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Abstract

The Spoken Language Understanding Evalua-001
tion (SLUE) suite of benchmark tasks was re-002
cently introduced to address the need for open003
resources and benchmarking of complex spo-004
ken language understanding (SLU) tasks, in-005
cluding both classification and sequence gener-006
ation tasks, on natural speech. The benchmark007
has demonstrated preliminary success in using008
pre-trained speech foundation models (SFM)009
for these SLU tasks. However, the commu-010
nity still lacks a fine-grained understanding of011
the comparative utility of different SFMs. In-012
spired by this, we ask: which SFMs offer the013
most benefits for these complex SLU tasks, and014
what is the most effective approach for incor-015
porating these SFMs? To answer this, we per-016
form an extensive evaluation of multiple super-017
vised and self-supervised SFMs using several018
evaluation protocols: (i) frozen SFMs with a019
lightweight prediction head, (ii) frozen SFMs020
with a complex prediction head, and (iii) fine-021
tuned SFMs with a lightweight prediction head.022
Although the supervised SFMs are pre-trained023
on much more data and with labels, they do not024
always outperform self-supervised SFMs; the025
latter tend to perform at least as well as, and026
sometimes better than, supervised SFMs on027
the sequence generation tasks in SLUE. While028
there is no universally optimal way of incorpo-029
rating SFMs, the complex prediction head gives030
the best performance for most tasks, although031
it increases the inference time. We also intro-032
duce an open-source toolkit and performance033
leaderboard, SLUE-PERB, for these tasks and034
modeling strategies.035

1 Introduction036

Spoken language understanding (SLU) refers to037

tasks that require extracting semantics from spoken038

utterances. SLU systems have important applica-039

tions, for example, in voice assistants and conversa-040

tional agents, and have attracted increasing interest041

in recent years (Yu et al., 2019; Coucke et al., 2018).042

SLU encompasses a wide range of tasks, such as 043

predicting intents and slots (Lugosch et al., 2019; 044

Bastianelli et al., 2020; Saade et al., 2018), recog- 045

nizing entity mentions and labels (Bastianelli et al., 046

2020; Del Rio et al., 2021), detecting the speaker’s 047

sentiment (Busso et al., 2008) and modeling the 048

topic of a spoken dialogue (Ortega and Vu, 2018; 049

Stolcke et al., 2000). More recently, there has been 050

significant interest in tackling more complex tasks 051

like question answering (Li et al., 2018; Shon et al., 052

2023) or summarization (Sharma et al., 2022). 053

The Spoken Language Understanding Evalua- 054

tion (SLUE) (Shon et al., 2022, 2023) suite of 055

benchmark tasks was recently proposed to address 056

the lack of sufficiently complex and varied tasks 057

on natural (rather than synthetic or read) speech 058

from public datasets. SLUE uses annotated nat- 059

ural speech from conversations and monologues 060

and includes both classification and sequence gen- 061

eration tasks. Traditional SLU models use a 062

pipeline (Palmer and Ostendorf, 2001; Horlock 063

and King, 2003; Béchet et al., 2004) of an auto- 064

matic speech recognition (ASR) system followed 065

by a natural language understanding (NLU) system. 066

End-to-end (E2E) SLU systems (Arora et al., 2022; 067

Ghannay et al., 2018) have also been explored to 068

mitigate the impact of error propagation observed 069

in pipeline approaches and take advantage of the 070

information in the audio signal beyond the word 071

content. 072

A recent trend in E2E models has been the use of 073

pre-trained speech foundation models (SFM) (Mo- 074

hamed et al., 2022; Chen et al., 2021b; Hsu 075

et al., 2021; Radford et al., 2022; Peng et al., 076

2023b) that can learn useful representations for 077

a large number of tasks. Due to the increasing 078

diversity of models, benchmarks are important to 079

compare the performance of SFMs on multiple 080

downstream tasks. Performance benchmarks like 081

SUPERB (Speech processing Universal PERfor- 082

mance Benchmark) (Yang et al., 2021) have fa- 083
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cilitated standardized comparison of pre-trained084

