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Abstract

Despite increasing interest in using machine learning to discover symmetries, no quantita-
tive measure has been proposed in order to compare the performance of different algorithms.
Our proposal, both intuitively and theoretically grounded, is to compare Lie groups using
a local symmetry error, based on the difference between their infinitesimal actions at any
possible datapoint. Namely, we use a well-studied metric to compare the induced tangent
spaces. We obtain an upper bound on this metric which is uniform across datapoints,
under some conditions. We show that when one of the groups is a circle group, this bound
is furthermore both tight and easily computable, thus globally characterizing the local er-
rors. We demonstrate our proposal by quantitatively evaluating an existing algorithm. We
note that our proposed metric has deficiencies in comparing tangent spaces of different
dimensions, as well as distinct groups whose local actions are similar.

1. Introduction

The utility of encoding symmetries into machine learning algorithms has long been known
(see Bronstein et al. (2021) for a modern review). With this has come a desire to learn
symmetries from data, rather than encoding them directly. The classic works of Rao and
Ruderman (1998) and Miao and Rao (2007) established the possibility of explicitly learning
a Lie group from data, in supervised and unsupervised settings, respectively. Though there
has been much subsequent interest in learning symmetries (see the discussion of works
below), there has been remarkably little comparison of these methods, likely due to the lack
of a quantitative metric with which to evaluate them. Instead, most papers rely on the same
heuristic, manual inspection of the learned transformations. Even on the more quantitative
side, such as in the appendix of the recent work of Yang et al. (2023), one only finds direct
comparisons of single generators of Lie groups. This approach does not generalize beyond
one-dimensional groups — for example, one might have two sets of generators which look
completely different pairwise, but in fact generate the same group.

We seek to fill the gap above, in order to allow for rigorous evaluation of symmetry
learning. To introduce the idea, suppose G and H are Lie groups acting on a dataspace
X, and we want to quantify how differently they act; for example, H is the group learned
by some algorithm meant to learn G. At any point x ∈ X, we can linearly approximate
the actions of the groups via the actions of their Lie algebras, as shown in Figure 1. The
resultant tangent spaces can be compared directly in terms of their principal angle, which
is invariant under a change of basis.

In Section 3 we formally define the local symmetry error (LSE) at each point x ∈ X,
and study some of its properties, including groups which it cannot distinguish. Though
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Figure 1: Under general assumptions, the orbits of a datapoint x ∈ X, under two Lie
groups G and H, can be locally approximated by the tangent spaces Tx(Gx) and
Tx(Hx). The angle between these tangent spaces can be used to quantify, locally,
the difference between the actions of G and H. When the groups act by matrix
multiplication on a vector space, the tangent spaces can be written as the set-wise
products of the Lie algebras with the datapoint.

we focus here on the case X = Rd and where G,H are connected matrix Lie groups in
Rd×d, the definition generalizes readily to smooth group actions on manifolds. As the LSE
depends on the reference point x ∈ X, in order to obtain a single number characterizing
the difference between G and H, one might average the LSE or else try to upper bound it
over all x ∈ X. In Section 4 we derive a uniform upper bound on LSE, which is tight when
G and H are one-dimensional groups and G is unitary. In Section 5, we demonstrate the
use of LSE-based metrics by comparing quantitatively the target and learned groups for
existing symmetry learning methods. The experiments we perform suggest that LSE-based
metrics may be useful in identifying invariant subspaces in the data. While the current work
is focused on one-dimensional groups — as a domain in which exact results are available
and easily computable, and so experiments are both informative and inexpensive — it lays
the groundwork for the first quantitative evaluations of symmetry learning beyond one-
dimensional families. Nonetheless, the LSE as proposed here retains some problems for
practical use, which we discuss in Section 6.

