
Online Control of Adaptive Large Neighborhood Search Using Deep
Reinforcement Learning

Primary Keywords: (2) Learning

Abstract

The Adaptive Large Neighborhood Search (ALNS) algorithm
has shown considerable success in solving combinatorial op-
timization problems (COPs). Nonetheless, the performance
of ALNS relies on the proper configuration of its selection
and acceptance parameters, which is known to be a com-
plex and resource-intensive task. To address this, we intro-
duce a Deep Reinforcement Learning (DRL) based approach
called DR-ALNS that selects operators, adjusts parameters,
and controls the acceptance criterion throughout the search.
The proposed method aims to learn, based on the state of
the search, to configure ALNS for the next iteration to yield
more effective solutions for the given optimization problem.
We evaluate the proposed method on an orienteering prob-
lem with stochastic weights and time windows, as presented
in an IJCAI competition. The results show that our approach
outperforms vanilla ALNS, ALNS tuned with Bayesian opti-
mization, and two state-of-the-art DRL approaches that were
the winning methods of the competition, achieving this with
significantly fewer training observations. Furthermore, we
demonstrate several good properties of the proposed DR-
ALNS method: it is easily adapted to solve different rout-
ing problems, its learned policies perform consistently well
across various instance sizes, and these policies can be di-
rectly applied to different problem variants. We will make our
implementation code publicly available.

Introduction
Combinatorial Optimization Problems (COP) involve find-
ing high-quality solutions in a large space of discrete deci-
sion variables. Due to their inherent computational complex-
ity, often NP-hard, practical approaches for solving these
problems typically rely on handcrafted heuristics. Such
heuristics are fast yet lack the guarantee of finding good so-
lutions. A well-known and widely adopted heuristic in this
domain is Large Neighborhood Search (LNS) (Shaw 1998).
It operates based on the ruin-and-recreate principle, itera-
tively applying destroy and repair operators to enhance so-
lutions. The Adaptive Large Neighborhood Search heuristic
(ALNS) (Ropke and Pisinger 2006a) extends LNS by in-
corporating a variety of destroy and repair operators in the
search. In ALNS, these operators are assigned a weight that
influences their selection during each iteration of the search
process. These weights are adjusted based on operator per-
formance. ALNS is commonly configured with an accep-

tance criterion to enhance search performance further. This
allows for accepting less promising solutions in the search,
aiming to break out of local optima and search potentially
more promising areas of the search space. ALNS is a popular
metaheuristic for solving large-scale planning and schedul-
ing problems, including various routing problems and job
scheduling problems (Mara et al. 2022).

A limitation of ALNS is its reliance on weight-based op-
erator selection. This selection only considers past operator
performances, missing potential immediate relationships be-
tween the current search dynamics and operator choice. Ad-
ditionally, the efficacy of operators is influenced by their pa-
rameter configurations. Existing configuration methods are
mainly based on conventions, experience, ad hoc choices,
and experimentation (Mara et al. 2022), which may be sub-
optimal as they do not consider the problem-specific char-
acteristics nor incorporate online information about the cur-
rent search process dynamics. Additionally, experimentation
faces limitations as the parameters interact, making grid or
random search impractical for computationally expensive
real-world problems. To address these issues, various ma-
chine learning approaches have been proposed that learn
how to destroy or repair a solution (e.g., Hottung and Tier-
ney (2020); Gao et al. (2020)). While these approaches have
demonstrated good performance, they are problem-specific,
making it difficult to adapt them to other problem variants.

To overcome these challenges, this paper proposes DR-
ALNS, which integrates Deep Reinforcement Learning
(DRL) into ALNS. This integration aims to learn opera-
tor selection and control the operator and acceptance cri-
terion parameters. As such, DR-ALNS learns to respond
to changes in the search space by reconfiguring the ALNS
online. Unlike existing learning-based LNS and end-to-end
DRL approaches, DR-ALNS is designed to be problem-
agnostic. It does not rely on the specifics of the underlying
problem. More specifically, when being applied to differ-
ent optimization problems, existing methods may require a
problem-specific MDP formulation (states, actions, and re-
ward) for training, while we only need to adapt the action
space by indicating the number of chosen operators. This
makes our method applicable to other problems with limited
changes to the setup.

We assess the effectiveness of our method using the Ori-
enteering Problem with Stochastic Weights and Time Win-

dows (OPSWTW). This problem involves selecting and
visiting customers in a specific sequence to maximize re-
wards within a limited time frame. The OPSWTW assumes
stochastic times, making it challenging to solve using con-
ventional solvers and standard search algorithms, such as
(A)LNS, due to the need to perform many evaluations. Due
to its complexity, this problem was selected for the IJCAI
AI4TSP competition (Zhang et al. 2023). We summarize the
contributions of our work as follows:
• We introduce a DRL-based method for the online con-

trolling of both operator selection and parameter config-
uration in ALNS. This approach effectively addresses the
limitations of the weight-based operator selection proce-
dure and the dependency of operator performances on pa-
rameter configurations and greatly enhances ALNS per-
formance, achieving better solutions with much fewer
search iterations.

• Our method was evaluated using the instances from
the IJCAI AI4TSP competition, where it outperformed
four benchmark methods, including two DRL-based
competition-winning methods.

• We evaluate the generalizability of the policy learned by
DR-ALNS, demonstrating its ability to perform effec-
tively on larger problem instances not encountered dur-
ing training when only exposed to smaller instances dur-
ing the learning process.

