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Abstract

Back translation (BT) is one of the most sig-
nificant technologies in NMT research fields.
Existing attempts on BT share a common char-
acteristic: they employ either beam search or
random sampling to generate synthetic data
with a backward model but seldom work stud-
ies the role of synthetic data in the performance
of BT. This motivates us to ask a fundamen-
tal question: what kind of synthetic data con-
tributes to BT performance? Through both the-
oretical and empirical studies, we identify two
key factors on synthetic data controlling the
back-translation NMT performance, which are
quality and importance. Furthermore, based
on our findings, we propose a simple yet ef-
fective method to generate synthetic data to
better trade off both factors so as to yield the
better performance for BT. We run extensive
experiments on WMT14 DE-EN, EN-DE, and
RU-EN benchmark tasks. By employing our
proposed method to generate synthetic data, our
BT model significantly outperforms the stan-
dard BT baselines (i.e., beam and sampling
based methods for data generation), which
proves the effectiveness of our proposed meth-
ods.

1 Introduction

Since the birth of neural machine translation
(NMT) (Bahdanau et al., 2014; Sutskever et al.,
2014) back translation (BT) (Sennrich et al.,
2016a) has quickly become one of the most sig-
nificant technologies in natural language process-
ing (NLP) research field. This is because 1) it
provides a simple yet effective approach to ad-
vance the supervised NMT by leveraging mono-
lingual data (Edunov et al., 2018) and it also
serves as a key learning objective in unsupervised
NMT (Artetxe et al., 2017; Lample et al., 2018);
2) back-translation even plays a significant role in
other NLP research fields beyond translation such
as paraphrasing (Mallinson et al., 2017) and style

transfer (Prabhumoye et al., 2018; Zhang et al.,
2018).

Back translation consists of two steps, namely
synthetic corpus generation with a backward model
and parameter optimization for the forward model.
Various contributions have been made on improv-
ing back translation, for instance, iterative back-
translation (Hoang et al., 2018), tagged back-
translation (Caswell et al., 2019), confidence
weighting (Wang et al., 2019), data diversifica-
tion (Nguyen et al., 2020). Although these efforts
differ in some aspects, all of them share a common
characteristic: they employ a default way to gen-
erate synthetic data in the first step of BT which
is either beam search or random sampling with a
backward model. Seldom work studies the conse-
quences of synthetic corpus to back-translation and
hence it is unclear how synthetic data influences
the final performance of BT.

The early study empirically suggests the qual-
ity of the synthetic corpus is vital for BT perfor-
mance (Sennrich et al., 2016a). However, recent
studies illustrate better test performance can be
achieved by low quality synthetic corpus (Edunov
et al., 2018). This contradictory observation indi-
cates the quality of synthetic data is not the only
element that affects the BT performance. Hence,
this fact naturally raises a fundamental question:
what kind of synthetic data contributes to back-
translation performance?

Consequently, we attempt to exploit such a fun-
damental question in this paper. To this end, we
start from a marginal objective, which is critical to
semi-supervised learning, and derive an approxi-
mate lower bound of the objective function. Corre-
sponding to this lower bound, we theoretically find
two related elements for maximizing such a lower
bound: quality of synthetic bilingual data and im-
portance weight of its source. Since both elements
are mutually exclusive in essence, it may induce
contradictory observation if one judges the BT per-



formance according to a single element. In addi-
tion, such a theoretical explanation is supported by
our empirical experiments. Furthermore, based on
our findings, we propose a new heuristic approach
to generate synthetic data whose both elements are
better balanced so as to yield improvements over
both sampling and beam search based methods. Ex-
tensive experiments on three WMT14 tasks show
that our BT consistently outperforms the standard
sampling and beam search based baselines with a
significant margin.
Our contributions are three folds:

1. We point it out that importance weight and
quality of synthetic candidates are two key
factors that affect the NMT performance.

2. We propose a simple yet effective method for
synthetic corpus generation, which could bet-
ter balance the quality and importance of syn-
thetic data.

3. Our experiments prove the effectiveness of
aforementioned strategy, it outperforms beam
or sampling decoding methods on three bench-
mark tasks.