2. Related work

Modern works on learning symmetry can broadly be categorized into (1) works in the same
vein as Rao and Ruderman (1998) and Miao and Rao (2007), seeking to learn the group
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itself (Cohen and Welling, 2014; Dehmamy et al., 2021; Chau et al., 2022; Desai et al., 2022;
Keurti et al., 2022; Gabel et al., 2023; Yang et al., 2023), (2) works attempting to learn
invariant features or filters (Wetzel et al., 2020; Wieser et al., 2020; Mouli and Ribeiro,
2021; Zhou et al., 2021; Sanborn et al., 2023), and (3) works attempting to learn the extent
of invariance under a pre-specified symmetry (Benton et al., 2020; van der Ouderaa and
van der Wilk, 2021; Allingham et al., 2022). The main goal of this paper is to introduce a
quantitative measure of success for the first type of work, though it should in principle be
possible to apply our methods for example to Sanborn et al. (2023), if one extracts the Lie
algebra implied by the invariant features in the model.

Our work bears a spiritual resemblance to others which attempt to quantify the degree
of symmetry learned by a supervised neural network. Moskalev et al. (2022) elaborate
a method to extract infinitesimal invariances in a learned function. Gruver et al. (2023)
use the Lie derivative to measure whether a learned function is locally equivariant to a
desired symmetry. An important difference between these works an ours is that we are
more interested in the learning of the group itself rather than an equivariant function. As
such we do not require a supervised learning setting, and are able to evaluate unsupervised
methods in our experiments.

3. Local Symmetry Error

Tangent spaces We will assume that X = Rd is the dataspace, and G,H are connected
matrix Lie groups acting naturally on X. We denote by g, h the groups’ respective Lie
algebras. For any point x ∈ X, the orbits Gx and Hx form manifolds, and we denote by
Tx(Gx) and Tx(Hx) their respective tangent spaces at x. (See Figure 1.) Given that G,H
act by matrix multiplication, one can readily show that Tx(Gx) = gx and Tx(Hx) = hx.

Distance between subspaces In order to measure the distance between two subspaces
U, V of some overarching inner product space (e.g. our tangent spaces above as subspaces
of Rd), we use the well-studied notion of their aperture, introduced by Krein et al. (1948),

Θ(U, V ) = max

 sup
u∈U
||u||=1

inf
v∈V
||u− v||, sup

v∈V
||v||=1

inf
u∈U
||u− v||

 . (1)

From the work cited above and Akhiezer and Glazman (1993, §34), we have the following.

Proposition 1 Let U, V be subspaces of a Hilbert space. Then Θ(U, V ) ∈ [0, 1], with
Θ(U, V ) < 1 only if dimU = dimV . Assuming the dimensions are in fact equal,

Θ(U, V ) = sup
u∈U
||u||=1

inf
v∈V
||u− v|| = sup

v∈V
||v||=1

inf
u∈U
||u− v|| (2)

= ||PU − PV || (3)

= sin(ϕ) (4)

where PU , PV are orthogonal projectors and the norm in (3) is the operator (i.e. spectral)
norm, and ϕ is the principal angle between U and V .
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From (3) it is clear that the aperture defines an honest-to-goodness metric on subspaces
of equal dimension. On the other hand, (4) gives an intuitive understanding of what the
aperture is measuring.

Definition We define the local symmetry error (LSE) at any point x ∈ X by

LSEx(G,H) = Θ(Tx(Gx), Tx(Hx)). (5)

In the case of matrix Lie groups, we have

LSEx(G,H) = Θ(gx, hx) = ||Pgx − Phx||, (6)

which can be easily computed given bases for g and for h, that is, generators of G and H.
It is worth making a few remarks. First, note that we assume here the dimensions of the

tangent spaces gx and hx are equal. We return to the practical consequences of this point
in our final discussion (Section 6). Additionally, the LSE cannot detect global differences
between groups whose infinitesimal actions are the same — for example SO(4) and its
double-cover SU(2) × SU(2), or SO(2) × R and R2 acting on the plane, by rotation-and-
scaling and translation respectively.1

Since LSE is a “local” metric on Lie groups defined at any point x ∈ X, to obtain a
metric which does not depend on x ∈ X one must somehow pool the local information.
In our experiments we consider two natural approaches, the average LSE over the data
distribution P (though any test distribution may be considered),

ALSE(G,H) = Ex∼P [LSEx(G,H)] , (7)

and the maximum LSE,
MLSE(G,H) = sup

x∈X
LSEx(G,H). (8)

The latter is a stricter notion of similarity depending only on the spaces question, and not
on the distribution from which data is actually observed.