• We also show that DR-ALNS can effectively be applied
to various other routing problems, e.g., CVRP, TSP, and
mTSP, by only configuring the actions space with the se-
lected destroy and repair operators. Moreover, the pol-
icy learned by one problem can be used directly to guide
ALNS for solving the other two problems with good per-
formance without retraining.

Related Work
Many ML-based approaches have been used to define end-
to-end solutions for routing problems (e.g., Kool, Van Hoof,
and Welling (2018); Joe and Lau (2020); da Costa et al.
(2021)). In parallel, a growing focus is on enhancing it-
erative search algorithms with ML techniques. Examples
include the integration of neural networks with attention
mechanisms as repair operators within the LNS framework
to solve routing problems (Hottung and Tierney 2020) and
the use of a neural network with domain-specific features for
solution repair (Syed et al. 2019). Further advancements in-
clude (Sonnerat et al. 2021), which employs neural networks
in node removal in a routing problem, and Gao et al. (2020),
incorporating a graph attention network with edge embed-
ding as an encoder to capture the effect of graph topology
on the solution. Further, Wu et al. (2021) uses DRL to select
the variables to be removed. These approaches operate end-
to-end, approximating a mapping function from the input to
the solution, and obtain very good performance on specific
problems. However, they often face scalability issues with
more complex problem variants. To train these methods ef-
fectively, significantly more samples and training times are
required. Additionally, these existing end-to-end approaches
are designed to be tailored to specific problems and lack the

flexibility for adoption to other problems. In contrast, our
proposed DR-ALNS method is a hybrid approach that does
not attempt to learn to construct solutions directly. Conse-
quently, our method relies significantly less on complex ar-
chitectures for learning instance representations, resulting in
faster training and better generalization capabilities.

Recent works have sought to address these limitations us-
ing DRL to select predefined operators based on the state of
the search (Kallestad et al. 2023; Johnn et al. 2023). How-
ever, Johnn et al. (2023) uses a graph to represent routing
problems, limiting its applicability to other types of prob-
lems. Similarly, Kallestad et al. (2023) relies on absolute
objective values in its state space, limiting its direct appli-
cation to scenarios not included in the training. Besides,
the use of computationally expensive operators (e.g., beam
search) makes the approach less effective, particularly when
addressing computationally demanding problems like ours.
We will further highlight this limitation in our experiments.
We propose a new DRL-based approach for both the se-
lection of operators and the parameter configuration within
the ALNS algorithm. Compared to the above methods, our
DRL modelling is problem-agnostic. Hence, the approach
can solve broader COPs, with fairly good performance us-
ing only inexpensive operators.

Deep Reinforced Adaptive Large
Neighborhood Search (DR-ALNS)

We illustrate the proposed Deep Reinforced Adaptive Large
Neighborhood Search (DR-ALNS) method in Figure 1 and
Algorithm 1. DR-ALNS leverages DRL to select the most
effective destroy and repair operators, configures the destroy
severity parameter imposed on the destroy operators and sets
the acceptance criterion value within ALNS. This selection
and configuration process is performed online, with DRL
configuring ALNS at each search iteration. Unlike other
DRL-based approaches that are often tailored to specific op-
timization problems, our goal is to utilize DRL in a gener-
alizable way such that the MDP formulation and training of
our DRL agent do not rely on any information of the opti-
mization problem instances. Below, we explain the compo-
nents of DR-ALNS.

General ALNS Algorithm
The Large Neighborhood Search (LNS) algorithm aims to
improve solutions by iteratively extracting parts of a solu-
tion and relocating them to more advantageous positions
using a ‘destroy’ and ‘repair’ operator. The destroy oper-
ator removes parts of a solution x, while the repair oper-
ator restores it to produce the next solution xt. Typically,
only new solutions that enhance the cost function are ac-
cepted. Some studies employ acceptance criteria, such as
Simulated Annealing (SA), where a solution xt is accepted
with a probability of e−(c(xt)−c(x))/T when c(x) ≤ c(xt)
(Schrimpf et al. 2000). Here, T represents a temperature that
decreases over iterations, permitting more deteriorating so-
lutions at the beginning of the search. ALNS employs a set
of destroy operators d ∈ Ω− and repair operators r ∈ Ω+

during search (Ropke and Pisinger 2006a). Each operator

Figure 1: The DR-ALNS framework. Based on the search status in each iteration, the DRL agent chooses a destroy and repair
operator from the predefined candidates, determines the level of destruction, and adjusts the acceptance criterion parameter
(i.e., simulated annealing temperature). These actions are performed in the environment (i.e., ALNS algorithm), which finds a
new solution and returns the next state and reward to the agent

.

is assigned a weight, ρ− or ρ+, dictating how frequently it
is used in the search. These weights are initialized with the
same values and updated after each search iteration based on
the solution quality as follows: ρi = λρi+(1−λ)ψ for both
i ∈ Ω− and i ∈ Ω+, where λ is the decay factor controlling
weight change sensitivity, and ψ is a parameter score based
on the acquired solution quality. The probability of selecting
a given operator i, either destroy or repair, is computed as:

ϕ−i =
ρ−
i∑|Ω−|

k=1 ρ−
k

for i ∈ Ω− and similarly for i ∈ Ω+.

Limitation of traditional ALNS configuration. The initial
proposed ALNS from Ropke and Pisinger (2006a) incorpo-
rates SA as its acceptance criterion. Generally, SA requires
setting various parameters before deployment, such as the
starting temperature T , the cooling rate α, and parameters
of the stopping criterion.Furthermore, the integration of sev-
eral destroy and repair operators, along with the need to de-
fine weights for adaptive operator selection, introduces ad-
ditional parameters that must be set. Consequently, ALNS
parameters are required to be effectively set by practition-
ers, which is known to be a complex and resource-intensive
task. Designers often rely on values from previous literature,
but the optimal parameter set is highly problem-specific.

