DSQS setting, as highlighted in Proposition 1. To address this, we propose a dual regular-
ized optimal transportation scheme for inference. After obtaining clean features from the repairer
R and robust embedding ϕ, we extend classical OT with negative-entropy regularization to stabilize
the transport plan.2

Intra-set Alignment via Regularized OT. As illustrated in the purple block of Fig. 2, we first
perform intra-set alignment by transporting support samples S to their class-wise centroids S (gray
dashed circles with anchor symbols), yielding a plan π′ and a transported support set S ′ = {x′

s,i}.
This step reduces intra-class variance and alleviates intra-set shifts. Formally,

π′ = argmin
π

∑
xs,i∈S
xs,k∈S

β w(xs,i, xs,k)π(xs,i, xs,k) + (1− β)π(xs,i, xs,k) log π(xs,i, xs,k), (12)

where S denotes class-wise centroids and β controls the smoothness of the transport plan.

Inter-set Alignment with Anchored OT. After obtaining π′ and the transported support set S ′,
we align the query set Q with S ′. Specifically, we build the queryanchor cost matrix

CQ,S′

j,i = w
(
ϕ(xq,j), ϕ(x

′
s,i)

)
, (13)

where w(·, ·) is the ground cost used in Eq. (12). We then reuse the same regularized OT formulation,
replacing (S,S) with (Q,S ′), and obtain π∗ via Sinkhorn scaling.

In summary, the dual OT scheme produces two transport plans, π′ (supportcentroid) and π∗ (query-
support), which jointly mitigate intra-set and inter-set shifts under DSQS. Notably, the first-stage
alignment is only relevant for multi-shot cases; in the one-shot setting, no intra-class centroid align-
ment is required.

5 Theoretical Analysis

Here, we analyze four key quantities that characterize the behavior of the DUAL framework: (i)
the post-repair noise variances σ′

s and σ′
q; (ii) the class-conditional covariances Σc,⋄ for ⋄ ∈ {s, q};

(iii) the 2-Wasserstein distance W2(S,Q) between the aligned support and query distributions; and
(iv) the classification risk Pr[h(x) ̸= y] under a 1-Lipschitz nearest-prototype classifier h. Detailed
proofs can be found in Appendix A.1.

We first show that variance contraction is achieved by the repairer.
Lemma 1 (Variance contraction). Assume that: 1) ϕ is L-Lipschitz, i.e., ∥ϕ(u)−ϕ(v)∥2≤L∥u−v∥2;
2) The repair network R satisfies an expected pixel-space MSE of ε2p = Ex∥R(x) − x∥22. Then the
post-repair feature noise in each domain satisfies σ′

⋄ ≤ Lεp, where ⋄ ∈ {s, q}.
2In the one-shot scenario, where only one sample exists in the support set, we apply regularized optimal

transport to align the support set and query set.
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Lemma 1 shows that pixel-space denoising reduces feature-space noise linearly via the Lipschitz
continuity of ϕ, thereby controlling stochastic variation within domains. To prevent adversarial
shifts from inflating class-conditional spreads, we next establish a margin enlargement result.
Lemma 2 (Margin enlargement). Assume dual adversarial training is used with a target margin
parameter κ > 0, following a margin-based objective such as:

min
G

max
ϕ

[
− cos

(
ϕ(x), ϕ(G(x))

)
+ λLcls

(
G(x), y

)]
, (14)

where Lcls (e.g., CE or KL divergence) penalizes label changes. Then for any x, ∥ϕ(x) −
ϕ(G(x))∥2 ≥ κ, and G(x) preserves the class label of x. Consequently, tr

(
Σc,⋄

)
− tr

(
Σadv

c,⋄
)
≥

κ2, for all c and ⋄ ∈ {s, q}.

While Lemma 1 controls random noise, Lemma 2 guarantees a deterministic margin between clean
and adversarial features of the same class, thereby contracting each class-conditional covariance
ellipsoid. Together, the two lemmas imply that the combined effect of Repair R and Generator G
tightens the geometry of both domains. We now quantify how this geometric tightening reduces the
2-Wasserstein distance between the support and query distributions.
Theorem 1 (Contracted OT bound). Under the assumptions of Lemmas 1–2, define κT =κ, εT =
εp, ρT =e−βt for t Sinkhorn iterations with damping β > 0. Then,

E
[
W 2

2 (S,Q)
]
≤ (1− ρT )

[
∥µs − µq∥22 − 2κT︸ ︷︷ ︸
shrunk mean gap

+tr(Σs +Σq)− 2κ2
T︸ ︷︷ ︸

shrunk covariance

]
+ 2L

√
d εT . (15)

Eq. (15) reveals that the support-query transport cost contracts by (at least) 2κT in the means and
2κ2

T in the covariances, up to a vanishing solver residual ρT and the small repair term LεT . A
reduced Wasserstein distance, in turn, strengthens the generalization guarantees of Lipschitz classi-
fiers. The next corollary makes this connection explicit.
Corollary 1 (Classification risk). Let h be a 1-Lipschitz nearest-prototype classifier in the aligned
space, and define ∆ = minc ̸=c′∥µc − µc′∥2. If ∆ > 2κT , then under the same assumptions as
Theorem 1, the classification risk satisfies

Pr[h(x) ̸= y] ≤ W 2
2 (S,Q)
∆2

+ exp
(
− κ2

T

2(LεT )2

)
. (16)

Eq. (16) decomposes the error into a distribution mismatch term, W 2
2 (S,Q)/∆2, and a robustness

term that decays exponentially with the squared margin κ2
T . Hence, the alignment strategies simul-

taneously minimise domain divergence and enlarge the safety margin around each class prototype,
yielding provably lower risk.

