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Abstract

The ability to design and optimize biological sequences with specific functionalities1

would unlock enormous value in technology and healthcare. In recent years,2

machine learning-guided sequence design has progressed this goal significantly,3

though validating designed sequences in the lab or clinic takes many months and4

substantial labor. It is therefore valuable to assess the likelihood that a designed5

set contains sequences of the desired quality (which often lies outside the label6

distribution in our training data) before committing resources to an experiment.7

Forecasting, a prominent concept in many domains where feedback can be delayed8

(e.g. elections), has not been used or studied in the context of sequence design. Here9

we propose a method to guide decision-making that forecasts the performance of10

high-throughput libraries (e.g. 105 unique variants) based on estimates provided by11

models, providing a posterior for the distribution of labels in the library. We show12

that our method outperforms baselines that naively use model scores to estimate13

library performance, which are the only tool available today for this purpose.14

1 Introduction15

Biological sequence design has long been of interest to practitioners in many domains, from agricul-16

ture to therapeutics. For decades, sequences were designed through two means (i) Labor-intensive17

rational design where expert human knowledge would generate a handful of candidate sequences18

[1], (ii) High-throughput directed evolution approaches that utilize biological evolution to optimize19

sequences towards a desired property [2]. Recently, the ability to synthesize DNA in high-throughput,20

together with the wide adoption of high-capacity of machine learning models, has opened a new21

path that can combine the benefits of rational design (high quality), and directed evolution (high22

throughput) [3, 4, 5, 6, 7]. In this setting, libraries containing up to 105 sequences are designed23

using machine learning algorithms. Machine learning methods are used to score, optimize, and24

filter sequences before committing to experiments [8, 9, 5, 10, 11]. In recent years, increasingly25

nuanced perspectives on how to improve our trust in the output of machine learning models and26

paired optimization procedures have evolved [12, 13, 10, 14, 15, 16, 17, 18]. Using these methods,27

sequences targeting different objectives can be synthesized (e.g. transcription factor binding or other28

regulatory sequences [19, 20]) in a library that can be measured in the desired context. However,29

especially with products or traits of high complexity (e.g. in-vivo studies of proteins [21]), the overall30

cost required to validate designs can be prohibitive. Therefore, even with model evaluations and31

calibration of uncertainty around samples, there remains a gap in our ability to forecast the probability32

of success: be it reaching a certain maximum performance, or finding a certain number of variants33

above a minimum desired performance. This is distinct from attempting to predict the performance34

of single sequences, in that it focuses on predicting the right-tail distribution of the performance our35

entire library. In many settings, we would want to know whether the experiment has a high chance of36
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finding a (generally rare) high-performing sequence overall. Forecasts can help us decide whether to37

commit to a certain design and can save large costs. Forecasts can also inform other decisions such38

as deciding whether to repeat the design procedure for a library, deciding among libraries designed39

for different targets, or estimating the final price of developing a drug.40

Forecasting is ubiquitous in domains with delayed feedback such as elections [22, 23]. The related41

topic of label shift [24, 25] classically relies on the “anticausal” assumption that the distribution42

of inputs given labels is constant across training and test sets - an assumption that is invalid in43

the case of design. More generally, domain adaptation has been studied in biological sequence44

design [26] but does not directly address forecasting and calibrating distributions under covariate45

and label shift. Recent work in conformal prediction directly tackles the problem of the kind of46

covariate shift that arises in sequence design settings [16], but its use requires known probability47

distributions over training and test sets, and nonzero prior probabilities on the entire support, meaning48

it cannot be applied to most libraries that were not designed with this approach in mind. To our49

knowledge, there are currently no methods that are suitable for forecasting library performance in the50

sequence design setting. This setting presents an interesting and somewhat unique challenge. For51

every designed sequence we can obtain scores for the expected performance, possibly from multiple52

models. However we are often aiming to make sequences that have a significantly higher score than53

anything observed in our training data, i.e. distribution shift is by design. Our challenge is to find the54

right balance between trusting our models’ predictions out-of-distribution and betting that our new55

designs would provide us with better-than-observed sequences.56

2 Forecasting method overview57

We start with labeled training data (S0,Y0), where S0 = {s0i } is a set of biological sequences and58

