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Abstract

Despite the progress in automatic detection of radiologic findings from chest X-1

ray (CXR) images in recent years, a quantitative evaluation of the explainability2

of these models is hampered by the lack of locally labeled datasets for different3

findings. With the exception of a few expert-labeled small-scale datasets for specific4

findings, such as pneumonia and pneumothorax, most of the CXR deep learning5

models to date are trained on global "weak" labels extracted from text reports, or6

trained via a joint image and unstructured text learning strategy. Inspired by the7

Visual Genome effort in the computer vision community, we constructed the first8

Chest ImaGenome dataset with a scene graph data structure to describe 242, 0729

images. Local annotations are automatically produced using a joint rule-based10

natural language processing (NLP) and atlas-based bounding box detection pipeline.11

Through a radiologist constructed CXR ontology, the annotations for each CXR are12

connected as an anatomy-centered scene graph, useful for image-level reasoning13

and multimodal fusion applications. Overall, we provide: i) 1, 256 combinations of14

relation annotations between 29 CXR anatomical locations (objects with bounding15

box coordinates) and their attributes, structured as a scene graph per image, ii) over16

670, 000 localized comparison relations (for improved, worsened, or no change)17

between the anatomical locations across sequential exams, as well as ii) a manually18

annotated gold standard scene graph dataset from 500 unique patients.19

Introduction20

Chest X-rays (CXR) are among the commonly ordered radiology exams, mostly for screening but also21

for diagnostic purposes. Recently, multiple large CXR imaging datasets have been released by the re-22

search community [1, 2, 3, 4]. These can be used to develop automatic abnormality detection or report23

generation algorithms. For detecting specific abnormalities from images, natural language processing24

(NLP) algorithms have been used to extract "weak" global image-level labels (CXR abnormalities)25

from the associated CXR reports [4, 5, 6, 7]. For automatic report generation, self-supervised joint26

text and image architectures [8, 9, 10, 11, 12], first inspired by the image captioning related work27

in the non-medical domain [13, 14, 15, 16, 17], have been used to produce preliminary free-text28

radiology reports. However, both approaches lack rigorous localization assessment for explainability,29

namely whether the model attended to the relevant anatomical location(s) for predictions. This30

missing feature is critical for clinical applications. The joint image and text learning strategy are also31

known to learn heavy language priors from the text reports without having learned to interpret the32
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imaging features [18, 19]. Furthermore, even though architectures suitable for comparing imaging33

changes are available [20, 21], limited work has focused on automatically deriving comparison34

relations between exams from large datasets for the purpose of training imaging models that can track35

progress for a wide variety of CXR findings or diseases.36

To the best of our knowledge, no prior work in CXR has attempted to automatically extract relations37

between CXR attributes (labels) from reports and their anatomical locations (objects with bounding38

box coordinates) on the images as documented by the reporting radiologists, nor has there been39

any localized relation annotations between sequential CXR exams. Research on these two topics is40

valuable because radiology reports in effect are records of radiologists’ complex clinical reasoning41

processes, where the anatomical location of observed imaging abnormalities is often used to narrow42

down on potential diagnoses, as well as for integrating information from other clinical modalities43

(e.g. CT findings, labs, etc) at the anatomical levels. Sequential exams are also routinely used by44

bedside clinicians to track patients’ clinical progress after being started on different management45

paths. Therefore, documentations comparing sequential exams are prevalent in CXR reports and are46

clinically meaningful relations to learn about. Automatically extracting radiology knowledge graphs47

and disease progression information from reports will help improve explainability evaluation and48

widen downstream clinical applications for CXR imaging algorithm development.49

Many algorithms for object detection and domain-knowledge-driven reasoning require a starting50

dataset that has localized labels on the images and meaningful relationships between them. In the51

non-medical domain, large locally labeled graph datasets (e.g., Visual Genome dataset [22]) have52

enabled the development of algorithms that can integrate both visual and textual information and53

derive relationships between observed objects in images [23, 24, 25]. In addition, they have spurred a54

whole domain of research in visual question answering (VQA) and visual dialogue (VD), with the55

aim of developing interactive AI algorithms capable of reasoning over information from multiple56

sources [26, 27, 28]. These location, relation and semantics aware systems aim to capture important57

elements in image data in relation to complex human languages, in order to conversationally interact58

with humans about the visual content. In the medical domain, such systems may help with automatic59

image and text information retrieval tasks from databases or improve end-user trust by allowing60

clinicians to interactively question trained models to assess the consistency of predictions.61

In this paper, we present the Chest ImaGenome dataset, a large multi-modal (text and images)62

chronologically ordered scene graph dataset for frontal chest x-ray (CXR) images. This dataset is63

an important step towards addressing the missing link of large locally labeled graph datasets in the64

medical imaging domain. The goal for releasing this dataset is to spur the development of algorithms65

that more closely reflect radiology experts’ reasoning processes. In addition, automatically describing66

localized imaging features in recognized medical semantics is the first step towards connecting67

potentially predictive pixel-level features from medical images with the rest of the digital patient68

records and external medical ontologies. These connections could aid both the development of69

anatomically relevant multi-modal fusion models and the discovery of localized imaging fingerprints,70

i.e., patterns predictive of patient outcomes. Through PhysioNet’s credentialed access (see license),71

we make the first Visual Genome-like graph dataset in the CXR domain accessible for the research72

community.73

Related work: A few CXR datasets have localized abnormality annotations [29, 30, 31] that are74

curated manually. These are high quality gold standard ground truth datasets but tend to be smaller75

in scale (< 30,000 images) and have a narrow coverage, with typically only 1-2 labels. In addition,76

since most labeling efforts only have abnormality semantics attached, no direct relationships with the77

affected anatomical locations are available.78

Two recent CXR datasets have labels for anatomies described in the reports. In [32], a small manually79

annotated dataset (2000 reports) included 10 abnormalities that are individually associated with 2980

unique spatial locations (anatomies) at the report level. Another CXR dataset has automatically81

extracted abnormality and anatomy labels as disconnected concepts that are only correlated at the82

study level from 160,000 reports using a supervised NLP algorithm [7]. This was trained on a smaller83

set of manually annotated data. Neither datasets contain localized annotations for the associated84

CXR images, nor any comparison relation annotations between sequential exams, both of which85

are available in the Chest ImaGenome dataset. In Table 1, we present a comparison of our Chest86

ImagGenome dataset with other datasets available in the literature.87
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Table 1: Summary of existing chest X-ray datasets
Dataset Annotation Level Annotation Method Num Labels Anatomy Labeled Graph Dataset Size Temporal Labels Reports
SIIM-ACR Pneumothorax Segmentation [30] Segmentation Manual + augmented 1 No No 12,047 No No
RSNA Pneumonia Detection Challenge [29] Bounding Boxes Manual 1 No No 30,000 No No
Indiana University Chest X-ray collection [2] Global Automated 10 No No 3,813 No Yes
NIH CXR dataset [3] Global Automated 14 No No 112,120 No No
PLCO [33] Global Automated 24 Yes No 236,000 Yes No
Stanford CheXpert [4] Global Automated 14 No No 224,316 No No
MIMIC-CXR [1] Global Automated 14 No No 377,110 No Yes
Dutta [32] Global Manual 10 Yes Yes 2,000 No Yes
PadChest [7] Global Manual + automated 297 Yes No 160,868 No Yes
Montgomery County Chest X-ray [31] Segmentation Manual 1 Yes No 138 No No
Shenzen Hospital Chest X-ray [31] Segmentation Manual 1 Yes No 662 No No
Chest ImaGenome Bounding Boxes Automated 131 Yes Yes 242,072 Yes Yes

Methods88

The Chest ImaGenome dataset was derived from the MIMIC-CXR dataset [1], which has been89

de-identified. This derived dataset retains the added annotations and the source image tags but not the90

CXR images, which users are expected to separately download from the MIMIC-CXR database.91