Summing up, Lemma 1 establishes that pixel-level repair reduces feature noise via Lipschitz conti-
nuity, while Lemma 2 shows that dual adversarial training enforces feature separation and contracts
class-conditional covariances. Building on these, Theorem 1 proves that DUAL reduces the Wasser-
stein distance between support and query distributions after repair and alignment, up to a solver
residual. Finally, Corollary 1 bounds the classification error, revealing that generalization is jointly
governed by inter-class separation and the robustness margin. Together, these results provide a
rigorous foundation for how DUAL achieves robust alignment and lowers classification risk under
domain shift.

6 Experiment

We evaluate DUAL against 10 state-of-the-art baselines on three public datasets. Due to space
limitations, the pseudo-codes, dataset details, baseline descriptions, and implementation details are
provided in Appendix B.

Setup. To validate our framework, we evaluate on three standard benchmark datasets: (1) CIFAR-
100 [23], (2) mini-ImageNet [44], and (3) Tiered-ImageNet [38] for FSL. We compare against
10 state-of-the-art FSL methods, divided into three categories: (i) four conventional FSL base-
lines: MatchingNet [45], ProtoNet [42], TransPropNet [31], and FTNet [9]; (ii) three support-query
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Table 1: Quantitive results of DUAL.

Methods CIFAR-100 mini-ImageNet Tiered-ImageNet CIFAR-100 mini-ImageNet Tiered-ImageNet

1-shot 5-shot
MatchingNet [45] 30.26±0.38 43.62±0.47 30.01±0.41 40.35±0.33 56.24±0.37 35.05±0.36

ProtoNet [42] 28.53±0.30 43.84±0.44 30.15±0.41 41.59±0.41 59.83±0.42 43.41±0.43

TransPropNet [31] 31.01±0.34 24.22±0.29 24.18±0.32 37.06±0.40 25.93±0.29 35.48±0.37

FTNet [9] 22.36±0.21 37.04±0.44 22.01±0.30 26.19±0.25 49.14±0.36 24.50±0.23

AQ [12] 35.86±0.54 31.59±0.44 30.24±0.40 53.93±0.55 43.85±0.49 38.54±0.42

TP [3] 30.89±0.42 45.66±0.55 29.34±0.43 45.50±0.37 62.32±0.38 41.92±0.39

PGADA [21] 34.90±0.45 50.37±0.57 28.47±0.40 49.45±0.38 61.09±0.39 40.73±0.34

AQP [1] 31.68±0.39 30.59±0.43 30.40±0.40 45.09±0.46 42.65±0.57 45.34±0.60

RAS [35] 36.98±0.38 50.40±0.32 31.05±0.40 50.02±0.21 63.95±0.40 43.98±0.42

SSL-ProtoNet [28] 36.00±0.38 28.59±0.30 29.31±0.48 48.74±0.37 36.56±0.32 35.65±0.37

DUAL-P 38.93±0.50 53.00±0.60 34.29±0.50 54.47±0.40 67.83±0.40 47.81±0.41

DUAL-M 39.35±0.51 54.44±0.59 35.29±0.37 50.11±0.40 64.04±0.42 42.96±0.38

Table 2: Ablation studies and In-depth analysis of DUAL.
Techniques

Variants
CIFAR-100 mini-ImageNet Tiered-ImageNet CIFAR-100 mini-ImageNet Tiered-ImageNet

1-shot 5-shot
w./o. dual AT & OT 27.43±0.32 43.93±0.47 27.85±0.35 41.97±0.41 63.60±0.45 40.48±0.40

w./o. dual AT 31.36±0.41 53.43±0.59 30.76±0.43 42.00±0.44 66.22±0.46 40.84±0.40

w./o. dual OT 34.63±0.40 40.88±0.45 27.54±0.36 53.20±0.44 66.69±0.43 30.57±0.34

w./o. G 35.98±0.28 43.74±0.79 29.32±0.37 47.10±0.47 61.22±0.78 43.95±0.49

w./o. R 27.47±0.36 44.12±0.43 26.73±0.26 35.05±0.39 62.33±0.38 37.92±0.32

Fixed G 38.48±0.50 55.35±0.61 31.12±0.47 52.47±0.47 66.91±0.47 42.54±0.40

Enc shift to ϕ 34.56±0.38 49.37±0.50 24.26±0.26 45.98±0.38 62.55±0.39 29.11±0.29

TP + R 32.03±0.36 48.58±0.53 28.52±0.39 46.13±0.40 64.25±0.40 41.22±0.38

DUAL-P 38.93±0.50 53.00±0.59 34.29±0.50 54.47±0.40 67.83±0.40 47.81±0.41

shift baselines: TP [3], PGADA [21], and AQP [1]; (iii) three adversarially robust FSL baselines:
RAS [35], AQ [12], and SSL-ProtoNet [28]. Since DUAL is a model-agnostic adversarial alignment
framework, we implement it with different classifiers, e.g., ProtoNet (DUAL-P) and MatchingNet
(DUAL-M).

