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Abstract
Neural Processes (NPs) are deep probabilistic
models that represent stochastic processes by con-
ditioning their prior distributions on a set of con-
text points. Despite their advantages in uncer-
tainty estimation for complex distributions, NPs
enforce parameterization coupling between the
conditional prior model and the posterior model.
We show that this coupling amounts to prior
misspecification and revisit the NP objective to
address this issue. More specifically, we pro-
pose Rényi Neural Processes (RNP), a method
that replaces the standard KL divergence with
the Rényi divergence, dampening the effects of
the misspecified prior during posterior updates.
We validate our approach across multiple bench-
marks including regression and image inpainting
tasks, and show significant performance improve-
ments of RNPs in real-world problems. Our ex-
tensive experiments show consistently better log-
likelihoods over state-of-the-art NP models.

1. Introduction
Neural processes (NPs) (Garnelo et al., 2018b) strive to
represent stochastic processes via deep neural networks
with desirable properties in uncertainty estimation and flexi-
ble feature representation. The vanilla NP (Garnelo et al.,
2018b) predicts the distribution for unlabelled data given
any set of observational data as context. The main advan-
tage of NPs is to learn a set-dependent prior distribution,
where the KL divergence is minimized between a posterior
distribution conditioned on a target set with new data and
the prior distribution conditioned on the context set (Kim
et al., 2019; Jha et al., 2022; Bruinsma et al., 2023).

However, as the parameters of the conditional prior are un-
known, NP proposes a coupling scheme where the model
that parameterizes the prior distribution is forced to share
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its parameters with an approximate posterior model. In this
paper we show that this parameter sharing amounts to prior
misspecification and can yield a biased estimate of the pos-
terior variance and deteriorate predictive performance (Can-
non et al., 2022; Knoblauch et al., 2019). Such misspec-
ification can be worsened under noisy context sets (Jung
et al., 2024; Liu et al., 2024). Other cases of prior mis-
specification encompass domain shifts (Xiao et al., 2021),
out-of-distribution predictions (Malinin & Gales, 2018) and
adversarial samples (Stutz et al., 2019).

To address the prior misspecification caused by parameter-
ization coupling in vanilla NPs, several studies have been
proposed to relax the constraint (Wang et al., 2023; Wang
& Van Hoof, 2022; Wu et al., 2018; Wicker et al., 2021).
For instance, the prior and the posterior models can share
partial parameters instead of the entire network (Rybkin
et al., 2021; Liu et al., 2022); hierarchical latent variable
models are also used where both models share the same
global latent variable and induce prior or posterior-specific
distribution parameterization (Shen et al., 2023; Requeima
et al., 2019; Kim et al., 2021; Lin et al., 2021).

Instead of modifying the specifics of the NP model or its
underlying architectures, in this paper we offer a new in-
sight into prior misspecification in NPs through the lens of
robust divergences (Futami et al., 2018), which seek to learn
an alternative posterior without changing the parameters
of interests. Instead of minimizing the standard KL diver-
gence between the prior and posterior distributions, robust
divergences are theoretically guaranteed to produce bet-
ter posterior estimates under prior misspecification (Verine
et al., 2024; Regli & Silva, 2018). The Rényi divergence (Li
& Turner, 2016; Van Erven & Harremos, 2014b), for in-
stance, introduces an additional parameter α to control how
the prior distribution can regularize the posterior updates.
This parameter allows us to reduce the regularization effects
of the misspecified prior (Knoblauch et al., 2019), thereby
mitigating the biased estimates of the posterior variance,
avoiding oversmoothed predictions (Alemi et al., 2018; Hig-
gins et al., 2017), and achieving performance improvements.

In light of this, we propose Rényi Neural Processes (RNPs)
that focus on improving neural processes with a more robust
objective. RNP minimizes the Rényi divergence between the
posterior distribution defined on the target set and the true

1



Renyi Neural Processes

posterior distribution given the context and target sets. We
prove that RNP connects the common variational inference
and maximum likelihood estimation objectives for train-
ing vanilla NPs via the hyperparameter α, through which
RNP provides the flexibility to dampen the effect of the mis-
specified prior and empower the posterior model for better
expressiveness.

Our main contributions are summarized as:

1.We identify that the parameter coupling between the con-
ditional prior and the approximate posterior inherent to NPs
amounts to prior misspecification.

2. We introduce a new objective RNP that addresses this
misspecification and that unifies the variational inference
(VI) and maximum likelihood estimation (MLE) objectives.

3. We show that our RNP method can be applied to sev-
eral SOTA NP families without changing the models, and
provides generalization performance improvements over
competing approaches 1.

2. Preliminaries
Neural Processes: Neural processes are a family of
deep probabilistic models that represent stochastic pro-
cesses (Wang & Van Hoof, 2020; Lee et al., 2020). Let
fτ : X → Y be a function sampled from a stochastic pro-
cess p(f) where each fτ maps some input features x to an
output y and Dtrain and Dtest are meta-tasks induced by dif-
ferent ftrain and ftest during meta-training and meta-testing.
For a specific task Dτ , we split the data further into a con-
text set C : (XC , YC) := {(xm,ym)Mm=1} and a target set
T : (XT , YT ) := {(xn,yn)

N
n=1} = Dτ\C. Our goal is

to predict the target labels given the target inputs and the
observable context set: p(YT |XT , XC , YC).

NPs (Garnelo et al., 2018b) introduce a latent vari-
able z to parameterize the conditional distribution
p(f |C) and define the model as p(YT |XT , XC , YC) =∫
pθ(YT |XT , z)pφ(z|XC , YC)dz where θ and φ are net-

work parameters of the likelihood and prior (also known
as recognition) models, respectively. Due to the intractable
likelihood, two types of objectives including the variational
inference (VI) and maximum likelihood (ML) estimation
have been proposed to optimize the parameters (Foong et al.,
2020; Nguyen & Grover, 2022; Bruinsma et al., 2023; Guo
et al., 2023):

− LV I(θ, ϕ, φ) = EDtrain [Eqϕ(z) log pθ(YT |XT , z)−
DKL (qϕ(z)∥pφ(z|XC , YC))]

(1)

−LML(θ, φ) = EDtrain

[
Epφ(z|XC ,YC) log pθ(YT |XT , z)

]
(2)

1Our code is published at https://github.com/
csiro-funml/renyineuralprocesses

The approximate posterior distribution for VI-based meth-
ods is usually chosen as qϕ(z) = qϕ(z|C,T). As the param-
eters of the conditional prior pφ(z|XC , YC) are unknown,
NPs couple its parameters with the approximate posterior
pφ(z|XC , YC) ≈ qϕ(z|XC , YC). We now replace the no-
tation of the approximate posterior with φ to be consistent
with the ML objective:

− LV I(θ, φ) ≈ EDtrain [Eqφ(z) log pθ(YT |XT , z)−
DKL (qφ(z|C,T)∥qφ(z|C))]

(3)

The KL term in Eq 3 is sometimes referred to as the consis-
tency regularizer (Wang et al., 2023; Foong et al., 2020),
which assumes the parameter coupling between the condi-
tional prior and the posterior. This assumption, as will show
later, is the source of the inference suboptimality of vanilla
NPs in the existence of finite context data.