4. Bounding Maximum Local Symmetry Error

At face value, obtaining an estimate of the MLSE (8) is non-trivial. A trivial, but nonethe-
less important observation is that the LSE is scale-invariant in x,

LSEcx(G,H) = ||Pgcx − Phcx|| = ||Pgx − Phx|| = LSEx(G,H) ∀c ∈ R. (9)

It follows that
MLSE(G,H) = sup

x∈X
||x||=1

||Pgx − Phx||,

which one could in the worst case estimate by sampling a grid of unit vectors. One can
alternatively upper bound the MLSE, as we do below, in terms of any subset of the Lie
algebra S ⊆ g for which, for any unit length x ∈ X, we have

{A ∈ g : ||Ax|| = 1} ⊆ S. (10)

1. In this case, we allow ourselves to consider non-linear actions (as translation is not linear). However, it
is easy to come up with similar examples using only linear actions.
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If G,H are one-dimensional groups, this bound below is not only tight but easily computable
if the set S is “nice.”2 We provide proofs in Appedix B.

Theorem 2 Let G,H be connected matrix Lie groups acting naturally on X = Rd, and
suppose there exists S ⊆ g such that (10) holds. Then

MLSE(G,H) ≤ sup
A∈S

inf
B∈h
||A−B||. (11)

Corollary 3 If G ∼= U(1) and H are one-dimensional groups, then the inequality is an
equality, from which we obtain

MLSE(G,H) = inf
t∈R
||A1 − tB1|| (12)

where A1 ∈ g is a matrix of unit operator norm and B1 ∈ h is any nonzero matrix.

Note that (12) can be computed by numerically solving a convex optimization problem. On
the other hand, the upper bound in (11) is in general not easy to compute. When S is
contained in the set of matrices of unit operator norm, passing to the Frobenius norm, we
get a looser bound which one can appealingly express in terms of the aperture between the
Lie algebras (considered as vector subspaces of Rd×d given Frobenius inner product),

1√
d

Θ(g, h) ≤ MLSE(G,H) ≤
√
dΘ(g, h). (13)

When both d and Θ(g, h) are large, the bound above is of little use. One must therefore make
a tradeoff between the looseness of the bound and the computational cost of estimating the
MLSE directly in the manner mentioned previously.

5. Experiments

We demonstrate the use of LSE by calculating or estimating the ALSE (7), MLSE (8), and
the aperture Θ(g, h) on the symmetries learned under different settings in the work of Yang
et al. (2023). Broadly, we pursue two directions.

First, we compute both exact MLSEs and empirical ALSEs for some learned one-
dimensional groups (using Theorem 2 for the exact results). We observe empirically, and
justify, that a discrepancy between the ALSE and MLSE indicates that the data distribu-
tion is restricted to an “interesting” subspace of the entire dataspace X. We take advantage
of this setting to demonstrate how one might calculate LSE-based metrics on subspaces X,
albeit in this case on a simple, linear subspace.

Second, we use the availability of exact MLSEs to provide some empirical data on the
convergence of sample-based estimates of the MLSE. An understanding of this convergence
is essential for good approximations of the MLSE when the group of interest is more than
one-dimensional. We leave such experiments for future iterations of this work.