Quantitative results. Table 1 shows that DUAL consistently outperforms the four conventional
baselines (MatchingNet, ProtoNet, TransPropNet, and FTNet), achieving an average improvement
of 24.16%. These methods fail to address the distribution shift between support and query sets,
which DUAL effectively realigns using adversarial training. Compared to adversarially robust FSL
methods, DUAL (including DUAL-P and DUAL-M) relatively surpasses SSL-ProtoNet by 35.65%
on average by aligning distributions at both the task and instance levels. Although TP and AQP also
leverage optimal transport, they remain sensitive to small perturbations and relatively suffer 12.93%
and 21.86% accuracy loss, respectively. Overall, DUAL achieves up to 25.66% higher accuracy than
state-of-the-art methods on average by reconstructing information lost due to instance-level shifts.

Ablation Studies. We conduct ablation studies on DUAL-P with ProtoNet (similar trends hold for
MatchingNet). As shown in Table 2, removing both dual adversarial training (Dual AT) and dual
regularized optimal transport (Dual OT) causes a substantial performance drop, confirming their
necessity. Specifically, Dual AT improves accuracy by an average of 11.59%, with the largest gain
observed on Tiered-ImageNet in the 1-shot setting (from 30.76% to 34.29%), where clean features
are crucial for reliable alignment (see §4.1). Adding Dual OT further enhances performance, with
improvements of up to 17.24% in 5-shot accuracy on Tiered-ImageNet, as it explicitly mitigates
distribution shifts in the feature space through optimal transport.

In-depth Analysis. We further analyze the roles of the generator (G) and repairer (R). Removing
G relatively reduces accuracy by 11.80%, showing its importance in generating adversarial pertur-
bations for robustness. Excluding R causes a 22.54% relative drop, highlighting its critical role in
repairing features for alignment. Fixing G during training relatively lowers performance by 3.20%,
indicating that a trainable G better captures instance-specific variations. Training only the encoder ϕ
on perturbed images without R yields a 7.06% gain, but still underperforms the full model. Adding
R on TP [3] can boost performance by 5.24%, confirming its role in mitigating shifts and improv-
ing generalization. These results validate the complementary roles of G and R in robust few-shot
learning under domain shifts. Due to space limitations, we provide additional visualization effects
in the appendix, comparing cosine similarity to illustrate how features contribute to alignment. For
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Table 3: The results of adopting DSQS and CD-FSL.
Method In-Domain Out-of-Domain

ImageNet-1K Aircraft Describable Textures Fungi MSCOCO
ProtoNet [42] 21.14±0.55 20.12±0.47 35.51±0.49 18.82±0.60 21.41±0.67

TransPropNet [31] 10.91±0.25 11.86±0.29 19.85±0.28 10.13±0.31 10.15±0.31

AQ [12] 15.94±0.50 19.53±0.40 30.11±0.29 18.09±0.61 20.46±0.20

PGADA [21] 22.67±0.50 17.91±0.48 36.04±0.47 22.72±0.63 26.69±0.64

DUAL-P 25.66±0.54 21.83±0.57 40.69±0.51 26.28±0.69 31.66±0.71

Method Out-of-Domain
Omniglot Quick Draw VGG Flower CUB-200-2011 Traffic Signs

ProtoNet [42] 17.09±0.56 28.43±0.73 47.98±0.72 24.94±0.63 29.32±0.74

TransPropNet [31] 10.15±0.29 10.63±0.31 14.70±0.42 11.85±0.35 10.90±0.31

AQ [12] 12.98±0.11 18.21±0.36 49.60±0.72 26.33±0.31 20.38±0.68

PGADA [21] 32.81±0.82 40.97±0.73 49.93±0.73 24.71±0.60 31.63±0.68

DUAL-P 50.71±0.92 53.58±0.77 60.45±0.76 31.17±0.73 37.33±0.74

example, on mini-ImageNet, adopting intra-OT and inter-OT increases the alignment similarity by
approximately 14.6% and 20.5%, respectively.