The institutional review boards of the Massachusetts Institute of Technology (No. 0403000206)92

and Beth Israel Deaconess Medical Center (BIDMC)(2001-P-001699/14) both approved the use of93

the MIMIC database for research. All authors working with the data have individually completed94

required HIPPA training and been granted data access approval from PhysioNet.95

Silver Dataset Construction96

The Chest ImaGenome dataset construction is inspired by the Visual Genome dataset [22]. Whereas97

Visual Genome utilized web-based and crowd-sourced methods to manually collect annotations,98

the Chest ImaGenome harnessed NLP, a CXR ontology, and image segmentation techniques to99

automatically structure and add value to existing CXR images and their free-text reports, which were100

collected from radiologists in their routine workflow. We used atlas-based bounding box extraction101

techniques to structure the anatomies on 242, 072 frontal CXR images, anteroposterior (AP) or102

posteroanterior (PA) view, and used a rule-based text-analysis pipeline to relate the anatomies to103

various CXR attributes (finding, diseases, technical assessment, devices, etc) extracted from 217, 013104

reports. Altogether, we automatically annotated 242, 072 scene graphs that locally and graphically105

describe the frontal images associated with these reports (one report can have one or more frontal106

images). Our goal is to not only locally label attributes relevant for key anatomical locations on107

the CXR images, but also to extract documented radiology knowledge from a large corpus of CXR108

reports to aid future semantics-driven and multi-modal clinical reasoning works.109

Table 2 describes the parallels between the Chest ImaGenome and Visual Genome datasets. The key110

differences are in the construction methodology, the currently much smaller range of possible objects111

and attributes (due to having only the CXR imaging modality), and the introduction of comparison112

relations between sequential images in the Chest ImaGenome dataset. We define the nodes and edges113

in the graph (Supplementary Table 6) based on clinical relevance and resources in the context for114

medical imaging exams like CXRs. In addition, two key assumptions are made in the construction115

of the Chest ImaGenome dataset:116

1) CXR imaging observations can be normalized to relationships between the visualized anatomical117

locations (object nodes) and the abnormalities, devices or other CXR descriptions (attribute nodes)118

that the locations contain. Thus, the variety of detected objects is confined by the granularity of119

anatomical location detection on images and from reports.120

2) The exam timestamps in the original MIMIC-CXR dataset can be used to chronologically order121

the CXR exams from the same patient within the original MIMIC CXR dataset’s collection period122

and there are minimal missing exams for each patient. This is based on discussions with the123

MIMIC team and MIMIC-CXR’s documented data collection strategy. The original data curators124

included all CXR exams in the radiology imaging archives for patients who were at any time point125

admitted to the BIDMC’s Emergency Department within a continuous 2-year-period. Therefore,126

we related any comparison descriptions (normalized to ‘improved’, ‘worsened’ and ‘no change’)127

of attribute(s) in different anatomical location(s) to the same anatomical location(s) on the exam128

image(s) immediately before the current exam. Clinically, the extracted comparison relations are129

intended to allow longitudinal modeling of disease progression for different CXR anatomies.130

The construction of the Chest ImaGenome dataset builds on the works of [5, 36]. In summary, the131

text pipeline [5] first sections the report and retains only the finding and impression sentences, and132
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Table 2: Parallels between the Chest ImaGenome and Visual Genome datasets.
Element Chest ImaGenome Visual Genome

Scene One frontal CXR image in the current dataset. One (non-medical) everyday life image.

Questions For now, there is only one question per CXR, which is
taken from the patient history (i.e., reason for exam)
section from each CXR report.

One or more questions that the crowd
source annotators decided to ask about
the image where the information from
each question and the image should allow
another annotator to answer it.

Answers N/A currently. However, report sentences are biased
towards answering the question asked in the reason
for exam sentence;hence, the knowledge graph we
extract from each report should contain the answer(s).

This was collected as answer(s) to the
corresponding question(s) asked of the
image.

Sentences
(Region
descrip-
tions)

Sentences from the finding and impression sections of
a CXR report describing the exam as collected from
radiologists in their routine radiology workflow.

True natural language descriptive sen-
tences about the image collected from
crowd-sourced everyday annotators.

Objects
(nodes)

Anatomical structures or locations that have bounding
box coordinates on the associated CXR image, and is
indexed to the UMLS ontology [34].

The people and physical objects with
bounding box coordinates on the image
and indexed to WordNet ontology [35].

Attributes
(nodes)

Descriptions that are true for different anatomical
structures visualized on the CXR image (e.g., There
is a right upper lung [object] opacity [attribute]), in-
dexed to the UMLS ontology [34]. No Bbox coordi-
nates.

Various descriptive properties of the ob-
jects in the image (e.g., The shirt [object]
is blue [attribute]), indexed to WordNet
ontology [35]. No Bbox coordinates.

Relations:
object
and
attribute

The relationship(s) between an anatomical object and
its attribute(s) from the same CXR image (e.g., There
is a [relation] right upper lung [object] opacity [at-
tribute]).

The relationship(s) between an object
and its attribute(s) from the same image
( e.g., The shirt [object] is [relation] blue
[attribute]).

Relations:
object
and
object

The comparison relationship (index to UMLS [34])
between the same anatomical object from two sequen-
tial CXR images for the same patient (e.g., There is a
new [relation] right lower lobe [current and previous
anatomical objects] atelectasis [attribute]).

The relationship (indexed to WordNet
[35]) between objects in the same image
(e.g., The boy [object 1] is beside [rela-
tion] the bus [object 2]).

Relations:
parent
and child

To make the graph for each image logically consistent
and correct as learnable and consumable radiology
knowledge, affirmed parent-child relations between
nodes are embedded in the scene graphs – i.e., if a
child attribute is related to an object, then its parent
would be too (e.g., if right lung has consolidation
[child], then it also has lung opacity [parent]).

N/A due to different graph construction
strategy and goals. The annotators were
asked to describe any (but not all) rela-
tions they observe in an image.

Scene
graph

Constructed from the objects, the attributes and the
relationships between them for the image.

Same but the nodes and edges overall
would be more varied than Chest Im-
aGenome for now.

Sequence* A super-graph for a set of chronologically ordered
series of exams for the same patient.

N/A, but would be a graph for a video in
the non-medical context.

then utilizes a CXR concept dictionary (lexicons) to spot and detect the context (negated or affirmed)133

of 271 different CXR related named-entities from each retained sentence. The lexicons were curated134

in advance by two radiologists in consensus using a concept expansion and vocabulary grouping135

engine [37]. A set of sentence-level filtering rules are applied to disambiguate some of the target136

concepts (e.g., ‘collapse’ mention in CXR report can be about lung ‘collapse’ or related to spinal137

fracture as in vertebral body ‘collapse’). Then the named-entities for CXR labels (attributes) are138

associated with the name-entities for anatomical location(s) described in the same sentence with a139

SpaCy natural language parser [38].140

Using a CXR ontology constructed by radiologists, a scene graph assembly pipeline corrected obvious141

attribute-to-anatomy assignment errors (e.g., lung opacity wrongly assigned to mediastinum). Finally,142
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Figure 1: A radiology knowledge graph extracted for one CXR report (grey), with patient history from
indication for exam (orange), anatomical locations (blue) and their associated attributes, including
anatomical findings (pink), diseases (yellow), technical assessment (purple) and devices (green)
nodes. The blue anatomy nodes (a.k.a. objects) also have corresponding bounding box coordinates
on the CXR image, which are shown for two examples.

the attributes for each of the target anatomical regions from repeated sentences are grouped to the143

exam level. The result is that, from each CXR report, we extract a radiology knowledge graph where144

CXR anatomical locations are related to different documented CXR attribute(s). The "reason for145

exam" sentence(s) from each report, which contain free text information about prior patient history,146

are separately kept in the final scene graph JSONs. Patient history information is critical for clinical147

reasoning but is a piece of information that is not technically part of the "scene" for each CXR.148

For detecting the anatomical "objects" on the CXR images that are associated with the extracted report149

knowledge graph, a separate anatomy atlas-based bounding box pipeline extracts the coordinates of150

those anatomies from each frontal image. This pipeline is an extension of prior work that covers151

additional anatomical locations in this dataset [36]. In addition, we manually validated or corrected152

the bounding boxes for 1, 071 CXR images (with and without disease, and excluded gold standard153

subjects) to train a Faster-RCNN CXR bounding box detection model, which we used to correct154

failed bounding boxes (too small or missing) from the initial bounding box extraction pipeline ( 7%).155