Rényi Divergences: The Rényi divergence (RD) (Van Er-
ven & Harremos, 2014a; Rényi, 1961) is defined on two
distributions with a hyperparamter α ∈ (0,+∞) and α ̸= 1:

Dα(q(z)∥p(z)) =
1

α− 1
log

∫
q(z)αp(z)1−αdz

=
1

α− 1
logEq(z)

[
p(z)

q(z)

]1−α (4)

Note that the RD is closely related to the KL divergence
in that if α → 1 then Dα(q∥p) → DKL(q||p) (Van Erven
& Harremos, 2014a). In other words, choosing α close to
1 for variational inference would result in a posterior as
close to the standard VIs. Changing the KL divergence to
RD can induce a robust posterior via the hyperparameter
α, as the influence of the density ratio p

q determines how
much we can penalize the posterior with the prior. With
the flexibility of choosing α, the model can adjust the de-
gree of prior penalization. When the prior is misspecified,
choosing the RD can lead to a more robust posterior that
focuses more on improving the likelihood and less on prior
regularization (Futami et al., 2018; Regli & Silva, 2018).

3. Rényi Neural Processes
In this section we describe our Rényi Neural Process (RNP)
framework, a simple yet effective strategy which provides a
more robust way to learn neural processes without changing
the model. We start by analyzing the main limitation of the
standard neural process objective and present a motivating
example. We illustrate a case where the prior is misspecified
and describe our new objective with the RD to mitigate this.

3.1. Motivation: Standard neural processes and prior
misspecification

Definition 3.1. (Prior misspecification (Huang et al., 2024))
Let qφ(z|X,Y ) be a distribution associated with a map X ×
Y → Z parameterized by φ and p(z|X,Y ) is the ground
truth distribution. Then, {qφ(z|X,Y ), φ ∈ Φ} defines a
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(a) Posterior distributions. (b) Predictions of ANP using LV I (c) Predictions using LRNP

Figure 1. An illustrative example. (a) Two 2D Gaussian posteriors q(z|C) conditioned on the context set using LNP VI objective and our
LRNP . (b) Predictive results on a GP regression dataset using the VI objective. (c) Results obtained with our RNP objective.

set of distributions on the space Z induced by the model.
The prior model is misspecified if ∀φ ∈ Φ, qφ(z|X,Y ) ̸=
p(z|X,Y ).

This translates to NPs as the approximate prior model
qφ(z|XC , YC) in Eq 3 can not recover the ground truth
prior p(z|XC , YC) for any parameterization of φ . We now
show how this definition can assist us to analyze how a mis-
specified prior model can hinder neural processes learning.

Proposition 3.2. Due to the coupling parameterization of
φ in Eq 3, the NP prior model can be misspecified, which
is unable to bound the ground truth marginal likelihood
p(YT |XT , XC , YC).

Detailed proof can be found in Supp A.4. We state the
main finding here: the prior term in the ELBO gradient
estimate of posterior parameters is approximated in LV I :
Eqφ(z|C,T)∇φ log p(z|C) ≈ Eqφ(z|C,T)∇φ log qφ(z|C).
Due to this parameter coupling, we now have a “learned”
prior model qφ(z|C) that can move towards posterior sam-
ples z ∼ qφ(z|C,T) which can lead to a biased estimate of
the posterior and peculiar optimization dynamics. We will
later show that by using our objective, this biased term is
scaled by the data likelihood such that the gradient is smaller
if the posterior is not likely to generate the data, therefore
dampening the effects of prior misspecification.

Illustrative example: We first use Fig 1 to compare the
posteriors and predictions of neural processes using two
objectives. The objective of this example is to compare how
the vanilla NP and our to-be-proposed RNP behave when
the prior is misspecified. Both prior models are potentially
misspecified due to the coupling parameterization scheme.
We delay the introduction of the formulation of LRNP in
the next section, which is unnecessary for the illustration.

The resulted posteriors in Fig 1(a) show that RNPs ob-
tain a much smaller variance estimate, suggesting that the
DKL (qφ(z|T,C)∥qφ(z|C)) is too strong in the vanilla NPs.
As a result, vanilla NPs produce oversmoothed predictions
(Fig 1(b) with a large variance that underfits the data). In
contrast, our RNP dampens the impacts of prior misspecifi-
cation and produces smaller variance but more expressive

predictions as shown in Fig 1(c). We will now introduce our
new neural process learning method, which can be applied
not only to the VI objective, but also the ML objective where
SOTA NPs were trained with.

3.2. Proposed Method: Neural processes with the new
objectives

New objective for VI-based NPs. The main issue of NPs
is the prior approximation qφ(z|XC , YC) wrt the true prior
p(z|XC , YC). In this case, the posterior variance may be
critically overestimated in some regions and underestimated
in others. We therefore seek to obtain an alternative pos-
terior distribution to alleviate this prior misspecification.
Depending on whether the original NP framework is trained
using the VI or the ML objective, we can revise the objec-
tive by minimizing the RD instead of KLD on two distri-
butions. More specifically, in the case of VI-NPs where
the inference of the latent variable q(z) is of interest, the
RD between the the approximated posterior distribution
qφ(z|XT , YT , XC , YC) = qφ(z|C,T) and the true poste-
rior p(z|XT , YT , XC , YC) = p(z|C,T) is minimized:

min
θ,φ

Dα (qφ(z|C,T)∥p(z|C,T))

≈ max
θ,φ

1

1− α
logEqφ(z|C,T)

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α

,

(5)

where the details can be found in A.5. Eq 5 is an
approximation obtained by replacing p(z|XC , YC) with
qφ(z|XC , YC). We can approximate the intractable expec-
tation with Monte Carlo:

− LRNP (θ, φ) =
1

1− α
EDtrain log

1

K
(

K∑
k=1

[
pθ(YT |XT , zk)qφ(zk|C)

qφ(zk|C,T)

]1−α

),

where zk ∼ qφ(z|C,T)

(6)

Tuning α ∈ (0, 1) can mitigate prior misspecification in
RNPs. We will present how RNP can handle prior misspec-
ification through the gradients of the parameters of the en-
coder networks φ (more details can be found in Supp A.8):
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∇φLRNP =

K∑
k=1

(
w1−α

k∑K
k=1 w

1−α
k

∇φ logwk

)
, (7)

where wk =
pθ(YT |XT , zk)qφ(zk|C)

qφ(zk|C,T)
, zk ∼ qφ(z|C,T) (8)

Note that ∇φ logwk corresponds to the gradient of the LV I

objective. As Daudel et al. (2023) pointed out, Rényi varia-
tional inference amounts to an importance weighted varia-
tional inference where the weight wk is scaled by the power
of (1− α). Therefore, the prior gradient inside the log term

∇φ log qφ(z|C) is also scaled by the weight w1−α
k∑K

k=1 w1−α
k

where high-likelihood samples are given bigger weights
whereas low-likelihood samples are given smaller weights.
As a result, even if the prior is misspecified, as long as the
the weight is small, it will not affect posterior update. We
can control how much we trust the likelihood weight to
guide the posterior by tuning the α ∈ (0, 1). When α = 1
and k = 1 the RNP will recover the LV I behavior. When
α = 0 the RNP recovers the maximum likelihood behavior
as introduced next.