When DSQS Meets Cross-Domain FSL. Cross-Domain (CD) FSL introduces a domain gap be-
tween the training and testing sets, whereas DSQS imposes dual shifts at meta-test time: inter-set
shifts between support and query sets, and intra-set shifts within each set. To evaluate both settings
in a unified framework, we conduct experiments on four representative baselines using Meta-Dataset,
which spans ten public image datasets across diverse domains. Following the protocol of [44], we
meta-train on the ImageNet-1K training split and evaluate on ImageNet-1K (in-domain) as well as
the remaining datasets (out-of-domain). Numbers of ways, shots, and query images are randomly
sampled as in [16]. As shown in Table 3, DUAL-P achieves the best performance across all domains.
These results indicate that DUAL generalizes effectively under both in-domain and out-of-domain
conditions, and remains robust to the dual shifts characteristic of DSQS.

7 Discussion and Conclusion

Real-world Complex Tasks. DUAL can be applied to complex real-world tasks such as quality
monitoring and beverage deterioration monitoring [19, 20], where distribution shifts are common.
By aligning distributions in the embedding space, our framework is able to maintain robustness
in these settings. For example, adapting DUAL to object detection or segmentation requires only
modifications to the training objective, such as the choice of loss functions. The key concept of
DUAL is first to extract clean features via Dual AT and then perform improved alignment through
Dual OT, which together address both inter-set and intra-set shifts. Pre-trained models such as
CLIP can also provide cleaner features due to their strong generalization capabilities [25], but they
introduce higher computational costs and slower inference in real-world applications.

Limitations and Future Work. Overall, this work introduced DSQS as a challenging FSL
scenario characterized by both inter-set and intra-set distribution shifts, and proposed the DUal
ALignment Framework (DUAL) to mitigate them. Theoretical and empirical results demonstrate
that DUAL outperforms ten baselines across multiple datasets. Looking ahead, we envision ex-
tending DUAL to broader vision tasks, exploring stronger embedding functions, and investigating
additional techniques for addressing DSQS. Nevertheless, DUAL still leaves room for refinement
and integration of more advanced techniques. Incorporating recent advances in robust embedding
learning or distribution alignment could further improve its effectiveness. For example, more sophis-
ticated adversarial training strategies [4] or advanced OT formulations [40, 32] may better capture
the nuances of real-world data distributions.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we first defined DSQS, a novel challenge in FSL caused by inter-
set and intra-set distribution shifts. To address this, we propose the, DUAL, which mitigates
these shifts by generating clean features and optimizing the transportation plan. Theoretical
and experimental results demonstrate that DUAL outperforms 10 baselines across multiple
datasets. We believe that the abstract and introduction can reflect the paper’s contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. The re-
viewers will not perceive a No or NA answer to this question well.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that the paper
does not attain these goals.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a subsection on limitations in the discussion in §7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The formal statements alongside proofs are presented in Appendix §A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included detailed implementation information in both the main paper
and supplementary materials to enable faithful reproduction of our method. We also release
our code at https://github.com/siyang-jiang/DUAL.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released our code at https://github.com/siyang-jiang/DUAL.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include comprehensive training and test details in Appendix §B.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by statistical significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include computer resources details in §B.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a section on limitations in the discussion in §7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets are properly credited in this paper.
The license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof

A.1 Preliminary: Optimal Transportation

Episode data and embeddings Let the support set be S = {xs,i}mi=1 with labels {ys,i} and the
query set be Q = {xq,j}nj=1. The embedding model ϕ : X →Rd yields features zs,i = ϕ(xs,i) and
zq,j = ϕ(xq,j). Unless otherwise stated, we use uniform masses ai = 1

m and bj = 1
n for support

and query, collected as a ∈ ∆m and b ∈ ∆n.

Ground cost and cost matrix Let w(·, ·) be a ground cost between two features (e.g., squared
Euclidean w(u, v) = ∥u− v∥22 or cosine distance w(u, v) = 1− ⟨u,v⟩

∥u∥2∥v∥2
). The episode cost matrix

is C ∈ Rm×n with entries
Ci,j = w

(
zs,i, zq,j

)
.

Discrete Kantorovich OT (primal form) A transport plan is a nonnegative matrix π ∈ Rm×n
+

that moves probability mass from S to Q while satisfying marginal constraints:

π1n = a, π⊤1m = b.

The (unregularized) OT problem minimizes the total cost

min
π≥0
⟨C, π⟩ s.t. π1n = a, π⊤1m = b,

which upper-bounds the squared 2-Wasserstein distance between the empirical feature distributions
of S and Q.

Entropy-regularized OT and Sinkhorn scaling For stability with few samples and noisy fea-
tures, we adopt an entropy-regularized objective consistent with our framework:

min
π≥0

β ⟨C, π⟩+ (1− β)
∑
i,j

πi,j log πi,j s.t. π1n = a, π⊤1m = b,

where β ∈ (0, 1] trades off fidelity to C (large β) and smoothness of π (small β). This is equivalent
to the common form ⟨C, π⟩ + τ

∑
i,j πi,j(log πi,j − 1) with temperature τ = 1−β

β . Defining the
Gibbs kernel K = exp(−C/τ) elementwise, the optimizer is obtained by Sinkhorn iterations:

v ← b⊘ (K⊤u), u← a⊘ (Kv), π = diag(u)K diag(v),

where ⊘ denotes elementwise division.

