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Abstract

Back translation (BT) is one of the most sig-001
nificant technologies in NMT research fields.002
Existing attempts on BT share a common char-003
acteristic: they employ either beam search or004
random sampling to generate synthetic data005
with a backward model but seldom work stud-006
ies the role of synthetic data in the performance007
of BT. This motivates us to ask a fundamen-008
tal question: what kind of synthetic data con-009
tributes to BT performance? Through both the-010
oretical and empirical studies, we identify two011
key factors on synthetic data controlling the012
back-translation NMT performance, which are013
quality and importance. Furthermore, based014
on our findings, we propose a simple yet ef-015
fective method to generate synthetic data to016
better trade off both factors so as to yield the017
better performance for BT. We run extensive018
experiments on WMT14 DE-EN, EN-DE, and019
RU-EN benchmark tasks. By employing our020
proposed method to generate synthetic data, our021
BT model significantly outperforms the stan-022
dard BT baselines (i.e., beam and sampling023
based methods for data generation), which024
proves the effectiveness of our proposed meth-025
ods.026

1 Introduction027

Since the birth of neural machine translation028

(NMT) (Bahdanau et al., 2014; Sutskever et al.,029

2014) back translation (BT) (Sennrich et al.,030

2016a) has quickly become one of the most sig-031

nificant technologies in natural language process-032

ing (NLP) research field. This is because 1) it033

provides a simple yet effective approach to ad-034

vance the supervised NMT by leveraging mono-035

lingual data (Edunov et al., 2018) and it also036

serves as a key learning objective in unsupervised037

NMT (Artetxe et al., 2017; Lample et al., 2018);038

2) back-translation even plays a significant role in039

other NLP research fields beyond translation such040

as paraphrasing (Mallinson et al., 2017) and style041

transfer (Prabhumoye et al., 2018; Zhang et al., 042

2018). 043

Back translation consists of two steps, namely 044

synthetic corpus generation with a backward model 045

and parameter optimization for the forward model. 046

Various contributions have been made on improv- 047

ing back translation, for instance, iterative back- 048

translation (Hoang et al., 2018), tagged back- 049

translation (Caswell et al., 2019), confidence 050

weighting (Wang et al., 2019), data diversifica- 051

tion (Nguyen et al., 2020). Although these efforts 052

differ in some aspects, all of them share a common 053

characteristic: they employ a default way to gen- 054

erate synthetic data in the first step of BT which 055

is either beam search or random sampling with a 056

backward model. Seldom work studies the conse- 057

quences of synthetic corpus to back-translation and 058

hence it is unclear how synthetic data influences 059

the final performance of BT. 060

The early study empirically suggests the qual- 061

ity of the synthetic corpus is vital for BT perfor- 062

mance (Sennrich et al., 2016a). However, recent 063

studies illustrate better test performance can be 064

achieved by low quality synthetic corpus (Edunov 065

et al., 2018). This contradictory observation indi- 066

cates the quality of synthetic data is not the only 067

element that affects the BT performance. Hence, 068

this fact naturally raises a fundamental question: 069

what kind of synthetic data contributes to back- 070

translation performance? 071

Consequently, we attempt to exploit such a fun- 072

damental question in this paper. To this end, we 073

start from a marginal objective, which is critical to 074

semi-supervised learning, and derive an approxi- 075

mate lower bound of the objective function. Corre- 076

sponding to this lower bound, we theoretically find 077

two related elements for maximizing such a lower 078

bound: quality of synthetic bilingual data and im- 079

portance weight of its source. Since both elements 080

are mutually exclusive in essence, it may induce 081

contradictory observation if one judges the BT per- 082
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formance according to a single element. In addi-083