2 Revisiting Back Translation

NMT builds a probabilistic model p(y|z; #) with
neural networks parameterized by 6, which is used
to translate a sentence x in source language X’ to
a sentence y in target language ). The standard
wisdom to train the model is to minimize the fol-
lowing objective function over a given bilingual

corpus B = {(x;,yi) }:

(B;0) = > logp(yilwss0) (1)
(wi,y:)€EB

Recently Sennrich et al. (2016a) propose a re-
markable method called Back Translation (BT) to
improve NMT by using a monolingual corpus M
in target language ) besides 3 and back transla-
tion becomes one of the most successful techniques
in NMT (Fadaee and Monz, 2018; Edunov et al.,
2018). At the high level, back translation can be
considered as a semi-supervised method because
it leverages both labeled and unlabeled data. Sup-
pose p(z|y; ) is the backward translation model
whose parameter 7 is optimized over 3, the key
idea of back translation can be summarized as the
following two steps:

* Synthetic Corpus Generation: It firstly
back-translates each target sentence y € M to
% obtain a synthetic bilingual corpus {(z,y) |

y € M} by p(z|y; 7).

* Parameter Optimization: It combines both
authentic corpus B and the synthetic corpus
and then optimizes the parameter 6 by mini-
mizing the loss

(B;0)+ > logp(yl;0) ()
yeM

To make BT more efficient, the standard configura-
tion is widely adopted: each sentence y is required
to generate a single source  and both two steps
are performed for a single pass. We follow this
standard in this paper for generality but our idea
in this paper is straightforward to apply to other
configurations such as (Graca et al., 2019; Hoang
et al., 2018; Nguyen et al., 2020).

In the first step, there are two main strategies to
generate the synthetic corpus, i.e., deterministically
decoding and randomly sampling with p(x|y; 7).
The first strategy aims to search the best candidate
as follows,

2" = argmax p(&y; ) 3)
The above optimization is achieved by the beam
search decoding, which can be regarded as a de-
generated shortest path problem with respect to the
log p(Z|y; m) with limited routing attempts. The al-
ternative strategy is random sampling: it randomly
samples a token with respect to the distribution esti-
mated by back-translation model at each decoding

step. Such a process can be modelled by,
&* = rand{p(2|y; ™)} ©)

Research Question Prior work points out (Sen-
nrich et al., 2016a) that the synthetic corpus with
high quality is beneficial to the final performance
of back translation. However, the recent studies
(Edunov et al., 2018) find that NMT models with
unsatisfactory BLEU score corpus, for instance the
corpus generated by sampling based strategy, also
establish the state-of-the-art (SOTA) achievement
among back-translation NMT models. This contra-
dictory fact indicates that the quality of synthetic
corpus is not the sole element for back translation.
This motivates us to study a fundamental question
for back translation: what kind of synthetic corpus
is beneficial to back translation?



3 Understanding Synthetic Data by Two
Factors

To answer the fundamental question presented
in the previous section, we first start from the
marginal likelihood objective defined on the target
language Y, and then we theoretically explain two
factors (i.e., quality and importance) that are highly
related to the training objective of back transla-
tion. Finally, we empirically explain why synthetic
corpus with low quality may lead to better perfor-
mance than synthetic corpus with high quality by
measuring both factors.

3.1 Theoretical Explanation

Maximizing marginal likelihood is an important
principle to leverage unlabeled data. Therefore,
we rethink back translation from this principle be-
cause it makes use of target monolingual corpus
M. For each y € M, the marginal likelihood ob-
jective can be derived by the Bayesian Equation
Total Probability formula (5), Jansen Inequality (6),
and importance sampling (7) as follows:

logZp
>Zp

log p(y; 0 p(yl|z; 0) 5)

)log p(y|z; 0) (6)

Exwp(|y){p<£‘y) logp(y’[ijv 9)}
~ P8 o byl ) (7)

where p(x) is a language model on source language
X, p(x|y) is a backward translation model from
Y to X which serves as the proposal distribution
for importance sampling, and Z is sampled from
p(z|y). If p(x|y) is set as the backward model
p(z|y; m) optimized on B, the last term in Equation
7 is the same as the second term in BT loss (i.e.,
log p(y|#) in Eq. 2), and the unique difference is
the multiplicative term called importance weight:

p(2)
p(2]y)

Tmp(&;y) = ®)
The denominator is the candidate conditional prob-
ability to target, and the numerator is the candidate
distribution on source language distribution. Since
Imp(Z; y) is constant with respect to the parameter
0, maximizing log p(y|Z; @) in BT loss implicitly

maximizes Imp(z; y) log p(y|%), which indicates
that back translation aims to implicitly maximize
the marginal likelihood objective. More impor-
tantly, according to Equation 7 we can find that the
following two factors are critical to influence the
marginal likelihood log p(y; 0):

* Factor 1: The quality of = as a translation of
y corresponding to the log p(y|Z; ) in Eq. 7.