Y0 = {y0i } is a set of continuous-valued labels, generally a fitness measurement in the sequence59

design setting such as packaging or transduction efficiency rates. Our goal is to forecast a distribution60

of labels Y1 for an unlabeled set S1. That is, we are not concerned with the accuracy of each pair61

(s1i , y
1
i ), but only the overall distribution of Y1, and in particular, in the right tail of Y1, which62

indicates the maximum quality achieved by the set of sequences. To create our forecast, we have at63

our disposal a set of J regression models trained on (S0,Y0), which produce test set predictions mij64

for sequence i by model j.65

Naively, we could form ensembled point estimates ŷi =
∑

j mij/J for each sequence and predict the66

distribution of Y1 to be the distribution of ŷi. There are three main disadvantages to this approach,67

which inspire different aspects of our forecasting method. We address them briefly below, and give a68

more thorough treatment with a complete algorithm in Section A.1.69

1) An implicit unimodal Gaussian assumption Empirically, model ensembles tend towards unimodal70

Gaussian score distributions which do not empirically fit experimental data from designed sequences71

well. At several points in the experimental pipeline variants may “drop out,” failing to produce enough72

signal to reliably approximate a label (for example, due to failure of a protein to fold). This results in73

a multimodal distribution at both the population level, and implicitly, at the level of each sequence’s74

posterior. Thus, we seek to model each sequence as a bimodal Gaussian Mixture Model (GMM), and75

learn the parameters for each sequence’s posterior from its model scores. Moreover, while we use a76

GMM, our method could in theory be applied using a range of more complex distributions, with the77

only constraint being our ability to sample from them.78

2) Distribution (covariate and label) shift Typically, the sequence set S1 is designed with model-79

guided exploration strategies informed by (S0,Y0), with the objective of producing sequences that80

outperform the best sequences in S0. This results in both significant distribution (covariate) shift,81

because the sequences S1 are reaching into untested areas of sequence space, and label shift, since we82

anticipate that Y1 will dominate Y0, both on average and among each sets top-performers. (While83

there has been some important recent work on prediction in this design setting [16], this work assumes84

a shift in distribution within a consistent domain between S0 and S1 and no label shift.) To address85

distribution and label shift, we start by applying non-parametric non-linear calibration techniques86

to produce a “conservative” forecast that still allows for some label shift due to model uncertainty.87

We then consider scenarios with some trust placed in raw model scores to allow for some amount of88

extrapolation to regions further from our training set.89
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3) Point estimates to posteriors The point estimates that arise from model ensembles do not90

provide a posterior for Y1 (nor do the model score variances, directly), and consequently these91

tend to underestimate the frequency of events that are rare at the sequence level, but common at the92

population level, such as the occurrence of high-valued sequences in the library. In our method, we93

simulate draws of the entire library from the sequence-level posteriors to produce both expected94

distributions as well as the frequency of rare events, which we interpret as posterior probabilities.95

3 Experimental results96

We validate our method by conducting experiments on four datasets - a set of simulated RNA binding97

landscapes that allow us to access ground truth values for every sequence (and repeat multiple98

experiments) as well as three experimentally-measured assays of protein fitness landscapes. These are99

a viral protein packaging landscape, an experimentally measured IgG-Fc binding dataset for Protein100

G’s GB1 domain, and an experimentally measured GFP fluorescence dataset. Of the experimentally101

measured landscapes, the viral protein assay is precisely conducted in the manner that forecast is102

intended to be used. The GFP and GB1 landscapes are not conducted in this way, but we still expect103

(and observed) forecast to outperform model point estimates.104

3.1 Experimental design105

For each of these experiments, we generated training and test sets S0,Y0 and S1,Y1, and models106