tion, such a theoretical explanation is supported by084

our empirical experiments. Furthermore, based on085

our findings, we propose a new heuristic approach086

to generate synthetic data whose both elements are087

better balanced so as to yield improvements over088

both sampling and beam search based methods. Ex-089

tensive experiments on three WMT14 tasks show090

that our BT consistently outperforms the standard091

sampling and beam search based baselines with a092

significant margin.093

Our contributions are three folds:094

1. We point it out that importance weight and095

quality of synthetic candidates are two key096

factors that affect the NMT performance.097

2. We propose a simple yet effective method for098

synthetic corpus generation, which could bet-099

ter balance the quality and importance of syn-100

thetic data.101

3. Our experiments prove the effectiveness of102

aforementioned strategy, it outperforms beam103

or sampling decoding methods on three bench-104

mark tasks.105

2 Revisiting Back Translation106

NMT builds a probabilistic model p(y|x; θ) with107

neural networks parameterized by θ, which is used108

to translate a sentence x in source language X to109

a sentence y in target language Y . The standard110

wisdom to train the model is to minimize the fol-111

lowing objective function over a given bilingual112

corpus B = {(xi, yi)}:113

ℓ(B; θ) =
∑

(xi,yi)∈B

log p(yi|xi; θ) (1)114

Recently Sennrich et al. (2016a) propose a re-115

markable method called Back Translation (BT) to116

improve NMT by using a monolingual corpus M117

in target language Y besides B and back transla-118

tion becomes one of the most successful techniques119

in NMT (Fadaee and Monz, 2018; Edunov et al.,120

2018). At the high level, back translation can be121

considered as a semi-supervised method because122

it leverages both labeled and unlabeled data. Sup-123

pose p(x|y;π) is the backward translation model124

whose parameter π is optimized over B, the key125

idea of back translation can be summarized as the126

following two steps:127

• Synthetic Corpus Generation: It firstly 128

back-translates each target sentence y ∈ M to 129

x̂ obtain a synthetic bilingual corpus {(x̂, y) | 130

y ∈ M} by p(x|y;π). 131

• Parameter Optimization: It combines both 132

authentic corpus B and the synthetic corpus 133

and then optimizes the parameter θ by mini- 134

mizing the loss 135

ℓ(B; θ) +
∑
y∈M

log p(y|x̂; θ) (2) 136

To make BT more efficient, the standard configura- 137

tion is widely adopted: each sentence y is required 138

to generate a single source x̂ and both two steps 139

are performed for a single pass. We follow this 140

standard in this paper for generality but our idea 141

in this paper is straightforward to apply to other 142

configurations such as (Graça et al., 2019; Hoang 143

et al., 2018; Nguyen et al., 2020). 144

In the first step, there are two main strategies to 145

generate the synthetic corpus, i.e., deterministically 146

decoding and randomly sampling with p(x|y;π). 147

The first strategy aims to search the best candidate 148

as follows, 149

x̂b = argmax p(x̂|y;π) (3) 150

The above optimization is achieved by the beam 151

search decoding, which can be regarded as a de- 152

generated shortest path problem with respect to the 153

log p(x̂|y;π) with limited routing attempts. The al- 154

ternative strategy is random sampling: it randomly 155

samples a token with respect to the distribution esti- 156

mated by back-translation model at each decoding 157

step. Such a process can be modelled by, 158

x̂s = rand{p(x̂|y;π)} (4) 159

Research Question Prior work points out (Sen- 160

nrich et al., 2016a) that the synthetic corpus with 161

high quality is beneficial to the final performance 162

of back translation. However, the recent studies 163

(Edunov et al., 2018) find that NMT models with 164

unsatisfactory BLEU score corpus, for instance the 165

corpus generated by sampling based strategy, also 166

establish the state-of-the-art (SOTA) achievement 167

among back-translation NMT models. This contra- 168

dictory fact indicates that the quality of synthetic 169

corpus is not the sole element for back translation. 170

This motivates us to study a fundamental question 171

for back translation: what kind of synthetic corpus 172

is beneficial to back translation? 173
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3 Understanding Synthetic Data by Two174

Factors175

To answer the fundamental question presented176

in the previous section, we first start from the177

marginal likelihood objective defined on the target178

language Y , and then we theoretically explain two179

factors (i.e., quality and importance) that are highly180

related to the training objective of back transla-181

tion. Finally, we empirically explain why synthetic182

corpus with low quality may lead to better perfor-183

mance than synthetic corpus with high quality by184

measuring both factors.185

3.1 Theoretical Explanation186

Maximizing marginal likelihood is an important187

principle to leverage unlabeled data. Therefore,188

we rethink back translation from this principle be-189

cause it makes use of target monolingual corpus190

M. For each y ∈ M, the marginal likelihood ob-191

jective can be derived by the Bayesian Equation192

Total Probability formula (5), Jansen Inequality (6),193

and importance sampling (7) as follows:194

log p(y; θ) = log
∑
x

p(x)p(y|x; θ) (5)195

≥
∑
x

p(x) log p(y|x; θ) (6)196

=
∑
x

p(x|y) p(x)

p(x|y)
log p(y|x; θ)197

= Ex̂∼p(·|y)