* Factor 2: The importance of Z as a translation
of y corresponding to Imp(&; y) in Eq. 7.

Theoretically, if & is of higher quality and con-
tains more semantic information in y, p(y|z;0)
would be higher and thus it would lead to a higher
log p(y; #), which is well acknowledged by prior
work (Sennrich et al., 2016a; Wang et al., 2019).
In particular, if 2 is with higher importance weight,
maximizing log p(y|Z; €) is more helpful to maxi-
mize log p(y; #). On the contrary, if Imp(z;y) is
very small, it needs to avoid such a sample z from
p(z|y), which is essentially the rejection control
strategy in importance sampling theory (Liu et al.,
1998; Liu and Liu, 2001).

Unfortunately, in practice, both factors are mu-
tually exclusive: if  is with high quality, p(z|y; 0)
would be higher as well leading to lower impor-
tance weight. This fact can explain the contradic-
tory observation in Sec 2 that BT with high-quality
synthetic data sometimes leads to better testing
performance, while it may deliver worse perfor-
mance at other times, which will be later justified
in Sec 3.2.

Estimating Two Factors To measure the quality
of & for each y, it is natural to use the evaluation
metric such as BLEU if the reference translation
x of y is available. Otherwise, as a surrogate, we
use the log likelihood log p(Z|y; 7) of the back-
ward translation model 7 which is trained on the
authentic data 3. Similarly, in order to estimate
the importance of £, we train an additional lan-
guage model p(x; w) with GPT (Radford et al.) on
a large monolingual corpus for &X'. In this way, the
importance weight is estimated by

p(T;w)
p(Z]y; )

3.2 Empirical Justification

Imp() ~

In this subsection, we aim to justify the following
statements: 1) encouraging quality of synthetic cor-
pus may to some extent hurt the performance of BT



Systems BLEU(2) logp(Z|ly,7) Imp. Test BLEU
beam 27.20 -15.65 -95.13 32.7
sampling 7.70 -157.62 -41.86 34.1
beam* 18.50 -26.66 -95.07 31.6

* The checkpoint of the backward model for generating
synthetic corpus are only trained for 1 epoch. However,
its log p(&|y, ) is still measured by a standard backward
model 7.

Table 1: Testing BLEU (on test set), quality (measured
by both BLEU and log p(&|y; 7)) and importance (Imp.)
estimation of synthetic data (on dev set) with beam
search or random sampling on WMT14 DE-EN task.

Systems BLEU(Z) logp(zly,7) Imp. Test BLEU
en-de(en)_beam 31.90 -15.29 -91.07 29.7
en-de(en)_sampling 10.90 -139.71 -46.88 30.0
ru-en(ru)_beam 33.10 -15.49 -89.71 359
ru-en(ru)_sampling 9.50 -155.82 -47.47 35.6

Table 2: Testing BLEU (on test set), quality (measured
by both BLEU and log p(&|y; 7)) and importance (Imp.)
estimation of synthetic data (on dev set) with beam
search or random sampling on WMT14 EN-DE and
RU-EN tasks.

due to the decrease of importance; 2) judging the
testing performance in terms of quality only may be
dangerous while it would be meaningful to judge
the testing performance by taking into account both
factors rather than either factor. To this end, we
run some quick experiments on WMT14 datasets
whose settings will be shown in Sec 5 later.

We set up two back translation systems with
two different options (i.e., beam search and sam-
pling) to generate synthetic corpus by using the
best checkpoint of p(Z|y; 7) tuned on the develop-
ment set. Both beam search and sampling based
BT systems are denoted by beam and sampling. In
addition, we pick another checkpoint of p(z|y; )
which is trained for only 1 epoch, and we use this
weak checkpoint to set up another beam search
based BT system, which is denoted as beam*. Ta-
ble 1 shows BLEU on test dataset, the quality and
importance on dev dataset according to three sys-
tems on WMT14 DE-EN task.