New objective for ML-based NPs. As the goal of NPs is
to maximize the predictive likelihood instead of inferring
the latent distribution, another type of NPs directly parame-
terizes the likelihood model without explicitly defining the
latent variable z. Following Futami et al. (2018), we can
rewrite the maximum likelihood estimation as minimizing
the KLD between the empirical distribution p̂(y|x,C) and
the model distribution p(y|x,C, θ):

− LML(θ) = max
θ

EDtrain log pθ(YT |XT ,C)

≡ max
θ

EDtrain

[
1

N

N∑
n=1

log pθ(yn|xn,C)

]
≈ min

θ
EDtrain [DKL(p̂(y|x,C)∥pθ(y|x,C))] ,

(9)

where p̂(y|x,C) is the empirical distribution defined as
1
N

∑N
n=1 δ(y,yn) where yn are samples from the unknown

distribution p∗(y|x,C). Replacing the KLD with RD gives:

min
θ

EDtrainDα (p̂(y|x,C)||pθ(y|x,C))

≈ min
θ

EDtrain

1

N

N∑
n=1

1

α− 1
log p1−α

θ (yn|xn,C) + Const

(10)

LRNPML(θ) = EDtrain

1

(α− 1)N

N∑
n=1

log p1−α
θ (yn|xn,C)

= EDtrain

1

(α− 1)N

N∑
n=1

log

(∫
pθ(yn, z|xn,C)dz

)1−α

,

(11)

where details can be found in A.6. Note that α = 0
corresponds to the maximum likelihood estimation and

the new RNP objective essentially reweights the samples
based on their likelihood. We define pθ(yn, z|xn,C) =
pθ(yn, z|xn)p(z|C) and use pφ(z|XC , YC) ≈ p(z|C).
Note that this prior can still be misspecified in NN parame-
ters of φ and the family of distributions we choose for the
approximation distribution p. Then Eq 11 can be approxi-
mated by Monte Carlo:

LRNPML(θ, φ) ≈ EDtrain

1

(α− 1)N

N∑
n=1

log(

1

K

K∑
k=1

pθ(yn|zk,xn))
1−α, where zk ∼ pφ(z|C)

(12)

One advantage of ML-based method is that we do not
need to estimate the density of the samples from the prior
model. Hence, reparameterization tricks can be applied
to obtain samples from non-standard distributions: zk =
sφ(XC , YC , ϵk), ϵk ∼ N (0, I) with a neural network sφ.

3.3. Properties of RNPs

We generalize the theorem from Rényi variational inference
(Li & Turner, 2016) to RNPs:

Theorem 3.3. (Monotonicity (Li & Turner, 2016))

LRNP is continuous and non-increasing with respect to the
hyper-parameter α.
Proposition 3.4. (Unification of the objectives)

LML = LRNP,α=0 ≥ LRNP,α∈(0,1) ≥ LRNP,α→1 = LV I .

Theorem 3.3 and Proposition 3.4 (Proof see Supp A.7)
bridge the two commonly adopted objectives via our RNP
framework. We show that these objectives are bounded
by log

∫
p(YT |XT , z)q(z|XC , YC). Although it is not

the marginal due to the approximation q(z|XC , YC) ≈
p(z|XC , YC), the gradient of the RNP is more robust against
misspecified priors and hence improve the posterior update.

3.4. Prior, posterior and likelihood models

One main advantage of RNP is we do not need to change
the parameters of interests of the original NP models.
Therefore, for the likelihood model pθ(YT |XT , z) we
can adopt simple model architectures like NPs (Garnelo
et al., 2018b) which assume independence between target
points pθ(YT |XT , z) =

∏N
n=1 pθ(yn|xn, z). The distri-

bution of each target point is then modeled as Gaussian
pθ(yn|xn, z) = N (hµ(xn, z),Diag (hσ(xn, z))), and the
decoder networks hµ and hσ map the concatenation of the
input feature xn and z to the distribution parameters.

The prior model qφ(z|XC , YC) is more interesting as it
is a set-conditional distribution and we are supposed to
sample from it and evaluate the density of the samples.
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One feasible solution is to define a parametric distribu-
tion on a DeepSet (Zaheer et al., 2017). For instance,
qφ(z|XC , YC) = N (gµ(h(C)),Diag(gσ(h(C))) where
h(C) = 1

|C|
∑|C|

m=1 h(xm,ym) is a DeepSet function on
the context set C. In practice diagonal Gaussian distri-
butions worked well with high dimensional latent vari-
ables z. ANPs (Kim et al., 2019) incorporate dependen-
cies between context points qφ(z|C) = qφ(z|x1:m,y1:m)
using self-attention networks. But one can consider
more flexible distributions such as conditional normaliz-
ing flows (Luo et al., 2023) for sample and density esti-
mation. As previously stated, the posterior distribution is
defined by coupling its parameters with the prior. There-
fore the posterior qφ(z|XT , YT , XC , YC) in the DeepSet
case can be represented as qφ(z|XT , YT , XC , YC) =
N (gµ(h(C,T)),Diag(gσ(h(C,T))). To apply stochastic
gradient descent over the parameters of the posterior, we
applied the reparameterization trick to obtain samples zk =

g
1
2
σ (h(C,T)) ∗ ϵ+ gµ (h(C,T)) , ϵ ∼ N (0, I).

3.5. Inference with Rényi Neural Processes

During inference time, as we cannot access the ground
truth for the target outputs YT , we use the approximate
prior q(z|XC , YC) instead of the posterior distribution
q(z|XT , YT , XC , YC) to estimate the marginal distribution:

p(YT |XT , XC , YC) =

∫
pθ(YT |XT , z)qφ(z|XC , YC)dz

≈ 1

K

K∑
k=1

pθ(YT |XT , zk), zk ∼ qφ(z|XC , YC).

(13)

We now provide the pseudo code for Rényi Neural Pro-
cesses in Supp Algorithm 1. In addition to vanilla neural
processes, our framework can also be generalized to other
neural process variants as shown in the experiments section.

4. Related Work
Neural processes family. Neural processes (Garnelo et al.,
2018b) and conditional neural processes (Garnelo et al.,
2018a) were initially proposed for the meta learning scheme
where they make predictions given a few observations as
context. Both of them use deepset models (Zaheer et al.,
2017) to map a finite number of data points to a high dimen-
sional vector and their likelihood models assume indepen-
dencies among data points. The main difference is whether
estimating likelihood maximization directly or introducing
the latent variable and adopting variational inference frame-
work. Since their introduction, Neural Processes have seen
widespread adoption in various fields, including continu-
ous learning (Jha et al., 2024), spatial temporal forecast-
ing (Wang et al., 2021) and weather prediction (Allen et al.,
2025). We refer the readers to this survey (Jha et al., 2022)
for more details.

Under the existing NP setting, more members were intro-
duced with different inductive biases in the model (Jha et al.,
2022; Bruinsma et al., 2023; Dutordoir et al., 2023; Jung
et al., 2024; Vadeboncoeur et al., 2023). For instance, at-
tentive neural processes (Kim et al., 2019) incorporated
dependencies between observations with attention neural
works. Convolutional neural processes (Foong et al., 2020;
Huang et al., 2023) assume translation equivariance among
data points. These two methods explicitly defined the latent
variable which requires density estimation. Recent works
such as transformer neural processes (Nguyen & Grover,
2022) and neural diffusion processes (Dutordoir et al., 2023)
turn to marginal likelihood maximization and do not have
the latent distribution.