{ p(x̂)

p(x̂|y)
log p(y|x̂; θ)

}
198

≈ p(x̂)

p(x̂|y)
log p(y|x̂; θ) (7)199

where p(x) is a language model on source language200

X , p(x|y) is a backward translation model from201

Y to X which serves as the proposal distribution202

for importance sampling, and x̂ is sampled from203

p(x|y). If p(x|y) is set as the backward model204

p(x|y;π) optimized on B, the last term in Equation205

7 is the same as the second term in BT loss (i.e.,206

log p(y|x̂) in Eq. 2), and the unique difference is207

the multiplicative term called importance weight:208

Imp(x̂; y) =
p(x̂)

p(x̂|y)
(8)209

The denominator is the candidate conditional prob-210

ability to target, and the numerator is the candidate211

distribution on source language distribution. Since212

Imp(x̂; y) is constant with respect to the parameter213

θ, maximizing log p(y|x̂; θ) in BT loss implicitly214

maximizes Imp(x̂; y) log p(y|x̂), which indicates 215

that back translation aims to implicitly maximize 216

the marginal likelihood objective. More impor- 217

tantly, according to Equation 7 we can find that the 218

following two factors are critical to influence the 219

marginal likelihood log p(y; θ): 220

• Factor 1: The quality of x̂ as a translation of 221

y corresponding to the log p(y|x̂; θ) in Eq. 7. 222

• Factor 2: The importance of x̂ as a translation 223

of y corresponding to Imp(x̂; y) in Eq. 7. 224

Theoretically, if x̂ is of higher quality and con- 225

tains more semantic information in y, p(y|x̂; θ) 226

would be higher and thus it would lead to a higher 227

log p(y; θ), which is well acknowledged by prior 228

work (Sennrich et al., 2016a; Wang et al., 2019). 229

In particular, if x̂ is with higher importance weight, 230

maximizing log p(y|x̂; θ) is more helpful to maxi- 231

mize log p(y; θ). On the contrary, if Imp(x̂; y) is 232

very small, it needs to avoid such a sample x̂ from 233

p(x|y), which is essentially the rejection control 234

strategy in importance sampling theory (Liu et al., 235

1998; Liu and Liu, 2001). 236

Unfortunately, in practice, both factors are mu- 237

tually exclusive: if x̂ is with high quality, p(x̂|y; θ) 238

would be higher as well leading to lower impor- 239

tance weight. This fact can explain the contradic- 240

tory observation in Sec 2 that BT with high-quality 241

synthetic data sometimes leads to better testing 242

performance, while it may deliver worse perfor- 243

mance at other times, which will be later justified 244

in Sec 3.2. 245

Estimating Two Factors To measure the quality 246

of x̂ for each y, it is natural to use the evaluation 247

metric such as BLEU if the reference translation 248

x of y is available. Otherwise, as a surrogate, we 249

use the log likelihood log p(x̂|y;π) of the back- 250

ward translation model π which is trained on the 251

authentic data B. Similarly, in order to estimate 252

the importance of x̂, we train an additional lan- 253

guage model p(x;ω) with GPT (Radford et al.) on 254

a large monolingual corpus for X . In this way, the 255

importance weight is estimated by 256

Imp(x̂) ≈ p(x̂;ω)

p(x̂|y;π)
257

3.2 Empirical Justification 258

In this subsection, we aim to justify the following 259

statements: 1) encouraging quality of synthetic cor- 260

pus may to some extent hurt the performance of BT 261
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Systems BLEU(x̂) log p(x̂|y, π) Imp. Test BLEU

beam 27.20 -15.65 -95.13 32.7
sampling 7.70 -157.62 -41.86 34.1
beam* 18.50 -26.66 -95.07 31.6

* The checkpoint of the backward model for generating
synthetic corpus are only trained for 1 epoch. However,
its log p(x̂|y, π) is still measured by a standard backward
model π.