M. We used the training set, models, and unlabeled test data to generate forecasts, and evaluated107

them against realized distributions of Y1 using two key tools: a 2-sample Kolmogorov-Smirnov108

statistic measuring distribution fit of top percentiles, and confidence interval coverage for counts of109

points measured above a fixed threshold value. Both evaluate fit in the right tail of the distribution,110

which is both the most challenging region to predict, and the one that is most critical to sequence111

design applications. We present results of forecasts on all four datasets in Figure 1, with one dataset112

per row of figures (RNA, AAV, GB1, and GFP respectively). While these experiments demonstrate113

the efficacy of the forecasting procedure in a variety of experimental settings, we acknowledge that114

additional experiments in follow-on studies could help clarify the method’s strengths and weaknesses.115

3.2 Discussion of results116

In the left column of plots in Figure 1 we report on the Kolmogorov-Smirnov fit between the true117

distribution of scores Y1 and either the forecast or the set of point estimates µi from model ensemble118

scores. In figure 1a we plot the mean and 95% confidence interval across landscapes and starts119

(see Sec A.7.1 for details), while the other experiments have a single landscape each. Since we are120

primarily concerned with fit in the right tail, we limited each distribution to values above a percentile121

threshold, and varied that threshold between 50% and 95%. Across this range, the forecasting method122

improved distributional fit compared to ensemble point estimates, and while point estimates typically123

decayed towards 1.0 (the theoretical worst-case upper bound of the statistic), the forecast consistently124

maintained some predictive power even in the top 5th percentile. A sharp covariate shift in the AAV125

capsid design sets S0 and S1 account for the problem difficulty in figures 1e and 1f, though even in126

this problem our method directionally improves upon model estimates.127

In the right column of figures we focus more closely on the right tail of the label distribution of Y1,128

reporting the forecast’s confidence interval for the number of sequence we can expect to find above a129

threshold value compared to the estimate from model ensembles and the true counts. Since Figure130

1b encompasses several landscapes and seeds, we set one threshold per landscape/seed at the 99th131

percentile, while in the remaining experiments with a single landscape we evaluate accuracy over132

a range of thresholds. Here we see that the forecast gives confidence intervals that include the true133

count of sequences above a high threshold some of the time, and always improves upon the ensemble134

estimates, which for most datasets severely underpredicts the prevalence of top-performers.135

A key item of interest for sequence design is the performance of the top variants. We report ensemble,136

forecast, and true values for the 99th percentile, mean of the top percentile, and maximum value for137

each experiment in Figures 2 and 3 in the Appendix. These results echo the conclusions from Figure138

1, showing highly accurate predictions on the AAV and GFP landscapes, and directionally correct139

adjustments on GB1 and RNA landscapes.140
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(a)

(c) (d)

(b)
Landscape 1 Landscape 2

(e)

(g) (h)

(f)

Figure 1: Comparison between forecast and point predictions in describing the right tail statistics of
designed libraries. a) Distance from true (right-tail) distribution as measured by KS two-sample score
for ensemble point estimate and our forecast on two RNA landscapes and five distinct designs per
landscape (10 total forecasts) b) Top centile confidence interval coverage for RNA landscape 1 (14
nt) and RNA landscape 2 (50 nt) c,e,g) Distance from true distribution fit for ensemble point estimate
and forecast d,f,h) Confidence interval coverage based on the number of samples above a certain
measured performance c,d) For the AAV capsid design problem e,f) For the GB1 binding landscape
g,h) For the GFP florescence landscape.

4 Conclusion141

In this paper we argued for the relevance and impact of forecasting in the sequence design setting.142

We developed a novel approach for forecasting label distributions under covariate and label shift143

that occurs during model-guided design. Our approach can be used on any machine-guided library144

design for which we have regression models. We applied these methods in simulated and real-world145

sequence design settings and showed near-universal improvement (and never worse than the naive146

approach) in our ability to predict the shape of the right tail and counts of top performers. This work147

enables valuable estimation of the quality of designed libraries of biological sequences long before148

experimental results can be produced, which provides essential feedback to the designer. We hope149

that by defining this problem framework, and showcasing an approach to address it, we inspire further150

development for improving distributional forecasting in the model-guided sequence design setting.151
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A Supplemental Material244