Finally, for quality assurance, we manually annotated 303 images that had missing bounding boxes156

for key CXR anatomies (lungs and mediastinum).157

Extracting comparison relations between sequential exams at the anatomical level is another goal158

for the Chest ImaGenome dataset. After checking with the MIMIC team and reviewing their dataset159

documentation, we assume that the timestamps in the original MIMIC-CXR dataset can be used160

to chronologically order the exams for each patient. We then correlated all report descriptions161

of changes (grouped as improved, worsened, or no change) between sequential exams with the162

anatomical locations described at the sentence level. To extract these comparison descriptions, we163

used a concept expansion engine [37] to curate and group relevant comparison vocabularies used in164

CXR reports. These comparison relations extracted between anatomical locations from sequential165

CXRs are only added to the final scene graphs for every patient’s second or later CXR exam(s), i.e.,166

comparison relations described in the first study of each patient in the MIMIC-CXR dataset are not167

added to the Chest ImaGenome dataset.168

Finally, we have mapped all object and attribute nodes and comparison relations in the dataset to a169

Concept Unique Identifier (CUI) in the Unified Medical Language System (UMLS) [34]. The UMLS170

ontology has incorporated the concepts from the Radlex ontology [31], which targets the radiology171
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domain. Choosing UMLS to index the Chest ImaGenome dataset widens its future applications in172

clinical reasoning tasks, which would invariably require medical concepts and relations outside the173

radiology domain. An example of a CXR scene graph is shown in Figure 1.174

Gold Standard Dataset Collection175

In collaboration with clinicians (radiology and internal medicine M.D.’s) from multiple academic176

institutions, we curated a dual validated gold standard dataset to 1) evaluate the quality of the silver177

Chest ImaGenome dataset we automatically generated, and 2) to serve as a benchmark resource for178

future research using the dataset. Due to resource constraints, we created the gold standard dataset179

using a validation plus correction strategy. We randomly sampled 500 unique patients from the180

Chest ImaGenome dataset that had two or more sequential CXR exams. Overall, we targeted three181

aspects of the scene graph dataset generation process to evaluate separately: A) the object-to-attribute182

relations (i.e., CXR knowledge graph) extracted from individual reports, B) the object-to-object183

comparison relations extracted between sequential CXR reports, and C) the anatomical location184

detection (i.e., the bounding box extraction pipeline) for the CXR images. For details about the gold185

standard dataset annotation process, see Supplementary (Section C).186

Data description187

The Chest ImaGenome dataset is committed to the PhysioNet repository in two main directories,188

one for the scene graphs that are automatically generated (“silver_dataset”), and another for the189

500 unique patient subset that was manually validated and corrected (“gold_dataset”). Overall,190

242, 072 scene graphs were automatically derived from 217, 013 unique CXR studies. The nodes191

and edges in the graph are defined in detail in Supplementary Table 6. On average 7 anatomical192

objects and 5 attributes are extracted from each study report. However, up to 29 anatomy objects193

can be detected in each CXR image with a percentage of misses < 0.02% for most objects (See194

Table 7 in Supplementary material). In addition, even without considering the related attribute(s),195

678, 543 object-object comparison relations are extracted between anatomies across 128, 468 pairs of196

sequential CXR images. Detailed dataset characteristics are explained and provided in the PhysioNet197

repository (generate_scenegraph_statistics.ipynb). Figure 2 shows an example of all the anatomical198

bounding boxes.199

Chest ImaGenome Scene Graph JSONs200

The ‘silver_dataset/scene_graph.zip’ file is a directory that contains multiple JSON files, one for201

each scene graph. Each scene graph describes one frontal chest X-ray image. The structure for each202

scene graph JSON is described by components for easier explanation in Supplementary (Section B).203

The first level of the JSON in Supplementary (B.1) describes the patient or study level information204

that may not be available in the image. The fields are: ‘image_id’ (dicom_id in MIMIC-CXR),205

‘viewpoint’ (AP or PA), ‘patient_id’ (subject_id in MIMIC-CXR), ‘study_id’ (study_id in MIMIC-206

CXR), ‘gender’ and ‘age_decile’ demographics (from MIMIC-CXR’s metadata), ‘reason for exam’207

(patient history sentence(s) from the CXR reports with age removed), ‘StudyOrder’ (the order of the208

CXR study for the patient, which is derived from chronologically ordering the DICOM timestamps),209

and ‘StudyDateTime; (from MIMIC’s dicom metadata, which had been de-identified into the future).210

For each scene graph, there are 3 separate nested fields to describe the “objects” on the CXR images,211

the “attributes” related to the different objects as extracted from the corresponding reports, and212

“relationships” to describe comparison relations between sequential CXR images for the same patient.213

These 3 fields are a list of dictionaries, where the format of each dictionary is modeled after the214

respective JSONs in the Visual Genome dataset [22].215

For objects, each dictionary has the format shown in Supplementary (B.2). The ‘object_id’ is unique216

across the whole dataset for the anatomical location on the particular image. Fields ‘x1’, ‘y1’, ‘x2’,217

‘y2’, ‘width’ and ‘height’ are for a padded and resized 224x224 CXR frontal image, where coordinates218

‘x1’, ‘y1’ are for the top left corner of the bounding box and ‘x2’, ‘y2’ are for the bottom right corner.219

The bounding box coordinates in the original image are denoted with ‘original_*’. The remaining220

fields: ‘bbox_name’ is the name given to the anatomical location within the Chest ImaGenome221

dataset, and is useful for lookups in other parts of the scene graph JSON; ‘synsets’ contain the UMLS222

CUI for the anatomical location concept; and the ‘name’ is the UMLS name for that CUI [34]. Note223
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that CXRs are 2D images of a 3D structure so there are many overlying anatomical locations. A224

sample of 17 of the anatomical objects is plotted on a CXR as shown in Figure 2.225

Figure 2: Sample CXR case with 17 overlaying clavicles, lung and mediastinum related anatomical
bounding boxes (objects).
Each attribute dictionary, e.g., Supplementary (B.3), aims to summarize all the CXR attribute de-226

scriptions for one anatomical location (‘bbox_name’). This means, for a particular CXR anatomical227

location, all the sentences describing attributes related to it have been grouped into the ‘phrases’ field,228

where the order of sentences in the original report has been maintained. However, an anatomical229

location may not always be described or implied in the report. In that case, looking up dictio-230

nary[‘bbox_name’] will be False. The fields ‘synsets’ and ‘name’ are the same as in the objects’231

dictionaries, where they describe the UMLS CUI information for the anatomical location concept.232

The ‘attributes’ field contains the relations between the anatomical location and the CXR attributes233

extracted from the respective sentences. Note that there can be multiple attributes extracted from234

each sentence. Therefore, the ‘attributes’ field is a list of lists. The ‘attributes’ in the lists follow235

the pattern of < categoryID | relation | label_name >, where ‘categoryID’ is the radiology semantic236

category the authors gave to the CXR concept in consultation with multiple radiologists, and relation237

is the NLP context relating the label_name to the anatomical location as an attribute. If the relation is238

‘no’, then the ‘label_name’ is specifically negated in the sentence. If the relation is ’yes’, then the239

‘label_name‘ is affirmed in the sentence. The order of the lists in the ‘attribute_ids’ field follow the240

lists in the ‘attributes’ field and map each ‘label_name’ to UMLS CUIs. Thus, the way the Chest241

ImaGenome dataset is formulated, one can interpret a statement such as the ‘right lung’ <has no>242

‘lung opacity’ as true in the extracted radiology knowledge graph, whereby each node has been243

mapped to an externally recognized ontology.244

The certainty of each relation in the CXR knowledge graph can be optionally further modified by the245

cues from the ‘severity_cues’ and ‘temporal_cues’ fields in each attribute dictionary. The severity246

cues can include ‘hedge’, ‘mild’, ‘moderate’ or ‘severe’, which are only assigned by co-occurrence247

at the sentence level. These extractions can benefit from future NLP improvement. Similarly, the248

temporal cues can modify the relation as either ‘acute’ or ‘chronic’ depending on clinical use cases.249