Table 1: Testing BLEU (on test set), quality (measured
by both BLEU and log p(x̂|y;π)) and importance (Imp.)
estimation of synthetic data (on dev set) with beam
search or random sampling on WMT14 DE-EN task.

Systems BLEU(x̂) log p(x̂|y, π) Imp. Test BLEU

en-de(en)_beam 31.90 -15.29 -91.07 29.7
en-de(en)_sampling 10.90 -139.71 -46.88 30.0
ru-en(ru)_beam 33.10 -15.49 -89.71 35.9
ru-en(ru)_sampling 9.50 -155.82 -47.47 35.6

Table 2: Testing BLEU (on test set), quality (measured
by both BLEU and log p(x̂|y;π)) and importance (Imp.)
estimation of synthetic data (on dev set) with beam
search or random sampling on WMT14 EN-DE and
RU-EN tasks.

due to the decrease of importance; 2) judging the262

testing performance in terms of quality only may be263

dangerous while it would be meaningful to judge264

the testing performance by taking into account both265

factors rather than either factor. To this end, we266

run some quick experiments on WMT14 datasets267

whose settings will be shown in Sec 5 later.268

We set up two back translation systems with269

two different options (i.e., beam search and sam-270

pling) to generate synthetic corpus by using the271

best checkpoint of p(x̂|y;π) tuned on the develop-272

ment set. Both beam search and sampling based273

BT systems are denoted by beam and sampling. In274

addition, we pick another checkpoint of p(x̂|y;π)275

which is trained for only 1 epoch, and we use this276

weak checkpoint to set up another beam search277

based BT system, which is denoted as beam*. Ta-278

ble 1 shows BLEU on test dataset, the quality and279

importance on dev dataset according to three sys-280

tems on WMT14 DE-EN task.281

In Table 1, beam is better than sampling in the282

quality of synthetic corpus but its testing perfor-283

mance is worse. This is meaningful because the284

former relies on the synthetic corpus with lower285

importance weight according to our theoretical ex-286

planation. In addition, when comparing beam with287

beam*, we can find that beam delivers better test-288

ing performance because its quality is better mean-289

while its importance weight is almost similar to that290

of beam*. Table 2 consistently demonstrates that 291

it is meaningless to take into account quality only 292

when evaluating BT. These facts justify our state- 293

ments and provide an answer to the fundamental 294

question in section 2. 295

4 Improving Synthetic Data for BT 296

As shown in the previous section, both importance 297

and quality of synthetic corpus are beneficial to 298

the overall testing performance of back translation. 299

It is a natural idea to promote both factors when 300

generating synthetic corpus such that running BT 301

on such corpus leads to better testing performance. 302

However, this is difficult because both factors are 303

mutually exclusive. In this section, we instead 304

propose two methods (namely data manipulation 305

and gamma score) to trade off both factors in the 306

hope to yield better BT performance. 307

4.1 Data Manipulation 308

Since the synthetic data in sampling based BT 309

is of high importance yet low quality whereas 310

the case for the synthetic data in beam search 311

based BT is opposite, we propose a data manip- 312

ulation method to trade off importance and quality 313

by combining both synthetic datasets. Through 314

balancing the ratio between beam and sampling 315

based synthetic corpora, we expect to find an op- 316

timized beam/sampling ratio to further improve 317

NMT model performance. 318

Specifically, we randomly shuffle M and divide 319

it into two parts with the first part accounting for γ 320

(0 < γ < 1); then we generate translations for the 321

first part with beam search while generating trans- 322

lations for the second part with sampling. Formally, 323

we use the following corpus Mc as the synthetic 324

corpus for BT: 325

Mc = {(x̂bi , yi)ki=0} ∪ {(x̂sj , yj)
|M|
j=k} 326

k =⌊γ|M|⌋ 327

Where x̂b denotes a translation of y generated by 328

p(x|y;π) with beam search and x̂s is a translation 329

with sampling, | · | means the size of the corpus, 330

and γ is the combination ratio of beam and sam- 331

pling synthetic corpora. By tuning γ here, one can 332

modify the weightage for the number of beam and 333

sampling sentences, to improve back-translation 334

performance by training models on a combined 335

synthetic corpus. 336

Although this method is easy to implement, its 337

limitation is obvious. Since each x̂ is either from 338
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beam search or from sampling, the quality of Mc339

