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Abstract
We propose a novel algorithm for integrating gradient information into Consensus Based Optimiza-
tion (CBO), a recently proposed multi-particle gradient-free optimization method. During each it-
eration, a subset of particles are updated using local gradient information, while others are updated
using a traditional CBO step. We propose a method for subset selection and investigate its empir-
ical performance. The algorithm combines gradient and gradient-free optimization to encourage
exploring the state space while maintaining fast convergence. We investigate the tradeoff between
accuracy and computational cost when adjusting the number of gradient evaluations. When applied
to classification tasks in machine learning, the proposed algorithm attains a similar accuracy to
ensemble gradient methods based on Gradient Descent or Adam at a reduced computational cost.

1. Introduction

Gradient-based optimization algorithms have been at the center of advancements in optimization.
For example, stochastic Gradient Descent (SGD)[36] and Adam [28] have become core parts of
the machine learning optimization toolbox. These algorithms allow for convergence to an opti-
mal solution by limiting the search to promising directions, while encouraging efficient compute.
Advancements in deep learning however, have called for the effective optimization of highly non-
convex functions [38]. Training a neural network involves minimizing a non-convex loss function
f : D → R over a compact domain D ⊂ Rd that can be written as

f(x) = Eξ∼π[ℓ(x, ξ)],

x∗ ∈ arg min
x∈Rd

f(x). (1)

where ξ denote samples from the data distribution π. In practice, gradient-based methods find the
argmin by evaluating gradients∇xℓ(x, ξ). We assume ℓ(x, ξ) is differentiable in this work.

Nonconvex optimization comes with two typical problems for gradient-based methods. These
methods often struggle to find the global minimum, getting stuck in saddle points or local minima.
Extensive work has shown that stochastic noise can help SGD to escape saddle points [14, 20, 25],
and in specific conditions, escape local minima [30, 38]. Separately, researchers may avoid gradient-
based methods due to the difficulty or expense of gradient calculations. In some settings, the ob-
jective may not even be differentiable, for instance if given via a black-box procedure. This is
common in applied fields such as structural engineering [23], climate modeling [32], geophysics
[13], and other applied sciences where for instance Bayesian inversion plays a role. These fields
have been at the forefront of developing gradient-free optimization methods. One of the most popu-
lar agent-based global optimization algorithms is Particle Swarm Optimization (PSO) [27]. In PSO,
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agents explore the state space while encountering a randomized drift pushing towards the global
“best” position and their past personal ”best” position. Developments in PSO led to the creation of
Consensus Based Optimization (CBO) [7, 33, 39]. This algorithm switches off the personal best,
and circumvents the selection of a “best” particle by treating all particles identically, which makes
the dynamics amenable to analysis and has led to recent advances providing a rigorous theoretical
framework for this method [18], whilst providing performance comparable to PSO [4, 21]. The
method is a system of Stochastic Differential Equations (SDE) that mimics interacting agents com-
municating over a weighted mean. Particles are expected to build a consensus at the position of the
weighted mean that is located near the global minimizer of the objective function.

In this study, we develop a hybrid framework that combines gradient-based and gradient-free
methods. Our aim is to leverage the fast convergence benefits of gradient-based optimization along
with the explorative benefits of the CBO algorithm. We especially focus on the cheaper compute of
CBO, building an algorithm with high accuracy while adding a limited number of gradient evalua-
tions. We devise this algorithm for a preset compute budget when limiting the number of gradient
evaluations is required. We study the impact of changing this compute budget, studying the tradeoff
between accuracy and compute cost. Our main contributions are as follows:

• We introduce a new hybrid particle-based algorithm for global non-convex optimization that
takes advantage of both local gradient information and global consensus information to move
an interacting particle system toward the minimizer;

• We show empirically that for ML Classification tasks, our hybrid algorithm attains similar
accuracies as ensemble gradient methods (e.g., based on Gradient Descent and Adam) at a
fraction of the computational cost.