The Chest ImaGenome categoryIDs can be used to differentiate the use case for different attributes:250

• anatomicalfinding - findings of anatomies where there is some subjectivity in the grouping of the251

phrases used to extract the labels.252

• disease - descriptions that are more diagnostic level and often require patient information outside253

the image and most subjective to the reading radiologist’s inference/impression.254

• nlp - normal / abnormal descriptions about different anatomical locations and can be subjective.255

• technicalassessment - image quality issues affecting interpretation of CXR observations.256

• tubesandlines - medical support devices where radiologists need to report any placement issues.257

• devices: medical devices where placement issues are less relevant258

• texture - these are only present in the ’texture_cues’ field, we kept a set of highly non-specific259

attributes (e.g. opacity, lucency, interstitial, airspace) that tend to form the initial most objective260

descriptions about what is observed in the images by radiologists.261

Finally, for comparison relationships, each dictionary has the format shown in Supplementary (B.4).262

Each relationship dictionary describes the comparison relation(s) relevant for only one anatomical263
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location (‘bbox_name’). The ‘relationship_id’ uniquely identifies each comparison relationship264

between the object (‘subject_id’) on the current exam and the object (‘object_id’ for the same265

anatomical location) from the previous exam. The ‘predicate’ and ‘synsets’ are the UMLS CUIs266

for ‘relationship_names’, which is a list with usually one (but could be more) comparison relation267

type, which can be in [‘comparison|yes|improved’, ‘comparison|yes|worsened’, ‘comparison|yes|no268

change’]. The ‘attributes’ field records the attributes that are related to the anatomical location as269

per the sentence from the original report (kept in the ‘phrase’ field) that describes the comparison270

relationship.271

CXR Scene Graphs Rendered in an Enriched RDF Format272

Supplementary (B.5): Radiology report sentences are fairly repetitive. Therefore, in the scene graph273

JSONS, one could see similar information described multiple times in different sentences for a274

study. In addition, in the MIMIC reports we worked with, each report could also have a preliminary275

read section (recorded by trainee radiologists - i.e., resident M.D.s) that comes before the final276

report section (approved by a fully trained and experienced radiologist). Therefore, occasionally, the277

extraction from the sentences near the beginning of a CXR report can be different from the conclusion278

sentences later in the report. To render the scene graphs easier for downstream utilization, we also279

provide post-processing utils (scenegraph_postprocessing.py) to roll the annotations up to the study280

level for each relation. This is done by taking the last relation extracted for each anatomical location281

and attribute combinations for a report. The processing utils can either render the scene graphs in282

a tabular format or represent the information in a simpler enriched RDF format, which we used to283

generate the graph visualizations in Figure 1.284

Gold Standard Dataset Tables285

We curated a manual gold standard evaluation dataset to measure the quality of the automatically286

derived annotations in the Chest ImaGenome dataset and for model benchmarking. Here we describe287

the three gold standard ground truth files in the “gold_dataset” directory. They are in tabular format288

for ease of comparison purposes.289

• gold_attributes_relations_500pts_500studies1st.txt is the ground truth file which contains 21,594290

object-to-attribute relations manually annotated for 3,042 sentences from the first CXR study for 500291

unique patients. The notebook ‘object-attribute-relation_evaluation.ipynb’ explains in detail how we292

it to calculate the performance of object-to-attribute relation extraction.293

• gold_comparison_relations_500pts_500studies2nd.txt is the ground truth file which contains294

5,156 object-object (per attribute) comparison relations for 638 sentences from the second CXR study295

for the same 500 unique patients. The notebook ‘object-object-comparison-relation_evaluation.ipynb’296

uses it to calculate the performance for object-to-object-comparison relation extraction.297

• The four bbox_coordinate_annotations*.csv files contain the manually annotated bounding box298

coordinates for the objects on the corresponding 1,000 unique CXR images. The notebook ‘object-299

bbox-coordinates_evaluation.ipynb’ calculates the bounding box object detection performance using300

these ground truth files.301

• Lastly, final_merging_report_and_bbox_ground_truth.ipynb combines the manual302

text and anatomical bbox annotations as gold_object_attribute_with_coordinates.txt and303

gold_object_comparison_with_coordinates.txt.304

Additional supporting files for measuring the performance of the silver dataset against the gold305

standard are described in Supplementary (Section D):306

Dataset Evaluation307

Table 3 (‘analysis/generated via object-attribute-relation_evaluation.ipynb’) reports the NLP pipeline’s308

precision, recall and F1 scores for extracting the relationships between objects (anatomical locations)309

and CXR attributes (findings, diseases, technical assessment, etc) in the scene graphs. Since at their310

most granular level, the annotations are at the sentence-level, we report both the sentence-level and311

report-level results for 500 reports from the first exam of each patient. However, for most purposes,312

report-level annotations (the last annotation for each object-attribute relation for a study) are most313

suitable for downstream uses. The majority of the false positive results are due to failure to detect314
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Metric Sentence-level Report-level
# of annotations 21593 16569

Precision 0.932 0.938
Recall 0.945 0.939

F1-score 0.939 0.939
Table 3: Object-attribute relations. Estimated
inter-annotator (IA) agreement on 500 reports
from first study: 0.984.

Metric Sentence-level Report-level
# of annotations 5154 / 1787 3993 / 1374

Precision 0.831 / 0.856 0.832 / 0.858
Recall 0.590 / 0.663 0.762 / 0.790

F1-score 0.690 / 0.747 0.796 / 0.823
Table 4: Object-object comparison relations
(attribute-sensitive / attribute-blind). IA on
500 reports from second study: 0.962.

the laterality (i.e., left v.s. right) of attributes correctly as this information can often cross sentence315

boundaries, which is beyond the current NLP pipeline.316

Table 4 (generated via ‘analysis/object-object-comparison-relation_evaluation.ipynb’) shows the317

NLP results for comparison relations (improved, worsened, no change) between various anatomical318

locations described for the current study as compared to the patient’s previous study. The results are319

again shown at both sentence-level and report-level for 500 reports from the second exam of each320

patient. For the attribute-sensitive results, a relation is correct if it describes the correct comparison and321

attribute for an object. Attribute-blind relations are correct as long as the object-to-object comparison322

relation is correct. Since comparison relations can cross both sentence and report boundaries, the323

performance from the current per sentence-based NLP pipeline is lower.324

Lastly, Table 7 in Supplementary shows more detailed evaluation at the object-level (anatomical325

location). The F1 scores are calculated for relations extracted between objects and attributes from the326

500 gold standard reports (first study), which is a breakdown of report-level results in Table 3 for327

the bounding boxes (Bboxes) shown. Using the 1, 000 CXR images in the gold standard dataset, we328

also calculated the intersection over union (IoU) between the automatically extracted Bboxes and the329

validated and corrected Bboxes (analysis/object-bbox-coordinates_evaluation.ipynb). Since we used330

an agree-or-correct annotation strategy for more efficient annotation, we also show the percentage of331

bounding boxes requiring manual correction in the gold dataset and the percentage missing in the332

final Chest ImaGenome dataset. Missing bounding boxes could be due to Bbox extraction failure or333

the anatomical location genuinely not being visible in the image (i.e., cut off or not in field of view),334

which is not uncommon for the costophrenic angles and apical zones. Per attribute level performance335

is available on the PhysioNet repository (‘analysis/affirmed_attributes_eval4paper.csv’).336