A.1 Detailed description of the forecasting method245

To generate forecasts, we first transform model predictions for each sequence into parameters for246

their posterior distributions. We then draw from those sequence-level posterior distributions to form247

simulations of the library, generating a library-level posterior. This library-level posterior reflects248

our epistemic uncertainty about the ground-truth performance of each sequence given our model249

predictions and the aleatoric uncertainty of our measurements given this ground-truth. That is, our250

predictions are more like prediction intervals than confidence intervals, and we do not generate a251

posterior for ground-truth values. Our objective is to infer sequence-level posterior parameters from252

model predictions in a way that is both well-calibrated to the training data and allows for test set253

performance of the sequences to differ from or exceed training set performance due to distribution254

shift.255

A.2 Fitting sequence label posteriors256

While this forecasting framework can be applied to learn posteriors for many distributions families,257

informed by empirical library label distributions from historical experiments, we believe the natural258

distribution for sequence labels in our data is a Gaussian mixture model (GMM) with two modes:259

one for “functional” sequences and one for “non-functional” or “broken” sequences. (To arrive at260

this conclusion, we considered a number of alternative distribution families, including varying the261

skew and kurtosis of each mode of the GMM, but did not find sufficient improvements to justify the262

increased model complexity.)263

To model a sequence si using a GMM, we assume there is a probability of functionality pi, a mean264

and variance in the functional mode
(
µ+
i , (σ

+
i )

2
)
, and a mean and variance in the non-functional265

mode
(
µ−
i , (σ

−
i )

2
)

that parameterize normal distributions N so that266

Yi ∼ piN (µ+
i , σ

+
i ) + (1− pi)N (µ−

i , σ
−
i ). (1)

In contrast, our predictive models only provide point estimates mij for each sequence. We assume267

that the true, multimodal distribution of each sequence can be summarized with two degrees of268

freedom (a mean µi and standard deviation σi) and that these two parameters independently generate269

model scores, mixture model parameters, and measurement values. Explicitly, we assume the model270

predictions mij ∼ N (µi, σi), so that, given a set of model predictions, we infer µi and σi to be the271

models’ sample mean and variance (µi = 1/J
∑

j mij and σ2
i = 1/J

∑
j(mij − µi)

2). We further272

assume there are independent relationships between µi and the set (pi, µ+
i , µ−

i ), and between σi and273

the pair σ+
i and σ−

i .274

Since the GMM parameters (pi, µ+
i , µ

−
i , σ

+
i , σ

−
i ) are unique to each sequence, we cannot infer them275

in the usual manner using S0 as a training set. Instead, we need to further model and learn the276

relationship between the pair µi, σi and the GMM parameters. Specifically, we start by identifying277

the value ymid that we use to separate the two modes of Y. This value can either be set manually,278

using expert knowledge, or automatically by analyzing the distribution Y0. We found that Otsu’s279

method [27], which finds the separating point that minimizes intra-class variance, provided robust280

values of ymid on our data. We can then divide our set S0 into two halves across the boundary:281

S0+ = {si | y0i ≥ ymid} and S0− = {si | y0i < ymid}. This provides us with separate training sets282

for the functional parameters µ+
i , σ

+
i and the non-functional parameters µ−

i , σ
−
i .283

A.3 About isotonic regression284

We will run isotonic regression to find the best monotonic piece-wise linear fit to this data. Explicitly,285

isotonic regression operates on a dataset of pairs of scalars {xi, yi} and produces a non-parametric286

model represented by data-prediction pairs (xi, ŷi) that seek to minimize the least squares error287 ∑
i(ŷi − yi)

2 subject to a monotonicity constraint yi ≤ yj ∀i, j s.t. xi < xj . This results in a288

quadratic program, though it is easily solvable exactly by sorting yi and iteratively averaging pairs of289

“violators” of monotonicity, making training efficient and deterministic [28].290

As a point of notation, we will use the abbreviation IRy to refer to an isotonic regression model291

trained to predict y defined by the pairs (xi, ŷi), and IRy(x
′
i) to be the prediction of this model given292
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input x′
j . To compute IRy(x