Nevertheless, several parameter tuning methods exist,
such as racing-based methods and Bayesian optimization
(e.g., (López-Ibáñez et al. 2016; Lindauer et al. 2022)). This
tuning typically involves multiple algorithm runs on differ-
ent problem instances, demanding substantial resources. Be-
sides, these methods suggest one static parameter configu-
ration that does not adapt to the dynamics in the search.is
not tailored to the specifics of individual problem instances,
configuring each deployment with the same configuration.
Moreover, the weights in the weight-based operator selec-
tion method do not incorporate the dynamic nature of the
search process.

Markov Decision Process Formulation
We model the ALNS configuration as a sequential decision-
making process where the agent interacts with the environ-

Algorithm 1: DR-ALNS
Input: M (number of steps), policy πθ , Ω− destroy

operators, Ω+ repair operators, problem instance
Initialize: xbest = initial solution x,
st = initial state
while Stopping criterion not met do

for t = 0 to M − 1 do
Select action at with policy πθ based on state st
Select destroy operator d and repair operator r

based on action at

Configure destroy severity and acceptance
criterion based on action at

xt = r(d(x))
if accept(xt, x) then

x = xt

if cost(xt) < cost(xbest) then
xbest = xt

Update state st and receive reward Rt

Update policy πθ (for training mode)
return xbest (for deployment mode)

ment by taking actions and observing the consequences.
This is modelled using a mathematical framework known
as a Markov Decision Process (MDP), which is represented
as a tuple ⟨S,A,R, P ⟩. Here, S denotes the set of states, A
represents the set of actions, R is the reward function, and
P is the state transition probability function. The state tran-
sition occurs after the agent executes an action, which leads
the environment from the state st to state st+1. The agent
then receives a reward according to the reward function R.
The goal of the DRL agent is to learn a policy function πθ
that maps states st to actions at to maximize the expected
sum of future rewards. We define the state space S, action
space A, and reward function R as follows:

State space S provides a DRL agent with the required in-
formation for making informed decisions for selecting the
best possible actions during a search iteration. To achieve
this, we formulate S as a one-dimensional vector containing
seven problem-agnostic features, as shown in Table 1. These

Table 1: State space features for DR-ALNS.

Feature Description
Best improved Binary feature indicating whether cur-

rent solution has improved compared to
previous iteration (0 or 1).

Current accepted Binary feature indicating whether cur-
rent solution has been accepted in the
search (0 or 1).

Current improved Binary feature indicating whether cur-
rent solution was accepted and is better
than previous solution (0 or 1).

Is current best Binary feature indicating whether cur-
rent solution is equal to the best-found
solution (0 or 1).

Cost difference best Percentage difference between the ob-
jective values of the current and best
solutions (−1 if the current objective
value is less than or equal to 0).

Stagnation count Number of consecutive iterations with-
out improving the best-found solution.

Search budget Percentage of used search budget.

features provide the agent with relevant information about
the search process, such as whether the current solution is
the best solution found thus far, whether the best solution
has recently been improved, whether the current solution has
been recently accepted and whether the new current solution
is the new best-found solution. Additionally, the percentage
cost difference from the best solution, the number of iter-
ations without improving the best-found solution, and the
remaining search budget in percentages are included.

Action space A is composed of four action spaces: (A1)
destroy operator selection, which consists of a set of indices,
mapping to the set of destroy operators configured for the
problem at hand. The agent selects one destroy operator to
apply to the current solution; (A2) repair operator selec-
tion comprises the set of repair operators configured for the
problem at hand. The agent selects a repair operator to ap-
ply to a destroyed solution; (A3) destroy severity configura-
tion, which sets the severity of the destroy operator to apply
in the next iteration. A higher severity implies that the de-
stroy operator will destroy a larger part of the solution. We
configure the destroy severity as discrete actions, ranging
from 1 to 10, representing 10% to 100% destroy severity of
a solution; and (A4) acceptance criterion parameter setting,
which determines whether a new solution generated by the
search procedure is accepted or rejected. We define this ac-
tion as the temperature T used by the Simulated Annealing
acceptance criterion. We set this action space as a discrete
set ranging from 1 to 50, where 1 represents T = 0.1, and
50 represents T = 5.0.

Reward function R is formulated for learning to select
actions based on the state S of the search process. We pro-
vide a reward of 5 when a new found solution xt is better
than the best-known solution xbest:

Rt =

{
5, if c (xt) > c (xbest)

0, otherwise

This score was chosen because it reflects the scoring func-
tion proposed in the original ALNS work.

State Transition Function P is learned by the agent
through interacting with the environment. By formulating
the MDP in this way, we provide a problem-agnostic envi-
ronment for training the agent, making S andR independent
from problem specifics. To use DR-ALNS, one only needs
to define the destroy and repair operators and create the ac-
tion space A accordingly.