2. Background

2.1. Consensus Based Optimization (CBO)

Consensus Based Optimization (CBO) was first introduced in [33]. It is a particle-based optimiza-
tion method that computes a weighted mean using the ensemble. Particles with small function
values have a larger influence on the weighted mean than those with large function values. Thus,
the weighted mean is expected to approach the global minimizer of the objective function f .

All particles in the CBO algorithm are driven by two terms. One of these is a drift term, forcing
the particles to move towards the weighted mean, which is also known as a consensus. This algo-
rithm choice is motivated by the Laplace principle [33]. Given a measure ρ ∈ M(Rd), we define
the weighted mean of ρ as

vf (ρ) :=

∫
xωf

α(x)dρ(x) , ωf
α(x) :=

exp(−αf(x))∫
exp(−αf(y))dρ(y)

. (2)

Note that here, the values of the objective function enter into the weight only. The mean is calculated
such that particles with small function values have more influence in the weighted mean than those
with large function values. The parameter α controls this separation effect and can be thought of as
a control knob for explore vs exploit. For α = 0, all particles have the same weight. As α→∞, we
expect vf to approximate the global best of the agents, and can therefore be interpreted as a softmin
of the objective over the particle positions. Particles in the CBO algorithm experience both a drift

2



CONSENSUS BASED OPTIMIZATION ACCELERATES GRADIENT DESCENT

towards the weighted mean vf , and a scaled diffusion which is dynamically switched off similar to
simulated annealing.

The evolution of the particles i = 1, . . . , J is modeled using the following SDE, where ρJ(t) :=∑J
i=1 δxi(t) represents the empirical distribution of particles at the given time t:

dxi(t) = −λ(xi(t)− vf (ρJ(t)))dt+
√
2σ|xi(t)− vf (ρJ(t))|dW i

t , (3)

where λ scales the drift term and results in a faster attraction of particles to the mean, σ controls
the intensity of the noise and W i

t refers to the Brownian motion acting on particle i. Note that the
drift and diffusion of the particle dynamics both scale with the distance from the weighted mean.

2.2. Related Work

For large enough λ and small enough σ, it is expected that eventually all particles collapse to the
weighted mean vf , which is often referred to as the consensus point of the ensemble. In [18],
the authors provide probabilistic global convergence guarantees for the CBO algorithm. Recent
work has proven that CBO can be considered a stochastic relaxation of Gradient Descent [35].
We use this reasoning as motivation for the selection of CBO to be deployed in combination with
other gradient-based methods. Several adaptations of CBO have been proposed recently for high-
dimensional machine learning problems [8], including random mini-batching [31], for constrained
optimization problems [9, 11, 17, 22], multi-objective optimization [5, 29], for targets with multiple
minimizers or distributions with many modes [6, 16], including momentum [12, 21, 24], memory
[4, 40], truncated noise [19], and via jump-diffusion processes [26]. Recent applications include
federated learning [10], finance [2], and rare event estimation [1].

Few variants have focused on including gradient information into traditional CBO. In [34] the
authors, in addition to incorporating memory information, also evaluate local gradients, show global
convergence in mean field law and demonstrate superior performance on benchmark optimization
functions. In [37], an approximated gradient term is added to traditional CBO, observing con-
vergence to “better minima” when tested on similar benchmark functions. Another line of work
introduced the Adam-CBO method, which adds first and second order momentum terms to damp
oscillation and accelerate convergence [12].

3. Algorithm Design

3.1. CBO Combined with Limited Gradient Evaluations

We develop an algorithm to combine the best of both CBO and gradient optimization, encouraging
the inexpensive exploration of particles while also benefiting from the quick convergence of gradient
optimization. We develop Algorithm 1 using N total particles and n particles to be updated using
gradient information. Depending on the compute budget available, a suitable n ≤ N can be chosen.
For each iteration, we select the n particles closest to the weighted mean. We assume that these
particles are doing the ‘best’ in terms of approximating the global minimum, and so speeding up
their performance accelerates the optimization for the full particle ensemble as this information is
shared via the weighted mean. For these particles, we perform a gradient update step. The remaining
N −n particles are updated via the traditional CBO update step (3). The resulting algorithm allows
for a combination of ensemble gradient methods and particle based methods. After T iterations, we
return the best of all N particles.

