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Abstract
Although directed graphs (digraphs) offer strong
modeling capabilities for complex topological
systems, existing DiGraph Neural Networks
(DiGNNs) struggle to fully capture the concealed
rich structural information. This data-level lim-
itation results in model-level sub-optimal pre-
dictive performance and underscores the neces-
sity of further exploring the potential correla-
tions between the directed edges (topology) and
node profiles (features and labels) from a data-
centric perspective, thereby empowering model-
centric neural networks with stronger encoding
capabilities. In this paper, we propose Entropy-
driven Digraph knowlEdge distillatioN (EDEN),
which can serve as a data-centric digraph learn-
ing paradigm or a model-agnostic hot-and-plug
data-centric Knowledge Distillation (KD) module.
EDEN implements data-centric machine learn-
ing by constructing a coarse-grained Hierarchical
Knowledge Tree (HKT) using the proposed hierar-
chical encoding theory, and refining HKT through
mutual information analysis of node profiles to
guide knowledge distillation during training. As
a general framework, EDEN naturally extends
to undirected graphs and consistently delivers
strong performance. Extensive experiments on 14
(di)graph datasets—spanning both homophily and
heterophily settings—and across four downstream
tasks show that EDEN achieves SOTA results and
significantly enhances existing (Di)GNNs.

1. Introduction
Recently, Graph Neural Networks (GNNs) have achieved
SOTA performance across node- (Wu et al., 2019; Hu et al.,
2021; Li et al., 2024b), link- (Zhang & Chen, 2018; Tan
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et al., 2023), graph-level tasks (Zhang et al., 2019; Yang
et al., 2022). However, most GNNs are tailored for undi-
rected scenarios, resulting in a cascade of negative impacts:

(1) Data-level sub-optimal representation: Due to the com-
plex structural patterns present in the real world, the absence
of directed topology limits the captured relational informa-
tion, thereby resulting in sub-optimal data representations
with inevitable information loss (Koke & Cremers, 2024;
Geisler et al., 2023; Maekawa et al., 2023); (2) Model-level
inefficient learning: The optimization dilemma arises when
powerful GNNs are applied to sub-optimal data. For in-
stance, undirected GNNs struggle to analyze the connective
rules among nodes in the entanglement of homophily and
heterophily (i.e., whether connected nodes have similar fea-
tures or same labels) (Luan et al., 2022; Zheng et al., 2022;
Platonov et al., 2023) due to neglect the valuable directed
topology (Rossi et al., 2023; Maekawa et al., 2023; Sun et al.,
2024). This oversight compels the undirected methods to
rely heavily on well-designed models or tricky theoretical
assumptions to remedy the neglect of directed topology.

To break these long-standing limitations, Directed GNNs
(DiGNNs) are proposed to extract implicit data knowledge
from directed graphs (Rossi et al., 2023; Sun et al., 2024;
Li et al., 2024a) by exploring directionality of edges as criti-
cal topological patterns in guiding more efficient message
passing of DiGNNs and enhancing representation learning.
Despite advancements in existing model design consider-
ing asymmetric topology, these methods still fail to fully
explore the potential correlations between directed topol-
ogy and node profiles at the data level. More importantly,
this potential correlation extends beyond directed edges and
high-order neighbors to unseen but pivotal structural pat-
terns (referred to as digraph data knowledge).

Therefore, we emphasize revealing this data knowledge
from a data-centric perspective to improve the learning util-
ity of model-centric approaches fundamentally. Specifically,
(1) Topology: unlike undirected graphs, directed topology
offers node pairs or groups a more diverse range of connec-
tion patterns, implying abundant structural knowledge; (2)
Profile: digraph nodes present greater potential for more
sophisticated profile knowledge caused by directed edges
when compared to nodes in the undirected graph that often
present with predominant homophily (Ma et al., 2021; Luan
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et al., 2022; Zheng et al., 2022). The two above perspectives
form the basis of digraphs (i.e., the entanglement of directed
topology and node profiles). The core of our approach is dis-
entangling this complexity with our proposed data-centric
hierarchical encoding system. For the motivation and key
insights behind this framework, please refer to Sec. 2.2.

To this end, we propose Entropy-driven Digraph knowlEdge
distillatioN (EDEN). As a general Knowledge Distillation
(KD) strategy, EDEN seamlessly integrates data knowledge
into model training as supervised information to obtain the
optimal embeddings for downstream tasks. Specifically,
EDEN first employs directed structural measurement as a
quantification metric to capture the natural evolution of di-
rected topology, thereby constructing a Hierarchical Knowl-
edge Tree (HKT) (topology perspective). Subsequently,
EDEN refines the HKT with fine-grained adjustments based
on the Mutual Information (MI) of node profiles, regulating
the knowledge flow (profile perspective). Based on this,
EDEN can be viewed as a new data-centric DiGNN or a
hot-and-plug data-centric online KD strategy for existing
DiGNNs. Notably, while we highlight the importance of
EDEN in extracting intricate digraph data knowledge, it can
naturally extend to undirected scenarios and exhibit satisfac-
tory performance. More details can be found in Sec. 4.1.

Our contributions. (1) New Perspective. To the best of our
knowledge, EDEN is the first attempt to achieve hierarchi-
cal data-level KD. It offers a new and feasible perspective
for data-centric graph ML. (2) Unified Framework. EDEN
facilitates data-centric digraph learning through the estab-
lishment of a fine-grained HKT from topology and profile
perspectives. It contributes to discovering unseen but valu-
able structural patterns concealed in the digraph to improve
data utility. (3) Flexible Method. EDEN can be regarded as
a new data-centric digraph learning paradigm. Furthermore,
it can also serve as a model-agnostic hot-and-plug data-
centric KD module, seamlessly integrating with existing
DiGNNs to improve predictions. (4) SOTA Performance.
Extensive experiments demonstrate that EDEN consistently
outperforms the best baselines (up to 3.12% higher). More-
over, it provides a substantial positive impact on prevalent
(Di)GNNs (up to 4.96% improvement).

2. Preliminaries

2.1. Notations and Problem Formulation

We consider a digraph G = (V, E) with |V| = n nodes,
|E| = m edges. Each node has a feature vector of size f
and a one-hot label of size c, the feature and label matrix
are represented as X ∈ Rn×f and Y ∈ Rn×c. G can be
described by an asymmetrical adjacency matrix A(u, v).
D = diag (d1, · · · , dn) is the corresponding degree matrix.
Typical digraph-based downstream tasks are as follows.

Hierarchical Encoding System with HKT Layer-wise KD
𝒢 = 𝒱, ℰ

Directed Structural 
Entropy Measurement

Topology-based Metric ℋ𝑡𝑜𝑝𝑜

Greedy Algorithm for HKT 

Topology-oriented HKT 𝒯𝑐

Profile-based

HKT Refinement

Knowledge Refinement 

Iterative 𝒯𝑐 → 𝒯𝑓 by ℋ𝑝𝑟𝑜𝑓𝑖𝑙𝑒

Knowledge Generation 
Child → Parent

Know. Transfer 
Parent →Child 

KD-based Supervised Learning
MI Neural Estimation

Any DiGNN

(1)

Supervised(2)

HKT Layer-wise 

Knowledge

Distillation

Figure 1. The overview of our proposed hierarchical encoding the-
ory with HKT layer-wise KD. Its trainable core involves digraph
learning function within every HKT layer and MI neural estima-
tion across layers (illustrated using leaf nodes and their parents).
Different colors and dotted lines represent distinct labels.

Node-level Classification. Suppose Vl is the labeled set,
the semi-supervised node classification paradigm aims to
predict the labels for nodes in the unlabeled set Vu with the
supervision of Vl. For convenience, we call it Node-C.

Link-level Prediction. (1) Existence: predict if (u, v) ∈
E exists in the edge sets; (2) Direction: predict the edge
direction of pairs of nodes u, v for which either (u, v) ∈ E
or (v, u) ∈ E ; (3) Three-class link classification (Link-C):
classify (u, v) ∈ E , (v, u) ∈ E , or (u, v), (v, u) /∈ E .

2.2. Hierarchical Encoding Theory in Structured Data

Inspired by the information theory of structured data (Li
& Pan, 2016), let G be a real-world digraph influenced by
natural noise. We define its information entropy H from
topology and profile perspectives, whereH determines the
true structure T , and data knowledge K is concealed in T .
The assumptions about these definitions are as follows:

Assumption 2.1. The information entropyH is captured by
the directed topology and profile-based hierarchical encod-
ing system, reflecting the uncertainty of complex systems.

Assumption 2.2. The true structure T is obtained by mini-
mizingH, reflecting the natural organization of nodes.

Assumption 2.3. The data knowledge K forms the foun-
dation of G and is concealed in the T , which is used to
optimize the trainable hierarchical encoding system.

Based on these assumptions, we adhere to the traditional
hierarchical encoding theory (Byrne & Russon, 1998; Dit-
tenbach et al., 2002; Clauset et al., 2008) to establish a novel
data-centric digraph learning paradigm shown in Fig. 1. This
paradigm standardizes the evolution of structured data in
physical systems, inspiring the notion of decoding this natu-
rally structured knowledge for analyzing complex digraphs.
In other words, this trainable encoding system progressively
captures the information needed to determine nodes, such
as their positions uniquely. From this, the encoded result
constitutes knowledge K residing within the true structure
T . Subsequently, applying KD on extracted K from T opti-
mizes the encoding system to achieve iterative training. The
above concepts form the core of our motivation.
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Notably, the directed structural measurement and node MI
in Fig. 1 aim to uncover the topology and profile complexity.
Based on this, we efficiently compress information, reduce
redundancy, and reveal hierarchical structures that capture
subtle data knowledge often overlooked by previous studies.
In other words, we minimize uncertainty and noise in G, re-
vealing the underlying true structure T , which captures the
layered organization of the data’s inherent evolution. This
T allows us to effectively decode the underlying knowledge
K, corresponding to the HKT in EDEN. This theoretical
hypothesis has been widely applied in recent years, driving
significant research advancements in graph contrastive learn-
ing (Wu et al., 2023; Wang et al., 2023) and graph structure
learning (Zou et al., 2023; Duan et al., 2024).

In this paper, we adopt a data-centric perspective, which we
believe has been overlooked in previous studies. Specifi-
cally, we investigate the potential of data-level KD as su-
pervised information to enhance model-centric (Di)GNNs.
The core intuition behind our approach is that data quality
often limits the upper bound for model performance (Guo
et al., 2025; Zheng et al., 2023; Liu et al., 2023). By lever-
aging HKT, we can break this data-level limitation. This is
particularly relevant for digraphs, where intricate directed
causal relationships demand deeper exploration. However,
our approach can also be naturally extended to undirected
graphs. For further discussion on our proposed HKT and
hierarchical graph clustering, please refer to Appendix A.1.

2.3. Digraph Representation Learning

To obtain digraph node embeddings, both spectral (Zhang
et al., 2021c; Lin & Gao, 2023; Koke & Cremers, 2024;
Li et al., 2024a) and spatial (Tong et al., 2020b;a; Zhou
et al., 2022; Rossi et al., 2023; Sun et al., 2024) methods are
proposed. Specifically, to implement spectral convolution
on digraphs with theoretical guarantees, the core is to de-
pend on holomorphic (Duong & Robinson, 1996) filters or
obtain a symmetric (conjugated) digraph Laplacian based
on PageRank (Andersen et al., 2006) or magnetic Lapla-
cian (Chung, 2005). Regarding spatial methods, researchers
draw inspiration from the message-passing mechanisms that
account for directed edges. They commonly employ inde-
pendently learnable weights for in- and out-neighbors to
fuse node representations (He et al., 2022b; Kollias et al.,
2022; Sun et al., 2024).

2.4. Entropy-driven MI Neural Estimation

Information entropy was introduced to quantify uncertainty
in communication systems (Shannon, 1948). Motivated by
it, MI measures the dependence between two random vari-
ables. Based on this, Infomax (Linsker, 1988) maximizes
the MI between inputs (features) and outputs (predictions),
concentrating the encoding system more on frequently oc-

curring patterns. To effectively estimate MI, MINE (Belg-
hazi et al., 2018) adopts the DV (Pinsky, 1985) represen-
tation to approximate the KL divergence, which is closely
related to MI. It performs neural MI estimation by parame-
terizing the function space with a neural network and opti-
mizing a tight lower bound via gradient descent. Building
on these insights, DGI (Veličković et al., 2019) introduces
graph Infomax to guide contrastive learning. GMI (Peng
et al., 2020) further enhances feature aggregation by maxi-
mizing the MI between a node and its local neighborhood.
CoGSL (Liu et al., 2022) leverages MI to optimize graph
view generation and fusion to guide graph structure learning.

3. Methodology
The core idea of EDEN is to fully leverage the digraph data
knowledge to empower model training. As a data-centric
online KD framework, EDEN achieves mutual evolution
between teachers and students (i.e., parent and child nodes
in the HKT) shown in Fig. 2. To avoid confusion between
the data-level online KD and the model-level offline KD
(i.e., large teacher model and lightweight student model),
we provide a detailed explanation in Appendix A.2.

Step 1: Knowledge Discovery: (a) To begin with, we employ
directed topology measurement as a quantification metric to
construct a coarse-grained HKT; (b) Based on this, we per-
form node MI neural estimation. Through gradient descent,
we regulate the knowledge flow to obtain fine-grained HKT.