′
j) on a new data point, first we check to see if x′

j = xi for some i and293

if so we predict the corresponding IRy(x
′
j) = ŷi. Otherwise we sort xi and find a consecutive pair294

such that xi < x′
j < xi+1 and predict IRy(x

′
j) by linearly interpolating between ŷi and ŷi+1. If x′

j295

is less than all xi, or more than all xi, IRy(x
′
j) is set to the min and max values of ŷi respectively.296

We note here that this necessarily means that isotonic regression will never produce labels outside the297

range of the training labels - we will address this in a few ways in the coming sections.298

A.4 Inferring parameters with isotonic regression299

We assume a non-linear monotonic relationship between the model ensemble mean for a sequence300

µi = 1/J
∑

j µij and the probability that the sequence i will be functional (pi). To infer pi, we301

train an isotonic regression model IRp that, given µi, aims to predict the indicator I+i which is 1302

if si > ymid and 0 otherwise. Effectively, given a new input µi, this model returns the fraction of303

sequences that are functional out of the training samples with similar mean values, and interprets this304

rate as the probability that the sequence i will be functional.305

Inferring the mean parameters µ+
i and µ−

i is more straight-forward: we build isotonic regression306

models IRµ+ and IRµ− to predict yi from µi, but restrict the training set to S0+ and S0− respectively.307

This gives us calibration to the conditional distributions for being functional and non-functional308

respectively.309

To infer the variances σ2+
i and σ2−

i , we first form squared residuals of labels given model ensemble310

means resi = (yi − µi)
2 and build isotonic models IRσ+ and IRσ− relating the model variance311

to these residuals resi. As with µ+
i and µ−

i , we compute σ2+
i and σ2−

i by training models on the312

disjoint training sets S0+ and S0− respectively. The complete algorithm for inferring the GMM313

parameters is described in Algorithm 1.314

Applying the forecast to non-ensembles While the presentation of our method assumes access to315

an ensemble of models, we note that thus far the only information we have used from the ensembles316

is the ensemble mean and variance (µi, σ
2
i ) for each feature. Therefore, as an alternative, any single317

model that itself outputs an expected value and uncertainty (which includes many neural networks)318

can stand alone in providing the input (µi, σ
2
i ) to forecasting calibration. The only technique that does319

not generalize from ensembles to models-with-uncertainty is the “optimistic model de-ensembling”320

technique discussed in the Section A.6.321

A.5 Simulating the posterior distribution322

Given the parameters generated by Algorithm 1, we can draw samples ŷ1i for each sequence, and323

aggregate them into draws for the entire distribution Ŷ1. We can then treat the set of simulated324

values of Ŷ1 as a posterior distribution and query this distribution to determine the frequency of325

distribution-level events. By computing metrics on Ŷ1 and considering their distributions across326

simulations, we can arrive at empirical confidence intervals for metrics such as the count of sequences327

that perform above some threshold value, as we see in Figures 1b,d,f,h.328

A.6 Tuning the forecast from conservative to optimistic329

We can further refine this basic algorithm using additional techniques that allow us to diversify our330

approach over degrees of trust in our training set.331

Semi-calibrated regression Our main calibration tool, isotonic regression, aggressively limits332

predicted labels to be within the range of training values. To allow for some distribution shift, we can333

gradually transition from calibrated predictions towards the center of the distribution of S1 towards334

uncalibrated, out-of-distribution values towards the limits of the distribution, in a technique we call335

“semi-calibration.”336

Let PY (y) be the percentile of the value y from among the empirical distribution Y . That is, P (y)337

is the fraction of y ∈ Y with yi < y. In our case, we consider the distribution of model ensemble338

means on our training set S0, that is, the set M = {1/J
∑

j mij | si ∈ S0}. Then given a new339

sequence si we can compute its model ensemble prediction µi as well as its functional isotonically340
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calibrated mean µ+
i , and evaluate where its model ensemble falls relative to the training distribution341

by computing the percentile PM (µi). Finally, for any temperature-like coefficient 0 < q ≤ 1, we342

define our semi-calibrated mean µ̃i(q) to be343

µ̃i(q) = (qPM (µi))(µi) + (1− qPM (µi)) (IRµ+
i
(µi)). (2)