3



CONSENSUS BASED OPTIMIZATION ACCELERATES GRADIENT DESCENT

3.2. Numerical Illustrations on a Toy Example

We study the performance of Algorithm 1 with Gradient Descent on a toy example with the objective
f(x) = (x2 )

2 +3(1− cos(2πx)). This function has its global minima located at 0. We perform 100
independent runs and plot (i) their final best particle value on the function, and (ii) a histogram to
understand their final distribution. All runs are initialized with 50 randomly spaced particles from
[-40, 40], re-initializing particles for each run. Figure 1 illustrates that Gradient Descent (i.e., 100%
gradient particles) gets stuck in local minima after T=1000 iterations, unlike CBO (i.e., 0% gradient
particles). This demonstrates the benefits of the CBO algorithm, including its ability to explore a
greater state space. With few iterations, we observe faster convergence of CBO with 50% gradient
particles. In this case, more final particles are located at the global minimum as compared to CBO
without gradients.

Figure 1: Distribution of final best particles (red) for 100 runs after T=10 iterations (top row) and
T=1000 iterations (bottom row).

4. Numerical Results

For the following examples, we use CBXpy [3], replacing their CBO optimizer with Algorithm 1.
At each iteration, we select particles closest to the weighted mean and update these using gradient
information. For this high-dimensional problem, we test two algorithms, one using GD and one
using Adam for updating the particles closest to the consensus. For details on initialization and
hyperparameters see Appendix A.
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Algorithm 1: CBO with Limited Local Gradient Evaluations
Input: Objective function f , number of particles N , number of particles for gradient

evaluations n, number of iterations T , time step ∆t, noise factor σ, learning rate λ,
energy scaling factor α, input domain D

Output: Location of best particle, an approximation of x∗

Initialization: Randomly draw N particles x ∈ Rd uniformly from the domain D
for t = 1 to T do

Step 1: Compute Consensus
a) Compute the energy of each particle: Ei = f(xi), i = 1, . . . , N

b) Calculate the weight of each particle: wi = exp
(
−αEi − log

∑
j exp(−αEj)

)
c) Compute consensus point: c =

∑
iwixi

Step 2: Gradient Descent and CBO Updates
a) Compute distances from consensus point: di = ∥xi − c∥
b) Identify the set of n closest particles to the consensus IGD
c) For all particles i ∈ IGD, apply the gradient update: xi ← xi −∆t∇f(xi)
d) For all particles i /∈ IGD, apply the CBO correction with noise:

xi ← xi − λ∆t · (xi − c) +
√
2σ∆t∥xi − c∥ζ, ζ ∼ N (0, 1)

end
Return the best particle: xbest = argmini f(xi)

4.1. CBO with GD Particles

We use N = 50 total particles and vary the number of GD particles n from 0 to 50 in intervals of 5.
Gradients are evaluated using Pytorch’s automatic differentiation. We track the resulting accuracy
associated with the best particle after 10 epochs. We additionally plot the time it takes to evaluate
those 10 epochs. This is used to understand the tradeoff between number of gradient evaluations and
accuracy. Results averaged over 10 runs are shown in Figure 2; we note that more runs yield similar
results. As shown, the classification accuracy greatly increases with the addition of just a few GD
particles. This benefit quickly plateaus. At the same time, adding more GD particles increases the
computational cost linearly; see Figure 2 (right). From the slope of the linear increase in Figure 2
(right) one can extract the cost of one gradient evaluation for the MNIST dataset. In application
settings where the cost of one gradient evaluation is known a priori, such analysis can be used to
determine the optimal cost-accuracy trade-off. Our results suggest that if focused on minimizing
computational cost, introducing just a few GD particles can yield improved accuracy.