Neural Network and Policy Optimization
We utilize the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al. 2017) to train DR-ALNS. PPO is
a widely used and highly effective policy gradient algo-
rithm that maximizes the improvement of the current pol-
icy. PPO uses two loss functions, a policy loss and a value
loss, where the policy loss measures the differences be-
tween the new and the old policy, and the value loss func-
tion quantifies the error between the predicted state val-
ues and the actual discounted sum of reward. The policy
loss is given by the PPO objective function: LCLIP (θ) =

Et[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)], where rt(θ)
is the probability ratio of taking actions under the new pol-
icy compared to the old policy, and Ât is the estimated ad-
vantage of taking action at at time step t. The value loss is
given by the squared error between the predicted value and
the actual discounted sum of rewards obtained from the cur-
rent state: LV F (θ) = Et[(V θ(st) − Gt)

2], where Vθ(st) is
the predicted value of the current state, and Gt is the actual
discounted sum of rewards obtained from the current state.
The network used for training with the PPO algorithm is an
MLP with two hidden layers of size 64. To accommodate
multiple discrete actions, the policy network has individual
fully connected output layers for each discrete action, each
generating a probability distribution via softmax.

DR-ALNS for solving OPSWTW
We show how to apply the proposed DR-ALNS to solve
the Orienteering Problem with Stochastic Weights and Time
Windows (OPSWTW). This problem, first introduced by
(Verbeeck, Vansteenwegen, and Aghezzaf 2016) and used
in the IJCAI AI4TSP competition (Zhang et al. 2023), poses
several challenges, such as unknown travel costs between lo-
cations, limited travel time, and time windows for customer
visitation. In OPSWTW, each customer is represented as a
node with a designated prize and time window for visitation,
and the objective is to maximize expected collected prizes
while respecting the time budget and time windows.

Formally, the problem consists of n customers, each lo-
cated at coordinates x and y. The stochastic travel times
ti,j ∈ R,∀i, j ∈ {1, . . . , n} between customers i and j
are computed by multiplying the Euclidean distance di,j by
a noise term η that follows a discrete uniform distribution
U{1, 100} normalized by a scaling factor β = 100. Each
customer has a time window and a prize that can be col-
lected when visited within the time window. The maximum
tour length is determined by L, and solutions must respect
the time windows and the maximum tour time. Violations of

these constraints incur penalties. Solutions that take longer
than L are penalized with ei = −n, and time window viola-
tions incur a penalty of ei = −1 at customer i.

ALNS Configuration. We use three destroy operators
from Ropke and Pisinger (2006b): (1) random removal uni-
formly removes n customers from a solution; (2) related-
ness removal removes customers based on how close visited
customers are located to each other. To invoke it, a visited
customer is randomly selected and removed, after which the
closest customer is iteratively removed from the solution un-
til n customers are removed; and (3) history-based removal
uses historical information, which is stored in a complete,
directed, weighted graph, called the neighbour graph, where
each node is a customer and the weight of edges between
nodes stores the cost of the best solution encountered so far
in which the edge is traversed. When this removal operator
is invoked, it computes scores for each customer in the cur-
rent solution by summing the edge weights in the neighbour
graph corresponding to the current solution. The customers
with low scores are removed.

Three repair operators were selected based on ALNS
applications to orienteering problems, e.g., in Hammami,
Rekik, and Coelho (2020); Yahiaoui, Moukrim, and Serairi
(2019); Roozbeh, Hearne, and Pahlevani (2020): random
distance repair, random prize repair and random ratio re-
pair. In random distance repair, randomly selected cus-
tomers are inserted into the solution at their least expensive
position in terms of distance. Random prize and ratio repair
prioritize positions that maximize total rewards or optimize
the reward-to-distance ratio. All destroy and repair operators
are compatible, allowing any repair operator to fix solutions
altered by any destroy operator.

We use roulette-wheel selection to select the destroy and
repair operators at each iteration. In this selection mecha-
nism, the probabilities of the operators are proportional to
their scores, which are initially assigned the same value. As
an acceptance criterion, we use Simulated Annealing (SA),
the most frequently used acceptance criterion for ALNS
(Santini, Ropke, and Hvattum 2018). We set the cooling
schedule of ALNS such that the temperature decays linearly
to an end temperature of 0, reducing the number of param-
eters to tune by one without sacrificing the solution quality
(Santini, Ropke, and Hvattum 2018).

To address the stochastic weights of the problem, we eval-
uate any solution encountered during the repair operator five
times and take the average quality. This is commonly done
for search-based algorithms in solving stochastic problems.
To ensure that feasible solutions are accepted in the search,
the ‘repaired’ solution is evaluated 100 times.

DRL agent. To apply DR-ALNS to the OPSWTW prob-
lem, we need to configure the action space to incorporate the
selected destroy and repair operators. This entails adjusting
the dimensions of A1 and A2 in the action space, as dis-
played in Figure 1, to align with the selected destroy and re-
pair operators. Specifically, for OPSWTW, where three de-
stroy and three repair operators are utilized in ALNS, we
create two three-dimensional vectors:< d1, d2, d3 > for de-
stroy operators and < r1, r2, r3 > for repair operators. The

DRL policy will learn to select one operator from each vec-
tor that will be subsequently applied in the next iteration of
the ALNS search. The remainder of the action space, the
state space and the reward function remain in line with the
description provided in the previous section.

Experiments
We use publicly available OPSWTW instances from the
competition1, which consist of 3 sets of 250 instances each,
with 20, 50, and 100 customers. We compare the proposed
DR-ALNS against four methods: a vanilla ALNS algo-
rithm (ALNS-Vanilla), an ALNS tuned with Bayesian opti-
mization (ALNS-BO), and the top two winning DRL-based
methods of the competition, Rise up and Ratel. We also
compare with DRLH (Kallestad et al. 2023) briefly. We mea-
sure these methods regarding solution quality (i.e., total col-
lected prize - penalties), training time, and inference time.