Barycentric projection (feature transport) Given an optimal plan π, we align query features to
the support geometry via barycentric mapping:

ẑq,j =

∑m
i=1 πi,j zs,i∑m

i=1 πi,j
,

and compute the metric M(·, ·) (e.g., cosine or Euclidean) in the aligned space for classification.

In our two-stage alignment (§4.3), we instantiate this machinery twice: (i) an intra-set plan π′ that
transports support instances to class-wise centroids, producing S′, and (ii) an inter-set plan π∗ that
aligns queries to S′.

A.2 Proof of Proposition 1

Proof. When both of the marginals µs, µq are Gaussian distributions, the problem can be greatly
simplified. A closed-form solution exists. Denote the mean and covariance of µ∗ and Σ∗, respec-
tively. Let S,Q be two Gaussian random vectors associated with µs, µq , respectively. Then, the cost
becomes

E{∥S −Q∥2} = E{∥S̃ − Q̃∥2}+ ∥ms −mq∥2, (17)

where S̃ = S −ms and Q̃ = Q −mq are the zero-mean versions of S and Q. We minimize (17)
over all possible Gaussian joint distributions between X and Y , resulting in
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min
K

{
∥ms −mq∥2 + trace(Σs +Σq − 2K) |

[
Σ0 K
KT Σ1

]
≥ 0

}
,

with K = E{S̃Q̃T }. The constraint is semidefinite, so the above problem is a semidefinite program-
ming (SDP). It turns out that the unique minimizer in closed form achieves the minimum

K = Σ1/2
s (Σ1/2

s ΣqΣ
1/2
s )1/2Σ−1/2

s

with minimum value

W (µs, µq)
2 = ∥m0 −m1∥2 + trace(Σs (18)

+Σq − 2(Σ1/2
s ΣqΣ

1/2
s )1/2). (19)

The consequent displacement interpolation µt is a Gaussian distribution with mean mt = (1 −
t)ms + tmq and covariance

Σt = Σ−1/2
s

(
(1− t)Σq + t(Σ1/2

s ΣqΣ
1/2
s )1/2

)2

Σ−1/2
s . (20)

A.3 Proof of Proposition 2

We first provide a Lemma to prove the Proposition 2.
Lemma 3. The error of the transportation cost is

Wσ(µs, µq) ≤W (µs, µq) ≤Wσ(µs, µq) +
√

d(σ2
s + σ2

q ),

where Wσ(µs, µq) := W (µs∗Nσs
, µq∗Nσq

) denotes the original support and query set distribution
µs and µq being perturbed with Gaussian noises σs and σq .

Note that |·| is the absolute value, and ∗ is the convolution operator. Based on Lemma 3, we estimate
the error of transported embedding ϕ̂(xs,i) in Eq. (3).

Proof. The left-hand side inequality immediately follows because W is non-increasing under con-
volutions, since N√σ2

s+σ2
q

= Nσs
∗ Nσq

, where ∗ is the convolution operator.

On the right side of the inequality, we adopt Kantorovich-Rubinstein duality to write the optimal
transport as follows.

W (µs, µq) = sup
∥w∥Lip≤1

Eµs
[w]− Eµq

[w] (21)

Wσ(µs, µq) = sup
∥w∥Lip≤1

Eµs∗Nσs
[wσ]− Eµq∗Nσq

[wσ] (22)

where ∥·∥Lip is the Lipschitz norm. Letting w∗ be optimal for W (µs, µq), we obtain,

Wσ(µs, µq) = Eµs∗Nσs
[w∗]− Eµq∗Nσq

[w∗]. (23)

Let Xs ∼ µs, Zs ∼ Nσs as independent random variables, we have,

|Eµs
[w∗]− Eµs∗Nσs

[w∗]| (24)

=E[w∗(Xs)]− E[w∗(X + Zs)]

≤E[∥Zs∥22] =
√
dσs.

where the last inequality uses ∥w∗∥Lip ≤ 1. d is the dimension of the embedding vector. Similarly,
Xq ∼ µq , Zq ∼ Nσq

as independent random variables, we have,

|Eµq [w
∗]− Eµq∗Nσq

[w∗]| (25)

=E[w∗(Xq)]− E[w∗(X + Zq)]

≤E[∥Zq∥22] =
√
dσq.

By inserting Eq. (24) and Eq. (25) to Eq. (23), and Cauchy-Schwarz inequality, we concludes the
proof.
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In the following, we prove the proposition.

Proof. Base on Lemma 3, barycentric coordinate is defined as follows,

π̂∗
i =

π∗(xs,i, xq,j)∑
xq,j∈Q π∗(xs,i, xq,j)

∼ Nσs (26)

Let Xq ∼ µq , Xσ
q ∼ µq ∗Nσq as independent random variables,

E[Xσ(t)
q −X(t)

q ] = σq, (27)

where X
σ(t)
q and X

(t)
q denotes the t-th dimension of random variable Xσ

q and Xq , respectively.