SFMs across a diverse range of speech-processing085

tasks. However, such benchmarks lack coverage086

of challenging and realistic SLU tasks. Hence, the087

community lacks a fine-grained understanding of088

the relative merits of different SFMs and different089

ways to use them for downstream SLU tasks.090

Motivated by these shortcomings, we introduce091

SLUE-PERB (Spoken Language Understanding092

Evaluation PERformance Benchmark), specifically093

designed to evaluate representations extracted from094

pre-trained SFMs on complex SLU tasks. We095

use this benchmark to answer two main ques-096

tions: (i) which SFMs are most useful for these097

tasks, and (ii) how do different ways of using these098

SFMs, varying in their compute budget, compare.099

Our study addresses various questions concerning100

SLU systems, such as whether supervised SFMs101

are more beneficial than self-supervised SFMs,102

whether SFMs are effective as frozen feature extrac-103

tors or should be fine-tuned on downstream tasks,104

and whether the complexity of prediction heads105

affects the performance trends.106

We conduct a comprehensive analysis by exam-107

ining three types of SFMs: (i) self-supervised learn-108

ing (SSL) speech models (Baevski et al., 2020; Hsu109

et al., 2021; Chen et al., 2021b) trained on unla-110

beled speech data; (ii) (weakly) supervised ASR111

(and speech translation) models (Radford et al.,112

2022; Peng et al., 2023b) pre-trained on large la-113

beled corpora; and (iii) supervised SLU models pre-114

trained on external SLU corpora (Chen et al., 2020;115

Bastianelli et al., 2020). Our extensive experiments116

are performed on the SLUE benchmark (Shon et al.,117

2022, 2023), which provides curated data for Sen-118

timent Analysis (SA), Named Entity Recognition119

(NER), Named Entity Localization (NEL), Dia-120

logue Act Classification (DAC), Question Answer-121

ing (QA) and Summarization (SUMM). The key122

contributions are:123

• We compare representations extracted from124

various pre-trained SFMs across all SLUE125

tasks. Our experiments reveal that pre-trained126

ASR SFMs excel in classification tasks, while127

SSL SFMs either outperform or perform com-128

parably to supervised ASR SFMs in sequence129

generation tasks.130

• We evaluate different modeling strategies and131

find that the performance improves, and the132

performance gap between different SFMs re-133

duces, as we increase the prediction head size134

or fine-tune the pre-trained SFMs instead of 135

using frozen representations. 136

• While no single method is universally optimal 137

for all tasks, employing a complex prediction 138

head is the best performing strategy for most 139

tasks when inference speed is not a limiting 140

factor. On the other hand, fine-tuned SFMs 141

with a lightweight prediction head are a good 142

option if latency is a concern. 143

• We release our code publicly so that re- 144

searchers can easily reproduce our results and 145

test their own pre-trained SFMs. 146

2 Related Work 147

2.1 Pre-trained speech foundation models 148

The earliest self-supervised speech model, pre- 149

trained on large amounts of unlabeled data, to 150

show improvements in large-scale ASR was 151

wav2vec (Schneider et al., 2019). Since then, the 152

community has developed a variety of pre-trained 153

self-supervised SFMs (Mohamed et al., 2022) and 154

their representations have been successfully incor- 155

porated into task-specific models spanning many 156

applications. 157

Recently, supervised SFMs pre-trained on large 158

amounts of paired or weakly paired speech-text 159

data have gained in popularity. Studies (Arora 160

et al., 2023a,b) have shown that these supervised 161

SFMs can be fine-tuned to achieve state-of-the- 162

art (SOTA) performance on certain downstream 163

tasks. But it remains to be seen how supervised pre- 164

training compares with self-supervised SFMs on 165

complex language understanding tasks like those 166

in SLUE. 167

Despite the wide range of empirical studies, our 168

understanding of the applicability of pre-trained 169

SFMs for SLU tasks is still limited. The few studies 170

so far on SFMs for SLU (Yang et al., 2021; Shon 171

et al., 2022, 2023; Wu et al., 2023; Chien et al., 172

2023; Chou et al., 2023) focus on only selected 173

SLU tasks, a single pre-trained SFM, or simpler 174

SLU tasks. With SLUE-PERB, we aim to fill this 175

knowledge gap by studying the applicability of 176

different types of SFMs and modeling strategies on 177

a variety of SLU tasks. 178

2.2 Performance benchmarks 179

Performance benchmarks have been widely used 180

to study performance on downstream tasks and 181

the information encoded in SFMs. Among them, 182
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Dataset Speaking Style
Size (hours)