ALNS-Vanilla. To configure ALNS-Vanilla, we adopt op-
erator weights from (Ropke and Pisinger 2006a), setting
weights ω1, ω2, ω3, and ω4 to 5, 3, 1, 0, respectively. Specif-
ically, a score of 5 is given to the operator when a new best
solution is found, 3 when the current solution is improved,
and 1 for accepting a solution. No score is given when there
is no improvement or accepted solution. The initial temper-
ature Tstart for SA follows a rule-of-thumb of Roozbeh,
Ozlen, and Hearne (2018), where in the first iteration, a so-
lution with an objective value up to 5% worse than the initial
solution is accepted with a probability of 0.5. The initial so-
lution quality is determined using the random prize repair
operator. In addition, we set the degree of destruction dod
at 30% and the decay factor θ as 0.8 based on experimen-
tal trials. This degree of destruction controls how much of a
solution is removed by the destroy operator, and the decay
factor controls the rate at which the weights of the operators
are updated during the search process.

ALNS-BO. We used SMAC3 to tune the parameters of
our ALNS algorithm (Lindauer et al. 2022). SMAC3 is a
hyperparameter tuning method that combines Bayesian opti-
mization and random forest regression. To do this, we gener-
ated 25 instances for each given instance size and used them
solely for the tuning. We tuned the weight factors ωi, the de-
cay parameter θ, the degree of destruction dod, and the Sim-
ulated Annealing starting temperature Tstart. The configu-
ration ranges we considered were [0, 50] for each ωi, [0.5, 1]
for θ, 10% to 100% for dod and [0, 5] for Tstart. We set ω4

at 0. Bayesian optimization was then used to draw parameter
configurations from these ranges and evaluate them on the
provided tuning instances over 100 ALNS search iterations.
We performed 25 independent runs, lasting 12 hours for the
two smallest-sized instance sizes (20 and 50 customers, re-
spectively) and 24 hours for instances of 100 customers. The
best configurations in these independent runs are presented
in Table 2 and are used as a baseline. The tuning results re-
veal that the obtained weight factor ratios are comparable
to those in (Ropke and Pisinger 2006a). Moreover, the ini-
tial temperature Tstart rises as the instance sizes grow. This

1https://github.com/paulorocosta/ai-for-tsp-competition

Table 2: Tuned ALNS-BO parameters for different instance
sizes of the OPSWTW problem.

Instance size ω1 ω2 ω3 Tstart dod θ
20 28.2 22.6 9.9 1.2 0.45 0.6
50 21.5 6 1.65 1.35 0.27 0.75

100 34.3 27.5 17.6 1.37 0.35 0.65

trend aligns with the rule-of-thumb proposed by Roozbeh,
Ozlen, and Hearne (2018), which sets the initial temperature
based on the initial solution quality, which is generally larger
for larger OPSWTW problem instances.

Rise up and Ratel. Rise up (Schmitt-Ulms et al. 2023) is
a combination of an end-to-end DRL method named POMO
(Kwon et al. 2020), Efficient Active Search (EAS) and
Monte-Carlo roll-outs (MCR). POMO trains a DRL agent to
construct solutions directly, using an encoder and a decoder
neural network that exploits symmetries to encourage explo-
ration during learning. For solving OPSWTW, the method
provides problem-specific information to the input for each
node, including instance prizes, time constraint information,
travel times, and the embedding of the current node in a
route and of the depot. Masking is used to prevent invalid
and infeasible actions from being taken. The EAS procedure
was used to fine-tune the learned policies for each instance.
Finally, MCR are used to construct the final solutions by
sampling actions with the learned policies.

Ratel is an end-to-end DRL approach, adapted by the au-
thors of Gama and Fernandes (2021) for the IJCAI competi-
tion, using a Pointer Network (PN) to handle problems with
dynamic time-dependent constraints. The model contains a
set encoding block, a sequence encoding block, and a point-
ing mechanism block, with recurrence in the node encod-
ing step. This recurrence enables sequential encoding and
decoding steps for every step of the solution construction
process, allowing masked self-attention with a look-ahead-
induced graph structure. This results in an updated repre-
sentation of each admissible node in every step. The method
uses a feature vector associated with every admissible node
as input, combining 11 static and 34 dynamic features.

DRLH. DRLH (Kallestad et al. 2023) provides a DRL
framework. Despite some similarities to our method, the
DRLH employs several computationally expensive opera-
tors, each configured with predefined destroy degrees, and
a fixed Simulated Annealing cooling schedule. This makes
the method less flexible to other COPs and potentially less
effective than ours. To demonstrate this, we implemented its
beam search repair operator and applied it to OPSWTW in-
stances with 20 and 50 customers, running for 100 iterations.
The resulting inference times were 300 and 10k seconds, as
opposed to 4 and 12 seconds achieved by our ALNS method.
This underscores lightweight nature of the operators pre-
sented in our study. We correspondingly trained DRLH for
5 hours (10x more than DR-ALNS) on instances of size 20.
The results were, on average, 1.0% (gap) worse than ours
on the test instances. Given the extreme increase in infer-
ence times, we were unable to train any effective policy for

Figure 2: Rolling mean and standard deviation of training
episode rewards over time for varying instance sizes.

DRLH on larger instances. Hence, we will not further com-
pare DRLH with our method.