Step 2: Knowledge Distillation: Then, we denote parent and
child nodes within the same corrected partition as teachers
and students to achieve online KD. Specifically, we propose
node-adaptive knowledge generation and transfer operators.

Step 3: Leaf Prediction: Finally, we generate leaf predic-
tions (i.e., original digraph nodes) for downstream tasks. In
this process, to harness rich knowledge from the HKT, we
employ random walk to capture multi-level representations
from their parents and siblings to improve predictions.

3.1. Multi-perspective Knowledge Discovery

In the context of digraph learning, original data have two
pivotal components: (1) Topology describes the intricate
connection patterns among nodes; (2) Profile uniquely iden-
tifies each node. If knowledge discovery focuses on only
one aspect, it would lead to coarse-grained knowledge and
sub-optimal distillation. To avoid this, EDEN first conducts
topology mining to enrich subsequent profile mining, and
collectively, establish a robust foundation for effective KD.

Topology-aware structural measurement. In a highly con-
nected digraph, nodes frequently interact with their neigh-
bors. By employing random walks (Pearson, 1905), we
can capture these interactions and introduce entropy as a

3



Toward Data-centric Directed Graph Learning: An Entropy-driven Approach

(b) Fine-grained Profile Mining

Step 1 Knowledge Discovery 
(Leaf Node in 2D Plane for Illustration)

(a) Coarse-grained Topology Mining 

Step 2 Knowledge Distillation (Blue for Illustration)

Hierarchical Knowledge Tree Knowledge Generation Knowledge Transfer

Generation Operator Transfer Operator
Sibling 

M
L
P 

Link (Sibling)

Step 3 Leaf Prediction

HKT-based Random Walk

Parent Child 

[ ]

Node (Parent)

General (Free)

[ ]
[ ]

𝒢 = 𝒱, ℰ
Profile MI Neural Estimation

Intra-partition Node-wise Similarity

Inter-partition Node-wise Similarity

Topology Measurement
Structural Entropy Metric

Greedy Algorithm

Figure 2. The overview of our proposed EDEN.

measure of topology uncertainty (Li & Pan, 2016). The
topology uncertainty is substantiated in real-world obser-
vation that relational data is often polluted with structural
noise, such as spurious edges and missing links, and our ob-
jective is to quantify it by Shannon entropy and minimize it
to reorganize node affiliations, thereby effectively denoising
the graph. Specifically, we can quantify one-dimensional
structural measurement of G by leveraging the stationary
distribution of its degrees d and the Shannon entropy, which
is formally defined as:

H1(G) :=−
∑
v∈V

(
d̃inv
m

log
d̃inv
m

+
d̃outv

m
log

d̃outv

m

)
, (1)

where d̃in and d̃out are in and out-degrees of digraph node.
Based on this, to achieve high-order topology mining, let
P = {X1,X2, · · · ,XC} be a partition of V , where X de-
notes a community. To this point, we can define the two-
dimensional structural measurement of G by P as follows:

H2(G) = min
P

{
HP

in(G) +HP
out(G)

}
, HP

in/out(G) :=

−
L∑

j=1

vol (Vj)

m

∑
v∈Vj

d̃
in/out
v

vol (Vj)
log

d̃
in/out
v

vol (Vj)
+
gj
m

log
vol (Vj)

m

 ,

(2)
where vol(V) =

∑
v∈V d̃inv /d̃outv , Vj and gj are the nodes

and the number of directed edges with end-point/start-point
in the partition j. Notably, real-world digraphs commonly
exhibit hierarchical structure, extending Eq. (2) to higher
dimensions. Consequently, we leverage h-height partition
tree T (Appendix A.3) to obtain h-dimensional formulation:

Hh(G) = min
∀T :Height(T )=h

{
HT

in(G) +HT
out(G)

}
,

HT
in/out(G) = −

∑
∀t∈T ,t ̸=λ

g
in/out
t

vol(V) log
vol (t)

vol (t+)
,

(3)

where t+ is the parent of t and λ is the root node of the
HKT, gint and goutt are the number of directed edges from
other partitions to the current partition and from the current
partition to other partitions, at the node t level.

Coarse-grained HKT construction. In contrast to the
topology measurements defined in previous work (Li &
Pan, 2016), EDEN addresses the limitations of forward-only
random walks by incorporating reverse probability. This
modification is motivated by the non-strongly connected
nature of most digraphs, where the proportion of complete
walk paths declines sharply after only five steps (shown in
Appendix A.4). This decline suggests that strictly adhering
to edge directions in walks (forward-only) fails to capture
sufficient information beyond the immediate neighborhood
of the starting node. Furthermore, we add self-loops for sink
nodes to prevent the scenario where the adjacency matrix
might be a zero power and ensure that the sum of landing
probabilities is 1. Based on this, we utilize Eq. (3) as a met-
ric and employ a greedy algorithm (DeVore & Temlyakov,
1996) to seek the optimal HKT that minimizes uncertainty.
For a detailed algorithm, please refer to Appendix A.5.

Profile-aware node measurement. As previously pointed
out, node profiles play an equally pivotal role in digraph
learning, which means that the topology measurement alone
is insufficient to reflect the true structure. Therefore, we aim
to leverage node profiles to fine-tune HKT for KD. The key
insight is to emphasize high node similarity within the same
partition while ensuring differences across distinct partitions.
This is to retain authority in the parent nodes (teachers) and
avoid the reception of misleading knowledge by the child
nodes (students). To achieve our targets, we introduce intra-
and inter-partition node MI neural estimation. The former
retains nodes with higher MI within the current partition.
These nodes not only serve as effective representations of
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the current partition but also inherit partition criteria based
on topology measurement. The latter identifies nodes in
other partitions that effectively represent their own partitions
while exhibiting high MI with the current partition. We can
adjust the affiliations of these nodes to improve HKT.

Partition-based MI neural estimation. Before introducing
our method, we provide a formalized definition as follows.
For current partition Xp, we first sample a subset Ωp consist-
ing of Kp nodes fromXp and other partitionsXq at the same
HKT height (more details can be found in Appendix A.6).
Then, we employ a criterion function C(·) to quantify the in-
formation of Ωp, aiming to find the most informative subset
for generating knowledge about Xp by solving the problem
maxΩp⊂V C(Ωp), subject to |Ωp| = Kp. In our implemen-
tation, we formulate C(Ωp) for Xp based on the neural MI
estimator between nodes and their generalized neighbor-
hoods, capturing the neighborhood representation capability
of nodes. Based on this, we derive the following theorems
related to MI neural estimation for structured data, guiding
the design of a criterion function for HKT partitions.
Theorem 3.1. Let T be the HKT in a digraph G = (V, E).
For any selected node v ∈ Xp and u ∈ Xq in the subset Ωp,
we define their generalized neighborhoods as N T

v = Xp

and N T
u = Xp ∪ Xq. Given v and N T

v as an example,
consider random variables fv and fNT

v
as their unique

node (sets) features, the lower bound of MI between v
and its generalized neighborhoods is given by the KL di-
vergence between the joint distribution P

(
fv, fNT

v

)
=

P
(
fv = Xv, fNT

v
= XNT

v

)
and the product of marginal

distributions Pfv ⊗ PfNT
v

can be defined as follows:

I(Ω)(fv, fNT
v
) = DKL

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥ sup

F∈F

{
E
Xv,XNT

v
∼P

(
fv,fNT

v

)[F (Xv,XNT
v

)]}
− sup

F∈F

{
EXv∼Pfv ,XNT

v̄
∼PfNT

v

[
e
F
(
Xv,XNT

v̄

)
−1
]}

,

(4)

where v̄ represents the randomly selected node in Ωp except
for v. This lower bound is derived from the f -divergence
representation based on KL divergence. F is an arbitrary
function that maps a pair of the node and its generalized
neighborhoods to a real value, reflecting the dependency.
Theorem 3.2. The lower bound in Theorem 3.1 can be
converted to f-divergence representations based on non-KL
divergence. This GAN-like divergence for structured data is
formally defined as:

DKL

(
P
(
fv, fNT

v

)
∥Pfv⊗PfNT

v

)
∼ I(Ω)

GAN(fv, fNT
v
)

≥ sup
F∈F

{
E
P
(
fv,fNT

v

) [log σ (F (Xv,XNT
v

))]}
+ sup

F∈F

{
EPfv ,PfNT

v

[
log
(
1− σ

(
F
(
Xv,XNT

v̄

)))]}
,

(5)

where σ(·) is the activation function. Since solving I(Ω)
GAN

across the entire function space F is practically infeasible,
we employ a neural network Fw(·, ·) parameterized by w.

Theorem 3.3. Through the optimization of w, we obtain
C(Ω)= Î

(Ω)
GAN as the GAN-based node MI neural estimation

for every partition within fine-grained HKT:

C(Ω)= Î
(Ω)
GAN=max

w

1

|Ω|
∑
v∈Ω

log σ
(
Fw

(
Xv,XNT

v

))
+max

w

1

|Ω|2
∑

(v,v̄)∈Ω

log
(
1− σ

(
Fw

(
Xv,XNT

v̄

)))
,

(6)

The two terms capture the dependency and difference be-
tween selected nodes and their neighborhoods.

Fine-grained HKT correction. Based on the above theo-
rems, we instantiate the intra-partition MI:

F intra
w :=Qintra

(
W1 (M (Xv)),W2

(
M
(
XNT

v

)))
, (7)

whereQintra is an embedding function designed to quantify
node MI by maximizing intra-partition Xp similarity, M
is a model-agnostic digraph learning function, andW1 and
W2 are embedding functions for selected nodes and their
generalized neighborhoods. Building upon this, we extend
Eq. (7) to the inter-partition scenario, enabling the discovery
of potential nodes u that exhibit high MI with Xp and inherit
the directed structure measurement criteria of Xq:

F inter
w :=Qinter

(
W1(M (Xu)) ,W2

(
M
(
XNT

u

)))
. (8)

Notably, the above equations shareW1 andW2, as they are
both used for encoding the current node and corresponding
generalized neighborhoods. In our implementation, Q and
W are instantiated as MLP and the linear layer. Furthermore,
we combine it with Sec. 3.2 to reduce complexity. Detailed
proofs of the theorems can be found in Appendix A.6-A.8.

3.2. Node-adaptive Knowledge Distillation

Knowledge Generation. After considering the distinctness
of nodes, we obtain Ωp for the current partition Xp by solv-
ing Eq. (6), where Ωp comprises K nodes selected from
Xp and other partitions Xq. Now, we compute an affinity
score S for each sampling node in Ωp based on their unique
roles vx given by HKT, where v1 is the nodes from the cur-
rent partition, and v2 is the nodes obtained by performing
partition-by-partition sampling of the other partitions. The
sampling process is limited by the number of nodes in Xp.

Sv1 =σ(Qintra(W1(M(Xv1)),W2(M(XNT
v1
))),

Sv2,1 =σ(Qinter(W1(M(Xv2)),W2(M(XNT
v2
))),

Sv2,2 =σ(Qintra(W1(M(Xv2)),W2(M(XXv2
q
))),

(9)

5



Toward Data-centric Directed Graph Learning: An Entropy-driven Approach

where Sv1 and Sv2,1 are used to discover the knowledge
related to the current partition. However, this strategy often
causes over-fitting. Therefore, we introduce Sv2,2 to bring
diverse knowledge from other partitions. Specifically, we
aim to identify and emphasize nodes that, while represent-
ing other partitions, exhibit significant differences from the
current partition by Sv2 = max(Sv2,1 ,Sv2,2). Finally, we
obtain the parent representation of Xp by Xp = SΩpXΩp .

Knowledge Transfer. In this section, we introduce person-
alized knowledge transfer from the parent node Xp (teacher)
to the child nodes Xv (student) under partition Xp. The key
insights are as follows: (1) For parent nodes, not all knowl-
edge is clearly expressible, implying that class knowledge
hidden in embeddings or soft labels may be ambiguous. (2)
For child nodes, each node has a unique digraph context,
causing various knowledge requirements. Therefore, we
consider the trade-off between the knowledge held by the
parent node and the specific requirements of child nodes.

Specifically, we first refine the knowledge hidden in the
parent node through Qparent. Then, we aim to capture the
diverse requirements of child nodes in knowledge transfer by
Qchild to achieve personalized transfer. Similar to Sec. 3.1,
we employ MLP to instantiate Q. To this point, we have
built an end-to-end framework for the mutual evolution of
teacher and student by the data-level online KD loss:

UXp
p = σ

(
Qparent

(
−

c∑
i=1

X
Xp

p,i log
(
X

Xp

p,i

)))
,

Lkd = ∥XXp
p /UXp

p −Qchild

(
XXp

v1,v2

)
∥F .