Thus, lower values will be completely calibrated to the training set, while higher values will be a mix344

of calibrated and uncalibrated values. Note that we only produce this correction for functional mean345

values µ+
i , as we expect non-functional values to be fully in the training set distribution. This leads346

to an update to the model from Equation 1:347

ŷi ∼ piN (µ̃i(q), σ
+
i ) + (1− pi)N (µ−

i , σ
−
i ). (3)

Correcting for covariate shift In addition to model score distribution shift, we also see covariate348

shift that creates model score bias. In our context, we consider edit distance to wild type the primary349

such covariate, though the method easily generalizes to more complex distance metrics (such as350

BLOSUM [29]), as well as other quantitative side-information. To correct for this shift, we form351

signed residuals from the training set between the calibrated µ+
i values and the true values yi (i.e.352

(µ+
i − yi). (If we are also applying the semi-calibration technique from the last paragraph, we use353

(µ̃i − yi) instead.) We can regress those residuals on edit distance (EDi) using either isotonic or354

linear regression, and apply this correction back to the mean prediction µ+
i . We can also apply this355

approach to adjust the probability parameter pi, encoding the understanding that sequences are less356

likely to be functional at higher distances from the wild-type. That is, we compute:357

resi = µ+
i − yi

IRED = IR model trained on {(EDi, resi)}
µED
i = µ+

i − IRED(EDi)

ŷi ∼ piN (µED
i , σ+

i ) + (1− pi)N (µ−
i , σ

−
i ).

(4)

Optimistic model de-ensembling So far, we have assumed model scores mij are drawn from a358

Gaussian distributions parameterized by µi, σi. Alternatively, we could assume that each model j359

represents a distinct distribution, and that µi are drawn from these distributions with equal probability.360

Using this approach, in each simulation we first randomly select one model independently for each361

sequence and use that model’s prediction as the sequence’s expected value: µi mij . This can result in362

more optimistic forecasts when scores have high inter-model variance.363

Hedging against calibration assumptions Together, these calibration techniques create a menu of364

options that allow us to build forecasts that range from conservative to optimistic given input data.365

Given a set of calibration strategies, we can simulate instances of Y1, and by aggregating simulations366

across frameworks, we can form a posterior for the distribution of Y1 that captures our uncertainties367

at the sequence level, the model level, and the overall forecasting approach level.368

A.7 Descriptions of experimental data369

A.7.1 Simulated RNA landscapes370

Our first set of experiments investigates the performance of forecasting approach using FLEXS371

[30], a simulation environment for sequence design which gives access to ground-truth and model-372

approximated fitness landscapes. We study design problems on two RNA landscapes with a hidden373

binding target of size 14 and 50 nucleotides. Each training set S0 was constructed by mutating374

a sequence from a starting seed (5 seeds for each landscape) with between 1 and 3 mutations per375

sequence on average. We trained four kinds of predictive models on one-hot encoded sequences:376

linear regressions, convolutional neural networks, multi-layer perceptions, and random forest models.377

We used four exploration algorithms to design sequences using these models S1: CMA-ES [31],378

CbAS [10],Adalead [30], and random sampling.379

A.7.2 In-vitro AAV packaging assay380

Bryant et al. [5] quantitatively assay the packaging efficiency of 200K viral capsid variants, modified381

in a 28 amino-acid region of the protein. The experiment was designed in two steps, where first a382
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smaller set of training examples were assayed and used to train classification models. Then these383

models were used to design a set of variants that were optimized for the probability of packaging.384