Model Training for DR-ALNS
We trained three models with randomly generated problem-
instance sizes of 20, 50, and 100 customers, each trained
with 250 different problem instances. The training pro-
cess involved 300,000 steps with 100 search iterations. We
conducted the training on a Processor Intel(R) Core(TM)
i7-6920HQ CPU @ 2.90GHz with 8.0GB of RAM and
ten parallel environments. The training duration varied for
different-sized instance sets, taking around 0.5, 2.5 and 10
hours. The model parameters are set following Schulman
et al. (2017), and the training traces are displayed in Fig-
ure 2, showing the mean reward during training. The figure
shows that the training runs follow a similar convergence
pattern. They demonstrate a quick improvement in gather-
ing more rewards early in the training process, followed by
convergence to a state where they consistently earn high re-
wards. Notably, the models can better obtain more rewards
per episode for larger instances. This can be attributed to
larger problem instances presenting a greater variety of rout-
ing options to explore during the search process.

Experimental Results
We evaluate the performance of different algorithms on
instances of the OPSWTW problem (Zhang et al. 2023).
ALNS-Vanilla, ALNS-BO and DR-ALNS are initialized
with an empty route, with a solution quality of 0.00. The
stopping criteria for the ALNS-based approaches are set to
100 iterations for the sets with 20 and 50 customers and
to 200 for 100 customers. Each method is run 50 times
with different random seeds. The best-found solutions of
each method are correspondingly evaluated with the solu-
tion evaluator of the competition, in which the seed has
been fixed to ensure a fair comparison. The results from
the Rise up and Ratel approaches are obtained by evaluat-
ing their submitted solutions to the AI4TSP competition.

Solution quality. In Table 3, the performances of different
methods are presented, including the average performance
of the best solution obtained for each method on each prob-
lem instance size and the number of best-found solutions.
The results indicate that the DR-ALNS method outperforms

Table 3: Performance comparison of different methods in solving 250 instances of varying sizes, based on average best solutions
found (Avg) and the number of times the best solution was found (Nr. Best) per method. DR-ALNS significantly outperforms
the other methods (p < 0.05) for all instance sizes, except for the Ratel method on instance sizes 100.

Rise up Ratel ALNS-Vanilla ALNS-BO DR-ALNS
Instance Size Avg Nr. Best Avg Nr. Best Avg Nr. Best Avg Nr. Best Avg Nr. Best
20 5.47 159 5.53 183 5.52 185 5.55 195 5.63 238
50 8.27 131 8.31 145 8.27 126 8.23 109 8.44 208
100 11.67 131 11.71 148 11.26 54 11.36 66 11.75 180

Table 4: Performance comparison of differently configured ablations of the DR-ALNS method, configured with the control of
operator selection (OS), operator selection and the destroy severity parameter (OS+D) and operator selection with acceptance
criterion parameter (OS+A). Performance measured on average best solution found for instances of size 50.

ALNS-BO DR-ALNS (OS) DR-ALNS (OS+D) DR-ALNS (OS+ACC) DR-ALNS (OS+D+ACC)
8.23 8.28 8.31 8.31 8.44

Figure 3: Average convergence comparison for ALNS-
Vanilla, ALNS-BO, and DR-ALNS on a 100-node problem.

all other benchmark methods in terms of the best average
solutions, and it finds the best solutions for instances more
often than the other methods. The table demonstrates the ef-
fectiveness of our approach in controlling the parameters of
ALNS. For the smallest problem instance size, the ALNS-
Vanilla and ALNS-BO perform competitively, but their per-
formances decline as instance sizes become larger. Bayesian
optimization effectively tunes the ALNS, producing better
solutions than the vanilla-configured ALNS for instances of
size 20 and 100. In Figure 3, we show that DR-ALNS can
find the best solution in much fewer iterations than ALNS-
Vanilla and ALNS-BO for one specific problem instance.
This convergence pattern can also be found in other prob-
lem instances.

Compared to the two DRL-based approaches, DR-ALNS
consistently performs better for different instance sizes.
Note that Rise up and Ratel rely on information specific
to problem instances for learning, whereas our approach is
problem-agnostic, making it potentially applicable to other
problem types without hands-crafted feature engineering.

Ablation Study. To gain a deeper understanding of the
contributions made by the various components controlled
by DRL within the DR-ALNS method, we undertook an ab-
lation study. As such, we configured ablations where DRL
controlled only operator selection (OS) and tested abla-
tions where DRL also controlled either the destroy sever-

ity parameter (OS+D) or the acceptance criterion parame-
ter (OS+A). Table 4 compares the average best solutions for
solving instances of size 50 by the different ablated variants.

The table shows that learning to select operators effec-
tively improves the ability to find good solutions, compared
to the Bayesian-tuned ALNS (ALNS-BO). Also, we observe
that both the destroy severity and acceptance parameter set-
ting components contribute to even better-found solutions.
From the results can also be concluded that the different
components complement each other, highlighted by the fact
that the DR-ALNS method acquires substantially better per-
formances than the different ablations.

Computation time. We compare the computation time of
various methods, i.e., the time for obtaining individual so-
lutions for instances of different sizes. For instance sizes of
20, the Rise up method took 7 minutes, while ALNS-Vanilla
and ALNS-BO needed just 4 seconds, and DR-ALNS 5
seconds. For the 50-sized instances, the time for Rise up,
ALNS-Vanilla/ALNS-BO, and DR-ALNS is 13 minutes, 12
seconds, and 30 seconds, respectively, and for instance sizes
of 100, 23 minutes, 2 minutes, and 3.5 minutes, respectively.
This highlights that the proposed DR-ALNS method re-
quires substantially less computational time than the Rise up
method while finding better solutions for the different-sized
problem instances. Even though DR-ALNS adds some over-
head in solving time compared to ALNS-Vanilla and ALNS-
BO, we have shown in Figure 3 that DR-ALNS can find bet-
ter solutions much faster. As Ratel is composed end-to-end,
it can generate solutions in a split second. Despite its lower
performance, it is proficient at generating reasonably effec-
tive solutions in a short time.