(10)

3.3. Random walk-based Leaf Prediction

Now, we have obtained representations for all nodes in the
HKT, the focus shifts to generating leaf-centered predictions
for various downstream tasks. To improve performance, a
natural approach is to leverage the multi-level represen-
tations, including siblings and higher-level parents of the
current leaf node, to provide a more informative context.
Accordingly, we employ the tree-based random walk to ob-
tain this embedding sequence. However, within a given
receptive field, the number of possible paths often exceeds
the number of nodes, making it computationally impracti-
cal to consider all paths—particularly as the receptive field
expands. To address this, and to capture more informative
and task-relevant patterns with fewer paths, we define walk
rules that are tailored to the specific requirements of the
downstream task. Specifically, we concentrate on sampling
siblings (srw) to capture same-level representation for link-
level tasks. Conversely, for node-level tasks, we prioritize
sampling from parents (prw) or children (crw) to acquire
multi-level representations. Consider a random walk on
edge et,s, currently positioned at node s and moving to the

next node r. The transition probability is set as follows:

Prw(vi=r |vi−1=s,vi−2= t)=


1/prw, parent
1/srw, sibling
1/crw, child
0, otherwise

.

(11)
Then, we concat the k-step random walk results (i.e., node
sequence) to obtain Pk

rw for each leaf node. After that, the
leaf-centered prediction and overall optimization with α-
flexible KD and MLP instantiatedQrw are formally defined
as (please refer to Appendix A.9 for complexity analysis):

L = Lcross-entropy

(
Ŷ,Y

)
+ αLkd,

ŶNode(v) = Softmax
(
Qnode

rw

(
Pk
rw−v

))
,

ŶLink(u, v)=Softmax
(
Qlink

rw

(
Pk
rw−u||Pk

rw−v

))
.

(12)

3.4. Lightweight EDEN Implementation

As a data-centric framework, EDEN implements HKT-
driven data KD. This framework offers new insights and
tools for advancing data-centric graph ML. However, scala-
bility remains a bottleneck in our approach, and we aim to
propose feasible solutions to enhance its efficiency. Specifi-
cally, we implement a lightweight EDEN as outlined below.

Lightweight Coarse-grained HKT Construction. As de-
tailed in Algorithm 1-2 of Appendix A.5, we introduce
Monte Carlo methods, which select potential node options
rather than optimal ones before detaching and merging. This
approach involves running multiple Monte Carlo simula-
tions, where nodes are randomly chosen in each run to
generate various candidate solutions, avoiding exhaustive
enumeration of all branches for subsequent greedy selec-
tion. An optimal or near-optimal solution is then selected
for execution without rendering expensive computational
cost, offering an alternative to scalable demands.

Lightweight Fine-grained HKT Construction. For node
MI neural estimation, computational efficiency can be fur-
ther optimized using incremental training and prototype rep-
resentation for label-specific child and parent nodes. This
training and embedding representation method will signifi-
cantly reduce the computational overhead.

Lightweight Layer-wise Digraph Learning Function. We
can obtain node representations through weight-free feature
propagation, a computationally efficient embedding method
that has proven effective in recent studies (Wu et al., 2019;
Zhang et al., 2022; Li et al., 2024b). Through this design,
we significantly reduce the number of learnable parameters
and achieve efficient gradient updates.
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Table 1. Model performance (%) in three directed link-level downstream tasks.
Datasets (→) Slashdot WikiTalk

Tasks (→) Existence Direction Link-C Existence Direction Link-C

Models (↓) AUC AP AUC AP ACC AUC AP AUC AP ACC

GCN 88.4±0.1 88.6±0.1 90.1±0.1 90.2±0.1 83.8±0.2 92.4±0.1 92.3±0.0 86.5±0.2 87.1±0.1 84.6±0.2
GAT 88.1±0.2 88.4±0.1 90.4±0.2 90.5±0.1 83.5±0.3 OOM OOM OOM OOM OOM

NSTE 90.6±0.1 90.8±0.0 92.2±0.1 92.4±0.0 85.4±0.2 94.4±0.1 94.6±0.1 90.7±0.1 90.0±0.0 90.4±0.1
Dir-GNN 90.4±0.1 90.5±0.0 92.0±0.1 91.8±0.1 85.2±0.2 94.7±0.2 94.3±0.1 90.9±0.1 90.3±0.1 90.6±0.2
MagNet 90.3±0.1 90.2±0.1 92.2±0.2 92.4±0.1 85.3±0.1 OOM OOM OOM OOM OOM
MGC 90.1±0.1 90.4±0.0 92.1±0.1 92.3±0.1 85.0±0.1 94.5±0.1 94.2±0.0 90.6±0.1 90.2±0.0 90.1±0.1

EDEN 91.8±0.1 92.0±0.0 93.3±0.1 93.1±0.0 87.1±0.2 95.4±0.1 95.8±0.1 91.5±0.0 91.7±0.1 91.0±0.1

Table 2. Link-C ACC and others AUC (%) in three directed link-level downstream tasks.

Datasets Tasks GCNII GATv2 AGT DGCN DIMPA D-HYPR DiGCN MagNet HoloNet EDEN

CoraML
Existence 84.01±0.22 84.58±0.33 84.50±0.24 87.65±0.20 88.06±0.20 87.99±0.24 87.65±0.28 88.05±0.21 87.80±0.24 90.84±0.19
Direction 83.25±0.36 84.94±0.60 85.57±0.51 90.43±0.49 90.88±0.50 90.94±0.54 89.75±0.71 90.83±0.49 89.83±0.57 92.36±0.48
Link-C 70.43±0.55 71.24±0.58 71.23±0.47 72.55±0.48 72.86±0.55 72.91±0.38 72.53±0.56 72.96±0.42 72.74±0.56 75.18±0.54

CiteSeer
Existence 76.24±0.46 76.86±0.35 76.72±0.38 79.65±0.49 79.65±0.38 79.84±0.29 79.32±0.33 79.80±0.24 79.32±0.30 82.24±0.37
Direction 72.95±0.82 74.08±0.56 73.76±0.65 88.12±0.73 88.42±0.70 88.75±0.63 88.19±0.38 88.67±0.45 88.76±0.48 90.56±0.40
Link-C 62.37±0.88 63.21±0.78 62.53±0.57 64.02±0.56 64.21±0.43 64.30±0.37 63.92±0.59 64.03±0.40 63.94±0.36 66.73±0.57

Tolokers
Existence 92.31±0.10 92.46±0.18 92.22±0.08 92.41±0.15 93.78±0.15 93.75±0.14 93.42±0.12 93.62±0.10 93.84±0.08 94.93±0.10
Direction 88.14±0.16 88.27±0.10 89.12±0.07 88.92±0.12 89.90±0.11 89.94±0.10 89.68±0.09 89.83±0.09 89.76±0.11 91.52±0.12
Link-C 78.10±0.11 78.29±0.19 78.72±0.15 79.74±0.08 80.84±0.09 80.79±0.09 80.52±0.10 80.78±0.8 80.51±0.12 82.67±0.13

Empire
Existence 63.37±0.72 63.78±0.90 63.92±0.74 65.67±0.40 66.28±0.32 66.31±0.35 66.39±0.43 66.27±0.34 65.86±0.46 68.81±0.41
Direction 49.56±0.90 50.64±0.76 50.38±0.70 53.26±0.32 53.92±0.36 53.87±0.42 53.91±0.50 53.84±0.39 53.79±0.45 55.60±0.48
Link-C 53.41±0.90 54.13±0.84 53.43±0.99 58.05±0.38 58.56±0.49 58.64±0.48 58.64±0.54 58.56±0.26 58.33±0.35 60.74±0.39

Rating
Existence 74.68±0.54 74.83±0.64 75.08±0.33 76.64±0.24 76.84±0.22 77.39±0.32 77.30±0.29 77.31±0.19 77.12±0.26 79.52±0.27
Direction 79.32±0.41 79.65±0.42 79.56±0.37 82.34±0.33 82.91±0.24 83.58±0.29 83.62±0.33 83.56±0.27 83.30±0.33 85.19±0.29
Link-C 59.95±0.62 60.27±0.58 59.37±0.40 63.28±0.23 63.78±0.30 64.33±0.36 64.28±0.40 64.32±0.30 64.32±0.32 66.37±0.35

Arxiv
Existence 83.14±0.23 82.54±0.31 82.21±0.18 84.40±0.19 85.19±0.21 85.13±0.23 85.02±0.31 85.29±0.19 85.25±0.20 87.24±0.23
Direction 89.20±0.27 89.13±0.29 89.47±0.28 93.05±0.16 93.41±0.19 93.24±0.20 93.18±0.25 93.37±0.14 93.40±0.15 94.48±0.16
Link-C 75.97±0.21 75.60±0.18 75.29±0.15 78.24±0.25 78.90±0.20 78.74±0.14 78.69±0.26 78.97±0.23 78.93±0.21 80.16±0.21

Table 3. Test accuracy (%) in directed Node-C.
Models CoraML CiteSeer WikiCS Tolokers Empire Rating Arxiv

GCNII 80.8±0.5 62.5±0.6 78.1±0.3 78.5±0.1 76.3±0.4 42.3±0.5 65.4±0.3
GATv2 81.3±0.9 62.8±0.9 78.0±0.4 78.8±0.2 78.2±0.9 43.8±0.6 66.7±0.3
AGT 81.2±0.8 62.9±0.8 78.3±0.3 78.5±0.2 77.6±0.7 43.6±0.4 66.2±0.4

DGCN 82.2±0.5 63.5±0.7 78.4±0.3 78.7±0.3 78.7±0.5 44.7±0.6 66.9±0.2
DIMPA 82.4±0.6 64.0±0.8 78.8±0.4 78.9±0.2 79.0±0.6 44.6±0.5 67.1±0.3

D-HYPR 82.7±0.4 63.8±0.7 78.7±0.2 79.2±0.2 78.8±0.5 44.9±0.5 66.8±0.3

DiGCN 82.0±0.6 63.9±0.5 79.0±0.3 79.1±0.3 78.4±0.6 44.3±0.7 67.1±0.3
MagNet 82.2±0.5 64.2±0.6 78.9±0.2 79.0±0.2 78.8±0.4 44.7±0.6 67.3±0.3
HoloNet 82.5±0.5 64.1±0.7 79.2±0.3 79.4±0.2 78.7±0.5 44.5±0.6 67.5±0.2

EDEN 84.6±0.5 65.8±0.6 81.4±0.3 81.3±0.2 81.1±0.6 46.3±0.4 69.7±0.3

4. Experiments
In this section, we offer a comprehensive evaluation to ad-
dress the following questions: Q1: How does EDEN per-
form as a new data-centric DiGNN? Q2: As a hot-and-plug
data online KD module, what is its impact on the prevalent
(Di)GNNs? Q3: If EDEN is effective, what contributes
to its performance? Q4: What is the running efficiency of
EDEN? Q5: How robust is EDEN when dealing with hy-
perparameters and sparse scenarios? We introduce datasets,
baselines, and experiment settings in Appendix A.10-A.13.

4.1. Performance Comparison

A New Digraph Learning Paradigm. To answer Q1, we
report the performance of EDEN, a data-centric DiGNN, in
Table 1, Table 2, and Table 3. We evaluate EDEN on three
link-level downstream tasks designed to assess its ability to
predict both the existence and directionality of edges. As
shown in Table 1 and Table 2, EDEN consistently achieves
SOTA performance across diverse datasets, highlighting its
strength in extracting structural and node-level semantics
from directed graphs. The node-level classification results
in Table 3 further demonstrate EDEN’s effectiveness on
both homophilous and heterophilous datasets, indicating its
ability to disentangle directed topological structure from
nodes profiles. Compared to baselines that intermittently
reach second-best performance, EDEN achieves improve-
ments of 2.78% and 2.24% on node-level and link-level
tasks, respectively. Notably, details of the HKT layer-wise
digraph learning function—serving both as a novel directed
graph learning paradigm and a plug-and-play module for
existing DiGNNs—are provided in Appendix A.11.
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Table 4. Node-C test accuracy (%) gains brought by EDEN in Di(GNNs) under Di(graphs).

Models CoraML CiteSeer WikiCS Arxiv Photo Computer PPI Flickr Improv.