Combining Eq. (26) and Eq. (27), the perturbed distribution X̂s ∼ µs ∗Nσs ∗Nσq =
µs ∗N√σ2

s+σ2
q
.

E[X̂q −Xq] =
√

d(σ2
s + σ2

q). (28)

As the noise level, i.e., σs, and σq , increases, it is more likely to mislead the transportation plan and
alleviate the model’s performance.

A.4 Proof of Lemma 1

Proof. Fix ⋄ = s (the query case is identical). The noisy feature of a sample is z̃ = ϕ(R(x)), and
the noisefree feature is z = ϕ(x). By Lipschitz continuity, ∥z̃ − z∥2 ≤ L ∥R(x) − x∥2. Squaring
and taking the expectation over x ∼ Ds yields:

E∥z̃ − z∥22 ≤ L2 E∥R(x)− x∥22 = L2 ε2p.

The left-hand side is σ′ 2
s , so σ′

s ≤ Lεp.

A.5 Proof of Lemma 2

Proof. The optimality of the generator G follows from the fact that, for a fixed encoder ϕ, the
cosine loss remains strictly larger than its minimum when ∥ϕ(x) − ϕ(G(x))∥2 < κ; thus, the
margin constraint must be met to avoid increasing the classification loss Lcls. Conversely, given
an optimal generator, the encoder ϕ seeks to maximize the cosine loss by pushing ϕ(G(x)) away
from ϕ(x), thereby enforcing the margin κ. This adversarial separation has the effect of tightening
the classconditional covariance: letting µc,⋄ = E[ϕ(x) | y = c] denote the class center, adding
adversarial examples ϕ(G(x)) at distance κ decreases the empirical second moment around µc,⋄ by
at least κ2.

A.6 Proof of Theorem 1

Proof. We derive the bound by considering the combined effects of mean alignment, covariance
reduction, feature noise, and Sinkhorn solver inaccuracy. First, dual-adversarial training enforces
a minimum margin κT between each sample and its adversarial counterpart in feature space. As a
result, each centroid (i.e., domain mean) moves toward the other by up to κT , leading to at least
a 2κT reduction in the squared Euclidean distance between the support and query means due to
the reverse triangle inequality. Similarly, since adversarial samples are at least κT away from their
respective class centers, the empirical second moment around each class center is reduced by at
least κ2

T , and across both domains, the total covariance trace is decreased by at least 2κ2
T . Next,

the feature noise introduced by the pixel-level repair network is bounded in expectation by LεT per
dimension, and across a d-dimensional embedding, this contributes an additional distortion bounded
by 2L

√
d εT when considering one sample from each domain. Finally, the entropic Sinkhorn solver

used to approximate the optimal transport cost yields a (1 − ρT )-contracted estimate of the true
cost, where ρT = e−βt depends on the number of iterations t and regularization strength β [11].
Combining these effects yields the desired bound in Eq. (15).
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A.7 Proof of Corollary 1

Proof. We derive the classification risk bound by considering two failure modes: transport error
and repair noise. Let x be a query sample and x′ its aligned prototype. Since h is 1Lipschitz, the
classification decision satisfies

|h(x)− h(x′)| ≤ ∥ϕ(x)− ϕ(x′)∥2, (29)

and by Markovs inequality, the probability that h(x) ̸= h(x′) is bounded by E[∥ϕ(x)−ϕ(x′)∥22]/∆2,
where ∆ is the minimum inter-class prototype separation.

This yields the first term. For the second term, Lemma 1 implies that the repaired feature ϕ(R(x))
deviates from the true feature ϕ(x) by a sub-Gaussian variable with parameter LεT , so the proba-
bility that this deviation exceeds the margin κT is bounded by exp(−κ2

T /2(LεT )
2) via Hoeffdings

inequality. A misclassification occurs if either the transport error moves the sample outside its class
region or the repair noise shifts the feature beyond the margin; by the union bound, this yields the
combined upper bound in Eq. (16).

B Implementation Details

B.1 Pseudo Code of DUAL.

Algorithm 1 DUal Alignment Framework (DUAL)
Require: Training dataset D, comparison module M , learning rate η, trade-off parameters λ1 and λ2, an

arbitrary shift S, support set S, query setQ.
Ensure: Embedding model ϕ, repairer R, Optimal Plan π∗,
1: Initialize generator G, repairer R,
2: Initialize embedding model ϕ, classifier θ.
3: # Training Stage
4: for {x, y} in D do
5: # fixed ϕ, θ, update G, R
6: xp = G(x), xc = S(x), xr = R(xc)
7: Lg = −M(ϕ(xp), ϕ(x)), Lr = M(ϕ(xr), ϕ(x)),
8: Ladv = KL(θ(ϕ(xp)), y))
9: # Generated less similar data points.