The paper uses classification models and greedy optimization to generate the second batch. The385

existence of this first training set, and the distribution-shifted designed set is exactly the setting we386

have devised the our forecasting method for, and where its performance can be most meaningfully387

evaluated.388

For this data set we retrain regression models on the first set of sequences (S0) using five independently389

seeded convolutional neural networks, and five recurrent neural networks. We used these models to390

generate ensembled point estimates as well as forecast the distribution of packaging efficiencies on391

the model-designed set of sequences (S1).392

A.7.3 Protein G GB1 IgG-Fc binding domain393

A region of four amino acids in Protein G (GB1) is known to be critical for IgG-Fc binding and has394

been used extensively as a tool for evaluating sequence landscape prediction and design tasks [32, 33].395

Our data is sourced from experiments by Wu et al. [34]. We created S0 by selecting sequences396

with performance below that of the wild-type, combined with a small fraction of sequences between397

wild-type and the median performance in the set, leaving all other sequences for S1. We trained five398

independently seeded random forest models and five multi-layer perceptrons on S0 (forgoing more399

sophisticated models due to the short length of the variable sequence), and used these to generate400

point estimates and forecast predictions for S1.401

A.7.4 Green Fluorescent Protein402

The green fluorescent protein of Aequorea victoria (avGFP) provides an additional fitness landscape403

for studying sequence prediction and design. We used a dataset of 540,250 protein variants and their404

associated fluorescence level [35]. We followed the same procedure as GB1 for splitting S0 and S1,405

putting sequences with fluorescence below 3x log-fluorescence of the wild-type and a small portion406

of sequences up to the median fluorescence above this threshold into S0, and the rest into S1. We407

then trained the same models as in our AAV experiments - five independently seeded convolutional408

neural networks, and five recurrent neural networks, and generated point estimates and forecasts for409

S1 using these models.410

A.8 Computational details411

A.8.1 Compute412

All of our experiments were run using a single server with a single GPU running in GCP (Google413

Cloud Platform). We used an Nvidia V100 for training models on the GFP landscape and an Nvidia414

K80 for the other three experiments’ model training.415

A.8.2 Hyperparameters416

Across all of our experiments, we used five model architectures: convolutional neural networks417

(CNNs), recurrent neural networks (RNNs), multi-layer perceptrons (MLPs), linear models, and418

random forests. Linear models and random forests were initialized with default parameters using419

the sklearn library. CNNs used 32 filters, 64 filters, and 256 filters with 1, 2, and 2 convolutional420

layers followed by 1, 2, and 2 hidden layers of width 32, 64, and 64 for the AAV, RNA, and GFP421

experiments respectively. RNNs used embeddings of size 32 combined with 1 and 2 recurrent layers,422

then followed by 1 hidden layer of size 56 and 128 for AAV and GFP respectively. MLPs used 1 and423

3 hidden layers of width 50 and 32 for GB1 and RNA experiments respectively. All three model424

architectures were trained used Adam with a learning rate of 1e-3 across experiments.425

A.8.3 Licenses426

FLEXS is open source and Apache licensed. All other code was written for this project in python427

using common packages that use BSD, PSFL, Apache, and MIT licenses.428
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Figure 2: The ensemble, forecast, and measured values for the 99th percentile, mean of the top
percentile, and maximum value for the AAV, GFP, and GB1 experiments, normalized to the maximum
ground-truth measured value for each experiment.
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Figure 3: The ensemble, forecast, and true values for the 99th percentile, mean of the top percentile,
and maximum value for the RNA experiments
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Table 1: Relative experimental difficulty due to model score-based covariate and label shift, as
measured by the K-S score between distributions of training and test ensemble means, and between
measurement distributions from among top-scoring variants, respectively

Experiment Model score covari-
ate shift

Model score-based
label shift

AAV 0.332 0.159
GB1 0.960 0.916
GFP 0.888 0.541

Landscape 1 Start 1 0.176 0.283
Landscape 1 Start 2 0.162 0.227
Landscape 1 Start 3 0.329 0.518
Landscape 1 Start 4 0.579 0.575
Landscape 1 Start 5 0.214 0.521
Landscape 2 Start 1 0.371 0.606
Landscape 2 Start 2 0.402 0.094
Landscape 2 Start 3 0.283 0.830
Landscape 2 Start 4 0.285 0.794
Landscape 2 Start 5 0.381 0.747