OptBG 81.5±0.7 62.4±0.7 77.9±0.4 66.4±0.4 91.5±0.5 82.8±0.5 57.2±0.2 50.9±0.3 ↑2.75%OptBG+EDEN 82.8±0.6 64.6±0.8 79.4±0.3 67.9±0.4 93.9±0.6 84.9±0.6 59.8±0.3 52.8±0.4

NAG 81.2±0.9 62.5±0.9 78.3±0.3 65.9±0.5 91.3±0.7 83.1±0.4 57.1±0.2 51.2±0.4 ↑2.54%NAG+EDEN 83.0±0.9 64.8±0.7 79.8±0.4 67.3±0.4 93.6±0.8 85.2±0.5 59.2±0.2 52.5±0.4

DIMPA 82.4±0.6 64.0±0.8 78.8±0.4 67.1±0.3 91.4±0.6 82.4±0.5 56.7±0.3 50.5±0.3 ⇑4.32%DIMPA+EDEN 85.4±0.5 66.9±0.7 82.2±0.5 69.9±0.3 94.1±0.7 85.1±0.5 59.5±0.4 52.9±0.2

Dir-GNN 82.6±0.6 64.5±0.6 79.1±0.4 66.9±0.4 91.1±0.5 82.9±0.6 56.8±0.3 50.8±0.4 ⇑4.68%Dir-GNN+EDEN 85.9±0.4 67.2±0.5 82.8±0.3 70.5±0.3 93.8±0.5 84.8±0.7 59.4±0.3 53.1±0.3

HoloNet 82.5±0.5 64.1±0.7 79.2±0.3 67.5±0.2 90.8±0.5 83.0±0.6 57.0±0.3 51.0±0.4 ⇑4.46%HoloNet+EDEN 86.0±0.4 67.5±0.6 82.6±0.2 70.8±0.3 93.7±0.5 85.3±0.5 59.5±0.5 53.4±0.5

Table 5. Ablation study performance (%).
Datasets(→)
Modules(↓)

Tolokers (ACC) Slashdot (AUC)
Node-C Link-C Existence Direction

EDEN 81.33±0.2 82.67±0.1 91.82±0.1 93.29±0.1
w/o Diverse Knowledge 80.90±0.4 82.22±0.3 91.40±0.2 92.96±0.2

w/o Personalized Transfer 80.84±0.2 82.34±0.1 91.49±0.1 93.01±0.1
w/o Tree-based Random Walk 80.67±0.3 82.18±0.2 91.16±0.1 92.77±0.1

w/o Knowledge Distillation Loss 80.01±0.3 81.10±0.1 90.84±0.1 92.25±0.1

Datasets(→)
Modules(↓)

Rating (ACC) Epinions (AUC)
Node-C Link-C Existence Direction

EDEN 46.33±0.4 66.37±0.4 93.48±0.1 89.40±0.1
w/o Diverse Knowledge 45.76±0.6 66.03±0.5 93.11±0.2 89.02±0.1

w/o Personalized Transfer 45.92±0.3 65.94±0.3 93.05±0.1 89.04±0.1
w/o Tree-based Random Walk 45.84±0.4 65.72±0.5 93.02±0.1 88.99±0.1

w/o Knowledge Distillation Loss 45.45±0.5 65.09±0.4 92.57±0.1 88.61±0.1

A Hot-and-plug Online KD Module. Subsequently, to
answer Q2, we present performance gains achieved by in-
corporating EDEN as a hot-and-plug module into existing
(Di)GNNs in Table 4 (deployment details can be found in
Appendix A.11). Based on the results, we observe that
EDEN performs better on digraphs and DiGNNs compared
to undirected ones. This is because more abundant data
knowledge is inherent in digraphs, providing stronger en-
coding potential for DiGNNs. EDEN is designed to meet
this specific demand, thus showcasing superior performance.
Notably, the performance of EDEN as a hot-and-plug mod-
ule exceeds its performance as a self-reliant method in some
cases. This is attributed to the adoption of a lightweight
EDEN for running efficiency. While this approach sacrifices
some accuracy, it significantly enhances scalability.

4.2. Ablation Study

To answer Q3, we present ablation study results in Table 5,
evaluating the effectiveness of: (1) Diverse knowledge in
Eq. (9) for over-fitting; (2) Node-adaptive personalized
transfer for KD (Eq. (10)); (3) Tree-based random walk for
leaf prediction (Eq. (11)); (4) KD loss function for the gra-
dient interaction between teachers and students (Eq. (10)).

Experimental results demonstrate a significant improvement
by combining these modules, validating their effectiveness.
Specifically, module (1) mitigates over-fitting issues caused

by solely focusing on the current partition, achieving higher
accuracy and lower variance. Module (2) affirms our key
insight in Sec. 3.2, improving HKT-based KD. Module (3)
indirectly underscores the validity of the EDEN, as the
multi-level representations embedded in the HKT provide
beneficial information for various downstream tasks. Finally,
module (4) unifies the above modules into an end-to-end
optimization framework to empower digraph learning.

4.3. Efficiency Comparison

To answer Q4, we present the running efficiency report in
Fig. 3, where EDEN is primarily divided into two segments:
(1) The pre-processing step depicted in Fig. 3(a) showcases
coarse-grained HKT construction, with the x-axis represent-
ing predefined tree height h; (2) The end-to-end training step
depicted in Fig. 3(b). The x-axis denotes the selection of tree
height h and sampling coefficient κ introduced by Sec. 3.1
and Sec. 3.2. Since the pre-processing is independent of
model training, the computational bottleneck introduced
by the coarse-grained HKT construction is alleviated, re-
ducing constraints on deployment scalability. Additionally,
the lightweight implementation in pre-processing further
mitigates it. Meanwhile, benefiting from the lightweight
fine-grained HKT construction and personalized layer-wise
digraph learning function, EDEN exhibits a significant ad-
vantage in training costs compared to existing baselines
shown in Fig. 3(b)-(c). Due to space constraints, additional
details regarding the model convergence efficiency during
the training process can be found in Appendix A.14.

4.4. Robustness Analysis

Hyperparameter Selection. To answer Q5, we first an-
alyze the impact of hyperparameter selection on running
efficiency and predictive performance based on Fig. 3(a)
and (b). Our observations include: (1) Higher HKT height
h leads to a substantial increase in the time complexity
for greedy algorithm during pre-process; (2) Larger sam-
pling coefficients κ indicate additional computational costs
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Figure 4. Node-C performance on CoraML.

due to considering more nodes in the knowledge genera-
tion, especially pronounced with increased height h; (3) Ap-
propriately increasing h and κ for fine-grained distillation
significantly improves performance. However, excessive in-
crease leads to apparent optimization bottlenecks, resulting
in sub-optimal performance. In addition, we further dis-
cuss the implementation details of HKT-based random walk
for leaf prediction and KD loss factor in Appendix A.14.
This involves investigating the impact of transition proba-
bilities between distinct identity nodes (i.e., parent, sibling,
and child) during the sequence acquisition on predictive
performance and further analyzing the effectiveness of KD.

Sparsity Challenges. Subsequently, we provide sparse ex-
perimental results in Fig. 4. For stimulating feature sparsity,
we assume that the feature of unlabeled nodes is partially
missing. In this case, methods that rely on the quantity of
node representations like D-HYPR and NAG are severely
compromised. Conversely, DiGCN and MGC exhibit ro-
bustness, as high-order feature propagation partially com-
pensates for missing features. As for edge sparsity, since
all baselines rely on high-quality topology to empower their
model-centric neural architectures, their predictive perfor-
mance is not optimistic. However, we observe that EDEN
exhibits leading performance through fine-grained digraph
data-centric knowledge mining. To stimulate label sparsity,
we change the number of labeled samples for each class
and acquire results that follow a similar trend to the feature-
sparsity scenarios. Building upon these observations, EDEN
comprehensively improves both the predictive performance
and robustness of the various baselines.

Evaluation on Lightweight EDEN Navigating the com-
plexity of digraphs as a data-centric learning framework,
EDEN demonstrates strong predictive performance and
scalability, as evidenced by its evaluation on million-scale
datasets such as Arxiv and Wikitalk (see Table 1 and Ta-
ble 3). As discussed in Sec. 3.4, the Monte Carlo–based

Table 6. Comparison in Test accuracy (%) and Running Time (Sec)
in Node-C between Original EDEN and Lightweight EDEN.

Node-C Tolokers(ACC) Tolokers(Time) Rating (ACC) Rating (Time)

EDEN (Ori.) 82.1±0.3 240.8±6.5 46.8±0.3 132.3±4.9
EDEN (Light.) 81.3±0.2 72.1±3.6 46.3±0.4 57.6±2.2

Lightweight version of EDEN serves as a promising alter-
native in more scalability-demanding scenarios. To validate
this, we compare node-level classification results between
the full and Lightweight versions in Table 6. While the
Lightweight variant shows a slight drop in performance, it
significantly reduces computational overhead, saving run-
time by 101.5% on Tolokers and 18.6% on Rating datasets.
The performance gap stems from the Monte Carlo method’s
approximation-based search, though the Lightweight ver-
sion remains computationally efficient.

5. Conclusions, Limitations, and Future Work
In this paper, we propose a general data-centric (di)graph
online KD framework, EDEN. It achieves fine-grained data
knowledge exploration abiding with the hierarchical encod-
ing system proposed in Sec. 2.2. Comprehensive evaluations
demonstrate significant all-around advantages. We believe
that implementing data-centric graph KD through the tree
structure is a promising direction, as the hierarchical struc-
ture effectively captures the natural evolution of real-world
graphs. However, it must be acknowledged that the current
EDEN framework has significant algorithmic complexity,
including multi-step computations. Despite the lightweight
implementation, scalability challenges persist when applied
to billion-level graphs. Therefore, our future work aims
to simplify the hierarchical data-centric KD theory and de-
velop a user-friendly computational paradigm. For instance,
we intend to explore the possibility of integrating the HKT
construction with graph partitioning techniques to enable
parallel processing, and facilitate its practical deployment
in broader industrial applications.
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A. Outline
The appendix is organized as follows:

A.1 HKT Construction and Hierarchical Graph Clustering.

A.2 Data-level Online Knowledge Distillation in EDEN.

A.3 The Definition of partition tree.

A.4 Breaking the Limitations of Single-direction Random Walks.

A.5 Greedy Algorithms for Partition Tree Construction.

A.6 The Proof of Theorem 3.1.

A.7 The Proof of Theorem 3.2.

A.8 The Proof of Theorem 3.3.

A.9 Algorithm Complexity Analysis.

A.10 Dataset Description.

A.11 Compared Baselines.

A.12 Hyperparameter Settings.

A.13 Experiment Environment.

A.14 Extend Experimental Results.

A.1. HKT Construction and Hierarchical Graph Clustering

Although the HKT construction process may superficially resemble hierarchical clustering, it is crucial to emphasize
that HKT is fundamentally distinct. Unlike traditional clustering methods, HKT leverages topology-driven structural
entropy—a dynamic metric grounded in the information theory of structured data—to extract deeper structural insights
from the graph. This methodology transcends the limitations of static clustering techniques, offering a more nuanced and
context-aware understanding of the underlying graph structure. Moreover, EDEN incorporates profile-oriented node MI
through neural estimation as a pivotal criterion for HKT construction. This integration enables a more fine-grained and
profile-aware analysis of node relationships, uncovering intricate patterns that static methods may overlook. As a result,
the multi-granularity quantification criteria established by our approach not only deviate significantly from conventional
hierarchical clustering but also introduce a novel and innovative perspective for understanding complex graph data (see
Sec. 3.1 for more details).

While traditional hierarchical clustering can reveal the layered structure of a network, it is not directly applicable to the
complexities of (di)graph learning. EDEN, on the other hand, utilizes HKT as a foundational framework to enable the
development of learnable knowledge generation and transfer mechanisms that can be seamlessly integrated with existing
(Di)GNN architectures. This integration provides a novel way to enhance model learning by effectively capturing and
utilizing the hierarchical structure of directed graphs. Furthermore, we have designed a random walk-based leaf prediction
mechanism, tailored to various graph-based downstream tasks, ensuring that our approach is robust and adaptable to different
application scenarios (for more technical details, refer to Sec. 3.2-3.3).

A.2. Data-level Online Knowledge Distillation in EDEN

Graph KD typically follows a model-level, offline teacher-student framework. In this setup, knowledge is transferred from a
large, pre-trained teacher GNN to a more compact and efficient student model, such as a smaller GNN or MLP. The teacher
captures complex patterns and representations within the graph. The student, rather than learning directly from ground truth
labels, learns from the teacher’s soft predictions or intermediate representations. This approach allows the student model to
replicate the teacher’s performance while significantly reducing computational complexity.

14



Toward Data-centric Directed Graph Learning: An Entropy-driven Approach

With the rapid advancement of KD, it has expanded into multiple model-level KD variants. These include self-distillation,
where a single model simultaneously acts as both the teacher and student, enhancing its own learning process (Chen
et al., 2021; Zhang et al., 2023), and online distillation, where both teacher and student models are continuously updated
throughout the training process (Zhang et al., 2021b; Feng et al., 2022). These innovations reflect the growing diversity in
how knowledge transfer can be applied beyond the initial teacher-student (large model to lightweight model) framework.

In this paper, we focus specifically on data-centric graph KD, which emphasizes uncovering the latent knowledge embedded
in graph structures, using data samples as the medium for distillation (Zhang et al., 2020; Zhu et al., 2024). In the EDEN
framework, parent and child nodes within the HKT assume the roles of teacher and student, respectively. This enables
knowledge transfer through their representations in a hierarchical manner. Our approach aligns with the principles of
data-level online KD, leveraging the topological relationships between nodes to drive more effective distillation.

A.3. The Definition of partition tree

To define high-dimensional measurements of directed structural information, we introduce a partition tree T of digraphs,
which can also be regarded as the coarse-grained HKT without profile-oriented refinement (i.e., knowledge discovery (a)
from a topology perspective only). Notably, community detection or clustering can be understood as a hierarchical structure,
specifically a 3-layer partition tree. In this structure, the leaf nodes represent the individual nodes from the original graph,
while their parent nodes serve as virtual nodes that represent entire communities. To make it easier to understand, we first
give an example of a two-dimensional directed structural measurement of the graph,H2(G), where we consider a digraph
G = (V, E) and its 2-order partition P = {X1, · · · ,XC} of node sets V . Building upon this, we interpret P through a
2-height partition tree T as follows.

To begin with, we introduce the root node λ and define a set of nodes Tλ = V as a subset of the root node λ in the 2-height
partition tree T . Notably, in this two-dimensional directed structural measurement, the nodes in the 2-height partition tree
have only three types of identity information:

(1) the root node (h = 0), which does not exist in the original digraph but is used to describe the partition tree;

(2) the successor nodes (h = 1), which are not present in the original digraph but are employed to characterize leaf nodes;

(3) the leaf nodes (h = 2), which represent the original digraph nodes.