is generally worse than that of beam search and its340

importance weight is generally worse than that of341

sampling. Consequently, we propose an alternative342

method in the next part of this section.343

4.2 Gamma Score344

The key idea to the alternative method is that it345

employs a score that balances both quality and346

importance to generate a translation x̂ for each347

y ∈ M. A natural choice of such a score is defined348

by the interpolation score as follows:349

γ log Imp(x̂;ω, π) + (1− γ) log p(x̂|y;π)350

where γ is used to trade off both factors as in cor-351

pus manipulation. With the help of this score, one352

may optimize the x̂ through beam search whose353

interpolation score is the best among all possible354

translations of y ∈ M. Unfortunately, such an im-355

plementation leads to limited performance in our356

preliminary experiments, due to two major chal-357

lenges.358

On one hand, the estimations of quality and im-359

portance weight of x̂ are not well calibrated, and360

in particular, quality and importance are mutually361

exclusive as mentioned before. As a result, beam362

search with the interpolation score over the expo-363

nential space can not guarantee a desirable transla-364

tion x̂ for each y. On the other hand, quality and365

importance weight of x̂ are not at the same scale366

for different y, it is difficult to balance both factors367

with a fixed γ in the interpolation score for different368

y.369

To alleviate these issues, we propose a simple370

method as follows. Specifically, firstly, instead of371

beam search with the interpolation score, we sim-372

ply utilize the backward translation p(x|y;π) to373

randomly sample a set of candidate translations374

which is denoted by A(y) = {x̂i}Ni (N = 50 in375

this paper). 1 Then we pick a x̂j among A(y) ac-376

cording to the balancing score. Secondly, for each377

x̂, we normalize the log values of importance and378

quality of each candidate by its sequence length,379

then normalize these values with respect to all N380

candidates as follows:381

F̃(x̂i) =
log

(
F(x̂i)

)
/len(x̂i)− µF

σF
(9)382

1N -best decoding strategy with p(x|y;π) to generate N
candidates may be another solution which remains as future
work.

where F is either importance weight or quality es- 383

timations, and µF = 1
N

∑
i logF(x̂i) and σF = 384∑

i(logF(x̂i)−µF )2

N−1 are mean and variance of N sam- 385

pled candidates with length normalized. Finally, 386

the Gamma score is defined on the normalized val- 387

ues of importance and quality as follows: 388

389

Γ(x̂i;ω, π) = 390

exp
(
γ ˜Imp(x̂i;ω, π) + (1− γ)p̃(x̂i|y, π)

)∑
j exp

(
γ ˜Imp(x̂j ;ω, π) + (1− γ)p̃(x̂j |y, π)

)
(10)

391

where ˜Imp and p̃ are the normalized log value of 392

importance weight and backward translation model 393

p(x̂|y, π) as defined in Equation 9. 394

Once the gamma score in Equation 10 is com- 395

puted, there are two methods to select x̂ from A(y), 396

which are deterministic and stochastic methods. 397

For deterministic selection, we simply select the 398

candidates with maximum gamma score among 399

N translation candidates; and for sampling, we 400

sample a candidate according to its gamma score 401

distribution. These two methods are called gamma 402

selection and gamma sampling in our experiments. 403

5 Experiments 404

5.1 Settings 405

We run all the experiments using WMT14 datasets 406

with fairseq (Ott et al., 2019) framework. For 407

dataset settings, we use all available bitext of 408

WMT14 corpus without any filtering on sentence 409

length or source/target length ratio, this will result 410

in a 4.5 million parallel corpus. For back translation 411

experiment, we use equal scale monolingual corpus 412

randomly sampled from Newscrawl 2020 (Barrault 413

et al., 2019) comprising 4.5 million monolingual 414

sentences, thus total 9 million sentences are used. 415

We tokenize the parallel corpus using Mose tok- 416

enizer (Koehn et al., 2007), and learn a source and 417

target shared Byte-Pair-Encoding (BPE; Sennrich 418

et al., 2016) with 32K types. We develop on new- 419

stest2013 and report the results on newstest2014. 420

As for model architecture, we employ 421

all the translation models using architecture 422

transformer_wmt_en_de_big, which is a 423

Big Transformer architecture with 6 blocks in the 424

encoder and decoder, under the fairseq(Ott et al., 425

2019) framework. We use the same hyperparame- 426

ter settings across all the experiments, i.e., 1024 427

word representation size, 4096 inner dimensions of 428
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Systems DE-EN

w/o bitext w bitext

Transformer - 32.1
Beam BT 27.6 32.7
Sampling BT 29.2 34.1
DM 31.3 34.2

DM means the data manipulation method.