In Table 1, beam is better than sampling in the
quality of synthetic corpus but its testing perfor-
mance is worse. This is meaningful because the
former relies on the synthetic corpus with lower
importance weight according to our theoretical ex-
planation. In addition, when comparing beam with
beam®*, we can find that beam delivers better test-
ing performance because its quality is better mean-
while its importance weight is almost similar to that

of beam*. Table 2 consistently demonstrates that
it is meaningless to take into account quality only
when evaluating BT. These facts justify our state-
ments and provide an answer to the fundamental
question in section 2.

4 TImproving Synthetic Data for BT

As shown in the previous section, both importance
and quality of synthetic corpus are beneficial to
the overall testing performance of back translation.
It is a natural idea to promote both factors when
generating synthetic corpus such that running BT
on such corpus leads to better testing performance.
However, this is difficult because both factors are
mutually exclusive. In this section, we instead
propose two methods (namely data manipulation
and gamma score) to trade off both factors in the
hope to yield better BT performance.

4.1 Data Manipulation

Since the synthetic data in sampling based BT
is of high importance yet low quality whereas
the case for the synthetic data in beam search
based BT is opposite, we propose a data manip-
ulation method to trade off importance and quality
by combining both synthetic datasets. Through
balancing the ratio between beam and sampling
based synthetic corpora, we expect to find an op-
timized beam/sampling ratio to further improve
NMT model performance.

Specifically, we randomly shuffle M and divide
it into two parts with the first part accounting for y
(0 < v < 1); then we generate translations for the
first part with beam search while generating trans-
lations for the second part with sampling. Formally,
we use the following corpus M€ as the synthetic
corpus for BT:

ME = {(@%, y) o} U {35, 4)!M])
k=[yM]]

Where ¥ denotes a translation of y generated by
p(z|y; m) with beam search and Z* is a translation
with sampling, | - | means the size of the corpus,
and ~y is the combination ratio of beam and sam-
pling synthetic corpora. By tuning ~ here, one can
modify the weightage for the number of beam and
sampling sentences, to improve back-translation
performance by training models on a combined
synthetic corpus.

Although this method is easy to implement, its
limitation is obvious. Since each Z is either from



beam search or from sampling, the quality of M¢
is generally worse than that of beam search and its
importance weight is generally worse than that of
sampling. Consequently, we propose an alternative
method in the next part of this section.

4.2 Gamma Score

The key idea to the alternative method is that it
employs a score that balances both quality and
importance to generate a translation z for each
y € M. A natural choice of such a score is defined
by the interpolation score as follows:

vlog Imp(#;w, 7) + (1 — ) log p(2|y; )

where -y is used to trade off both factors as in cor-
pus manipulation. With the help of this score, one
may optimize the & through beam search whose
interpolation score is the best among all possible
translations of y € M. Unfortunately, such an im-
plementation leads to limited performance in our
preliminary experiments, due to two major chal-
lenges.

On one hand, the estimations of quality and im-
portance weight of Z are not well calibrated, and
in particular, quality and importance are mutually
exclusive as mentioned before. As a result, beam
search with the interpolation score over the expo-
nential space can not guarantee a desirable transla-
tion z for each y. On the other hand, quality and
importance weight of & are not at the same scale
for different y, it is difficult to balance both factors
with a fixed -y in the interpolation score for different
Y.

To alleviate these issues, we propose a simple
method as follows. Specifically, firstly, instead of
beam search with the interpolation score, we sim-
ply utilize the backward translation p(z|y; ) to
randomly sample a set of candidate translations
which is denoted by A(y) = {2;}Y (N = 50 in
this paper). ! Then we pick a #; among A(y) ac-
cording to the balancing score. Secondly, for each
Z, we normalize the log values of importance and
quality of each candidate by its sequence length,
then normalize these values with respect to all N
candidates as follows:

Flii) = log (]:(@))/alfen(fi) — WF

(&)

! N-best decoding strategy with p(z|y; 7) to generate N
candidates may be another solution which remains as future
work.

where F is either importance weight or quality es-
timations, and pr = + Y, log F(&;) and o7 =

(log F(£:)—pu~)2 )
2i(log N(fi) 1) are mean and variance of NV sam-

pled candidates with length normalized. Finally,
the Gamma score is defined on the normalized val-
ues of importance and quality as follows:

F(i:la w, ﬂ') =
exp (fyIrflp(g%i;w,ﬂ) + (1 —v)p(&ily, 7r))

3, exp (YImp (&5 w, ) + (1 — 7)p(&;y, 7))
(10)

where Irﬁp and p are the normalized log value of
importance weight and backward translation model
p(&|y, ) as defined in Equation 9.