Then, we introduce C immediate successors for the root denote ϕi = λ⟨i⟩, i = 1, · · · , C. Naturally, we can extend
the concept associated with the root to successor nodes ϕi, which are directly related to the coarse partitioning of leaf
nodes Xi. Thus, we define Tϕi = Xi. Now, for each ϕi, we introduce |Xi| immediate successors denoted ϕi⟨j⟩ for all
j ∈ {1, · · · , |Xi|}, and each successor ϕi⟨j⟩ is associated with an element in Xi. Thus, we define Tϕi⟨j⟩ as the singleton of
a node in Tϕi

= Xi.

To this point, T is a partition tree of height 2, and all its leaves are associated with singletons. For any node α ∈ T , Tα is the
union of Tβ for all β values (immediate successors) of α, and the union of Tα for all nodes with α values at the same level
of the partition tree T constitutes a partition of V . Hence, the partition tree of a digraph is a set of nodes, each associated
with a nonempty subset of nodes in digraph G, and can be defined as follows:
Definition A.1. (partition tree of Digraphs): Let G = (V, E) be a connected digraph. We define the h-height partition tree
T of G with the following properties:

(1) For the root node λ, we define the set Tλ = V as the collection of nodes with heights less than λ.

(2) For each node α ∈ T , the immediate successors of α are denoted as α⟨j⟩ for j ranging from 1 to a natural number N ,
ordered from left to right as j increases.

(3) For any natural number i ≤ h and each non-leaf node α ̸= λ, the set {Tα | h(α) = i} forms a partition of V , where
h(α) denotes the height of α (note that the height of the root node λ is 0).

(4) For each leaf node α in T , Tα is a singleton, indicating that Tα contains a single node from V .

(5) For any two nodes α, β ∈ T at different heights, we use α ⊂ β or β ⊂ α to denote their hierarchical relationship.

(6) For α ⊂ β or β ⊂ α, we employ − and + to further describe this hierarchical relationship within the same partition.
Specifically, if α ⊂ β with h(α) = h(β) + 1, then β− represents the child nodes of β. Conversely, if β ⊂ α with h(β) =
h(α)+1, then β+ denotes the parent node of β. (note that for every non-leaf node α ̸= λ, h (α−)−1 = h(α) = h (α+)+1)
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(a) Walk with Circles (b) Walk without Circles

Figure 5. The visualization experiments of the interruption issue of single-direction random walk on digraphs. The circle represents a
special topology where a node can walk back to itself, and its existence will alleviate walk interruption. The y-axis denotes the proportion
of non-walk interruptions.

(7) For each α, Tα is the union of Tβ for all β such that β+ = α. Thus, Tα = ∪β+=αTβ .

According to Definition A.1, for a given digraph G, we compute the h-dimensional directed structural information mea-
surementHh(G) of G by Eq. (3) while simultaneously identifying a h-height coarse-grained HKT T . The above process
adheres to the following principles:

(1) The h-dimensional structural information measurementHh(G) of a digraph G is achieved or approximated through the
h-dimensional hierarchical partition tree T of G;

(2)Hh(G) serves as the guiding principle for the formation of the h-dimensional coarse-grained HKT T by minimizing the
uncertainty or non-determinism inherent in the h-dimensional structures of G;

(3) T , functioning as a coarse-grained HKT for G, encompasses the rules, regulations, and orders governing G. This HKT is
derived by minimizing the random variations present in the h-dimensional structures of the digraphs, with these variations
being determined by our h-dimensional directed structural information measurement.

Based on the above principles, the h-dimensional structural measurement of digraphs, provided by the h-height partition
tree, serves as a metric enabling us to comprehensively or maximally identify the h-dimensional structure while mitigating
the impact of random variations in the digraphs. Meanwhile,Hh(G) excellently facilitates the complete extraction of order
from unordered digraphs, allowing us to discern order from disorder within structured data. Remarkably, our definition
retains all properties of the digraphs, providing robust support for the thorough analysis of structured data.

A.4. Breaking the Limitations of Single-direction Random Walks

Utilizing simple random walks (SRW) on digraphs introduces unique challenges due to the inherent structure of these graphs.
A common issue arises when the random walk encounters nodes with no outgoing edges, causing the walk to terminate
prematurely. To better understand and visualize this limitation, we apply SRW starting from each node across four different
digraphs. As the walk length increases, we track the proportion of complete paths relative to the total sequences, as shown
in Fig. 5(a). To further assess the impact of graph cycles, we design a modified SRW that excludes cycles and conduct the
same experiment, with results presented in Fig. 5(b).

This investigation highlights a key limitation of random walks on digraphs: strictly following edge directions leads to
frequent interruptions in the walk. Due to the non-strongly connected nature of most digraphs, the proportion of complete
walks drops sharply after just five steps. This indicates that random walks on digraphs typically fail to gather information
beyond the immediate neighborhood of the starting node, limiting their ability to capture long-range dependencies. Moreover,
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when we eliminate the influence of cycles, the proportion of uninterrupted sequences declines even further, underscoring
the difficulty of maintaining continuous paths in digraphs and further highlighting the limitations of SRWs (forward-only)
in exploring deeper graph structures. It is evident that this significantly hinders the ability of structural entropy to capture
topological uncertainty, reducing the effectiveness ofHh(G) and leading to sub-optimal coarse-grained HKT.

A.5. Greedy Algorithms for Partition Tree Construction

The primary impetus for developing the greedy partition tree construction algorithm lies in the quest for an effective method
to construct hierarchical tree structures from digraph data while simultaneously minimizing the complexity and uncertainty
associated with the underlying relationships. In complex systems represented by digraphs, directed structural entropy serves
as a key metric to gauge the disorder and intricacy within the network. By harnessing the concept of directed edge structural
entropy minimization, the algorithm aims to derive hierarchical trees that capture essential structural characteristics while
promoting simplicity and interpretability. In a nutshell, the design principles of our proposed algorithm are as follows

(1) Directed edge structural entropy definition: The algorithm hinges on a rigorous definition of directed edge structural
entropy within the context of the digraph mentioned in Sec. 3.1. This metric quantifies the uncertainty and disorder associated
with the relationships between nodes in the digraph.

(2) Greedy selection strategy: At its core, the algorithm employs a greedy strategy, iteratively selecting directed edges that
contribute most significantly to the reduction of directed structural entropy. This strategy ensures that each step in the tree
construction process maximally minimizes the overall disorder in the evolving hierarchy.

(3) Hierarchical tree construction: The selected directed edges are systematically incorporated into the growing tree structure,
establishing a hierarchical order that reflects the inherent organization within the graph. This process continues iterations
until a coherent and informative tree representation is achieved.

(4) Complexity considerations: The algorithm balances the trade-off between capturing essential structural information and
maintaining simplicity. By prioritizing directed edges that significantly impact entropy reduction, it aims to construct trees
that are both insightful and comprehensible.

In conclusion, the greedy partition tree construction algorithm for digraph data, rooted in the minimization of directed
edge structural entropy, presents a promising avenue for extracting hierarchical structures from the network with intricate
topology. To clearly define a greedy partition tree construction algorithm, we introduce the following meta-operations in
Alg. 1.

These meta-operations collectively define the intricate logic underlying the greedy partition tree construction algorithm,
providing a comprehensive framework for constructing hierarchical structures in graph data while adhering to the principles
of minimizing directed edge structural entropy. Building upon these foundations, we employ meta-operations to present the
detailed workflow of the greedy structural tree construction algorithm. This facilitates the coarse-grained HKT construction
from a topological perspective, ultimately achieving digraph data knowledge discovery (i.e., Step 1 Knowledge Discovery
(a) in our proposed EDEN as illustrated in Fig. 2).

The Alg. 2 outlines the construction of a height-limited partition tree algorithm, emphasizing the minimization of directed
structural uncertainty. It begins by sorting input data in non-decreasing order. Subsequently, it constructs an initial partition
tree, using a greedy approach that iteratively combines nodes until the root has only two children. After that, it enters a
phase of height reduction, wherein nodes contributing to excess height are detached iteratively until the tree attains height h.
To stabilize the structure, it inserts filler nodes for any node with a height discrepancy exceeding 1. This three-phase process
ensures the efficient construction of a height-limited partition tree while minimizing directed structural measurement.

A.6. The Proof of Theorem 3.1

As discussed in Sec. 3.1, node profiles in a digraph act as essential identifiers. These profiles are not only instrumental in
distinguishing nodes but also play a critical role in the construction of data knowledge. Recognizing this, our proposed
partition-based node MI neural estimation seeks to further refine the coarse-grained HKT, which is initialized by the greedy
algorithm. This refinement is achieved by quantifying the correlations between node profiles within the partition tree,
thereby enhancing the granularity of the HKT. The refined tree provides a more accurate and nuanced representation of the
graph, laying a robust foundation for subsequent KD. This process ensures that both topological structure and node profile
information are effectively leveraged in the distillation, leading to improved model performance.
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Algorithm 1 Meta-operation (Function) Definitions
Definition. node vλ is the root of T , nodes (vi, vj) are two child nodes of node vλ

// Meta-1: Counts the number of child nodes of the given node vλ.
Function CountChildren(vλ):
Return Number of children of node λ

// Meta-2: Inserts a new node between nodes vi and vj , with vλ as the root.
Function Combine(vi, vj):
Insert a new node vn between nodes vi, vj and node vλ
vλ.children← vn
vn.children← vi
vn.children← vj

// Meta-3: Chooses two nodes (vi, vj) from vλ.children to maximize the reduction ofHT (G).
Function PickTwo(G):
argmax(vi,vj)

{
HT (G)−HTCombine(vi,vj)(G)

}
Return (vi, vj)

// Meta-4: Computes the height of the partition tree T .
Function TreeHeight(T ):
Return h(T )

// Meta-5: Detaches node vi from the tree T and merges its children to vj .children.
Function Detach(vi):
Detach vi from T and merge its children to vj .children
vj .children← vj .children+ vi.children
Delete vi

// Meta-6: Chooses one node vi from T based on minimizing the increase ofHT (G).
Function ChooseNode(T ):
argminvi

{
HTdetach(vi)(G)−HT (G) | vi ̸= vr}

Return vi

// Meta-7: Computes the absolute difference in height between the parent of vi and vi.
Function DeltaHeight(vi):
Return | TreeHeight (vi .parent)− TreeHeight (vi) |

// Meta-8: Inserts a filler node between nodes vi and vj to keep the tree height balanced.
Function InsertFillerNode(vi, vj):
Insert a new node vn between nodes vi and vj
vn.children← vi
vj .children← vn
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Algorithm 2 Construction of a Height-Limited Partition Tree
Input: data xi, size m
repeat

Initialize noChange = true.
for i = 1 to m− 1 do

if xi > xi+1 then
Swap xi and xi+1

noChange = false
end if

end for
until noChange is true
Input: a digraph G = (V, E), an integer h ≥ 2
Initialize partition tree T with root node λ and set all V as leaves

Phase I: Build a partition tree from leaves to root, using the greedy method
while CountChildren(r) > 2 do

(vi, vj)← PickTwo(G)
Combine(vi, vj)→ T

end while

Phase II: Height reduction to h
while TreeHeight(T ,G,V ′) > h do

vi ← ChooseNode(T ,G,V ′)
Detach(vi) from T

end while

Phase III: Stabilize tree structure
for Each vi ∈ T do

if DeltaHeight(vi) > 1 then
InsertFillerNode(vi, vi.parent)

end if
end for

Considering a digraph G = (V, E) and its coarse-grained partition tree T , where V encompasses all nodes in the digraph,
along with the corresponding feature and label matrix represented as X and Y. For current partition Xp given by T , we
employ a sampling strategy to obtain a candidate node subset Ωp with Kp nodes from the current partition Xp and other
partitions Xq . Notably, different partitions used for sampling should be at the same height within the HKT (e.g., the current
partition Xp and other partitions Xq should satisfy h(Xp) = h(Xq)). Building upon this, to reduce the computational
complexity, we adopt a computation-friendly sampling strategy. Specifically, considering the number of nodes in the
current partition is |Xp|, we include all of them in the candidate set Ωp. Additionally, we perform random sampling for
partition-by-partition until the total non-duplicated nodes in the Ωp satisfy κ |Xp|, where κ ≥ 1 is used to control the
knowledge domain expansion come from the other partitions Xq. This subset Ωp is used to generate knowledge that
represents the current partition Xp, formally represented as the parent representation of this partition in the HKT. Notably,
we assign distinct identifiers to the sampled nodes based on their partition affiliations, denoting them as v ∈ Xp and u ∈ Xq ,
providing clarity in illustrating our method and derivation process.