Clinical Applications337

There are numerous clinical topics that may be explored for a dataset that links anatomic structures338

with individual abnormalities and simultaneously provides comparison relation annotations for339

sequential images. Monitoring the progression of pathologies that are visualized through chest340

imaging is the most unexplored clinical application of this dataset. In the in-patient setting, diagnosis341

and monitoring of pneumonia are typically performed through comparisons of sequential CXR images342

from admission[39]. The same management principle may apply to the evaluation of the progression343

of other diseases, such as pneumothorax, pulmonary edema, acute respiratory distress syndrome, or344

congestive heart failure [40, 41, 42]. In the outpatient setting, surveillance of incidental pulmonary345

nodules, malignancies, tuberculosis, or interstitial lung disease is done through chest imaging in346

several-month intervals [43, 44, 45, 46]. Furthermore, the methodological concepts of this dataset347

could be extended to other modes of imaging, such as computed tomography (CT), and magnetic348

resonance (MR) imaging, etc, further expanding the potential clinical utility of this project.349

Consistent dataset splits for performance reporting: For reproducibility, we include splits for350

train, valid and test sets in the “silver_dataset/splits” directory. The random data split was done at351

the patient level. We also included a file (images_to_avoid.csv) with image IDs (‘dicom_id’) and352

‘study_id’s for patients in the gold standard dataset, which should all be excluded from training and353

validation.354

As described, Chest ImaGenome has been constructed with multiple possible downstream tasks in355

mind. Here, we showcase two example tasks that can have the most immediate clinical applications,356

(i) outputting both the location and the type of CXR attribute for an image (Example Task 2) and (ii)357

comparing whether a location has worsened or improved across sequential exams (Example Task 1).358

Clinically, the two chosen types of tasks are the two most important ones for radiologists to report359

when interpreting CXRs.360
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Table 5: Anatomically localized CXR attribute detection (AUC scores). L1: Lung Opacity, L2:
Pleural Effusion, L3: Atelectasis, L4: Enlarged Cardiac Silhouette, L5: Pulmonary Edema/Hazy
Opacity, L6: Pneumothorax, L7: Consolidation, L8: Fluid Overload/Heart Failure, L9: Pneumonia.

Method L1 L2 L3 L4 L5 L6 L7 L8 L9 AVG
Faster R-CNN 0.84 0.89 0.77 0.85 0.87 0.77 0.75 0.81 0.71 0.80
GlobalView 0.91 0.94 0.86 0.92 0.92 0.93 0.86 0.87 0.84 0.89
CheXGCN 0.86 0.90 0.91 0.94 0.95 0.75 0.89 0.98 0.88 0.90

Example Task 1: Change between sequential CXR exams. CXRs are commonly repeatedly361

requested in the clinical workflow to assess for a myriad of attributes. Given a patient with sequential362

CXRs, the goal of this task is to automatically evaluate disease change over time based on two363

sequential CXR exams. We restricted the problem to a subset of the Chest ImaGenome dataset, i.e.,364

to attributes related to congestive heart failure (CHF), as fluid management is one of the most routine365

clinical tasks for which CXRs can be ordered to guide the next steps (e.g. whether to give more366

intravenous fluid or give diuretics, etc). However, we note that users of this dataset can also explore367

comparison changes for other CXR attributes (e.g. pneumonia). Each CXR image is also associated368

with a bounding box that marks a localized area, e.g., “left lung” for specific anatomical finding (i.e.,369

attribute), such as “pulmonary edema/hazy opacity”, etc. In addition, the pair of CXR images is370

mapped to the comparison label that indicates whether the condition of the anatomical finding has371

improved or worsened. As a baseline example, we focus on change relations in the ’left lung’ and372

’right lung’ objects that are related to the ‘pulmonary edema/hazy opacity’ and ‘fluid overload/heart373

failure’ attributes. The number of examples labeled in the training, validation and test data are 10, 515,374

1, 493 and 2, 987, respectively. We design a siamese architecture (Figure 10 in Supplementary F) that375

first extracts the localized bounding box from each image and encodes the extracted image patches376

with a pre-trained ResNet101 autoencoder, denoted that is trained on several medical imaging datasets,377

e.g., NIH, CheXpert, and MIMIC datasets, etc. [4, 1, 3]. The autoencoder image representations378

are concatenated and passed through a dense layer with 128 neurons and ReLU activations, and a379

final classification layer. We train for 300 epochs with cross-entropy, stochastic gradient descent,380

1e − 3 learning rate, 0.1 gradient clipping and 32 batch size. We freeze the autoencoder weights381

and finetune the two last dense layers. On this challenging task of predicting change in localized382

anatomical findings between two sequential exams, we achieve an accuracy of 75.3%.383

Example Task 2: Localization of CXR attributes. Knowing the anatomical location of non-specific384

findings/attributes on CXR images can help with narrowing down possible disease diagnoses and385

guide the next steps in requesting more specific imaging exams or treatment. To this end, we train a386

Faster R-CNN model [47] to learn 18 anatomical locations within the dataset. We extract the 1024387

dimension convolution feature vector of each anatomical region. We re-implement the state-of-the-art388

CheXGCN model [48] to learn the dependencies between attributes within the Chest X-ray. Similar389

to the work done by CheXGCN we model the correlation of the CXR attributes using a conditional390

probability (see Figure 11 in Supplementary F). We compare the results of the model with two391

baseline models, a Faster R-CNN model followed by a linear model without the GCN, and a Densenet392

model [49] without the Faster R-CNN to evaluate the effectiveness of the localized models. We focus393

on 9 common CXR attributes, which include lung opacity, pleural effusion, atelectasis, enlarged394

cardiac silhouette, pulmonary edema/hazy opacity, pneumothorax, consolidation, fluid overload/heart395

failure, pneumonia. The results of the experiments are shown in Table 5 and the labels are ordered396

according to the attribute list above.397

Dataset Limitations: The Chest ImaGenome dataset came from only one U.S. hospital source. It398

is automatically generated and is limited by the performance of the NLP and the Bbox extraction399

pipelines. Furthermore, we cannot assume that all the clinically relevant CXR attributes are always400

described on every exam by the reporting radiologists. In fact, we have observed many implied401

object-attribute relation descriptions that are documented only in the form of comparisons (e.g. no402

change from previous) in short CXR reports. As such, even with perfect NLP extraction of object and403

attribute relations from individual reports, there would be missing information in the report knowledge404

graph constructed for some images. These technical areas are worth improving on in future research405

with more powerful NLP, image processing techniques and other graph-based techniques. Addressing406

missing relations will certainly improve this dataset too. Regardless, version 1.0.0 of the Chest407

ImaGenome dataset serves as a pioneering vision for a richer radiology imaging dataset.408
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they587

were chosen)? [Yes]588

(c) Did you report error bars (e.g., with respect to the random seed after running experi-589

ments multiple times)? [N/A]590

(d) Did you include the total amount of compute and the type of resources used (e.g., type591

of GPUs, internal cluster, or cloud provider)? [N/A]592

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...593

(a) If your work uses existing assets, did you cite the creators? [Yes]594

(b) Did you mention the license of the assets? [Yes] See Introduction for hyperlink url to595

license.596

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]597

(d) Did you discuss whether and how consent was obtained from people whose data you’re598

using/curating? [Yes]599

(e) Did you discuss whether the data you are using/curating contains personally identifiable600

information or offensive content? [Yes]601

5. If you used crowdsourcing or conducted research with human subjects...602

(a) Did you include the full text of instructions given to participants and screenshots, if603

applicable? [Yes]604

(b) Did you describe any potential participant risks, with links to Institutional Review605

Board (IRB) approvals, if applicable? [N/A]606

(c) Did you include the estimated hourly wage paid to participants and the total amount607

spent on participant compensation? [N/A] All annotators are collaborating researchers.608

Include extra information in the appendix. This section will often be part of the supplemental material.609

Please see the call on the NeurIPS website for links to additional guides on dataset publication.610

1. Submission introducing new datasets must include the following in the supplementary611

materials: [Yes]612

(a) Dataset documentation and intended uses. Recommended documentation frameworks613