Other neural processes that claim to provide exact (Markou
et al., 2022) or tractable inference (Lee et al., 2023; Wang
et al., 2023) have been introduced. Stable neural pro-
cesses (Liu et al., 2024) argued that NPs are prone to noisy
context points and proposed a weighted likelihood model
that focuses on subsets that are difficult to predict, but do
not focus regularizing the posterior distribution. Compared
to variational inference based methods, non-VI predictions
can be less robust to noisy inputs in the data (Futami et al.,
2018). It is also challenging to incorporate prior knowl-
edge (Zhang et al., 2018) into these neural processes, which
could be beneficial when no data is observed for the task.
Several works introduced strategies to incorporate explicit
priors in the function space rather than low-dimensional la-
tent variables, we refer the readers to (Ma et al., 2019), (Ma
& Hernández-Lobato, 2021), (Rodrı́guez-Santana et al.,
2022) and (Rudner et al., 2022) for their formulations.

Robust divergences. Divergences in variational inference
can be viewed as an regularization on the posterior distri-
bution via the prior distribution. The commonly adopted
KL divergence which minimizes the expected density ratio
between the posterior and the prior is notorious for under-
estimating the true variance of the target distribution (Regli
& Silva, 2018). Several other divergences have since been
proposed to focus on obtaining a robust posterior when the
input and output features are noisy or when there are outliers
in the dataset.

Examples of robust divergences include Rényi diver-
gence (Lee & Shin, 2022), beta and alpha divergences (Fu-
tami et al., 2018; Regli & Silva, 2018) which require ad-
ditional parameters to control the density ratio so that the
posterior can focus more on mass covering, mode seeking
abilities or is robust against outliers based on prior knowl-
edge. (Santana et al., 2022) utilized α divergence in implicit
processes and observed robust prediction against model
misspecification. f -divergence (Cheng et al., 2021; Wan
et al., 2020) variational inferences provide a unification of
different divergences under a general definition of a con-
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vex function f but would require the specification of the
function f as well as its dual function. Generalized varia-
tional inference (Knoblauch et al., 2019) suggested that any
form of divergence can be used to replace the KL objective
when the model is misspecified. As far as we understand,
we are the first to analyse the limitations of NPs from the
perspective of prior misspecifications, and facilitate robust
divergence to enable better NP learning.

5. Experiments
Datasets and training details. We evaluate the proposed
method on multiple regression tasks: 1D regression (Gar-
nelo et al., 2018a; Gordon et al., 2019; Kim et al., 2019;
Nguyen & Grover, 2022), image inpainting (Gordon et al.,
2019; Nguyen & Grover, 2022). 1D regression includes
three Gaussian Process (GP) regression tasks with different
kernels: RBF, Matern 5/2 and Periodic. Image inpainting
involves 2D regression on three image datasets: MNIST,
SVHN and CelebA. Given some pixel coordinates x and
intensities y as context, the goal is to predict the pixel value
for the rest of image. More details about the training setups
can be found in A.3.

Baselines. We first validate our approach on state-of-the-
art NP families: neural processes (NP) (Garnelo et al.,
2018b), attentive neural processes (ANP) (Kim et al., 2019),
Bayesian aggregation neural processes (BA-NP) (Volpp
et al., 2021), transformer neural processes with diagonal
covariances (TNP-D) (Nguyen & Grover, 2022) , and versa-
tile neural processes (VNP) (Guo et al., 2023) . For VNPs,
they chose different parameterizations for the prior and pos-
terior models, which can be used to validate if our objective
is superior than simply decoupling the two models. We
generalize the NP objective to RNP using Eq 12 or Eq 6
depending on whether the baseline model infer the latent dis-
tribution p(z). The methods are considered as a special case
of α = 1 of RNP if the baseline model uses the VI objective
or α = 0 if the baseline model uses the ML-objective. The
number of samples K for the Monte Carlo is 32 for training
and 50 for inference. Our experiments aim to answer the
following research questions:

(1) How does RNPs perform under parameterization-related
prior misspecification? To achieve this, We compare RNPs
with SOTA NP frameworks on predictive performance. (2)
How does RNPs perform under context-related prior mis-
specification? Here we introduce various types of in the
context set such as domain shift and noisy context. (3) How
to select the optimal α values? We also carry out ablation
studies investigating how to select the optimal α values, the
number of MC samples and the number of context points
for our RNP framework.

5.1. Predictive performance under parameterization-
related prior misspecification

Here we investigate prior misspecification caused by poor
parameterization of φpoor in qφ(z|C), which can happen
in NPs because their posterior and prior models are forced
to couple the parameters. We focus on the predictive per-
formance, i.e., test log-likelihood, of both the context and
target sets across different datasets. Specifically, we adopted
the VI-based RNP objective to train NPs, ANPs and VNPs
as their model designs include the prior models. We used
the ML-based RNP objective to train TNP and BANP be-
cause the TNP objective was originally defined using ML
only and the ML objective significantly outperformed the VI
objective for BANPs. We set α = 0.7 to train for VI-based
RNPs and analogously α = 0.3 for ML-based baselines.
However, we show in section 5.3 that, in fact, these values
can be set optimally via cross-validation. To put the baseline
models in the spectrum, α = 1 corresponds to the standard
VI solutions (using the KLD), and α = 0 corresponds to the
maximum likelihood solutions.

Table 1 shows the mean test log-likelihood ± one standard
deviation using 5 different random seeds for each method.
We see that RNP consistently improved log-likelihood over
the other two objectives and ranked the highest for all the
baselines. RNP also consistently achieved better likelihood
on TNP-D and VNP which generally outperform other base-
line models across datasets. Some prominent improvements
were achieved in harder tasks in 1D regression such as ANP
Periodic and BA-NP Periodic where the vanilla NP objec-
tives underperform. As previously illustrated in Fig 1(b)
and Fig 1(c), RNP improves predictive performance by
mitigating the oversmoothed predictions on periodic data.
This could suggest that a misspecified prior model in the
vanilla NP objective imposes an unjustifiable regularization
on the posterior and hinder the expressiveness of the pos-
terior and consequently predictive performance. RNP also
significantly improved test likelihood of BA-NP and VNP
on image inpainting tasks, demonstrating the superiority of
RNPs on higher dimensional data.

5.2. Predictive performance under context-related prior
misspecification

Here we designed another set of experiments where the prior
model q(z|C) is clearly misspecified due to poor context
data Cpoor. We first tested the framework under noisy con-
texts and then utilized domain shift datasets such as Lotka-
Volterra and EMNIST (more detailed settings can found in
section A.9). Supp Table 4 shows test log-likelihood under
noisy context where we inject noises to the context labels.
RNPs still outperformed baseline VI methods despite the
general deterioration of context corruption.