10: G← G− η∇(Lg + Ladv) , R← R− η∇Lr

11: # fixed G, R, update ϕ, θ
12: xp = G(x),
13: Lori = KL(θ(ϕ(x)), y)), Ladv = KL(θ(ϕ(xp)), y))
14: # classifying the generated samples correctly.
15: ϕ← ϕ− η∇ (λLori + (1− λ)Ladv)
16: θ ← θ − η∇ (λLori + (1− λ)Ladv)
17: # Inference Stage
18: Solve the Eq. 12 to obtain π′ and π∗

19: Sf = ϕ(R(S)),Qf = ϕ(R(Q))
20: Sf = 1

|Sf |
∑
Sf , S ′

f = π′(Sf ,Sf ),Q′
f = π∗(S ′

f ,Qf )

21: for {f ′
s, f

′
q, ys} in S ′

f ,Q′
f do

22: yq = M(fs, fq, ys)

B.2 Details of Datasets

• CIFAR-100 consists of 60, 000 three-channel square images of size 32 × 32, evenly distributed
in 100 classes. Classes are evenly distributed in 20 superclasses. We employ 19 image transfor-
mations [51], each being applied with 5 different intensity levels, to evaluate the robustness of a
model.

• mini-ImageNet contains 60, 000 square images with three channels of size 224 × 224 from the
ImageNet dataset with a 64-classes training set, a 16-classes validation set, and a 20-classes test
set [45]. Similar to CIFAR-100, mini-ImageNet also has the same transformations proposed
by [15] to simulate different domains [15].

24



• Tiered-ImageNet [38] contains 779,165 three-channel 84 × 84 images, grouped into 34 higher-
level nodes in 608 classes. The nodes are partitioned into 20, 6, and 8 disjoint sets of training,
validation, and testing nodes, and the corresponding classes form the respective meta-sets.

• Meta-dataset [44] contains 10 public image datasets of a diverse range of domains: ImageNet-
1k, Omniglot, FGVCAircraft, CUB-200-2011, Describable Textures, QuickDraw, FGVCx Fungi,
VGG Flower, Traffic Signs, and MSCOCO. Each dataset has train/val/test splits.

B.3 Details of Baselines

• MatchingNet [45] measures the pairwise cosine similarity between the support set and the
query set and assigns the same class of the support example to the query example.

• ProtoNet [42] uses Euclidean distance to classify queries to the prototype embeddings, i.e.,
averaging the embeddings of all support examples in the same class.

• TransPropNet [31] is an extension of ProtoNet, which utilizes a graph neural network of
labels, leveraging information about local neighborhoods.

• FTNET [9] is a meta-learning framework that estimates the distribution between the train-
ing and testing sets transductively.

• AQ [12] is a robust FSL baseline designed to produce adversarially robust meta-learners
and investigate the causes of adversarial vulnerability.

• TP [3] combines the ProtoNet, optimal transport, and transductive batch normalization to
solve the support-query shift in few-shot learning.

• PGADA [21] reduces optimal transportation errors by learning from self-supervised hard
examples and using negative entropy regularization.

• AQP [1] aims to create more challenging virtual query sets by adversarially perturbing
the query sets, inducing a distribution shift between support and query sets. AQP can
be regarded as the SOTA method in support-query shift few-shot learning using episodic
training.

• SSL-ProtoNet [28] is a metric-based few-shot learning approach that combines self-
supervised learning, Prototypical Networks, and knowledge distillation to leverage sample
discrimination effectively.

• RAS [35]. is a robust FSL baseline that employs high-level feature matching between base
class data without the need for adversarial samples.

B.4 Details of Implementation

Following [3], we report the average top-1 accuracy score with a 95% confidence interval from 2000
runs. In addition, we conduct the tasks of 1-shot and 5-shot with 16-target, i.e., 1 or 5 instances per
class in the support set and 16 instances in the query set, in CIFAR-100, mini-ImageNet, and Tiered-
ImageNet. Same with [21], we use a 4-layer convolutional network as an embedding function ϕ on
CIFAR-100, ResNet18 for mini-ImageNet, and Tiered-ImageNet. As a general adversarial training
framework for few-shot learning, we combine DUAL-P with two classifiers, i.e., ProtoNet [42] and
MatchingNet [45], in the testing phase. As for our repairer R, we adopted an adjusted REDNET-
like[34] structure, composed of a 4-layer encoder-decoder structure and 2 convolutional layers. In
practice, we also adopt optimal transport [21] and self-supervised learning by deploying the NT-Xent
Loss [5] on unlabeled data from the testing set. The learning rate η, batch size b, and embedding
dimention d are set to 1e − 3, 128, 128, respectively. Besides, SGD with Adam optimizer [22] is
adopted to train the model in 200 epochs with early stopping. Grid search is adopted to select the
trade-off parameter in the objective function, i.e., λ = 0.5, β = 0.5 for best performance. Note that,
for simplicity, most AQP baselines are evaluated under the SQS setting for comparison since DSQS
is a harder setting for AQP. In addition, we re-implemented RAS for evaluation. Also, we adopt the
transductive batch normalization [31] on TransPropNet, FTNET, TP, PGADA, and our framework.
Most of experiments are conducted on a workstation equipped with a NVIDIA GeForce RTX 4090
GPU (24 GB), an Intel Core i9-14900K CPU, and 128 GB of memory.
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Table 4: Cosine similarity of visualizations in different datasets. Higher is better.