Table 3: Data manipulation achieves the almost the
same BLEU score as sampling BT.

feed-forward layers, and dropout is set to 0.3 for429

all the experiments. And for monolingual models,430

we apply transformer_lm_gpt architecture431

(Radford et al.) on each side of WMT14 corpus.432

For baseline models, we train them for 400K433

updating steps, and train the models with back-434

translation data for 1.6M updating steps. We435

save the checkpoints every 100k updating inter-436

vals, and only select the checkpoints with high-437

est develop set performance. As for the back-438

translation data, we use baseline models’ check-439

points at 400K updating steps to generate default440

beam5 decoding and sampling decoding synthetic441

corpus without any penalty. For monolingual mod-442

els, we only select the checkpoints with the best de-443

velop set performance. When tuning γ on dev sets444

for data manipulation methods we select it from445

{0, 1/4, 1/2, 3/4, 1} and the optimal is γ = 1/2.446

For the Gamma Score method, γ is tuned among447

{0.1, 0.2, 0.3, 0.4, 0.5} and it is set γ = 0.2 for all448

three tasks.449

All the experiments are conducted using 8450

Nvidia V100-32GB graphic cards without any gra-451

dient accumulation or bitext upsampling, and the452

results in this paper are measured in case-sensitive453

detokenized BLEU with SacreBLEU2 by Post454

(2018).455

5.2 Main Results456

5.2.1 Results on DE-EN457

Data Manipulation We conduct two experi-458

ments to study the data manipulation for back-459

translation NMT model performance using afore-460

mentioned corpus with and without authentic cor-461

pus.462

2We use the fairseq default shell script sacrebleu.sh,
with WMT14/full testsets to evaluate the model checkpoints.
The sacrebleu output format is BLEU + case.mixed + lang.de-
en + numrefs.1 + smooth.exp + test.wmt14/full + tok.13a +
version.1.4.13.

Systems SacreBLEU
Transformer 32.1
Beam BT 32.7
Sampling BT 34.1
DM +bitext 34.2
Gamma sampling BT 35.0*
Gamma selection BT 34.7*

Table 4: BLEU score on WMT14 DE-EN testset.
Gamma criterion based method outperform beam search
based and sampling based back-translation NMT mod-
els. The result marked with * denotes that it is signifi-
cantly better than sampling BT with p < 0.0010.

Table 3 show the data manipulation results com- 463

pared with baseline. Firstly, for synthetic corpus 464

experiment, we find that even if only monolingual 465

corpus is used, the performance of back-translation 466

NMT model can still be significantly improved 467

to 31.3 from 29.2 by sampling or 27.6 by beam, 468

and it is only 0.7 lower than bitext baseline by 469

BLEU score measure. Secondly, for the experi- 470

ments with bitext, the best performance by data 471

manipulation only helps the back-translation NMT 472

model achieves almost the same performance with 473

sampling BT. This means data manipulation meth- 474

ods cannot achieve a higher BLEU score than sam- 475

pling or beam. 476

Gamma Score In this paragraph, we conduct the 477

experiments based on gamma score method. We 478

conduct both of the methods in this experiment: we 479

select the candidate with highest gamma score for 480

the deterministic method whereas sample the candi- 481

date by gamma score distribution for the stochastic 482

method. 483

Once again, we use synthetic gamma corpus 484

combined with bitext to train the back-translation 485

NMT models on each corpus, the results are listed 486

in 4. From the table, we can see that our pro- 487

posed gamma sampling significantly outperforms 488

the sampling based and beam search based back- 489

translation baselines by 0.9 and 2.3 BLEU scores 490

in terms of SacreBLEU. And our two proposed 491

gamma score based methods outperform data ma- 492

nipulation method as well. 493

In the rest of the experiments, we report results 494

for both gamma selection and gamma sampling as 495

the proposed methods and their hyperparameter γ 496

for other tasks is fixed to 0.2. 497
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(a) Spectrum (b) Sequence Length (c) Token frequency

Figure 1: Synthetic corpus analysis on singular value spectrum(a), sequence length histogram(b) and token frequency
histogram(c).