Once the gamma score in Equation 10 is com-
puted, there are two methods to select & from A(y),
which are deterministic and stochastic methods.
For deterministic selection, we simply select the
candidates with maximum gamma score among
N translation candidates; and for sampling, we
sample a candidate according to its gamma score
distribution. These two methods are called gamma
selection and gamma sampling in our experiments.

S Experiments

5.1 Settings

We run all the experiments using WMT14 datasets
with fairseq (Ott et al., 2019) framework. For
dataset settings, we use all available bitext of
WMT14 corpus without any filtering on sentence
length or source/target length ratio, this will result
in a 4.5 million parallel corpus. For back translation
experiment, we use equal scale monolingual corpus
randomly sampled from Newscrawl 2020 (Barrault
et al., 2019) comprising 4.5 million monolingual
sentences, thus total 9 million sentences are used.
We tokenize the parallel corpus using Mose tok-
enizer (Koehn et al., 2007), and learn a source and
target shared Byte-Pair-Encoding (BPE; Sennrich
et al., 2016) with 32K types. We develop on new-
stest2013 and report the results on newstest2014.
As for model architecture, we employ
all the translation models using architecture
transformer_wmt_en_de_big, which is a
Big Transformer architecture with 6 blocks in the
encoder and decoder, under the fairseq(Ott et al.,
2019) framework. We use the same hyperparame-
ter settings across all the experiments, i.e., 1024
word representation size, 4096 inner dimensions of



DE-EN
Systems
w/o bitext w bitext
Transformer - 32.1
Beam BT 27.6 32.7
Sampling BT 29.2 34.1
DM 313 34.2

DM means the data manipulation method.

Table 3: Data manipulation achieves the almost the
same BLEU score as sampling BT.

feed-forward layers, and dropout is set to 0.3 for
all the experiments. And for monolingual models,
we apply transformer_1lm_gpt architecture
(Radford et al.) on each side of WMT14 corpus.

For baseline models, we train them for 400K
updating steps, and train the models with back-
translation data for 1.6M updating steps. We
save the checkpoints every 100k updating inter-
vals, and only select the checkpoints with high-
est develop set performance. As for the back-
translation data, we use baseline models’ check-
points at 400K updating steps to generate default
beam5 decoding and sampling decoding synthetic
corpus without any penalty. For monolingual mod-
els, we only select the checkpoints with the best de-
velop set performance. When tuning ~y on dev sets
for data manipulation methods we select it from
{0,1/4,1/2,3/4,1} and the optimal is v = 1/2.
For the Gamma Score method, +y is tuned among
{0.1,0.2,0.3,0.4,0.5} and it is set v = 0.2 for all
three tasks.

All the experiments are conducted using 8
Nvidia V100-32GB graphic cards without any gra-
dient accumulation or bitext upsampling, and the
results in this paper are measured in case-sensitive
detokenized BLEU with SacreBLEU? by Post
(2018).

5.2 Main Results
5.2.1 Results on DE-EN

Data Manipulation We conduct two experi-
ments to study the data manipulation for back-
translation NMT model performance using afore-
mentioned corpus with and without authentic cor-
pus.

>We use the fairseq default shell script sacrebleu. sh,
with WMT14/full testsets to evaluate the model checkpoints.
The sacrebleu output format is BLEU + case.mixed + lang.de-
en + numrefs.1 + smooth.exp + test.wmt14/full + tok.13a +
version.1.4.13.

Systems SacreBLEU
Transformer 32.1
Beam BT 32.7
Sampling BT 34.1
DM +bitext 34.2
Gamma sampling BT 35.0%
Gamma selection BT 34.7*

Table 4: BLEU score on WMT14 DE-EN testset.
Gamma criterion based method outperform beam search
based and sampling based back-translation NMT mod-
els. The result marked with * denotes that it is signifi-
cantly better than sampling BT with p < 0.0010.

Table 3 show the data manipulation results com-
pared with baseline. Firstly, for synthetic corpus
experiment, we find that even if only monolingual
corpus is used, the performance of back-translation
NMT model can still be significantly improved
to 31.3 from 29.2 by sampling or 27.6 by beam,
and it is only 0.7 lower than bitext baseline by
BLEU score measure. Secondly, for the experi-
ments with bitext, the best performance by data
manipulation only helps the back-translation NMT
model achieves almost the same performance with
sampling BT. This means data manipulation meth-
ods cannot achieve a higher BLEU score than sam-
pling or beam.