Building upon this foundation, given the node v as an example, a random variable fv is introduced to represent the node
feature when randomly selecting a node from Ωp within the current partition Xp. Then, the probability distribution of fv is
formally defined as Pfv = P (fv = Xv),∀v ∈ Ωp ∩ Xp. Similarly, we can generalize Pfv to scenarios originating from
other partitions to obtain Pfu = P (fu = Xu),∀u ∈ Ωp ∩ Xq. In Ωp, the definition of the generalized neighborhoods for
any node is closely tied to the partition provided by the HKT, rather than relying on the traditional definition based on the
adjacency matrix A from directed edge sets E .
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Specifically, for nodes belonging to the current partition, denoted as v ∈ Xp, their generalized neighborhoods are defined
as N T

v = Xp. This is done to identify nodes with sufficient information to efficiently represent the current partition
i.e., (measure MI between v and N T

v ). As for nodes belonging to other partitions, denoted as u ∈ Xq, their generalized
neighborhoods are defined as N T

u = Xp ∪ Xq. This is intended to address the limitations of the coarse-grained partition
tree produced by considering only topological metrics. In other words, we aim to identify sets of nodes within other
partitions that effectively capture the representation of both the current partition Xp (explore potential correlation from
the profile perspective) and their own partition Xq (inherit their own partition criteria about directed structural information
measurement), thereby refining the HKT through MI measurement between u and N T

u .

Notably, we chose N T
v = Xp for the following reasons: (1) We aim to calculate the MI neural estimation between the

current node v and its generalized neighborhoods Xp as a criterion for quantifying affinity scores. This approach ensures that
nodes representative of the current partition receive higher affinity scores. Therefore, the generalized neighborhood of the
current node needs to be closely related to the partition to which the node belongs, leading us to impose this restriction rather
than defining the neighborhood as all nodes V . For more on the motivation, intuition, and theory behind this mechanism,
please refer to Sec. 2.2. As for the details on the calculation of affinity scores, we recommend referring to Sec. 3.2 on
knowledge generation. (2) In general, the number of partitions Xp is considerably smaller than the total set of nodes V . As a
result, one of the key motivations for imposing this neighborhood restriction is to minimize computational overhead and
improve overall runtime efficiency. By limiting the scope of the calculations, we are able to streamline the process without
sacrificing performance, making the method more scalable for large-scale graphs. In summary, expanding the neighborhood
to include all nodes would result in higher computational costs and poorer performance. Therefore, we restrict the definition
of the generalized neighborhood based on the partition obtained by HKT.

In either case, the generalized neighborhoods are subgraphs containing nodes from V . These nodes may not be directly
connected in the original topology but reveal inherent correlations at a higher level through the measurement of directed
structural information. Therefore, this representation transcends the topological exploration of the digraph by A and reflects
intrinsic knowledge at a higher level. Building upon this, considering a node v as an example, let fNT

v
be a random variable

representing the generalized neighborhood feature selected from Ωp, originating from the current partition Xp. We define
the probability distribution of fNT

v
as PfNT

v
= P (fNT

v
= XNT

v
).

Therefore, considering a node v ∈ Xp as an example, we define the joint distribution of the random variables of node
features and its generalized neighborhood features within partition Xp given by HKT, which is formulated as:

P
(
fv, fNT

v

)
= P

(
fv = Xv, fNT

v
= XNT

v

)
,∀v ∈ Ωp ∩ Xp, (13)

where the joint distribution reflects the probability that we randomly pick the corresponding node feature and its generalized
neighborhood feature of the same node v within partition Xp together. Building upon this, the MI between the node features
and the generalized neighborhood features within the current partition Xp is defined as the KL-divergence between the joint
distribution P

(
fv, fNT

v

)
and the product of the marginal distributions of the two random variables Pfv ⊗ PfNT

v
. The above

process can be formally defined as:

I(Ω)
(
fv, fNT

v

)
= DKL

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
. (14)

This MI measures the mutual dependency between the selected node and its generalized neighborhoods in Ωp. The KL
divergence adopts the f -representation (Belghazi et al., 2018) is defined as:

DKL

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥ sup

F∈F
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E
Xv,XNT

v
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(
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v

)[F (Xv,XNT
v

)]}
− sup

F∈F

{
EXv∼Pfv ,XNT

v̄
∼PfNT

v

[
e
F
(
Xv,XNT

v̄

)
−1
]}

,

(15)

where F is an arbitrary class of functions that maps a pair of selected node features and its generalized neighborhood
features to a real value. Here, we use F (·, ·) to compute the dependency. If we explore any possible function F ∈ F , it
can serve as a tight lower bound for MI. Building upon this, we can naturally extend the above derivation process to the
scenario of sampling nodes belonging to other partitions, specifically u ∈ Ωp ∩ Xq . At this point, we can assess the shared
contribution of nodes v and u with different affiliations in generating knowledge for the current partition Xp.
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A.7. The Proof of Theorem 3.2

The primary objective here is to introduce a node selection criterion that is grounded in quantifying the dependency between
the selected node and its generalized neighborhoods. This dependency serves as the foundation for assessing the relevance
and influence of each node within its local structure. The key insights behind using this dependency as a guiding principle
are central to the formulation of the criterion function. By leveraging this approach, we aim to enhance the process of
knowledge generation for the current partition Xp, ensuring that both local and global relationships are effectively captured
and utilized in the knowledge distillation process. The detailed reasoning and benefits of this approach are outlined as
follows:

(1) In our definition, the generalized neighborhoods of the selected node are closely tied to the current partition Xp and their
own partition Xi. Thus, measuring this dependency is equivalent to quantifying the correlation between the representation
of the selected node and the knowledge possessed by the current partition and their own partition.

(2) The node-selection criterion is essentially a mechanism for weight allocation. Since the candidate node set is fixed by
the sampling process, this step aims to assign higher affinity scores to nodes that better represent the current and their own
partition. This guides the knowledge generation process to acquire the parent node representation for the current partition.

Building upon this, instead of calculating the exact MI based on KL divergence, we opt for non-KL divergences to offer
favorable flexibility and optimization convenience. Remarkably, both non-KL and KL divergences can be formulated within
the same f -representation framework. We commence with the general f -divergence between the joint distribution and the
product of marginal distributions of vertices and neighborhoods. The above process can be formally defined as follows:

Df

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
=

∫
PfvPfNT

v
f

(
P
(
fv, fNT

v

)
PfvPfNT

v

)
dXvdXNT

v
, (16)

where f(·) represents a convex and lower-semicontinuous divergence function. When f(x) = x log x, the f -divergence is
specified as the Kullback-Leibler (KL) divergence. The function f(·) has a convex conjugate function, denoted as f⋆(·),
where f⋆(t) = supx∈domf

{tx− f(x)}, and domf is the domain of f(·). It’s important to note that these two functions,
f(·) and f⋆(·), are dual to each other. According to the Fenchel conjugate (Hiriart-Urruty & Lemaréchal, 2004) and node
sampling space Ωp based on different affiliations given by HKT, the f -divergence can be modified as:
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where F represents any function that maps the selected node and its generalized neighborhood features to a scalar, and the
function F (·, ·) serves as a variational representation of t. v̄ is a randomly selected node from Ωp excluding v. This step
confines the quantification of MI to the sampling space of Ωp, providing a finer-grained quantification criterion. Additionally,
we employ an activation function σ : R→ domf⋆ to constrain the function value F (·, ·)→ σ(F (·, ·)). Thus, we obtain:

Df

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥

sup
F∈F

{
E
P
(
fv,fNT

v

) [σ (F (Xv,XNT
v

))]
− EPfv ,PfNT

v

[
f⋆
(
σ
(
F
(
Xv,XNT

v̄

)))]}
.

(18)

Given that σ (F (·, ·)) also belongs to F and its value falls within domf⋆ , the optimal solution satisfies the equation.
Assuming the divergence function is f(x) = x log x, the conjugate divergence function is f⋆(t) = exp(t − 1), and the
activation function is σ(x) = x, we can derive the f -representation of KL divergence shown in Eq. (15). It is important to note
that the choice of the activation function σ(·) is not unique, and our target is to identify one that facilitates both derivation and
computation. Here, we explore an alternative form of divergence utilizing f -representation, known as GAN-like divergence.
In this context, we employ a specific form of the divergence function, given by f(x) = x log x− (x+ 1) log(x+ 1), with
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the conjugated divergence function defined as f⋆(t) = − log(1− exp(t)) (Nowozin et al., 2016). The chosen activation
function is σ(·) = − log(1 + exp(·)). The GAN-like divergence can be expressed as:
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where, σ(·) denotes the sigmoid function. Ultimately, the GAN-like divergence transforms the f -divergence into a binary
cross-entropy, akin to the objective function used for training the discriminator in GAN (Goodfellow et al., 2014). In the
aforementioned process of selecting sub-nodes suitable for generating knowledge for the current partition Xp, the above
lower bound consists of two components. The first term assesses the effective representational capability of the selected
node for its generalized neighborhoods. Considering the close correlation of the definition of generalized neighborhoods
with the current partition, it can be regarded as a measure from the embedding perspective of the relevance of the selected
node to the knowledge of the current partition. The second term binds the measurement space of relevance with the sampling
space based on the affiliation relationship. It gauges the expressive capability of the currently selected node for partition
knowledge compared to other nodes in the sampling set. Based on the aforementioned inference, we can generalize it to
nodes u belonging to other partitions Xq .

A.8. The Proof of Theorem 3.3

To determine the form of the function F (·, ·), we parametrize F (·, ·) using trainable neural networks instead of manual
design. The parameterized function is denoted as Fw(·, ·), where w generally represents the trainable parameters. In this
study, Tw(·, ·) has two construction mechanisms based on the partition Xi to which the selected node belongs and the current
partition Xp where the knowledge generation process is applied. The criteria are as follows:

(1) Intra-partition: Identifying nodes v that efficiently represent the current partition Xp (i.e., MI between Xv and XNT
v

=
Xp) and assigning them higher affinity scores to dominate the weighted knowledge generation process based on the Ωp.

(2) Inter-partition: Identifying nodes u within other partitions Xq that potentially represent the current partition effectively
(i.e., MI between Xu and Xp). Meanwhile, node u is required to adhere to well-defined criteria for directed structural
information measurement inherited from its corresponding partition to ensure accuracy (i.e., MI between Xu and Xq).
Building upon this foundation, we achieve MI neural estimation between Xu and XNT

v
= Xp ∪ Xq to obtain efficient

affinity scores for u ∈ Xq. These nodes might not have been correctly assigned to the current partition Xp initially due to
coarse-grained directed structural measurements.

Following these criteria, we reformulate the problem into a fine-grained selection task for nodes contained within two
partition roles Xp and Xq. Building on this, we provide the instantiation of the criterion function C(·), incorporating (1) a
model-agnostic digraph learning functionM executed at each tree layer of the HKT, which can leverage some widely used
model architectures such as DiGCN (Tong et al., 2020a), MagNet (Zhang et al., 2021c), HoloNet (Koke & Cremers, 2024),
or be tailored for practical settings; (2) mapping functionsW1 andW2 dedicated to encoding the currently selected node
and its generalized neighborhoods, respectively; (3) two functions Qintra and Qinter for generating the final affinity scores
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based on the encoding results and the current node’s partition affiliation. Furthermore, to efficiently encode the generalized
neighborhoods, we perform an l-step label propagation based on the high-level neighborhood relations TXi in partition Xi

provided by the HKT. The above process based on the current partition Xp can be formally defined as

F intra
w := Qintra

(
W1 (M (Xv)) ,W2

(
M
(
XNT

v

)))
,

F inter
w := Qinter

(
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u

)))
,
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i,∀i ∈ Xp

)
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i = τX0
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1√
d̃id̃j

X̂l−1
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(20)

We adopt the approximate calculation method for the personalized PageRank (Klicpera et al., 2019). Meanwhile, we set
τ = 0.5 and l = 5 by default to capture deep structural information. Due to the small-world phenomenon, we aim to traverse
as many nodes as possible within the subgraph through such settings. Moreover, Agg(·) is a generalized neighborhood
representation aggregation function. This function can be implemented through weight-free operations. It is noteworthy
that, due to the shared encoding function weights within each partition Xi, the results generated by the neighborhood
representation function in partitions with different node quantities must have the same size. In our implementation,
considering computational costs, we default to using the weight-free form.

In this manner, the parameterized GAN-like divergence serves as a variational lower bound for the theoretical GAN-like-
divergence-based MI between digraph nodes and their generalized neighborhoods. Taking the node v belonging to the
current partition Xp as an example, we obtain the following representation. Similarly, an extension can be applied to nodes
u belonging to other partitions Xq .
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A.9. Algorithm Complexity Analysis

The complexity of Step 1 is O (h(m log n+ n)). Notably, as T tends to be balanced during the structural measurement
minimization, height h is approximately log n. Additionally, considering that m ≫ n, the complexity of Step 1 scales
nearly linearly with the number of edges. Subsequently, Step 2 and Step 3 introduce the KD-based training framework.
Considering L-layer MLP and HKT layer-wise DiGNN, the time complexity can be bound by O(h(Lmf + Lkn log nc2)).
In comparison to Step 1, it is negligible. This is attributed to the random walk and feature transformation can be executed
with significantly lower costs due to sparse matrices and parallelism in computation. Moreover, in practice, we can employ a
lightweight HKT layer-wise digraph learning to achieve acceleration. Consequently, O(m) in Step 1 remains the primary
bottleneck for achieving scalability.