Table 2 shows the test log-likelihood for the high-performing
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Table 1. Test set log-likelihood ↑. The bold results indicate significant improvements of the RNP objective with p value < 0.05.
Model Set Objective RBF Matern 5/2 Periodic MNIST SVHN CelebA Avg rank

NP
(Garnelo et al., 2018b)

context
LV I 0.69±0.01 0.56±0.02 -0.49±0.01 0.99±0.01 3.24±0.02 1.71±0.04 2.3
LML 0.68±0.02 0.55±0.02 -0.48±0.03 1.00±0.01 3.22±0.03 1.70±0.03 2.5

LRNP (α) 0.78±0.01 0.66±0.01 -0.49±0.00 1.01±0.02 3.26±0.01 1.72±0.05 1.2

target
LV I 0.26±0.01 0.09±0.02 -0.61±0.00 0.90±0.01 3.08±0.01 1.45±0.03 2.3
LML 0.28±0.02 0.11±0.02 -0.61±0.01 0.92±0.01 3.07±0.02 1.47±0.02 1.8

LRNP (α) 0.33±0.01 0.16±0.01 -0.62±0.00 0.91±0.01 3.09±0.01 1.45±0.03 1.7

ANP
(Kim et al., 2019)

context
LV I 1.38±0.00 1.38±0.00 0.65±0.04 1.38±0.00 4.14±0.00 3.92±0.07 1.3
LML 1.38±0.00 1.38±0.00 0.63±0.03 1.38±0.00 4.14±0.01 3.86±0.07 1.7

LRNP (α) 1.38±0.00 1.38±0.00 1.22±0.02 1.38±0.00 4.14±0.00 3.97±0.03 1.0

target
LV I 0.81±0.00 0.64±0.00 -0.91±0.02 1.06±0.01 3.65±0.01 2.24±0.03 1.7
LML 0.80±0.00 0.64±0.00 -0.89±0.02 1.04±0.01 3.65±0.01 2.23±0.03 2.2

LRNP (α) 0.84±0.00 0.67±0.00 -0.57±0.01 1.05±0.01 3.61±0.02 2.24±0.02 1.3

BA-NP
(Volpp et al., 2021)

context
LV I 1.43±0.03 1.04±0.08 -0.65±0.02 0.81±0.84 2.76±0.59 1.65±0.01 2.3
LML 1.30±0.09 0.69±0.05 -0.70±0.07 3.62±0.06 4.87±0.05 2.02±0.02 2.3

LRNP (α) 1.45±0.04 1.01±0.04 -0.41±0.02 3.85±0.09 4.88±0.05 2.00±0.02 1.3

target
LV I 1.19±0.03 0.79±0.09 -0.89±0.01 0.24±0.64 2.60±0.50 1.30±0.01 2.5
LML 1.12±0.08 0.53±0.04 -0.91±0.05 3.56±0.06 4.29±0.04 1.63±0.01 2.3

LRNP (α) 1.22±0.04 0.79±0.03 -0.72±0.02 3.79±0.09 4.31±0.02 1.61±0.02 1.2

TNP-D
(Nguyen & Grover, 2022)

context LML 2.58±0.01 2.57±0.01 -0.52±0.00 1.73±0.11 10.63±0.12 4.61±0.27 1.8
LRNP (α) 2.59±0.00 2.59±0.00 -0.52±0.00 1.81±0.12 10.72±0.08 4.66±0.23 1.0

target LML 1.38±0.01 1.03±0.00 -0.59±0.00 1.63±0.07 6.69±0.04 2.45±0.05 1.8
LRNP (α) 1.41±0.00 1.04±0.00 -0.59±0.00 1.67±0.07 6.71±0.04 2.46±0.06 1.0

VNP
(Guo et al., 2023)

context LV I 1.37±0.00 1.37±0.00 1.23±0.03 1.60±0.10 0.80±0.00 0.08±0.03 2.0
LRNP (α) 1.38±0.00 1.38±0.00 1.32±0.01 3.63±0.39 4.00±0.06 2.65±0.06 1.0

target LV I 0.90±0.02 0.70±0.03 -0.49±0.00 1.59±0.10 0.80±0.00 0.08±0.03 2.0
LRNP (α) 0.92±0.01 0.71±0.03 -0.48±0.00 3.62±0.37 3.89±0.06 2.49±0.06 1.0

(a) ANP LV I (b) ANP LRNP (c) TNP-D LML (d) TNP-D LRNP

Figure 2. Prior misspecification experiment. Both models are trained on simulated Lotka-Volterra data and tested on the real-world
Hare-Lynx dataset.

baseline TNP-D on two misspecified cases where tasks
are generated from different distributions during the meta
training and meta testing phase. For the 1D regression
task, the model is trained using the Lotka-Volterra dataset
which is generally used for prey-predator simulations. The
dynamics is controlled by a two-variable ordinary differ-
ential equations: ẋ = θ1x − θ2xy, ẏ = −θ3y + θ4xy
where x and y correspond to the populations of the prey
and predator respectively. The parameters are chosen as
θ1 = 1, θ2 = 0.01, θ3 = 0.5, θ4 = 0.01 following (Gordon
et al., 2019). The number of context points is randomly
sampled M ∼ U(15, 100), and the number of target points
is N ∼ U(15, 100−M). We choose 20,000 functions for
training, and sample another 1,000 functions for evaluation.

We then test the model on a real-world Hare-Lynx dataset
which tracks the two species populations over 90 years. The
input and output features were normalized via z-score nor-
malization. Our method in table 4 shows outperformance

across multiple datasets as the impact of misspecified con-
texts is alleviated via the divergence. The results in table 2
show that RNP significantly outperformed the ML objective
on both the training and testing data, highlighting the ro-
bustness of our objective. Fig 2 shows the prediction results
on the Lynx dataset, where the RNP achieves better uncer-
tainty estimate and tracks the seasonality of the data more
efficiently than the ML objective. We also tested TND-D on
the Extended MNIST dataset with 47 classes that include
letters and digits. We use classes 0-10 for meta training and
hold out classes 11-46 for meta testing under prior misspec-
ification. Table 2 shows that RNP performed slightly worse
on the EMNIST training task but significantly outperformed
the ML objective on the test set (last column), which demon-
strates the superior robustness of the new objective under
misspecification.
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Table 2. Loglikelihood ↑ under prior misspecification using TNP-D. The bold results indicate significant improvements with p<0.05.

Objective
Dtrain

(Lotka-Volterra)
Misspec Dtest
(Hare-Lynx)

Dtrain EMNIST
(class 0-10)

Misspec Dtest
(class 11-46)

context target context target context target context target

LML 3.09±0.22 1.98±0.11 -0.59±0.47 -4.44±0.41 1.54±0.05 1.56±0.07 0.03±0.97 -0.20±0.57
LRNP 3.32±0.15 2.12±0.06 -0.17±0.31 -3.63±0.09 1.52±0.08 1.47±0.12 0.96±0.18 0.70±0.15

(a) α on RBF. The red line indicates the best results, and the
blue line corresponds to the KL results.

(b) α on MNIST.

Figure 3. Hyperparameter(α) tuning. cross-validation is used to
select the optimal α ∈ (0, 2).

5.3. How to select the optimal α values?

We have shown that choosing α = 0.7 for the VI objec-
tives and α = 0.3 for the ML objectives provides signif-
icant performance improvements over the competing ap-
proaches. One may also use the prior knowledge to select
the α based on the understanding of the misspecification.
Nevertheless, we recognize that in other scenarios such as
very different datasets and/or models, this default value may
not work as well as in our experiments. For this purpose,
we have found that cross-validation is an effective tool for
finding near-optimal values (Futami et al., 2018). We hyper-
searched the α values from 0 to 2 with an interval of 0.1.
As shown in Fig 3(a) and Fig 3(b), the optimal solutions are
model and dataset specific. Similarly, (Rodrı́guez-Santana
& Hernández-Lobato, 2022) tuned α for general Bayesian
inference and showed that the selection of α is relevant to
different error metrics. Lastly, since cross-validation is com-
putationally expensive, we adopted the following heuristics:

1. start with a value close to 1, which corresponds to stan-
dard KL minimization.