Gamma Score In this paragraph, we conduct the
experiments based on gamma score method. We
conduct both of the methods in this experiment: we
select the candidate with highest gamma score for
the deterministic method whereas sample the candi-
date by gamma score distribution for the stochastic
method.

Once again, we use synthetic gamma corpus
combined with bitext to train the back-translation
NMT models on each corpus, the results are listed
in 4. From the table, we can see that our pro-
posed gamma sampling significantly outperforms
the sampling based and beam search based back-
translation baselines by 0.9 and 2.3 BLEU scores
in terms of SacreBLEU. And our two proposed
gamma score based methods outperform data ma-
nipulation method as well.

In the rest of the experiments, we report results
for both gamma selection and gamma sampling as
the proposed methods and their hyperparameter ~y
for other tasks is fixed to 0.2.
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Figure 1: Synthetic corpus analysis on singular value spectrum(a), sequence length histogram(b) and token frequency
histogram(c).

System EN-DE RU-EN 5.4 Analysis on Synthetic Corpus
Transformer 274 34.1 In this subsection, we analyze the synthetic cor-
Beam BT 29.7 35.9

. pus of proposed gamma score methods on both
Sampling BT 30.0 35.6

G lection BT 31.0% 36,1+ sentence level and token level.
amma selection . .

1 k %k
Gamma sampling BT 309 36.3 Sentence Level We evaluate the back-translation

Table 5: SacreBLEU score on WMT14 EN-DE and  Synthetic source sentences by their sentence rep-
RU-EN testsets. Gamma criterion based methods out- ~ Tesentations. We use the baseline model to gener-

perform beam search based and sampling based back-  ate the hidden representations at the end-of-speech
translation NMT models. The result marked with *  token as the sentence representation. Here, we
denotes that it is significantly better than both sampling ~ compute the singular value spectrum of the rep-

and beam based BT with p < 0.001. resentations for different back-translation corpora.
3

The spectrum is shown in figure 1(a). From
the spectrum, sampling has a more uniform distri-
bution whereas beam has the worst variety. Our
proposed methods have moderate variety between
sampling and beam, and gamma sampling consists
of higher linguistic information richness compared
with gamma selection.

5.3 Results on other Datasets

We conduct the experiments on WMT14 EN-DE
and RU-EN for both gamma selection and gamma
sampling as well, and table 5 shows that our pro-
posed gamma based methods significantly outper-
form beam and sampling based back-translation
methods on both en-de and ru-en translation for
almost 1 and 0.4 BLEU score respectively.

Figure 1(b) shows the sequence length of the
synthetic corpora of different generation methods.
Beam generates the shortest synthetic sentences
and gamma sampling generates the longest syn-
Discussion on Efficiency Since our method re-  thetic sentences on average. Between them, sam-
quires to run sampling with size of 50 to generate  pling and gamma selection generate almost the
synthetic data, its efficiency is about 10x slower  same sequence length, which means gamma selec-
than that of beam BT with size of 5 and 50x slower  tion candidates provide more learning signal than
than that of sampling BT with size 1. Luckily, be-  random sampling under the same length.
cause the bottleneck of BT is not the synthetic data
generation but the parameter optimization on both 3Singular value spectrum analysis is a widely used method
synthetic and authentic data, our overall overhead to measure the representation distribution. Gao et al. (2019)
. . . firstly introduces this method to measure the isotropy of rep-
I.S less.than 0.5x SIOV&TCI’ than sampling BT. In E%ddl— resentation, and Wang et al. (2019) directly employ spectrum
tion, since decoding is very easy to be parallelized control for better NMT performance. The idea is, representa-
on GPU or CPU machines, the cost of decoding is tions of high linguistic variety usually are more isotropic, thus

. . . . to have a relatively uniform singular value distribution. We
not a serious issue for our method, which makes it

employ this method here to measure the variety of sentence
possible to run our method on a large scale dataset.  level information.



Token Level Figure 1(c) is the token frequency
histogram, which shows beam has higher probabil-
ity to decode high frequency tokens while sampling
prefers more low frequency tokens.

We also measure the vocabulary size, finding
that the proposed gamma sampling shares the same
vocabulary size as sampling method. This could
be the reason that gamma sampling is based on
random sampling for candidates generation.

6 Related Work

This section describes prior arts in back-translation
for NMT, data augmentation, and semi-supervised
machine translation.