A.10. Dataset Description

We evaluate the performance of our proposed EDEN on 10 digraph and 4 undirected graph benchmark datasets, considering
the node-level transductive/inductive semi-supervised classification task and three link-level prediction tasks. The 10
publicly partitioned digraph datasets include 3 citation networks (CoraML, Citeseer, and ogbn-arxiv) in (Bojchevski &
Günnemann, 2018; Hu et al., 2020), 2 social networks (Slashdot and Epinions) in (Ordozgoiti et al., 2020; Massa & Avesani,
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Table 7. The statistical information of the experimental di(graph) benchmark datasets.
Topology-Profile Datasets #Node #Features #Edges #N Classes #N Train/Val/Test #L Train/Val/Test #Task Description

Homophily Photo 7,487 745 119,043 8 612/612/5,889 Undirected Transductive Co-purchase
Homophily Computers 13,381 767 245,778 10 1100/1100/10651 Undirected Transductive Co-purchase
Heterophily PPI 56,944 50 818,716 121 4,555/4,555/39,993 Undirected Inductive Protein
Heterophily Flickr 89,250 500 899,756 7 7,140/7,140/47,449 Undirected Inductive Image

Homophily CoraML 2,995 2,879 8,416 7 140/500/2355 80%/15%/5% Node&Link Citation
Homophily CiteSeer 3,312 3,703 4,591 6 120/500/2692 80%/15%/5% Node&Link Citation
Homophily WikiCS 11,701 300 290,519 10 580/1769/5847 80%/15%/5% Node&Link Weblink
Homophily Tolokers 11,758 10 519,000 2 50%/25%/25% 80%/15%/5% Node&Link Crowd-sourcing

Heterophily Empire 22,662 300 32,927 18 50%/25%/25% 80%/15%/5% Node&Link Article Syntax
Heterophily Rating 24,492 300 93,050 5 50%/25%/25% 80%/15%/5% Node&Link Rating
Heterophily Arxiv 169,343 128 2,315,598 40 60%/20%/20% 80%/15%/5% Node&Link Citation

- Slashdot 75,144 100 425,702 - - 80%/15%/5% Link Only Social
- Epinions 114,467 100 717,129 - - 80%/15%/5% Link Only Social
- WikiTalk 2,388,953 100 5,018,445 - - 80%/15%/5% Link Only Co-editor

2005), web-link network (WikiCS) in (Mernyei & Cangea, 2020), crowd-sourcing network (Toloklers) (Platonov et al.,
2023), syntax network (Empire), rating network (Rating) (Platonov et al., 2023), and co-editor network (Leskovec et al.,
2010). In the transductive scenario, we conduct experiments on two co-purchase networks. In the inductive scenario, we
perform experiments on the image relation and the protein interaction networks. The dataset statistics are shown in Table 7
and more descriptions can be found later in this section.

We need to clarify that we are using the directed version of the dataset instead of the one provided by the PyG library
(CoraML, CiteSeer)1, WikiCS paper2 and the raw data given by the OGB (ogb-arxiv)3. Meanwhile, we remove the
redundant multiple and self-loop edges to further normalize the 10 digraph datasets. In addition, for Slashdot, Epinions,
and WikiTalk, the PyGSD (He et al., 2023) library reveals only the topology and lacks the corresponding node features
and labels. Therefore, we generate the node features using eigenvectors of the regularised topology. Building upon this
foundation, the description of all digraph benchmark datasets is listed below:

Photo and Computers (Shchur et al., 2018) are segments of the Amazon co-purchase graph. Nodes represent goods and
edges represent that two goods are frequently bought together. Given product reviews as bag-of-words node features, the
task is to map goods to their respective product category.

PPI (Zeng et al., 2020) stands for Protein-Protein Interaction (PPI) network, where nodes represent protein. If two proteins
participate in a life process or perform a certain function together, it is regarded as an interaction between these two proteins.
Complex interactions between multiple proteins can be described by PPI networks.

Flickr (Zeng et al., 2020) dataset originates from the SNAP, they collect Flickr data and generate an undirected graph.
Nodes represent images, and edges connect images with common properties like geographic location, gallery, or shared
comments. Node features are 500-dimensional bag-of-words representations extracted from the images. The labels are
manually merged from the 81 tags into 7 classes.

CoraML and CiteSeer (Bojchevski & Günnemann, 2018) are three citation network datasets. In these three networks,
papers from different topics are considered nodes, and the edges are citations among the papers. The node attributes are
binary word vectors, and class labels are the topics the papers belong to.

WikiCS (Mernyei & Cangea, 2020) is a Wikipedia-based dataset for bench-marking GNNs. The dataset consists of nodes
corresponding to computer science articles, with edges based on hyperlinks and 10 classes representing different branches
of the field. The node features are derived from the text of the corresponding articles. They were calculated as the average of
pre-trained GloVe word embeddings (Pennington et al., 2014), resulting in 300-dimensional node features.

Tolokers (Platonov et al., 2023) is derived from the Toloka crowdsourcing platform (Likhobaba et al., 2023). Nodes
correspond to tolokers (workers) who have engaged in at least one of the 13 selected projects. An edge connects two tolokers
if they have collaborated on the same task. The objective is to predict which tolokers have been banned in one of the projects.
Node features are derived from the worker’s profile information and task performance statistics.

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
2https://github.com/pmernyei/wiki-cs-dataset
3https://ogb.stanford.edu/docs/nodeprop/
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Empire (Platonov et al., 2023) is based on the Roman Empire article from the English Wikipedia (Lhoest et al., 2021), each
node in the graph corresponds to a non-unique word in the text, mirroring the article’s length. Nodes are connected by
an edge if the words either follow each other in the text or are linked in the sentence’s dependency tree. Thus, the graph
represents a chain graph with additional connections.

Rating (Platonov et al., 2023) is derived from the Amazon product co-purchasing network metadata available in the SNAP4

datasets (Leskovec & Krevl, 2014). Nodes represent various products, and edges connect items frequently bought together.
The task involves predicting the average rating given by reviewers, categorized into five classes. Node features are based on
the mean FastText embeddings (Grave et al., 2018) of words in the product description. To manage graph size, only the
largest connected component of the 5-core is considered.

ogbn-arxiv (Hu et al., 2020) is a citation graphs indexed by MAG (Wang et al., 2020). Each paper comes with a 128-
dimensional feature vector obtained by averaging the embeddings of words in its title and abstract. The embeddings of
individual words are computed by running the skip-gram model.

Slashdot (Ordozgoiti et al., 2020) is from a technology-related news website with user communities. The website introduced
Slashdot Zoo features that allow users to tag each other as friends or foes. The dataset is a common signed social network
with friends and enemies labels. In our experiments, we only consider friendships.

Epinions (Massa & Avesani, 2005) is a who-trust-whom online social network. Members of the site can indicate their trust
or distrust of the reviews of others. The network reflects people’s opinions of others. In our experiments, we only consider
the ”trust” relationships.

WikiTalk (Leskovec et al., 2010) includes all users and discussions from the inception of Wikipedia. The network comprises
n = 2, 388, 953 nodes, where each node represents a Wikipedia user, and a directed edge from node vi to node vj indicates
that user i edited user j ’s talk page at least once. For our analysis, we extract the largest weakly connected component.

A.11. Compared Baselines

The baselines we employ are as follows: (1) Directed spatial-based approaches: DGCN (Tong et al., 2020b), DIMPA (He
et al., 2022b), NSTE (Kollias et al., 2022), D-HYPR (Zhou et al., 2022), and Dir-GNN (Rossi et al., 2023); (2) Directed
spectral-based approaches: DiGCN (Tong et al., 2020a), MagNet (Zhang et al., 2021c), MGC(Zhang et al., 2021a), and
HoloNet (Koke & Cremers, 2024). Furthermore, to verify the generalization of our proposed EDEN, we compare the
undirected GNNs in digraphs with coarse undirected transformation (i.e., convert directed edges into undirected edges):
GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GCNII (Chen et al., 2020), GATv2 (Brody et al., 2022),
OptBasisGNN (Guo & Wei, 2023) (OptBG), NAGphormer (Chen et al., 2023) (NAG), and AGT (Ma et al., 2023). The
descriptions of them can be found later in this section. For link-level dataset split, we are aligned with previous work (Zhang
et al., 2021c; He et al., 2022a; 2023). To alleviate the influence of randomness, we repeat each experiment 10 times to
represent unbiased performance and running time (second report). Notably, we present experiment results with various
baselines in separate modules, avoiding abundant charts and validating the generalizability of EDEN. To ensure a fair
experimental comparison and avoid introducing excessive trainable parameters, we fix the random walk length to 5 in
HKT-based leaf prediction. This setting does not treat walk length as a hyperparameter for optimal search.

Notably, EDEN can be regarded as a novel digraph learning paradigm or a hot-and-plug online distillation module for
prevalent (Di)GNNs. Now, we elaborate on their experimental implementations.

(1) A new digraph learning paradigm: Different from the direct application of existing DiGNNs, in the HKT layer-wise
distillation process based on HKT, we implement the digraph learning functions of Eq.(7) and Eq.(8) through personalized
model design. Specifically, to reduce computational costs, we employ the magnetic Laplacian proposed in MagNet (Zhang
et al., 2021c) for digraph convolution. Compared to MagNet, EDEN pre-computes L iterations of feature propagation and
compresses complex learning processes into simple linear mappings, maximizing training and inference efficiency. Building
upon this, a personalized model design for the online distillation process is implemented to achieve end-to-end training.

(2) A hot-and-plug online distillation module: Essentially, EDEN serves as a general online distillation framework,
introducing a hierarchical knowledge transfer mechanism for existing DiGNNs. In other words, EDEN seamlessly integrates
into the HKT layer-wise digraph learning functions (i.e., utilize existing digraph neural architectures as digraph learning
function in Eq.(7) and Eq.(8) to generate node embeddings or soft labels) to improve predictions.

4https://snap.stanford.edu/
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DGCN (Tong et al., 2020b): DGCN proposes the first and second-order proximity of neighbors to design a new message-
passing mechanism, which in turn learns aggregators based on incoming and outgoing edges using two sets of independent
learnable parameters.

DIMPA (He et al., 2022b): DIMPA represents source and target nodes separately. However, DIMPA aggregates the
neighborhood information within K hops in each layer to further increase the receptive field (RF), and it performs a
weighted average of the multi-hop neighborhood information to capture the local network information.

NSTE (Kollias et al., 2022): NSTE is inspired by the 1-WL graph isomorphism test, which uses two sets of trainable
weights to encode source and target nodes separately. Then, the information aggregation weights are tuned based on the
parameterized feature propagation process to generate node representations.

D-HYPR (Zhou et al., 2022): D-HYPR introduces hyperbolic collaborative learning from diverse neighborhoods and
incorporates socio-psychological-inspired regularizers. This conceptually simple yet effective framework extends seamlessly
to digraphs with cycles and non-transitive relations, showcasing versatility in various downstream tasks.

Dir-GNN (Rossi et al., 2023): Dir-GNN introduces a versatile framework tailored for heterophilous settings. It addresses
edge directionality by conducting separate aggregations of incoming and outgoing edges. Demonstrated to match the
expressivity of the directed WL test, Dir-GNN outperforms conventional MPNNs in accurately modeling digraphs.

DiGCN (Tong et al., 2020a): DiGCN notices the inherent connections between graph Laplacian and stationary distributions
of PageRank, it theoretically extends personalized PageRank to construct real symmetric Digraph Laplacian. Meanwhile,
DiGCN uses first-order and second-order neighbor proximity to further increase RF.

MagNet (Zhang et al., 2021c): MagNet utilizes complex numbers to model directed information, it proposes a spectral GNN
for digraphs based on a complex Hermitian matrix known as the magnetic Laplacian. Meanwhile, MagNet uses additional
trainable parameters to combine the real and imaginary filter signals separately to achieve better prediction performance.

MGC (Zhang et al., 2021a): MGC introduces the magnetic Laplacian, a discrete operator with the magnetic field, which
preserves edge directionality by encoding it into a complex phase with an electric charge parameter. By adopting a truncated
variant of PageRank, it designs and builds a low-pass filter for homogeneous graphs and a high-pass filter for heterogeneous
graphs.

HoloNet (Koke & Cremers, 2024): HoloNet demonstrates that spectral convolution can extend to digraphs. By leveraging
advanced tools from complex analysis and spectral theory, HoloNet introduces spectral convolutions tailored for digraphs.

GCN (Kipf & Welling, 2017): GCN is guided by a localized first-order approximation of spectral graph convolutions. This
model’s scalability is directly proportional to the number of edges, and it learns intermediate representations in hidden layers
that capture both the structure and node features.

GCNII (Chen et al., 2020) incorporates initial residual and identity mapping. Theoretical and empirical evidence is presented
to demonstrate these techniques alleviate the over-smoothing issue.

GAT (Veličković et al., 2018) utilizes attention mechanisms to quantify the importance of neighbors for message aggregation.
This strategy enables implicitly specifying different weights to different nodes in a neighborhood, without depending on the
graph structure upfront.

GATv2 (Brody et al., 2022) introduces a variant with dynamic graph attention mechanisms to improve GAT. This strategy
provides better node representation capabilities and enhanced robustness when dealing with graph noise.

OptBasisGNN (Guo & Wei, 2023): OptBasisGNN revolutionizes GNNs by redefining polynomial filters. It dynamically
learns suitable polynomial bases from training data, addressing fundamental adaptability. OptBasisGNN innovatively
addresses the challenge of determining the optimal polynomial basis for a specific graph and signal, showcasing its
effectiveness in extensive experiments.

NAGphormer (Chen et al., 2023) treats each node as a sequence containing a series of tokens. For each node, NAGphormer
aggregates the neighborhood features from different hops into different representations.