Regarding training time, we trained DR-ALNS for 0.5,
2.5, and 10 hours for instances of sizes 20, 50 and 100, re-
spectively. The Rise up is configured with a distinct policy
model for each problem size. These models were trained for
several days until they reached full convergence on a single
Tesla V100 GPU, after which they were tuned for individual
instances. The Ratel method was trained for 48 hours on a
6-core CPU at 1.7 GHz with 12 GB of RAM and an Nvidia
GeForce GTX 1080 Ti GPU (Zhang et al. 2023).

Table 5: Comparing the generalizability of the trained mod-
els to solve unseen instances of different sizes.

Instance Sizes 20 50 100
DR-ALNS-20 5.63 8.35 11.58
DR-ALNS-50 5.65 8.44 11.63
DR-ALNS-100 5.64 8.48 11.75

Policy Scalability. We assess the ability of the trained DR-
ALNS models to solve previously unseen instances of dif-
ferent sizes. The results of this evaluation are presented in
Table 5. The rows present the instance sizes on which the
model is trained, and the column shows the instance sizes on
which trained models are evaluated. We found that the model
trained on smaller instances and deployed on larger in-
stances experienced a slight decline in performance but still
managed to find better solutions compared to all the bench-
marks provided. Moreover, the models trained on larger in-
stances and deployed on smaller instances could improve re-
sults further. For instance, models trained on instances with
50 and 100 customers and deployed on instances with 20
and 50 customers found better solutions than models di-
rectly trained on these smaller-sized instances. The results
suggest that our models could generalize and solve problem
instances beyond the size on which they were trained.

DR-ALNS for solving other routing problems
DR-ALNS is problem-agnostic, making it potentially appli-
cable to control ALNS for other COPs with minimal setup
modifications. We demonstrate this generalizability by ap-
plying it to the ALNS configuration from Santini, Ropke,
and Hvattum (2018) for solving several routing problems:
Capacitated Vehicle Routing Problem (CVRP), Traveling
Salesman Problem (TSP) and multi Traveling Salesman
Problem (mTSP) . Three destroy operators and one repair
operator are utilised by ALNS. Accordingly,A2 in the action
space (see Figure 1) becomes one dimensional. All remain-
ing MDP formulations stay the same as those for OPSWTW.

Table 6 shows the average distance for 5,000 instances
with 100 nodes for each problem. Instances are obtained
according to (Kool, Van Hoof, and Welling 2018; da Costa
et al. 2021) and solved once with both methods with 1k and
10k search iterations. The table shows that DR-ALNS ob-
tains solutions that outperform those from the ALNS. This
is especially highlighted in its performance on CVRP, the
most challenging routing variant among the three problems.
Here, we observe that with effective control by the DRL pol-
icy, better solutions can be obtained with 10x fewer search
iterations. This is also shown in Figure 4.

Transferability across problems. We utilize a general
ALNS configuration for routing problems, allowing us to
train on one routing problem and apply the learned policy di-
rectly to guide ALNS in solving other similar problems. Ta-
ble 7 shows the relative difference between the performance
of models trained on one problem directly and the one
trained on different problems. We notice the model trained
on mTSP can be transferred effectively to TSP, obtaining
similar performances and performing reasonably well on

Table 6: Comparing ALNS-Vanilla and DR-ALNS on 5,000
CVRP, TSP, and mTSP instances with 100 customers. Val-
ues are average travel distances (lower, better).

ALNS-Vanilla DR-ALNS ALNS-Vanilla DR-ALNS
(1K) (1K) (10K) (10K)

CVRP 17.84 16.80 17.19 16.38
TSP 7.86 7.82 7.79 7.78
mTSP 8.52 8.50 8.41 8.39

Figure 4: Average convergence comparison on a CVRP
problem instance with 100 customers.

Table 7: Performance comparison of direct model applica-
tions across different problems.

TSP CVRP mTSP
Trained TSP model 0% 6.8% 0.4%
Trained CVRP model 1.2% 0% 5.2%
Trained mTSP model 0% 3.3% 0%

CVRP, outperforming ALNS-vanilla. Further, TSP can be
transferred to mTSP, and the model trained on CVRP per-
forms reasonably on other problems.

Conclusion

We propose DR-ALNS, a Deep Reinforcement Learning-
based approach for online controlling and configuring the
Adaptive Large Neighborhood Search heuristic. Our method
selects operators, configures the destroy severity parame-
ter and controls the acceptance criterion via the simulated
annealing temperature during the search. We demonstrate
the effectiveness of our approach on the complex orien-
teering problem with stochastic weights and time windows.
Our method outperforms vanilla ALNS, ALNS tuned with
Bayesian optimization, and obtains better solutions than two
state-of-the-art DRL approaches. Furthermore, we show that
the proposed approach can easily be adapted to other prob-
lems. Specifically, the trained policy from one routing prob-
lem can effectively guide ALNS in solving other routing
problems and scales to larger problem instances that were
not included in the training. In the future, we plan to inves-
tigate the performance of the framework on other combina-
torial optimization problems.