A.9 Plots of forecast accuracy on top performers429

A.10 Quantifying distribution shift430

As an attempt to quantify the difficulty of each forecasting problem, we computed metrics of431

covariate shift and label shift. Covariate shift measures the change in distribution in covariate space432

(our sequences and covariates associated with those sequences), while label shift measures a change433

in the conditional distribution of the outcome given those covariates. For this preliminary analysis,434

we restricted our study to using model ensemble scores as the main covariate of interest. It would435

also be reasonable to apply this to edit distances, or higher-dimensional covarites.436

To measure model score covariate shift, we can apply a 2-sample Kolmogorov-Smirnov test to the437

entire distributions of model scores for S0 and S1. This gives us a measure on a common scale from438

no shift (0) to completely disjoint supports (1).439

Measuring model score-based label shift precisely is challenging in our setting, since our data440

regularly violates the common assumption for label shift research that the test set output support is a441

subset of the training set support, so we cannot calculate ratios between the density functions. Instead,442

we again us the 2-sample K-S test, this time comparing distributions of Y0 and Y1 but conditioned443

on high model scores (defined as the 90th percentile of the training set distribution and above).444

We report these metrics in Table 1.We note that the AAV experiment, where the forecast performed445

especially well, had a lesser degree of covariate and label shift compared to other experiments.446

At the other extreme, the GB1 experiment had extreme covariate and label shift, and while the447

forecasting method improved upon the ensemble prediction directionally, the forecast produced very448

low confidence interval coverage for this experiment. This suggests a possible connection between449

shift scores and forecasting difficulty. On the other hand, we can looking at the RNA experiments450

and consider one landscape at a time, which allows us to potentially isolate the relationship between451

these covariate shift metrics and forecasting performance. Here, however, there does not appear to452

be any clear relationship between either type of distribution shift and the accuracy of the forecast.453

Therefore, while the AAV and GB1 results suggests a possible connection, further experiments will454

be needed to validate these metrics as a useful tool for quantifying forecasting difficulty.455

A.11 Detailed forecasting algorithm456

See Algorithm 1 for a complete description of the forecasting algorithm described in Section A.1457

(excluding the extensions in Section A.5).458

12



Forecasting for sequence design

Algorithm 1 Inferring Gaussian mixture model parameters from a set of normally distributed model
scores

Input: a training set (S0, Y0) and test set (S1) with model values mij for each si ∈ S0 ∪ S1.
Returns: (pi, µ+

i , µ
−
i , σ

+
i , σ

−
i ) for each i ∈ S1

Learn cutoff value ymid from Y0 using Otsu’s method
for si in S0 do

Compute µi =
∑

j mij

J (model ensemble means)

Compute σ2
i =

∑
j(mij−µi)

2

J (model ensemble variance)
Compute res2i = (yi − µi)

2 (squared residuals of model ensemble means)
Compute I+i = 1 if Y 0

i < ymid and 0 otherwise
end for
Define S0+ = {i | Y 0

i ≥ ymid} (training subset for “functional” sequences)
Define S0− = {i | Y 0

i < ymid} (training subset for “broken” sequences)
Train isotonic model IRp on pairs (µi, I

+
i ) for i ∈ S0

Train isotonic model IRµ+ on (µi, yi) for i ∈ S0+

Train isotonic model IRµ− on (µi, yi) for i ∈ S0−

Train isotonic model IRσ+ on (σ2
i , res

2
i ) for i ∈ S0+

Train isotonic model IRσ− on (σ2
i , res

2
i ) for i ∈ S0−

for si in S1 do
Compute µi =

∑
j mij

J (model ensemble means)

Compute σ2
i =

∑
j(mij−µi)

2

J (model ensemble variance)
Compute (pi, µ

+
i , µ

−
i , σ

+
i , σ

−
i ) = (IRp(µi), IRµ+(µi), IRµ−(µi), IRσ+(σi), IRσ−(σi))

end for
return {(pi, µ+

i , µ
−
i , σ

+
i , σ

−
i )}
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