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and614

accountability frameworks.615

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded616

by the reviewers. [Yes] They have been entered in the submission system.617

(c) Author statement that they bear all responsibility in case of violation of rights, etc., and618

confirmation of the data license. [N/A] Physionet is for credentialed access. In order619

to use the dataset, researchers will have to individually undergo HIPPA training and620

obtain data use agreement from Physionet.621
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(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as622

long as you ensure access to the data (possibly through a curated interface) and will623

provide the necessary maintenance. [Yes] Project is hosted by Physionet which is624

maintained by the Laboratory of Computational Physiology at MIT.625

2. To ensure accessibility, the supplementary materials for datasets must include the following:626

(a) Links to access the dataset and its metadata. This can be hidden upon submission if the627

dataset is not yet publicly available but must be added in the camera-ready version. In628

select cases, e.g when the data can only be released at a later date, this can be added629

afterward. Simulation environments should link to (open source) code repositories.630

[Yes] The dataset has been submitted to Physionet and awaits approval from Physionet631

reviewers but we do not expect it to be rejected.632

(b) The dataset itself should ideally use an open and widely used data format. Provide a633

detailed explanation on how the dataset can be read. For simulation environments, use634

existing frameworks or explain how they can be used. [Yes] All data are in .JSON or635

.CSV formats that can be easily read. Additional Jupyter Notebooks were submitted636

with the Physionet submission to help users understand and use the dataset.637

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,638

either by uploading to a data repository or by explaining how the authors themselves639

will ensure this. [Yes] Physionet will be around for a long time. Authors also plan on640

building upon this dataset in future work.641

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an642

open source license for code (e.g. RL environments). [Yes] This is the license chosen:643

https://physionet.org/projects/BOFnNTGyCvTT6GMLVzeS/view-license/644

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like645

schema.org and DCAT): This allows it to be discovered and organized by anyone. If646

you use an existing data repository, this is often done automatically. [Yes] Data are647

available through PhysioNet, a standard repository for medical research data648

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by649

a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.650

GitHub, GitLab,...) for code. If this is not possible or useful, please explain why. [Yes]651

The dataset is available on PhysioNet for public viewing (https://doi.org/10.652

13026/wv01-y230) and can be downloaded by any MIMIC credentialed researchers.653

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-654

ducible. Where possible, use a reproducibility framework such as the ML reproducibility655

checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary656

datasets, code, and evaluation procedures must be accessible and documented. [Yes] The657

dataset and it’s related statistics are all documented in Jupyter Notebooks with the Physionet658

commit (which the reviewers can see) and described in this paper or the supplementary659

material. The code for the example experiments will be made available on github in the660

camera ready version if the work is accepted.661

4. For papers introducing best practices in creating or curating datasets and benchmarks, the662

above supplementary materials are not required.663
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Supplementary Material664

A Additional Chest ImaGenome Terminology Descriptions665

Table 6: Semantic category of nodes and edges in CXR knowledge graphs. All nodes are mapped to
UMLS CUIs in the scene graph jsons. All object nodes have corresponding bounding box coordinates
on frontal CXRs except ones with *. All nodes and edges are evaluated with the gold standard dataset
except the edges marked with **, which are modifiers of the context edges.

Category ID type names

technicalassessment attribute node low lung volumes, rotated, artifact, breast/nipple shadows, skin
fold

texture attribute node opacity, alveolar, interstitial, calcified, lucency

anatomicalfinding attribute node lung opacity, airspace opacity, consolidation, infiltration, at-
electasis, linear/patchy atelectasis, lobar/segmental collapse,
pulmonary edema/hazy opacity, vascular congestion, vascular
redistribution, increased reticular markings/ild pattern, pleu-
ral effusion, costophrenic angle blunting, pleural/parenchymal
scarring, bronchiectasis, enlarged cardiac silhouette, mediasti-
nal displacement, mediastinal widening, enlarged hilum, tor-
tuous aorta, vascular calcification, pneumomediastinum, pneu-
mothorax, hydropneumothorax, lung lesion, mass/nodule (not
otherwise specified), multiple masses/nodules, calcified nod-
ule, superior mediastinal mass/enlargement, rib fracture, clav-
icle fracture, spinal fracture, hyperaeration, cyst/bullae, ele-
vated hemidiaphragm, diaphragmatic eventration (benign), sub-
diaphragmatic air, subcutaneous air, hernia, scoliosis, spinal
degenerative changes, shoulder osteoarthritis, bone lesion

disease attribute node pneumonia, fluid overload/heart failure, copd/emphysema, gran-
ulomatous disease, interstitial lung disease, goiter, lung cancer,
aspiration, alveolar hemorrhage, pericardial effusion

nlp attribute node abnormal, normal (with respect to an anatomy/object node)

tubesandlines attribute node chest tube, mediastinal drain, pigtail catheter, endotracheal tube,
tracheostomy tube, picc, ij line, chest port, subclavian line,
swan-ganz catheter, intra-aortic balloon pump, enteric tube

device attribute node sternotomy wires, cabg grafts, aortic graft/repair, prosthetic
valve, cardiac pacer and wires

majorstructure object node right lung, left lung, mediastinum

subanatomy object node right apical zone, right upper lung zone, right mid lung zone,
right lower lung zone, right hilar structures, right costophrenic
angle, left apical zone, left upper lung zone, left mid lung zone,
left lower lung zone, left hilar structures, left costophrenic angle,
upper mediastinum, cardiac silhouette, trachea, right hemidi-
aphragm, left hemidiaphragm, right clavicle, left clavicle, spine,
right atrium, cavoatrial junction, svc, carina, aortic arch, ab-
domen, right chest wall*, left chest wall*, right shoulder*,
left shoulder*, neck*, right arm*, left arm*, right breast*, left
breast*

context edge yes (has/present in), no (not have/not present in)

comparison edge improved, worsened, no change

severity** edge hedge, mild, moderate, severe

temporal** edge acute, chronic
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B Scene Graph JSON666

Below are examples from a scene graph JSON used for explanation for the silver dataset.667

B.1 Scene Graph JSON - first level668

{669

‘chest_imageimage_id’: ‘10cd06e9-5443fef9-9afbe903-e2ce1eb5-dcff1097’,670

‘viewpoint’: ‘AP’, ‘patient_id’: 10063856, ‘study_id’: 56759094,671

‘gender’: ‘F’, ‘age_decile’: ‘50-60’,672

‘reason_for_exam’: ‘___F with hypotension. Evaluate for pneumonia.’,673

‘StudyOrder’: 2, ‘StudyDateTime’: ‘2178-10-05 15:05:32 UTC’,674

‘objects’: [ <...list of {} for each object...> ],675

‘attributes’:[ <...list of {} for each object...> ],676

‘relationships’:[ <...list of {} of comparison relationships between objects677

from sequential exams for the same patient...> ]678

}679

B.2 Scene Graph JSON - objects field680

{681

‘object_id’: ‘10cd06e9-5443fef9-9afbe903-e2ce1eb5-dcff1097_right upper lung zone’,682

‘x1’: 48, ‘y1’: 39, ‘x2’: 111, ‘y2’: 93,683

‘width’: 63, ‘height’: 54,684

‘bbox_name’: ‘right upper lung zone’,685

‘synsets’: [‘C0934570’],686

‘name’: ‘Right upper lung zone’,687

‘original_x1’: 395, ‘original_y1’: 532,688

‘original_x2’: 1255, ‘original_y2’: 1268,689

‘original_width’: 860, ‘original_height’: 736690

}691

B.3 Scene Graph JSON - attributes field692

{693

‘right lung’: True, ‘bbox_name’: ‘right lung’,694

‘synsets’: [‘C0225706’], ‘name’: ‘Right lung’,695

‘attributes’: [[‘anatomicalfinding|no|lung opacity’,696

‘anatomicalfinding|no|pneumothorax’, ‘nlp|yes|normal’],697

[‘anatomicalfinding|no|pneumothorax’]],698

‘attributes_ids’: [[‘CL556823’, ‘C1963215;;C0032326’, ‘C1550457’],699

[‘C1963215;;C0032326’]],700

‘phrases’: [‘Right lung is clear without pneumothorax.’,701

‘No pneumothorax identified.’],702

‘phrase_IDs’: [‘56759094|10’, ‘56759094|14’],703

‘sections’: [‘finalreport’, ‘finalreport’],704

‘comparison_cues’: [[], []],705

‘temporal_cues’: [[], []],706

‘severity_cues’: [[], []],707

‘texture_cues’: [[], []],708

‘object_id’: ‘10cd06e9-5443fef9-9afbe903-e2ce1eb5-dcff1097_right lung’709

}710

B.4 Scene Graph JSON - relationships field711

{712

‘relationship_id’: ‘56759094|7_54814005_C0929215_10cd06e9_4bb710ab’,713

‘predicate’: ‘‘[’No status change’]’’,714

‘synsets’: [‘C0442739’],715

‘relationship_names’: [‘comparison|yes|no change’],716

‘relationship_contexts’: [1.0],717

‘phrase’: ‘Compared with the prior radiograph, there is a persistent veil718

-like opacity\n over the left hemithorax, with a crescent of air surrounding719
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the aortic arch,\n in keeping with continued left upper lobe collapse.’,720