System EN-DE RU-EN
Transformer 27.4 34.1
Beam BT 29.7 35.9
Sampling BT 30.0 35.6
Gamma selection BT 31.0* 36.1*
Gamma sampling BT 30.9* 36.3*

Table 5: SacreBLEU score on WMT14 EN-DE and
RU-EN testsets. Gamma criterion based methods out-
perform beam search based and sampling based back-
translation NMT models. The result marked with *
denotes that it is significantly better than both sampling
and beam based BT with p < 0.001.

5.3 Results on other Datasets498

We conduct the experiments on WMT14 EN-DE499

and RU-EN for both gamma selection and gamma500

sampling as well, and table 5 shows that our pro-501

posed gamma based methods significantly outper-502

form beam and sampling based back-translation503

methods on both en-de and ru-en translation for504

almost 1 and 0.4 BLEU score respectively.505

Discussion on Efficiency Since our method re-506

quires to run sampling with size of 50 to generate507

synthetic data, its efficiency is about 10x slower508

than that of beam BT with size of 5 and 50x slower509

than that of sampling BT with size 1. Luckily, be-510

cause the bottleneck of BT is not the synthetic data511

generation but the parameter optimization on both512

synthetic and authentic data, our overall overhead513

is less than 0.5x slower than sampling BT. In addi-514

tion, since decoding is very easy to be parallelized515

on GPU or CPU machines, the cost of decoding is516

not a serious issue for our method, which makes it517

possible to run our method on a large scale dataset.518

5.4 Analysis on Synthetic Corpus 519

In this subsection, we analyze the synthetic cor- 520

pus of proposed gamma score methods on both 521

sentence level and token level. 522

Sentence Level We evaluate the back-translation 523

synthetic source sentences by their sentence rep- 524

resentations. We use the baseline model to gener- 525

ate the hidden representations at the end-of-speech 526

token as the sentence representation. Here, we 527

compute the singular value spectrum of the rep- 528

resentations for different back-translation corpora. 529
3 530

The spectrum is shown in figure 1(a). From 531

the spectrum, sampling has a more uniform distri- 532

bution whereas beam has the worst variety. Our 533

proposed methods have moderate variety between 534

sampling and beam, and gamma sampling consists 535

of higher linguistic information richness compared 536

with gamma selection. 537

Figure 1(b) shows the sequence length of the 538

synthetic corpora of different generation methods. 539

Beam generates the shortest synthetic sentences 540

and gamma sampling generates the longest syn- 541

thetic sentences on average. Between them, sam- 542

pling and gamma selection generate almost the 543

same sequence length, which means gamma selec- 544

tion candidates provide more learning signal than 545

random sampling under the same length. 546

3Singular value spectrum analysis is a widely used method
to measure the representation distribution. Gao et al. (2019)
firstly introduces this method to measure the isotropy of rep-
resentation, and Wang et al. (2019) directly employ spectrum
control for better NMT performance. The idea is, representa-
tions of high linguistic variety usually are more isotropic, thus
to have a relatively uniform singular value distribution. We
employ this method here to measure the variety of sentence
level information.
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Token Level Figure 1(c) is the token frequency547