2. Only consider 0 < α < 1 since otherwise we may violate
the conditions for the divergence between two Gaussians.

(a) MC samples (b) Number of context points

Figure 4. Ablation study. We investigated how MC sample sizes
and the number of context points affect test log-likelihood.

3. Gradually decrease α (with granularity according to
computational constraints) to 0. The intuition is inspired
by KL annealing for VAE models (Bowman et al., 2016),
which starts with a strong prior penalization and gradually
reduces the prior penalization and focuses more on model
expressivity. Our results in Supp Table 5 show that this
automatic α tuning strategy still outperformed the baselines.

5.4. Ablation studies

Effects of Monte Carlo samples on likelihood. As
both RNP (Eq 6) and RNP-ML (Eq 12) require MC ap-
proximations, we investigate the effects of the number of
MC samples K on predictive likelihood. We set K ∈
{1, 8, 16, 32, 50} for optimizing the RNP objective during
training and use K = 50 for inference. Note that K = 1
corresponds to the deterministic NPs (conditional NPs).

Fig 4(a) shows both the context and target log-likelihood for
three methods: NP, ANP and TNP-D on the RBF dataset. As
expected, increasing the number of MC samples improves
the LL mean and also reduces the variance for all the meth-
ods with K = 50 achieving the highest LL and the smallest
variance. In practice, we set K = 32 to balance perfor-
mance and memory efficiency. However, it takes as few as
8 samples during training to gain better estimates, and one
can choose to increase the number of samples during infer-
ence for better predictive performance or to reduce it for
scalability and real-time applications. We also reported the
wall clock time between standard NPs and RNPs in Supp
Table 7 and no significant differences were found with our
objective. Our computational complexity is linear to the
number of MC samples, which is also comparable to the VI
objective.
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Effects of the number of context points on likelihood. We
study the effect of the context points on the target likelihood.
During training the number of context points is sampled
from U(3, 50) and vary the number of context points from 5
to 95 at an interval of 10 for evaluation. The results of RBF
in Fig 4(b) shows that increasing the context set size leads
to improved LL for all the methods. Most methods (e.g., NP,
ANP, VNP) plateaued after the number of contexts increases
to more than 45, whereas TNP-D still shows unsaturated
performance improvement with the increased context size.

Different prior and posterior parameterization. To vali-
date if a simple strategy of decoupling the prior and poste-
rior coupling works for NPs, we compared the RNP with
the separate prior-posterior parameterization for NPs and
ANPs. The results in Supp Table 6 showed that RNP still
outperformed this baseline with much fewer parameters.
The theoretical justification of the baseline could be the vi-
olation of the consistency property of NPs where different
parameterizations of ϕ and φ make the KL term non-zero
and the marginal is no longer consistent.

6. Conclusion
We have proposed the Rényi Neural Process (RNP), a new
NP framework designed to mitigate prior misspecification in
neural processes. RNPs bridge the variational inference and
maximum likelihood estimation objectives in vanilla NPs
through the use of the Rényi divergence. We have shown the
superiority of our generalized objective in improving predic-
tive performance by selecting optimal α values. We have ap-
plied our framework to multiple state-of-the-art NP models
and observed consistent log-likelihood improvements across
benchmarks, including 1D regression, image inpainting, and
real-world regression tasks. A limitation of our framework
lies in drawing multiple samples with Monte-Carlo, which
sacrifices some computational efficiency in exchange for
better predictive performance, due to the infeasibility of
computing analytical solutions on the divergence. To fur-
ther improve our efficiency, we suggest to adopt variance
reduction methods such as double-reparameterized gradient
estimator that could require fewer MC samples. Addition-
ally, for attention-based NPs, the computational complexity
of self-attention is O(N2), which impedes real-time appli-
cations. We propose to adopt efficient attention mechanisms,
e.g., Nyströmformer which uses low rank approximation of
the attention matrix and has the complexity of O(N).
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Lee, K. and Shin, J. Rényicl: Contrastive representation
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A. Appendix
A.1. Pseudocode

Algorithm 1 Rényi Neural Processes
Input: Context inputs XC and outputs YC . Target inputs XT , and target outputs YT during training
Output: Target distribution p(YT |XT , XC , YC)
Training:
for epoch=1 to max epoch do

Sample a context set (XC , YC) and a target set (XT , YT )
Obtain the posterior distribution with the encoding network: qφ(z|XT , YT , XC , YC)
Obtain the approximated prior distribution with the encoding network: qφ(z|XC , YC)
Sample z1, ..., zK ∼ qφ(z|XT , YT , XC , YC)
Construct the likelihood model with the decoding network: pθ(YT |XT , zk)
Compute the objective LRNP using Eq 6 or Eq 12
Update the encoder parameters with ∇φL (Eq 8) and the decoder parameters with ∇θL

end for
Inference:
Construct the approximated prior qφ(z|XC , YC)
Sample z1, ..., zK ∼ qφ(z|XC , YC)
Predict the target distribution pθ(YT |XT , zk)
Estimate the log-likelihood of the target outputs using Eq 13.

A.2. Notation

The notations used in the article is summarized in Table 3.

Table 3. Notation
Name Description

f function sample from a stochastic process
X input space
Y output space
Z latent space
x input features
y output features
z latent variable representing stochasticity of the functional sample f
XC RM×D context inputs
YC RM×1 context outputs
XT RN×D target inputs
YT RN×1 target outputs
M number of samples in the context set, indexed by m
N number of samples in the target set, indexed by n
Dx dimension of input features
Dy dimension of input features
C,T notation for Context and Target
φ parameters in the posterior model q(z|X,Y )
θ parameters in the likelihood model p(Y |z, X)
K number of z samples for Monte Carlo approximation
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A.3. Training details

For 1D regression tasks, given a function f sampled from a GP prior with varying scale and length and a context set
generated by such function, our goal is to predict the target distribution. The number of context points is randomly sampled
M ∼ U(3, 50), and the number of target points is N ∼ U(3, 50 − M) (Nguyen & Grover, 2022). We choose 100,000
functions for training, and sample another 3,000 functions for testing. The input features were normalized to [−2, 2].

Image inpainting involves 2D regression on three image datasets: MNIST, SVHN and CelebA. Given some pixel coordinates
x and intensities y as context, the goal is to predict the pixel value for the rest of image. The number of context points
for inpainting tasks is M ∼ U(3, 200) and the target point count is N ∼ U(3, 200 − M). The input coordinates were
normalized to [−1, 1] and pixel intensities were rescaled to [−0.5, 0.5]. All the models can be trained using a single GPU
with 16GB memory.

A.4. Proof of Proposition 3.2

The true ELBO of neural processes without prior approximation can be written as:

ELBO = Eqφ(z|XT ,YT ,XC ,YC) log pθ(YT |XT , z)−DKL (qφ(z|XT , YT , XC , YC)∥p(z|XC , YC)) (14a)

= Eqφ(z|C,T)[log pθ(YT |XT , z) + log p(z|C)− log qφ(z|C,T) + log qφ(z|C)− log qφ(z|C)] (14b)

= Eqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

+ log
p(z|C)
qφ(z|C)

]
(14c)

= Eqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

]
+ Eqφ(z|C,T)

[
log

p(z|C)
qφ(z|C)

]
(14d)

= −LV I + Eqφ(z|C,T) log
p(z|C)
qφ(z|C)

(14e)

Therefore, the VI objective will only recover the true ELBO only when qφ(z|C) = p(z|C), i.e., the ground truth posterior is
identified and the prior model is well-specified. When qφ(z|C) ̸= p(z|C) , which is usually the case, the model is optimizing
an objective which is not necessarily the true ELBO.