References
da Costa, P.; Rhuggenaath, J.; Zhang, Y.; Akcay, A.; and
Kaymak, U. 2021. Learning 2-Opt Heuristics for Routing
Problems via Deep Reinforcement Learning. SN Computer
Science, 2(5): 1–16.
Gama, R.; and Fernandes, H. L. 2021. A reinforcement
learning approach to the orienteering problem with time
windows. Computers & Operations Research, 133: 105357.
Gao, L.; Chen, M.; Chen, Q.; Luo, G.; Zhu, N.; and Liu,
Z. 2020. Learn to design the heuristics for vehicle routing
problem. arXiv preprint arXiv:2002.08539.
Hammami, F.; Rekik, M.; and Coelho, L. C. 2020. A hybrid
adaptive large neighborhood search heuristic for the team
orienteering problem. Computers & Operations Research,
123: 105034.
Hottung, A.; and Tierney, K. 2020. Neural Large Neighbor-
hood Search for the Capacitated Vehicle Routing Problem.
In ECAI 2020, 443–450. IOS Press.
Joe, W.; and Lau, H. C. 2020. Deep reinforcement learn-
ing approach to solve dynamic vehicle routing problem with
stochastic customers. In Proceedings of the international
Conference on Automated Planning and Scheduling, vol-
ume 30, 394–402.
Johnn, S.-N.; Darvariu, V.-A.; Handl, J.; and Kalcsics,
J. 2023. Graph Reinforcement Learning for Operator
Selection in the ALNS Metaheuristic. arXiv preprint
arXiv:2302.14678.
Kallestad, J.; Hasibi, R.; Hemmati, A.; and Sörensen, K.
2023. A general deep reinforcement learning hyperheuris-
tic framework for solving combinatorial optimization prob-
lems. European Journal of Operational Research, 309(1):
446–468.
Kool, W.; Van Hoof, H.; and Welling, M. 2018. At-
tention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475.
Kwon, Y.-D.; Choo, J.; Kim, B.; Yoon, I.; Gwon, Y.; and
Min, S. 2020. Pomo: Policy optimization with multiple op-
tima for reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 33: 21188–21198.
Lindauer, M.; Eggensperger, K.; Feurer, M.; Biedenkapp,
A.; Deng, D.; Benjamins, C.; Ruhkopf, T.; Sass, R.; and Hut-
ter, F. 2022. SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization. J. Mach. Learn.
Res., 23(54): 1–9.
López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L. P.; Birat-
tari, M.; and Stützle, T. 2016. The irace package: Iterated
racing for automatic algorithm configuration. Operations
Research Perspectives, 3: 43–58.
Mara, S. T. W.; Norcahyo, R.; Jodiawan, P.; Lusiantoro, L.;
and Rifai, A. P. 2022. A survey of adaptive large neigh-
borhood search algorithms and applications. Computers &
Operations Research, 146: 105903.
Roozbeh, I.; Hearne, J. W.; and Pahlevani, D. 2020. A
solution approach to the orienteering problem with time
windows and synchronisation constraints. Heliyon, 6(6):
e04202.

Roozbeh, I.; Ozlen, M.; and Hearne, J. W. 2018. An adap-
tive large neighbourhood search for asset protection during
escaped wildfires. Computers & Operations Research, 97:
125–134.
Ropke, S.; and Pisinger, D. 2006a. An adaptive large neigh-
borhood search heuristic for the pickup and delivery prob-
lem with time windows. Transportation science, 40(4): 455–
472.
Ropke, S.; and Pisinger, D. 2006b. A unified heuristic for a
large class of vehicle routing problems with backhauls. Eu-
ropean Journal of Operational Research, 171(3): 750–775.
Santini, A.; Ropke, S.; and Hvattum, L. M. 2018. A com-
parison of acceptance criteria for the adaptive large neigh-
bourhood search metaheuristic. Journal of Heuristics, 24:
783–815.
Schmitt-Ulms, F.; Hottung, A.; Sellmann, M.; and Tierney,
K. 2023. Learning to Solve a Stochastic Orienteering Prob-
lem with Time Windows. In Learning and Intelligent Op-
timization: 16th International Conference, LION 16, 108–
122. Springer.
Schrimpf, G.; Schneider, J.; Stamm-Wilbrandt, H.; and
Dueck, G. 2000. Record breaking optimization results using
the ruin and recreate principle. Journal of Computational
Physics, 159(2): 139–171.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In Inter-
national conference on principles and practice of constraint
programming, 417–431. Springer.
Sonnerat, N.; Wang, P.; Ktena, I.; Bartunov, S.; and Nair, V.
2021. Learning a large neighborhood search algorithm for
mixed integer programs. arXiv preprint arXiv:2107.10201.
Syed, A. A.; Akhnoukh, K.; Kaltenhaeuser, B.; and Bogen-
berger, K. 2019. Neural network based large neighborhood
search algorithm for ride hailing services. In EPIA Confer-
ence on Artificial Intelligence, 584–595. Springer.
Verbeeck, C.; Vansteenwegen, P.; and Aghezzaf, E.-H. 2016.
Solving the stochastic time-dependent orienteering problem
with time windows. European Journal of Operational Re-
search, 255(3): 699–718.
Wu, Y.; Song, W.; Cao, Z.; and Zhang, J. 2021. Learn-
ing large neighborhood search policy for integer program-
ming. Advances in Neural Information Processing Systems,
34: 30075–30087.
Yahiaoui, A.-E.; Moukrim, A.; and Serairi, M. 2019. The
clustered team orienteering problem. Computers & Opera-
tions Research, 111: 386–399.
Zhang, Y.; Bliek, L.; da Costa, P.; Afshar, R. R.; Reijnen,
R.; Catshoek, T.; Vos, D.; Verwer, S.; Schmitt-Ulms, F.; Hot-
tung, A.; et al. 2023. The first AI4TSP competition: Learn-
ing to solve stochastic routing problems. Artificial Intelli-
gence, 319: 103918.