‘attributes’: [‘anatomicalfinding|yes|atelectasis’,721

‘anatomicalfinding|yes|lobar/segmental collapse’,722

‘anatomicalfinding|yes|lung opacity’, ‘nlp|yes|abnormal’],723

‘bbox_name’: ‘left upper lung zone’,724

‘subject_id’: ‘10cd06e9-5443fef9-9afbe903-e2ce1eb5-dcff1097_left upper lung zone’,725

‘object_id’: ‘4bb710ab-ab7d4781-568bcd6e-5079d3e6-7fdb61b6_left upper lung zone’726

}727

B.5 Scene Graph - Enriched RDF JSON format728

{729

<study_id_i> : [730

[[node_id_1, node_type_1], [node_id_2, node_type_2], relation_name_A],731

[[node_id_1, node_type_1], [node_id_3, node_type_3], relation_name_B],732

...733

],734

<study_id_i+1>:[735

[[node_id_1, node_type_1], [node_id_2, node_type_2], relation_name_A],736

[[node_id_1, node_type_1], [node_id_3, node_type_3], relation_name_B],737

...738

],739

}740

C Gold Dataset Annotation - Details741

The ‘gold dataset’ is a randomly sampled subset (500 unique patients) from the automatically742

generated Chest ImaGenome dataset, i.e., the ‘silver dataset’, that has been manually validated or743

corrected. The primary purpose of the ‘gold dataset’ is to evaluate the quality of labels in the ‘silver744

dataset’. For this purpose, we evaluated the Chest ImaGenome dataset along with the 3 components745

below (A-B). The annotations for each component were collected in stages to reduce the cognitive746

workload for the annotators. The annotators are all M.D.s with 2 to 10 or more years of clinical747

experience. One of the annotators is a radiologist trained in the United States, who has over 6 years of748

radiology experience and specializes in reading imaging exams from the Emergency Department (ED)749

setting. The annotation tasks were delegated to the annotators according to their clinical experience,750

which we think are all more than sufficient for the tasks. Component A and B were annotated by the751

radiologist and an M.D. and component C was annotated by 4 M.D.’s.752

A) Evaluating CXR knowledge graph extraction from reports753

The report knowledge graph for the first CXR of the 500 patients was manually reviewed and corrected754

as necessary for relation extraction between the anatomical locations (objects) and the CXR attributes.755

From piloting trials, we found that manually annotating multiple targets at a document level lead to756

a slow and complex task with poor recall. However, sometimes information from prior sentences757

is necessary to annotate both the anatomical locations and the attributes correctly. Therefore, we758

set up the annotation task at the sentence level. Sentences from each report are ordered as per the759

original report, and the phrase boundary for each attribute was marked out for the annotators, where760

the phrases used for detecting each attribute were curated by consensus between two radiologists761

from previous work [5].762

Since we are targeting a large set of possible anatomical locations (object) to attribute combinations,763

the annotation was streamlined into the four steps below to minimize the cognitive overload for764

each step. Steps 1 and 2 are dual annotated by two clinicians (one fully trained radiologist and765

one M.D.), with disagreements resolved by consensus review. Steps 3 and 4 are single annotated.766

A random subset of annotations for 500 sentences from step 4 are sampled and dual annotated to767

estimate inter-annotator agreement. Cleaned results from step 4 constitute the final gold-standard768

CXR knowledge graph ground truth for the 500 reports.769

This annotation component was set up in Excel and was broken down into the following four steps770

below. In our Excel setup, all sentences from each report are available to the annotators (they can just771
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scroll up or down). The sentences are ordered by ‘row_id’ sequentially within each report. Unique772

patients and reports have the same IDs as shown in the figures below.773

Step 1 - For each sentence and NLP extracted attribute combination, decide whether the NLP context774

(affirmed or negated) for the attribute was correct. If not, correct it. Figure 3 shows how this task775

was set up in Excel. The annotators’ task is to make sure the extracted attribute (yellow label_name776

column) has the correct context given the sentence from the report. This ‘context’ is used as the777

relation between the location and the attribute in the final annotated result.778

Figure 3: Step 1: Annotate all attributes per sentence.

Step 2 - For each sentence, decide whether the NLP extracted anatomical location(s) were described or779

implied by the reporting radiologist. If not, remove the location (in yellow column ‘bboxes_corrected).780

If missing, add the location. If unsure (e.g., if lung is mentioned but not sure if it is the right or left781

lung), the annotator can look in previous sentences from the same report. The task was set up as782

shown in Figure 4.783

Figure 4: Step 2: Annotate all locations per sentence.

Step 3 - For recall, manually annotate missed objects and/or attributes for sentences with no NLP784

extractions (a much smaller subset). For this, we used Excel’s filtering function to look at all sentences785

with no automated extractions (empty cells) and de novo added the manual annotations.786

Step 4 - Firstly, all rows from steps 1-3 where the annotations differed between the two annotators787

were reviewed and resolved together by consensus. Then we automatically derived all object-attribute788

relation combinations for each sentence from steps 1-3’s results. The obviously wrong object-to-789

attribute relations were filtered out for each sentence using the CXR ontology. For the remaining790

object-to-attribute relations for each sentence, the task was to indicate whether the logical statement of791

“object X contains (or does not contain) attribute Y” is true or false, as shown in Figure 5. Probable792

relation is still defined to be true for this annotation. Annotating for uncertain relations is beyond793

the scope of this project. However, for future dataset expansion, we have kept the NLP cues for the794

certainty for each object-attribute relation in the scene graph JSON.795

Since step 4 was single annotated, to estimate the final inter-annotator agreement, we randomly796

sampled 500 sentences for dual annotations. This annotated result is also shared on PhysioNet.797

B) Evaluating comparison relation extraction:798

The second CXR exam report for the 500 patients was reviewed for comparison relation extraction.799

The annotation was also set up in Excel and conducted at the sentence level. However, the annotator is800

also shown the whole previous CXR report for context. Similarly, we split the annotation task up into801

several steps, where steps 1 and 2 are dual annotated and disagreement resolved via consensus. Steps802

3 and 4 were single annotated. A subset of 500 sentences from the final annotations was reviewed by803

a second annotator for assessing inter-annotator agreement.804
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Figure 5: Step 4: Annotate all logically correct statements/relations for each sentence.