Furthermore, we will derive the gradients of the true ELBO and the approximate ELBO LV I w.r.t the parameters of the
posteriors using the re-parameterization trick:

∇φELBO = ∇φ

(
Eqφ(z|C,T)

[
log

pθ(YT |XT , z)p(z|C)
qφ(z|C,T)

])
(15a)

= Eϵ∇φ [log p(YT , |XT , gφ(ϵ)) + log p(gφ(ϵ)|C)− log qφ(gφ(ϵ))] , gφ(ϵ) = g(ϵ, φ,C,T) (15b)
= Eϵ [∇φ log p(YT , |XT , gφ(ϵ)) +∇φ log p(gφ(ϵ)|C)−∇φ log qφ(gφ(ϵ))] (15c)

As we do not know the form of conditional prior p(gφ(ϵ)|C) in Eq 15, the gradient is difficult to estimate. Therefore, the VI
provides a way to approximate the gradient with

∇φLV I = ∇φ

(
Eqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

])
(16a)

= Eϵ [∇φ log p(YT , |XT , gφ(ϵ)) +∇φ log qφ(gφ(ϵ)|C)−∇φ log qφ(gφ(ϵ))] (16b)

Hence, now we have a “learned” prior model qφ(z|C) that can move towards posterior samples z ∼ qφ(z|C,T). However,
as there is no guidance to regularize qφ(z|C) to be close to the true prior, this prior approximation can be misspecified,
which can inevitably cause a biased estimate of the posterior.
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A.5. Derivation of LRNP (eq 6)

min
θ,φ

Dα (qφ(z|XT , YT , XC , YC)∥p(z|XT , YT , XC , YC)) (17)

= min
θ,φ

1

α− 1
logEqφ(z|XT ,YT ,XC ,YC)

[
p(z|XT , YT , XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(By definition) (18)

= max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
p(z, YT |XT , XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

+ Const.(Split marginal likelihood) (19)

= max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
p(z, YT |XT , XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(Equivalence of removing the constant) (20)

≈ max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(21)

A.6. Derivation of LRNPML (eq 12)

We start by rewriting the ML objective (Eq 9) as minimizing the KL divergence:

− LML(θ) = max
θ

EDtrain log pθ(YT |XT ,C) (22)

= max
θ

EDtrain

[
1

N

N∑
n=1

log pθ(yn|xn,C)

]
+ Const (Average likelihood for stabilized training) (23)

≈ max
θ

EDtrain

∫
p̂(y|x,C) log pθ(y|x,C)dy( Definition of the empirical distribution) (24)

= max
θ

EDtrain

∫
p̂(y|x,C) [log pθ(y|x,C)− log p̂(y|x,C) + log p̂(y|x,C)] dy (25)

≡ min
θ

EDtrain [DKL (p̂(y|x,C)∥pθ(y|x,C))] (Definition of KLD and removing the constant without θ) (26)

We now replace the KLD with RD

min
θ

EDtrain [Dα(p̂(y|x,C)∥pθ(y|x,C))] (27)

= min
θ

EDtrain

1

α− 1

[
log

∫
p̂α(y|x,C)p1−α

θ (y|x,C)dy
]
(Definition of RD) (28)

≈ min
θ

EDtrain

1

α− 1

[
log

N∑
n=1

(
1

N
)αp1−α

θ (yn|xn,C)

]
(Definition of the empirical distribution) (29)

= min
θ

EDtrain

1

α− 1
log

N∑
n=1

p1−α
θ (yn|xn,C) + Const( Split the non-θ term) (30)

≡ min
θ

EDtrain

1

(α− 1)N
log

N∑
n=1

p1−α
θ (yn|xn,C)(Average likelihood for stabilized training) (31)

= min
θ

EDtrain

1

(α− 1)N

N∑
n=1

log

(∫
pθ(yn, z|xn,C)dz

)1−α

(32)

A.7. Theoretical relationships between the LV I , LML and LRNP objectives. 3.4

Our Rényi objective unifies the common three objectives for NPs: LV I ,LML (maximum likelihood estimation), and LCNP

(conditional NPs or deterministic NPs).
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− LRNP :
1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(33a)

− LV I(α → 1) : Eqφ(z|XT ,YT ,XC ,YC) log

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]
(33b)

− LML(α = 0) : logEqφ(z|XC ,YC)pθ(YT |XT , z) (33c)

− LCNP (α = 0 and qφ(z|XC , YC) = δ(φ(XC , YC)) : log pθ(YT |XT , φ(XC , YC)) (33d)

Proof of the ML objective:

LRNP (α=0) = logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]
(34a)

= log

∫
qφ(z|XT , YT , XC , YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]
(34b)

= log

∫
pθ(YT |XT , z)qφ(z|XC , YC) = logEqφ(z|XC ,YC)pθ(YT |XT , z) = LML (34c)

Proof of the NPVI objective: Next we will prove that LRNP,α→1 = LV I . Applying Theorem 5 from (Van Erven &
Harremos, 2014a) to the new posteior and prior, we have:

Dα→1 (qφ(z|XT , YT , XC , YC)||p(z|XT , YT , XC , YC)) (35a)
= KL (qφ(z|XT , YT , XC , YC)||p(z|XT , YT , XC , YC)) (35b)

= Eqφ(z|XT ,YT ,XC ,YC) log
qφ(z|XT , YT , XC , YC)p(YT |XC , YC , XT )

p(z, YT |XT , XC , YC)
(35c)

= −Eqφ(z|XT ,YT ,XC ,YC) log
p(z, YT |XT , XC , YC)

qφ(z|XT , YT , XC , YC)
+ Const (35d)

≡ −Eqφ(z|XT ,YT ,XC ,YC) [log p(YT |z, XT ) + log pφ(z|XC , YC)− log qφ(z|XT , YT , XC , YC)] = LV I (35e)

A.8. Gradients of Objectives for Rényi Neural Processes

∇φLRNP =
1

1− α
∇φ logEqφ(z|C,T)

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α

(36a)

=
1

1− α

(
Eqφ(z|C,T)

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α
)−1

Eqφ(z|C,T)

(
∇φ

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α
)

(36b)

=
1

1− α

(
Eqφ(z|C,T)

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α
)−1

Eqφ(z|C,T)

([
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α

∇φ(1− α) log
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

)
(36c)

= Eq(z|C,T)

(
w∇φ log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

)
, (36d)

w =

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α

/

(
Eqφ(z|C,T)

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α
)

(36e)

Suppose wk =
pθ(YT |XT ,zk)qφ(zk|C)

qφ(zk|C,T) where zk ∼ qφ(z|C,T).We have ∇φLRNP =
∑K

k=1

(
w1−α

k∑K
k=1 w1−α

k

∇φ logwk

)
In a simple case of a Bayesian linear regression model y = θTx + ϵ with two dimensional inputs and one dimensional
output, the analytical solutions of the posterior is a mutilvariate Gaussian p(θ|x, y) ∼ N (µ,Σ). Suppose we use a factorized
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Table 4. Test log-likelihood with noisy contexts.