4.2. CBO with Adam Particles

Due to memory limitations, we use N = 30 total particles and vary the number of Adam particles
n from 0 to 30 at intervals of 5. We use the Pytorch implementation of the Adam optimizer. We
similarly track the accuracy and time associated with running 7 epochs, averaged over 10 runs, of
training the Neural Network. Figure 3 displays similar results to Figure 2, once again suggesting
that if the focus is on minimizing computational cost, it may be useful to include minimal gradient
information into the CBO algorithm, prioritizing the particles closest to the weighted mean.
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Figure 2: Accuracy and Time after 10 epochs, varying number of Gradient Descent particles.

Figure 3: Accuracy and Time after 7 epochs, varying number of Adam particles.

5. Discussion

We propose a new algorithm based on Consensus Based Optimization that leverages gradient infor-
mation. This is a novel approach for global optimization defined by an interacting particle system
that uses both local gradient information and global information about the consensus of the parti-
cles. The inclusion of CBO methods can prevent particles from getting caught in local minima of
a function, as the noise term in CBO encourages their exploration. We further demonstrate that for
ML classification tasks, the proposed algorithm attains a similar accuracy to non-global ensemble
gradient methods using both Gradient Descent and Adam, even for very few iterations, with sig-
nificantly fewer gradient evaluations. We discuss the trade-off between accuracy and computation
time. This algorithm can be a powerful tool in situations where evaluating gradients is costly. Given
a limited computational budget, our algorithm selects a new set of particles at each iteration for
gradient-based updates. This allows for accelerated accurate approximation of the desired mini-
mum. Moreover, the only available theoretical guarantees for CBO apply in the asymptotic regime
as time goes to infinity and do not account for algorithm behavior at early or intermediate times.
In practice however, these methods are applied over a finite time horizon. Demonstrating effects
of gradient information after short times is therefore crucial to develop accurate algorithms within
a constrained computational budget. Future work will focus on more complex ML tasks as well
as theoretical convergence guarantees with respect to the number of particles being updated via
gradient evaluations.
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Appendix A. Details on numerical experiments

For experiments in Section 3.2, we set the parameters as dt = 0.01, σ = 1.0, λ = 1.0, α = 5.0. For
this one dimensional problem, we set M = 1, N = 50, d = 1.

For the Neural Network experiments in Section 4, we use the setup described in the CBXpy
documentation [33]. This includes dt = 0.1, σ = 0.1, λ = 1.0, α = 50.0 and uses N = 50 total
particles. Timing experiments in Section 4 were run on an Apple Silicon M1 chip with a 3.2 GHz
processor.

We replicate the task of classifying the MNIST dataset of handwritten digit images [15] by mea-
suring the time required for computation and the classification accuracy after 10 epochs. The neural
network architecture we consider consists of two layers: an input layer with 784 units and an output
layer with 10 units. Each layer is followed by a ReLU activation function and batch normalization.
A softmax activation function is applied after the final layer to estimate the probability of each label.

A.1. Discussion of Particle Error

We use the function f(x) = (x2 )
2 + 3(1 − cos(2πx)) from the numerical illustrations in Section

3.2. In the following illustration, we plot the error of the best particle after 1000 iterations, which
demonstrates an increase with the number of gradient particles. The results are averaged over 100
runs.

Figure 4: Error of best particle after 1000 iterations

A.2. Comparison with Ensemble Methods

We compare the time and accuracy for three different splits of the particles updated using CBO or
Adam. Table 1 presents the results after 7 epochs by averaging over 10 iterations. The setup for
the neural network architecture is the same as described in Section 4. N refers to the total number
of particles, and n refers to the number of particles evaluated using the Adam update (rather than
CBO) at each iteration.
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Average Accuracy Average Time (s)
N=10, n=10 0.88764 57.0201
N=30, n=10 0.90732 84.8080
N=30, n=30 0.91057 110.7147

Table 1: Average accuracy and time from running Algorithm 1 for different splits of N particle
into n Adam and N − n CBO updates. Note that experiments with N = 30, n = 10 and
N = 30, n = 30 have similar accuracies. However, N = 30, n = 10 requires less time
because it involves fewer gradient evaluations.
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