2. One reason we focus our experiments on this case is exactly because it allows us to explicitly compute
the MLSE.
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Datasets We use the code provided by Yang et al. (2023) to reproduce their experiments,
which learn group generators in an unsupervised fashion on the training datasets for various
tasks. We consider two settings: 2-body trajectory prediction and 3-body trajectory predic-
tion, both in 2 dimensions. The observations consist of vectors of such as x = (q1, p1, q2, p2)
where qi and pi are 2-dimensional positions and momenta, respectively, where i indexes the
body in question. In the two-body case, Yang et al. (2023) identify two valid symmetries,
generated by the block matrices

R
R

R
R



R −R

R −R
−R R

−R R


where R is the matrix for a rotation by π/2 radians. The latter symmetry holds because
observations centered, so the center of mass is always at the origin. The authors thus propose
three hyperparameter settings for their algorithm, which learns a group generator in R8×8:
one in which the former block structure is enforced in the generator (without weight-tying),
one in which the latter block structure is enforced (again without weight-tying), and finally
one in which no structure is enforced. We reproduce all three experiments with ten separate
random seeds each, and report our metrics with means and standard deviations in Table 1,
denoting the hyperparameter settings by “diag,” “block,” and “full,” respectively. In the
3-body case, the previous authors only consider the diagonal and full settings, so we follow
suit. Note that in the block and full settings, we must take care which group is considered the
ground truth, and whether the entire dataspace is maximized over in MLSE; we elaborate
on the choices reported in the table in the next paragraph.

Table 1: LSE-based metrics for groups learned as in Yang et al. (2023)

Dataset ALSE MLSE (exact) MLSE (approx.) Θ(g, h)

2-body (diag) 0.009± 0.001 0.019± 0.002 — 0.012± 0.001
2-body (block) 0.008± 0.002 0.015± 0.003 — 0.011± 0.003
2-body (full) 0.010± 0.001 0.77±0.07 — 0.47± 0.05

3-body (diag) 0.31± 0.07 0.6± 0.1 — 0.33± 0.06
3-body (full) 0.19± 0.04 1.000± 0.000 — 0.86± 0.06

ALSE and MLSE estimation We estimate the ALSE in all three experimental set-
tings using the same empirical distribution from which the symmetries are learned, i.e. the
training and testing datasets. For the trajectory prediction tasks, we learn one-dimensional
groups and compare against representations of SO(2), and can thus calculate the exact
MLSEs using Theorem 2. In the “diag” setting this is straightforward. In the “block”
setting, we compare against the second symmetry mentioned above.3 However, we observe

3. Comparing against the same ground truth as “diag” of course gives an MLSE close to 1; the ALSE,
however, is low, by the same reasoning as below.
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that näıvely maximizing LSE over all of Rd in “block” setting leads to the curious results
in Table 2 — namely, while the empirical ALSE is low, the MLSE is fairly high (and,
correspondingly, so is the aperture). The explanation for this must be that the ALSE is
restricted to a subset of datapoints at which the LSE is low. The explanation is exactly
that the second symmetry identified by Yang et al. (2023) is only a symmetry on the set X0

of datapoints x = (q1, p1, q2, p2) restricted such that q2 = −q1 and p2 = −p1. This suggests
that the correct MLSE should be restricted to X0. As X0 is linear, it is natural to try
replacing all occurrences of x in Theorem 2 and its proof with PX0x. It is straightforward
to verify this works noting it is equivalent to replacing g with gPX0 and h with hPX0 . As
one might suspect, the “full” setting behaves similarly; note that we use the “block” version
of the ground truth in this setting as well. The values reported in Table 1 are with the
projection inserted.

For the 3-body task, we observe in the “full” setting the same pattern as in Table 2 —
relatively low ALSE and high MLSE — suggesting that the learned symmetries apply in
some subspace to which the data distribution is confined. We do not attempt to identify
this subspace here, but show the generator with lowest ALSE in Appendix A, Figure 2.

Table 2: LSE-based metrics on 2-body, where MLSE maximizes over all of Rd

Dataset ALSE MLSE (exact) MLSE (approx.) Θ(g, h)

2-body (block) 0.008± 0.002 0.78± 0.05 — 0.71± 0.08

Convergence of sampling-based MLSE estimates Given the availability of exact
MLSE values, we can examine how many points x ∈ X one must sample to obtain good
estimates using sample maxima. We consider sampling points from isotropic Gaussians of
appropriate dimensions. We aggregate the difference between MLSE and ALSE across runs
and hyperparameter settings, and plot them against the number of sampled points x ∈ X,
separately for the 2-body and 3-body tasks. See Figures 3 and 4 in Appendix A. The errors
appear to decrease linearly in a log-log plot. The dependence on the dimension d is of
interest, but cannot be determined solely from these plots. As a rule of thumb, it appears
that up to d ≈ 10 one can get good estimates using around 105 samples.