Model Obj RBF Matern 5/2 Periodic MNIST SVHN CelebA

NP LV I -0.53 ± 0.01 -0.56 ± 0.01 -0.74 ± 0.00 0.76 ± 0.02 2.81 ± 0.04 0.89 ± 0.07
LRNP -0.45 ± 0.01 -0.50 ± 0.01 -0.73 ± 0.00 0.83 ± 0.02 2.98 ± 0.01 1.16 ± 0.02

ANP LV I -2.43 ± 0.19 -2.15 ± 0.18 -0.99 ± 0.01 0.90 ± 0.02 2.83 ± 0.06 1.55 ± 0.05
LRNP -2.29 ± 0.12 -2.11 ± 0.15 -1.20 ± 0.03 0.96 ± 0.01 3.11 ± 0.02 1.82 ± 0.03

Table 5. RNP results with automatic tuning of α values

Model Set Setting RBF Matern 5/2 Periodic MNIST SVHN

NP
context LV I 0.69±0.01 0.56±0.02 -0.49±0.01 0.99±0.01 3.24±0.02

LRNP adaα 0.75±0.02 0.61±0.02 -0.49±0.00 1.01±0.01 3.26±0.01

target LV I 0.26±0.01 0.09±0.02 -0.61±0.00 0.90±0.01 3.08±0.01
LRNP adaα 0.31±0.01 0.13±0.01 -0.61±0.00 0.92±0.01 3.10±0.01

ANP
context LV I 1.38±0.00 1.38±0.00 0.65±0.04 1.38±0.00 4.14±0.00

LRNP adaα 1.38±0.00 1.38±0.00 0.97±0.11 1.38±0.00 4.14±0.00

target LV I 0.81±0.00 0.64±0.00 -0.91±0.02 1.06±0.01 3.65±0.01
LRNP adaα 0.83±0.01 0.66±0.01 -0.71±0.05 1.06±0.01 3.65±0.01

TNPD
context LV I 2.58±0.01 2.57±0.01 -0.52±0.00 1.73±0.11 10.63±0.12

LRNP adaα 2.58±0.01 2.57±0.01 -0.52±0.00 1.94±0.02 10.73±0.57

target LV I 1.38±0.01 1.03±0.00 -0.59±0.00 1.63±0.07 6.69±0.04
LRNP adaα 1.39±0.00 1.03±0.00 -0.59±0.00 1.56±0.02 6.71±0.24

Gaussian as an approximate posterior q(θ) =
∏

i q(θi) with q(θ1) = N (µ1, λ
−1
1 ), , we can show the variance of the

approximate posterior factorized Gaussian varies by alpha: λ1 = ραΣ11 where ρα = 1
2α

[
(2α− 1) +

√
1− 4α(1−α)Σ2

12

Σ11Σ22

]
is non-decreasing in α.

A.9. Prior misspecification settings

We consider two scenarios of prior misspecification: q(z|Cbad, φ) and q(z|C, φbad). For q(z|Cbad, φ), we design the
experiments with the following setting: keep the target data (XT , YT ) clean and corrupt the context data with noise
ỹC = (1 − β) ∗ yC + β ∗ ϵ, ϵ ∼ N (0, 1). The noise level β is set as 0.3 for both training and testing, and the marginal
predictive distribution is p(YT |XT , XC , ỸC) and we report the test target set log-likelihood in Table 4.

For bad parameterization q(z|C, φbad). We adopted domain shift datasets since p(z|Dtrain) and p(z|Dtest) do not come from
the same distribution. Therefore, the prior model is suboptimal when conditioned on the training parameters q(z|C, φtrain).

A.10. Tuning of α.

We can start with training the model with the KL objective (α → 1) then gradually decrease (with granularity according to
computational constraints) to 0. The intuition is inspired by KL annealing for VAE models Bowman et al. (2016), which
starts with a strong prior penalization (close to 1) to reduce the posterior variance quickly and gradually reduces the prior
penalization (close to 0) and focuses more on model expressiveness. The results are presented in Table 5. Our heuristics still
managed to outperform the baselines across multiple datasets and methods.

A.11. Additional Results.

We provided some qualitative results of the baseline NPs as well as their corresponding RNPs in Fig 5, 6, 7. Given the same
context sets, we compare the results obtained by the original method on the left with the RNPs on the right. The number of
context is chosen to be relatively small for RBF and Matern and more context points are selected for periodic to capture the
periodicity of the function. RNPs tend to predict smaller variances for different function samples. While most methods
struggle with the periodic dataset, ANP and VNP using our RNP objective significantly improved the baseline models.

Table 6 compares RNP with a simple baseline model using separate parameters of the prior and posterior models.
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(a) NP LV I (b) NP LRNP

(c) ANP LV I (d) ANP LRNP

(e) BA-NP LV I (f) BA-NP LRNP

(g) TNPD LML (h) TNPD LRNP

(i) VNP LV I (j) VNP LRNP

Figure 5. 1D regression RBF dataset.
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(a) NP LV I (b) NP LRNP

(c) ANP LV I (d) ANP LRNP

(e) BA-NP LV I (f) BA-NP LRNP

(g) TNPD LML (h) TNPD LRNP

(i) VNP LV I (j) VNP LRNP

Figure 6. 1D regression Matern dataset.
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(a) NP LV I (b) NP LRNP

(c) ANP LV I (d) ANP LRNP

(e) BA-NP LV I (f) BA-NP LRNP

(g) TNPD LV I (h) TNPD LRNP

(i) VNP LV I (j) VNP LRNP

Figure 7. 1D regression Periodic dataset.
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Table 6. Simple baseline comparison. In the setting column Separate PQ means the prior and posterior models are parameterised separately
for the NP frameworks and optimised using the VI objective

Model Set Setting RBF Matern 5/2 Periodic MNIST SVHN

NP context
Separate PQ 0.56±0.02 0.41±0.01 -0.50±0.00 1.00±0.03 3.21±0.01
LRNP (α) 0.78±0.01 0.66±0.01 -0.49±0.00 1.01±0.02 3.26±0.01

target
Separate PQ 0.18±0.01 0.01±0.00 -0.61±0.00 0.90±0.02 3.05±0.01
LRNP (α) 0.33±0.01 0.16±0.01 -0.62±0.00 0.91±0.01 3.09±0.01

ANP context
Separate PQ 1.38±0.00 1.38±0.00 -0.17±0.25 1.38±0.00 4.14±0.00
LRNP (α) 1.38±0.00 1.38±0.00 1.22±0.02 1.38±0.00 4.14±0.00

target
Separate PQ 0.80±0.01 0.63±0.01 -0.70±0.02 1.06±0.00 3.66±0.01
LRNP (α) 0.84±0.00 0.67±0.00 -0.57±0.01 1.05±0.01 3.61±0.02

Table 7. Wall clock time (in seconds) comparison. 32 MC samples were chosen during training to be consistent with the results in Table 1.

Model Setting RBF Matern 5/2 Periodic MNIST SVHN

NP LV I 1028 1015 1067 3231 4620
LRNP (α) 1108 1000 1048 3058 4780

ANP LV I 1585 1620 1721 3770 5391
LRNP (α) 1712 1693 1671 3605 5444

Table 7 added a wall clock time comparison between our objective and the VI objective.
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