Back-translation NMT Bojar and Tamchyna
(2011) firstly proposed back-translation, then
Bertoldi and Federico (2009); Lambert et al. (2011)
apply back translation to solve the domain adapta-
tion problems in phrase-based NMT systems. Sen-
nrich et al. (2016a) further extend the back transla-
tion for training NMT models integrally.

For understanding the back-translation synthetic
corpus, Currey et al. (2017) use a copy of target
as a pseudo source , and find that NMT model
performance can still be improved under the low
resource settings. Caswell et al. (2019) propose
tagged back-translation to indicate to the model
that the given source is synthetic. To further find an
optimum back-translation corpus decoding method,
Imamura et al. (2018) firstly use sampling based
synthetic corpus and find such a stochastic decod-
ing method outperforms beam search on boosting
NMT model performance, and Edunov et al. (2018)
broaden the investigation of a number of back-
translation generation methods for synthetic source
sentences. Their contribution shows that sampling
or noisy synthetic data gives a much stronger train-
ing signal. Graca et al. (2019) reformulate back-
translation in the context of optimization and clari-
fying to improve sampling based decoding method
search space, thus proposing N best list sampling.
Recently, Nguyen et al. (2020) diversify the train-
ing data by multiple forward and backward models
translations and combine them with the original
datasets.

Data Augmentation for NMT NMT researchers
are the pioneers of data augmentation studies since
back-translation is a natural type of data augmenta-
tion method. (Sennrich et al., 2016b; Norouzi et al.,
2016; Zhang and Zong, 2016).

To balance the token frequency in NMT corpus,
Fadaee et al. (2017) create new sentences contain
low-frequency words. However, as observed by
Wang et al. (2018), the improvement across dif-
ferent translation tasks is not consistent, and they
invent SwitchOut data augmentation policy. Recht
etal. (2018, 2019); Werpachowski et al. (2019) also
observe such an inconsistency of variance between
training corpus and testing set as well as in the
generation tasks

Recently, Li et al. (2019) try to understand data
augmentation from input sensitivity and prediction
margin, thus obtaining relatively low variance in
generation.

Semi-supervised Machine Translation How-
ever, as high quality bitext is always limited and
costly to collect, Gulcehre et al. (2015) study meth-
ods for effectively leveraging monolingual data in
NMT systems. He et al. (2016) develop a dual-
learning mechanism, under such a learning objec-
tive, a NMT system is able to automatically learn
from unlabeled data, thus improving NMT perfor-
mance iteratively. Based on iterative learning, Lam-
ple et al. (2018) investigates how to learn NMT
systems when only large monolingual corpora can
be used in each language.

For supervision of models, Gulcehre et al. (2017)
employ the target language model hidden states
into NMT decoder to further improve performance.
Edunov et al. (2020) show that back-translation
improves translation quality of both naturally oc-
curring text and translationese according to pro-
fessional human translators. For supervision of
learning corpus, Wu et al. (2019) study both the
source-side and target-side monolingual data for
NMT.

7 Conclusion

In this work, we answer a fundamental question
about synthetic data for back translation. We the-
oretically and empirically show two key factors
namely quality and importance weight of synthetic
data play an important role in back translation, and
then we propose a new method to generate syn-
thetic data which better balances both factors so
as to boost the back-translation performance. For
future work, we think it would be of significance
to apply our synthetic data generation method to
other BT methods or even to more broad NLP tasks
such as paraphrasing and style transfer.
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A  Model Details

The models are optimized using Adam optimizer

(Kingma and Ba, 2015), with 51 = 0.9,8; =
0.98. We use the same learning rate schedular as
(Vaswani et al., 2017) with maximum learning rate
7 x 107*, and 4000 warmup updates. We use the

fairseq 10.2 as the framework and the training com-

mand as well as the model hyperparameters are
listed below,

fairseg-train \

——arch transformer_wmt_en_de_big

——-share-all-embeddings

——dropout 0.3

——weight-decay 0.0

——criterion
label_smoothed_cross_entropy

——label-smoothing 0.1

——optimizer adam

——adam-betas " (0.9, 0.98)"

——clip-norm 0.0

——1lr-scheduler inverse_sqrt

——warmup-updates 4000

—-—-max—-tokens 4096

——max-update 1600000

—--validate—-interval-updates 10000

—-—-save—interval-updates 100000

—-—1lr 7e-4

—-—upsample-primary 1
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