AGT (Ma et al., 2023) consists of a learnable centrality encoding strategy and a kenneled local structure encoding mechanism
to extract structural patterns from the centrality and subgraph views to improve node representations for the node-level
downstream tasks.
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Figure 6. Convergence curves on node- and link-level tasks.

A.12. Hyperparameter settings

The hyperparameters in the baseline models are set according to the original paper if available. Otherwise, we perform
a hyperparameter search via the Optuna (Akiba et al., 2019). For our proposed EDEN, during the topology-aware
coarse-grained HKT construction, we perform a grid search in the interval [3, 10] to determine the height of HKT. In the
profile-oriented fine-grained HKT correction, a grid search is conducted in the interval [1, 2] to obtain the optimal κ, deciding
the knowledge reception field when generating parent node representations for the current partition. For random walk-based
leaf prediction, we search in the interval [0, 1] based on node-level or link-level downstream tasks to determine the optimal
walking probability. Additionally, within the same interval, we search to determine the hyperparameter α for knowledge
distillation loss, ensuring optimal convergence.

A.13. Experiment Environment

The experiments are conducted on Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz, NVIDIA GeForce RTX 3090 with
24GB memory, and CUDA 11.8. The operating system is Ubuntu 18.04.6 with 768GB of memory. As for software versions
we use Python 3.9 and Pytorch 1.11.0.

A.14. Extend Experimental Results

Convergence Analysis. To supplement answer Q3, we first present the convergence curves in Fig. 6, where we observe
that EDEN exhibits higher initial performance and more stable convergence. For instance, in the Node-C for the CiteSeer,
EDEN nearly reaches converged performance by the 25th epoch and maintains stability throughout the subsequent training
process. Notably, various link-level downstream tasks, benefiting from a larger number of training samples, exhibit smoother
optimization curves and more stable predictive performances compared to node-level classification tasks.

Hyperparameter Analysis. To provide a comprehensive analysis of the robustness of EDEN from the perspective of
hyperparameter sensitivity, we supplement the experimental results in Fig.7 with the outcomes of HKT-based random walk
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Figure 7. The sensitive analysis of HKT-based random walk under Tolokers.
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Figure 8. The sensitive analysis of KD loss factor.

sampling for leaf-centric prediction, considering various probabilities of transitioning between different identity nodes (i.e.,
parents, siblings, and children). Notably, we do not discuss the sampling probability regarding children separately. This is
because their main role is to provide return probabilities in the random walk process to yield richer sampling sequences,
without explicitly indicating the identity of the next node to visit. Before giving our analysis, we first revisit the key insights
introduced in Sec.3.3: (1) For node-level downstream tasks, it’s preferable to sample the parent of the current leaf node to
offer a rich high-level representation of the current label class. (2) For link-level downstream tasks, it’s preferable to sample
the siblings of the current leaf node to provide topologically relevant contextual insights at the same level. Based on the
experimental results, we observe that for Node-C, larger values of prw and smaller values of srw yield better predictive
performance, whereas for the three distinct link-level downstream tasks, smaller values of prw and larger values of srw are
preferable. This validates our aforementioned assertions and provides an empirical reference for selecting hyperparameters
when practically applying EDEN.

Additionally, in Fig. 8, we provide insights into how varying the coefficient α in the α-flexible KD loss impacts the
optimization process, reflected in the final predictive performance. According to our experimental results, in most cases,
EDEN should prioritize the KD process during end-to-end optimization. This is because the node-adaptive trainable
knowledge generation and transfer processes ensure high-quality KD, thereby positively influencing downstream task
predictions. Notably, smaller values of α perform better in edge existence problems. This is because the cross-entropy loss
function, used to provide supervision, aids significantly in coarser-grained existence problems, while finer-grained issues like
directionality and classification often benefit more from data-driven high-quality knowledge. In a nutshell, we recommend
smaller α values for edge existence problems and larger α values for other tasks, followed by manual adjustments based on
practical performance.

Comprehensive Results.

To present comprehensive experimental findings, this section includes additional results (Table 8, Table 9, Table 10, and
Table ??) that couldn’t be fully showcased in the main text due to space limitations. These additional experimental results,
consistent with the trends presented in the main text, further substantiate our claims in Sec. 4. Notably, to provide a more
thorough assessment, we introduce two additional evaluation metrics, Area Under Curve (AUC) and Average Precision (AP),
alongside the commonly known Accuracy (ACC). We default to using AUC and AP in the evaluation of the link prediction
tasks, and ACC to evaluate the predictive performance of node-level tasks. Regarding the experimental results of Dir-GNN
and HoloNet on the Empire dataset, we would like to clarify that we ensured a fair comparison by using a class-balanced
dataset split instead of the pre-split datasets used in Dir-GNN and HoloNet.
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Table 8. Test accuracy (%) in directed Node-C.

Models CoraML CiteSeer WikiCS Tolokers Empire Rating Arxiv

GCN 80.6±0.4 62.1±0.4 78.3±0.2 78.0±0.1 75.8±0.5 42.5±0.4 65.2±0.2
GAT 80.7±0.6 62.6±0.6 78.2±0.3 78.4±0.2 77.8±0.8 42.9±0.5 65.9±0.3

OptBG 81.0±0.5 63.2±0.4 78.5±0.2 78.6±0.2 78.0±0.6 43.2±0.4 66.3±0.3
NAG 81.4±0.7 62.7±0.5 78.6±0.3 78.4±0.4 77.5±0.9 43.1±0.6 66.5±0.4

NSTE 82.2±0.5 64.3±0.7 79.0±0.3 79.3±0.3 78.9±0.6 44.7±0.6 67.2±0.4
Dir-GNN 82.6±0.6 64.0±0.6 79.1±0.4 79.1±0.3 79.1±0.5 45.0±0.5 67.4±0.3

MGC 82.3±0.4 63.9±0.5 78.8±0.2 79.0±0.2 78.6±0.4 44.8±0.4 67.0±0.2

EDEN 84.6±0.5 65.8±0.6 81.4±0.3 81.3±0.2 81.1±0.6 46.3±0.4 69.7±0.3

Table 9. Model performance (%) in three directed link-level downstream tasks.

Datasets (→) Slashdot Epinions

Tasks (→) Exist Direct Link-C Exist Direct Link-C

Models (↓) AUC AP AUC AP ACC AUC AP AUC AP ACC

GCNII 88.6±0.1 88.4±0.0 90.3±0.1 90.4±0.1 84.0±0.1 91.3±0.1 91.3±0.0 85.9±0.2 86.3±0.1 82.7±0.1
GATv2 88.2±0.2 88.5±0.1 90.6±0.1 90.4±0.1 83.7±0.3 91.8±0.2 91.6±0.1 85.5±0.1 85.9±0.1 83.0±0.2
AGT 88.7±0.2 88.6±0.1 90.1±0.0 90.5±0.1 83.8±0.2 91.5±0.2 91.4±0.2 85.7±0.2 86.2±0.2 83.4±0.1

DGCN 90.3±0.1 90.1±0.0 92.2±0.1 92.4±0.1 85.5±0.2 92.2±0.1 92.5±0.0 87.8±0.1 87.5±0.2 83.6±0.2
DIMPA 90.5±0.1 90.7±0.1 92.4±0.2 92.1±0.1 85.6±0.1 92.5±0.1 92.6±0.1 87.9±0.1 88.2±0.1 83.5±0.1

D-HYPR 90.3±0.0 90.6±0.1 92.2±0.1 91.9±0.0 85.4±0.1 92.8±0.1 92.4±0.1 88.2±0.1 88.3±0.0 83.7±0.2
DiGCN 90.4±0.1 90.5±0.1 92.1±0.1 92.0±0.1 85.2±0.1 92.4±0.1 92.7±0.1 88.0±0.1 87.8±0.1 83.6±0.1
HoloNet 90.2±0.1 90.3±0.0 91.8±0.1 92.0±0.0 85.1±0.1 92.6±0.1 92.5±0.0 88.1±0.1 88.2±0.0 84.0±0.1

EDEN 91.8±0.1 92.0±0.0 93.3±0.1 93.1±0.0 87.1±0.2 93.5±0.1 93.7±0.0 89.4±0.1 89.8±0.0 85.7±0.1

AUC stands as a comprehensive metric for evaluating binary classification models. Quantifying the area beneath the ROC
curve, it provides a global assessment of the model’s ability to discriminate between positive and negative instances. AUC is
particularly valuable in scenarios with imbalanced datasets, as it remains insensitive to variations in class distribution. Its
utility extends to model comparison, offering insights into performance variations across different decision thresholds.

AP involves ranking predictions by their confidence scores, typically probabilities, from highest to lowest, and calculating
precision and recall at each threshold. These metrics are used to construct a precision-recall curve, which plots precision
values as a function of recall. AP itself is computed as the weighted mean of precision achieved at each threshold, where the
weights are the increments in recall from the previous thresholds. This approach allows AP to summarize the area under the
precision-recall curve, providing a single-figure measure of model performance that encapsulates both the accuracy and the
ranking of the positive predictions. Higher AP values indicate a model that not only predicts the positive class accurately but
also ranks those predictions highly, thus demonstrating high precision and recall across the board.
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Table 10. Link-C ACC and others AUC (%) in three directed link-level downstream tasks.

Datasets Tasks GCN GAT OptBG NAG NSTE Dir-GNN MGC HoloNet EDEN

CoraML
Existence 83.26±0.18 83.96±0.25 83.55±0.16 84.32±0.20 87.94±0.18 88.15±0.21 87.86±0.20 87.80±0.24 90.84±0.19
Direction 82.73±0.32 84.25±0.54 83.46±0.40 85.39±0.47 90.74±0.54 91.08±0.45 89.10±0.62 89.83±0.57 92.36±0.48
Link-C 69.80±0.45 70.67±0.52 70.54±0.60 71.04±0.56 72.79±0.42 73.11±0.49 72.82±0.60 72.74±0.56 75.18±0.54

CiteSeer
Existence 75.60±0.34 76.27±0.28 75.85±0.29 76.94±0.40 79.80±0.42 79.65±0.34 79.46±0.29 79.32±0.30 82.24±0.37
Direction 72.32±0.75 73.46±0.53 72.96±0.68 73.88±0.67 88.35±0.68 88.64±0.57 88.47±0.41 88.76±0.48 90.56±0.40
Link-C 61.74±0.83 62.46±0.72 62.29±0.75 62.86±0.65 64.16±0.48 64.35±0.43 63.88±0.50 63.94±0.36 66.73±0.57

WikiCS
Existence 90.67±0.07 91.15±0.14 90.43±0.10 91.08±0.14 91.60±0.08 91.38±0.11 91.13±0.05 91.28±0.09 92.84±0.12
Direction 85.26±0.37 85.61±0.29 85.40±0.32 85.75±0.35 87.28±0.25 87.12±0.30 87.33±0.17 87.24±0.26 90.08±0.24
Link-C 78.71±0.15 79.08±0.19 78.84±0.23 79.42±0.22 81.83±0.19 81.67±0.14 81.47±0.20 81.26±0.18 83.45±0.21

Tolokers
Existence 91.90±0.09 92.23±0.14 92.08±0.09 92.19±0.11 93.03±0.14 93.48±0.11 93.69±0.10 93.84±0.08 94.93±0.10
Direction 87.68±0.13 87.57±0.08 88.28±0.11 88.97±0.09 89.42±0.10 89.65±0.08 89.92±0.07 89.76±0.11 91.52±0.12
Link-C 77.54±0.09 77.85±0.14 78.20±0.12 78.49±0.13 80.28±0.07 80.46±0.10 80.83±0.08 80.51±0.12 82.67±0.13

Empire
Existence 62.51±0.67 62.93±0.81 63.14±0.75 63.85±0.80 66.35±0.35 66.28±0.42 65.99±0.32 65.86±0.46 68.81±0.41
Direction 48.60±0.95 49.77±0.87 49.82±0.93 50.16±0.84 53.87±0.42 53.94±0.40 53.58±0.37 53.79±0.45 55.60±0.48
Link-C 52.56±0.86 53.02±0.99 52.84±1.01 53.12±1.17 58.69±0.44 58.62±0.45 58.09±0.31 58.33±0.35 60.74±0.39

Rating
Existence 73.48±0.45 73.95±0.57 73.60±0.52 75.26±0.43 76.91±0.20 77.48±0.29 77.21±0.18 77.12±0.26 79.52±0.27
Direction 78.54±0.32 78.81±0.41 78.90±0.36 79.42±0.35 82.85±0.27 83.46±0.30 83.68±0.21 83.30±0.33 85.19±0.29
Link-C 58.63±0.46 58.79±0.50 58.60±0.64 59.13±0.37 63.64±0.28 64.23±0.39 64.28±0.25 64.32±0.32 66.37±0.35

Arxiv
Existence 82.04±0.15 81.87±0.19 82.24±0.17 82.44±0.16 84.82±0.23 85.37±0.19 84.70±0.28 85.25±0.20 87.24±0.23
Direction 88.56±0.16 88.71±0.20 88.94±0.21 89.10±0.22 93.34±0.14 93.62±0.17 93.27±0.11 93.40±0.15 94.48±0.16
Link-C 74.70±0.17 74.53±0.16 74.93±0.20 75.05±0.18 78.63±0.17 78.89±0.15 78.70±0.18 78.93±0.21 80.16±0.21
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