Dataset Original Add Shifts Adopting intra-OT Adopting inter-OT

CIFAR-100 0.6954 0.5076 0.6338 0.7224
mini-ImageNet 0.6519 0.6083 0.6971 0.7332

Tiered-ImageNet 0.6758 0.6117 0.6515 0.7038

C Discussions

C.1 Visualization Impact of Multiple Shifts

Figure 3: Visualization of the impact on multiple
shifts. Multiple shifts make the image harder to clas-
sify and enlarge the distribution compared to the orig-
inal image, especially when such shifts are unknown.

We provide a visualization of the impact on
multiple shifts. As shown in Fig. 3, we can
see that real-world images frequently dis-
play multiple shifts within the same set. In
particular, the multiple shifts, such as blur,
noise, weather, and digital distortions, im-
pact image quality and classification perfor-
mance. Individually, each shift degrades
the image, but combined shifts (e.g., Blur
+ Noise or All) significantly distort the vi-
sual features, making the image more chal-
lenging to interpret. These compounded
shifts enlarge the data distribution and pose
greater challenges for models, especially
when the shifts are unpredictable or un-
known, leading to reduced robustness and
accuracy. This highlights the importance of
addressing multiple shifts to improve model
performance.

C.2 Visualization Analysis in Embedding Space

To quantify how our method mitigates inter- and intra-distribution shifts, we report cosine distance,
i.e., cosine similarity as a alternative visualization between support and query embeddings before
and after applying the method, rather than relying on large-scale t-SNE plots, which are unstable and
sensitive to hyperparameters.. Specifically, we select large-scale samples from the CIFAR-100, mini-
ImageNet, and Tiered-ImageNet datasets to construct support and query sets from different classes
and extract their embeddings to compare the cosine similarity of these samples. The key difference
in this comparison is whether or not dual optimal transportation (intra-OT and inter-OT) is applied.
As shown in Table 4, we observe that the distances are closer when dual OT is used, demonstrating
that our approach effectively reduces the distribution shift. We believe these experiments provide
comprehensive evidence supporting our conclusions. In particular, applying intra-OT recovers a
meaningful portion of the lost consistency but does not fully return to the original level. Inter-OT
provides the most robust recovery, outperforming intra-OT on every dataset and narrowing the gap
to the original the most. The effect is especially pronounced on the more heterogeneous dataset,
suggesting that aligning relationships across samples is particularly effective when variability is
higher.

C.3 Computation Overhead of DUAL

We conduct experiments on the average time of computational overhead for each component in one
epoch of 5-way 1-shot. As shown in Table 5, the computational overhead analysis highlights the
significant variation in training and testing time across datasets and methods. For training, CIFAR-
10 is the least computationally demanding, requiring only 0.52 hours for 100 epochs, compared to
18.50 and 14.72 hours for mini-ImageNet and Tiered-ImageNet, respectively, indicating the higher
complexity of the latter datasets. During testing, the per-epoch time remains minimal for all datasets,
with CIFAR-10 being the fastest at 0.003 hours, followed by 0.009 hours at Tiered-ImageNet and
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0.045 hours at mini-ImageNet. Notably, the computational cost is justified by the accuracy improve-
ments observed in the corresponding methods, suggesting that the overhead remains acceptable for
practical applications. Future work should focus on optimizing these methods to further reduce the
time complexity without compromising performance.

Table 5: Computation Cost of DUAL in Training and Inference Phase . Time in the training phase
denotes the wall-clock time of 100 epochs (Hours). Time in the inference phase denotes the infer-
ence time in each epoch (Hours).

Methods CIFAR-100 mini-ImageNet Tiered-ImageNet
Training Cost

R 23% 29% 27%
G 15% 33% 32%
ϕ 62% 38% 41%

Time 0.52 18.50 14.72
Inference Cost

Dual OT 14% 3% 11%
R 28% 8% 11%

Time 0.003 0.045 0.009

C.4 Broader Impact

DUAL tackles the critical challenge of Dual Support Query Shift (DSQS) in few-shot learning
(FSL), significantly enhancing the alignment of distributions under both inter-set and intra-set shifts.
By delivering robust performance in highly dynamic and unpredictable environments, DUAL has
the potential to make machine learning systems more adaptable, resource-efficient, and accessible.
These advancements hold promising applications in fields such as healthcare and autonomous driv-
ing. However, the adversarial training employed in DUAL, while designed for robustness, could
potentially inspire misuse in crafting adversarial attacks on other machine learning models. Re-
searchers and practitioners should remain vigilant about ensuring ethical use of such techniques.
Overall, DUAL represents a step forward in making few-shot learning more robust and capable of
handling real-world challenges. Its broader impact lies in improving the reliability, adaptability, and
accessibility of AI systems across diverse domains. However, it is essential to remain mindful of the
ethical and environmental considerations associated with the framework, encouraging responsible
research and deployment practices.
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