Step 1 - Given the previous report and the current report sentence, decide whether the extracted805

comparison cue(s) (improved, worsened, no change) is/are correct. If not, correct it/them. In this step,806

the annotators are asked to validate or correct the column ‘comparison’ in Figure 6.807

Step 2 - Building from step 1 for each sentence, given a validated or corrected comparison cue,808

validate whether all the anatomical location(s) extracted are correct (column ‘bbox’ in Figure 6). If809

incorrect or missing, remove or add the correct location(s) to the column.810

Figure 6: Step 1 and 2: Annotate change relations for different anatomical locations

Step 3 - Building from step 2 for each sentence, given each correct comparison cue and anatomical811

location relation, decide whether the attributes assigned to the location described or implied in the812

sentence are correct or not. If not, correct it. Figure 7 illustrates how step 3 was set up, where the813

annotators’ task is to validate or correct the ‘label_name’ column with respect to the ‘bbox’, ‘relation’814

and ‘comparison’ columns for each sentence.815

Step 4 - For recall, we used the filtering function in Excel to isolate all sentences with no comparison816

cue extractions from step 3. Sentences with missing comparison annotations were manually de-novo817

annotated.818

C) Evaluating anatomy object detection for CXR images:819

The first and second CXR images for the same 500 patients were dual validated and corrected for820

the bounding box objects (i.e., 1000 frontal CXR images altogether). Given the resources we had,821
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Figure 7: Step 3: Annotate change relations for different anatomical locations with respect to attribute

we selected 28 anatomical objects (out of 36 available) that are clinically most important for frontal822

CXRs interpretations. The automatically extracted bounding box coordinates were first plotted on823

resized and padded 224x224 images. From piloting, we determined that this image size is sufficiently824

large to annotate the anatomies that we were targeting. The plotted images were displayed one825

at a time to annotators via a custom Jupyter Notebook that we had set up to allow bounding box826

coordinates and label annotations. We set up the annotation task on two panels, one for lung-related827

bounding boxes (Figure 8) and another for mediastinum related and other bounding boxes (Figure 9).828

Figure 8: Bbox annotations - lung related Bboxes panel

Four M.D.’s were trained to perform this task after reviewing a set of 20-30 training examples with a829

radiologist. Since the inter-annotator agreement is high (mean IoU > 0.96 for all objects), the final830

cleaned gold standard bbox coordinates use the average coordinates from two annotators for each831

bounding box.832
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Figure 9: Bbox annotations - mediastinum related and other Bboxes panel

D Dataset Usage Supporting Files833

gold_all_sentences_500pts_1000studies.txt contains all the sentences tokenized from the original834

MIMIC-CXR reports that were used to create the gold standard dataset. We include this file because835

sentences with no relevant object, attribute or relation descriptions did not make it into the gold836

standard dataset. We renamed ‘subject_id’ from MIMIC-CXR dataset to ‘patient_id’ in Chest Im-837

aGenome dataset to avoid confusion with field names for relationships in the scene graphs. Otherwise,838

the ids are unchanged. Sentences in the tokenized file are assigned to ‘history’, ‘prelimread’, or839

‘finalreport’ in the ‘section’ column. The ‘sent_loc’ column contains the order of the sentences as in840

the original report. Minimal tokenization has been done to the sentences.841

gold_bbox_scaling_factors_original_to_224x224.csv contains the scaling ‘ratio’ and the paddings842

(‘left’, ‘right’, ‘top’, and ‘bottom’) added to square the image after resizing the original MIMIC-CXR843

dicoms to 224x224 sizes. These ratios were used to rescale the annotated coordinates for 224x224844

images back to the original CXR image sizes.845

auto_bbox_pipeline_coordinates_1000_images.txt contains the bounding box coordinates that846

were automatically extracted by the Bbox pipeline for the different objects for images in the gold847

standard dataset. It is in a tabular format like with the ground truth for easier evaluation purposes.848

object-bbox-coordinates_evaluation.ipynb notebook calculates the bounding box object detection849

performance using ground truth files from the 4 M.D. annotators , as well as consolidating the final850

gold_bbox_coordinate_annotations_1000images.csv.851

Preprocess_mimic_cxr_v2.0.0_reports.ipynb processes the reports (tokenize sentences and sort852

them into history, prelim or final report sentences) from the original MIMIC-CXR v2.0.0 and853

save output as silver_dataset/cxr-mimic-v2.0.0-processed-sentences_all.txt. Only sentences with854

object or attribute extractions ended up in the final scene graph jsons in the Chest ImaGenome dataset.855

The semantics directory contains the object (objects_detectable_by_bbox_pipeline_v1.txt and856

objects_extracted_from_reports_v1.txt), attribute (attribute_relations_v1.txt) and comoparison857

(comparison_relations_v1.txt) relations labels in the Chest ImaGenome dataset. It also contains858

semantics/label_to_UMLS_mapping.json, which maps all Chest ImaGenome concepts to UMLS859

CUIs [34].860
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E Dataset Evaluation861

Table 7 reports anatomical location level object-to-attribute relations extraction performance by the862

scene graph extraction pipeline. The report numbers are calculated by a combination of notebooks:863

‘generate_scenegraph_statistics.ipynb’, ‘object-attribute-relation_evaluation.ipynb’ and ‘object-bbox-864

coordinates_evaluation.ipynb’.865

Table 7: CXR image object detection evaluation results. * These anatomical locations are extracted
by the Bbox pipeline but they are not manually annotated in the gold standard dataset due to resource
constraints. ** The mediastinum bounding boxes were not directly annotated due to resource
constraints. Mediastinum’s bounding box boundary can be derived from the ground truth for the
upper mediastinum and the cardiac silhouette.

Bbox name
(object)

Object-attribute relations
frequency (500 reports)

Relationships F1
(500 reports)

Bbox IoU
(over 1000 images)

% Bboxes corrected
(1000 images)

% Relations missing
Bbox coordinates

(over whole dataset)
left lung 1453 0.933 0.976 9.90% 0.03%
right lung 1436 0.937 0.983 6.30% 0.04%
cardiac silhouette 633 0.966 0.967 9.70% 0.01%
mediastinum 601 0.952 ** ** 0.02%
left lower lung zone 609 0.932 0.955 8.60% 2.36%
right lower lung zone 580 0.902 0.968 6.00% 2.27%
right hilar structures 572 0.934 0.976 4.10% 1.91%
left hilar structures 571 0.944 0.971 4.30% 2.28%
upper mediastinum 359 0.940 0.994 1.40% 0.12%
left costophrenic angle 298 0.908 0.929 9.60% 0.63%
right costophrenic angle 286 0.918 0.944 6.90% 0.39%
left mid lung zone 173 0.940 0.967 5.70% 2.79%
right mid lung zone 169 0.830 0.968 5.30% 2.31%
aortic arch 144 0.965 0.991 1.40% 0.62%
right upper lung zone 117 0.873 0.972 5.80% 0.04%
left upper lung zone 83 0.811 0.968 6.40% 0.22%
right hemidiaphragm 78 0.947 0.955 7.90% 0.15%
right clavicle 71 0.615 0.986 2.80% 0.50%
left clavicle 67 0.642 0.983 3.00% 0.51%
left hemidiaphragm 65 0.930 0.944 11.30% 0.14%
right apical zone 58 0.852 0.969 5.40% 1.99%
trachea 57 0.983 0.995 0.90% 0.24%
left apical zone 47 0.938 0.963 6.20% 2.40%
carina 41 0.975 0.994 0.80% 1.47%
svc 19 0.973 0.995 0.70% 0.66%
right atrium 14 0.963 0.979 4.00% 0.18%
cavoatrial junction 5 1.000 0.977 4.30% 0.25%
abdomen 80 0.904 * * 0.26%
spine 132 0.824 * * 0.10%
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F Pictorial Overview of Model Architectures866

Due to space limitations, we present overview figures for the models designed for Example Tasks 1867

and 2 here.868
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Figure 10: Example Task 1 Model Overview. Given a pair of CXR images, we extract features for
the anatomical regions of interest with a pretrained ResNet autoencoder, concatenate representations
and pass them through a dense layer and a final classification layer.
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Figure 11: Example Task 2 Model Overview. Given a pair of CXR images, we extract features for
the anatomical regions of interest with a pretrained Faster R-CNN and a GCN to learn the label
dependencies.

25



G Qualitative Evaluation869

In Figure 12, we visualize the output from our model for the anatomical finding predictions of870

costophrenic angles and enlarged cardiac silhouette. In Figure 13, we present an additional example,871

showing that the model is able to provide accurate localization information as well as predict the872

correct finding, i.e., showing accurate localization.873

Image 1 CS RCA

Ground Truth No findings No findings
Our model [50] No findings No findings

Image 2 RCA LCA

Ground Truth L2 L2
Our model [50] L2 L2

Figure 12: Examples of the prediction results. The overall chest X-ray image is shown alongside two
anatomical regions, and predictions are compared against the ground-truth labels.

(a) Original Image (b) Our model [50]

Figure 13: Example image with enlarged cardiac silhouette, showing that the trained model detects
the finding in the correct bounding box.
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