histogram, which shows beam has higher probabil-548

ity to decode high frequency tokens while sampling549

prefers more low frequency tokens.550

We also measure the vocabulary size, finding551

that the proposed gamma sampling shares the same552

vocabulary size as sampling method. This could553

be the reason that gamma sampling is based on554

random sampling for candidates generation.555

6 Related Work556

This section describes prior arts in back-translation557

for NMT, data augmentation, and semi-supervised558

machine translation.559

Back-translation NMT Bojar and Tamchyna560

(2011) firstly proposed back-translation, then561

Bertoldi and Federico (2009); Lambert et al. (2011)562

apply back translation to solve the domain adapta-563

tion problems in phrase-based NMT systems. Sen-564

nrich et al. (2016a) further extend the back transla-565

tion for training NMT models integrally.566

For understanding the back-translation synthetic567

corpus, Currey et al. (2017) use a copy of target568

as a pseudo source , and find that NMT model569

performance can still be improved under the low570

resource settings. Caswell et al. (2019) propose571

tagged back-translation to indicate to the model572

that the given source is synthetic. To further find an573

optimum back-translation corpus decoding method,574

Imamura et al. (2018) firstly use sampling based575

synthetic corpus and find such a stochastic decod-576

ing method outperforms beam search on boosting577

NMT model performance, and Edunov et al. (2018)578

broaden the investigation of a number of back-579

translation generation methods for synthetic source580

sentences. Their contribution shows that sampling581

or noisy synthetic data gives a much stronger train-582

ing signal. Graça et al. (2019) reformulate back-583

translation in the context of optimization and clari-584

fying to improve sampling based decoding method585

search space, thus proposing N best list sampling.586

Recently, Nguyen et al. (2020) diversify the train-587

ing data by multiple forward and backward models588

translations and combine them with the original589

datasets.590

Data Augmentation for NMT NMT researchers591

are the pioneers of data augmentation studies since592

back-translation is a natural type of data augmenta-593

tion method. (Sennrich et al., 2016b; Norouzi et al.,594

2016; Zhang and Zong, 2016).595

To balance the token frequency in NMT corpus, 596

Fadaee et al. (2017) create new sentences contain 597

low-frequency words. However, as observed by 598

Wang et al. (2018), the improvement across dif- 599

ferent translation tasks is not consistent, and they 600

invent SwitchOut data augmentation policy. Recht 601

et al. (2018, 2019); Werpachowski et al. (2019) also 602

observe such an inconsistency of variance between 603

training corpus and testing set as well as in the 604

generation tasks 605

Recently, Li et al. (2019) try to understand data 606

augmentation from input sensitivity and prediction 607

margin, thus obtaining relatively low variance in 608

generation. 609

Semi-supervised Machine Translation How- 610

ever, as high quality bitext is always limited and 611

costly to collect, Gulcehre et al. (2015) study meth- 612

ods for effectively leveraging monolingual data in 613

NMT systems. He et al. (2016) develop a dual- 614

learning mechanism, under such a learning objec- 615

tive, a NMT system is able to automatically learn 616

from unlabeled data, thus improving NMT perfor- 617

mance iteratively. Based on iterative learning, Lam- 618

ple et al. (2018) investigates how to learn NMT 619

systems when only large monolingual corpora can 620

be used in each language. 621

For supervision of models, Gulcehre et al. (2017) 622

employ the target language model hidden states 623

into NMT decoder to further improve performance. 624

Edunov et al. (2020) show that back-translation 625

improves translation quality of both naturally oc- 626

curring text and translationese according to pro- 627

fessional human translators. For supervision of 628

learning corpus, Wu et al. (2019) study both the 629

source-side and target-side monolingual data for 630

NMT. 631

7 Conclusion 632

In this work, we answer a fundamental question 633

about synthetic data for back translation. We the- 634

oretically and empirically show two key factors 635

namely quality and importance weight of synthetic 636

data play an important role in back translation, and 637

then we propose a new method to generate syn- 638

thetic data which better balances both factors so 639

as to boost the back-translation performance. For 640

future work, we think it would be of significance 641

to apply our synthetic data generation method to 642

other BT methods or even to more broad NLP tasks 643

such as paraphrasing and style transfer. 644
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A Model Details863

The models are optimized using Adam optimizer864

(Kingma and Ba, 2015), with β1 = 0.9, β2 =865

0.98. We use the same learning rate schedular as866

(Vaswani et al., 2017) with maximum learning rate867

7× 10−4, and 4000 warmup updates. We use the868

fairseq 10.2 as the framework and the training com-869

mand as well as the model hyperparameters are870

listed below,871

fairseq-train \872

--arch transformer_wmt_en_de_big873

--share-all-embeddings874

--dropout 0.3875

--weight-decay 0.0876

--criterion877

label_smoothed_cross_entropy878

--label-smoothing 0.1879

--optimizer adam880

--adam-betas ’(0.9, 0.98)’881

--clip-norm 0.0882

--lr-scheduler inverse_sqrt883

--warmup-updates 4000884

--max-tokens 4096885

--max-update 1600000886

--validate-interval-updates 10000887

--save-interval-updates 100000888

--lr 7e-4889

--upsample-primary 1890

11