6. Discussion

We have proposed a general method — as far as we can tell, the first — for evaluating
symmetry learning when the objects of interest are connected Lie groups with potentially
more than one generator. While this proposal is intuitively appealing, and we are able
both to demonstrate its computation as a proof of concept and obtain theoretical and
empirical insights, to prove truly useful it must be better understood and tested empirically.
Most obviously, we shall evaluate it on multi-dimensional groups, but it is also desirable
to understand other properties, such as the relationship between LSE-based metrics and
the performance of equivariant models using the learned symmetries on downstream tasks.
Indeed, we have begun such experiments, building on the work of Yang et al. (2023) and
Finzi et al. (2021).
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Additionally, the LSE has some properties which can prove inconvenient. Firstly, one
might want to compare Lie algebras whose tangent spaces have different dimensions. This
may be particularly important for evaluating symmetry-learning methods when the num-
ber of generators of the true group is not known. When the learned group has a different
dimension than the true group, the LSE will generally be constantly 1 at all points, re-
gardless of how “close” the learned group is to the true group. Even in the case where the
dimensions of the Lie algebras match, a perturbation of the true generators may increase
the dimension the tangent space at any given point x ∈ X.4 We suspect an appropriate
generalization of LSE can address both of these problems. For example, Ye and Lim (2016)
present a systematic generalization of aperture to spaces of differing dimension. A second
problem we identify is that the tangent space structure does not distinguish certain group
actions (see our remark in Section 3). We are looking at using other information local to
neighborhoods of points x ∈ X to make such distinctions.

There is also room for further theoretical understanding, such as a better characteriza-
tion (or even just examples) of when the conditions of Theorem 2 hold. Some hand-tested
examples also suggest that Corollary 3 generalizes to multiple-dimensional groups; if true,
this expands the practicality of the MLSE as an explicitly computable metric.
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Figure 2: Generator with lowest ALSE in 3-body “full” setting

Figure 3: Error in MLSE estimate against number of random Gaussian datapoints, 2-body
task (log-log axes, standard deviation in red)
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Figure 4: Error in MLSE estimate against number of random Gaussian datapoints, 2-body
task (log-log axes, standard deviation in red)

Appendix B. Proofs

B.1. Proof of Theorem 2

Using Proposition 1 (2), we can write

MLSE(G,H) = sup
x∈X
||x||=1

sup
A∈g
||Ax||=1

inf
B∈h
||Ax−Bx||.

By assumption, the above is upper bounded as

MLSE(G,H) ≤ sup
A∈S

sup
x∈X
||x||=1

inf
B∈h
||Ax−Bx||. (14)

A standard result on exchanging suprema and infima finishes the proof

MLSE(G,H) ≤ sup
A∈S

inf
B∈h

sup
x∈X
||x||=1

||Ax−Bx||.

B.2. Proof of Corollary 3

When G ∼= SO(2), the Lie algebra g is the span of a single skew-symmetric matrix. The
matrix R corresponding to a π/2-radian rotation is one of two elements of g with unit
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operator norm (the other being its negative). One can then verify that for any x ∈ X with
unit norm,

{A ∈ g : ||Ax|| = 1} = {R,−R} = S,

for example by noting that by the skew symmetry of elements A ∈ g, the product Ax ·Ax =
−x ·A2x can only be 1 if x is an eigenvector of A2 with eigenvalue -1. Thus the inequality
in (14) is in fact an equality. The final interchange of the inner supremum and infimum
maintains equality in this case because h is one-dimensional, applying the minimax theorem
of Asplund and Pták (1971).
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