Tasks Output Metric
Train Dev Test

SLUE-VoxCeleb Conversational 12.8 2.1 9.0
SA∗ sentiment class F1
ASR† text transcript WER

SLUE-VoxPopuli Orated Speech 14.5 5.0 4.9
NER† (entity phrase, entity tag) pairs Label F1, F1
NEL§ (entity start time, entity end time) pairs Frame F1
ASR† text transcript WER

SLUE-HVB Scripted conversation 6.8 1.0 3.6 DAC∗ dialogue act classes F1

SLUE-SQA-5 Read speech 244.0 21.2 25.8 QA§ (answer start time, answer end time) Frame F1

SLUE-TED Orated Speech 664.0 81.0 84.0 SUMM† text summary ROUGE-L,
BERTScore

∗: Classification, †: Sequence generation, §: Temporal Alignment

Table 1: Overview of the datasets (Shon et al., 2022, 2023) and tasks in SLUE-PERB. "WER" = "word error rate."

SUPERB (Yang et al., 2021) is a popular bench-183

mark developed for SSL SFMs. It includes a vari-184

ety of downstream tasks from speech recognition,185

speaker recognition, emotion recognition, to simple186

SLU tasks like intent classification and slot filling.187

It uses a shared evaluation protocol, combining a188

frozen SFM with a lightweight prediction head for189

each task. Extensions of the benchmark to differ-190

ent languages (LeBenchmark, IndicSUPERB, ML-191

SUPERB (Parcollet et al., 2023; Javed et al., 2023;192

Shi et al., 2023)), modalities (AV-SUPERB (Tseng193

et al., 2023)), and tasks (SUPERB-SG (Tsai et al.,194

2022)) have been proposed.195

Though such benchmarks have tremendous196

value, they lack coverage of challenging and prac-197

tical SLU tasks. Motivated by this, SLUE (Shon198

et al., 2022, 2023) was proposed to focus on more199

challenging SLU tasks on freely available anno-200

tated natural speech datasets, including conversa-201

tional or long-discourse speech, as shown in Tab. 1.202

However, the original SLUE tasks do not have a203

standardized evaluation protocol with an interface204

to a benchmark. Additionally, SLUE primarily205

aimed to compare various pipeline and E2E SLU206

systems rather than analyze the comparative effi-207

cacy of different SFMs. To address these issues, we208

introduce SLUE-PERB, which exhaustively eval-209

uates various pre-trained SFMs across different210

evaluation settings on these complex SLU tasks.211

3 The SLUE-PERB benchmark212

SLUE-PERB is an open-source testbed for evaluat-213

ing SFMs on SLU tasks.214

3.1 Tasks215

Our benchmark currently focuses on the datasets216

from SLUE (Shon et al., 2022) and SLUE Phase-217

2 (Shon et al., 2023). We provide support for 6218

SLUE tasks, shown in Tab. 1. SA is an utterance- 219

level classification task of identifying the sentiment 220

of an utterance. NER is a sequence prediction task 221

of detecting the named entities and labeling their 222

tags in a spoken utterance. NEL involves locat- 223

ing the entities, i.e., predicting the start and end 224

timestamps of any entity in the audio. DAC is an 225

utterance-level multi-label, multi-class classifica- 226

tion task that identifies the function(s) of an utter- 227

ance in a spoken conversation, such as a statement, 228

a question, etc. QA involves locating the answer 229

(i.e. predicting the start and end timestamps) in a 230

spoken document given a spoken question. SUMM 231

is a sequence prediction task that involves generat- 232

ing a text summary of a long speech input. Sec. A.2 233

in the Appendix provides additional dataset details. 234

3.2 Pre-trained speech foundation models 235

We experiment with the following three types of 236

pre-trained SFMs, summarised in Tab. 2, with ad- 237

ditional details in Sec. A.1 in the Appendix. 238

Self-supervised SFMs: To incorporate SSL SFMs, 239

we follow prior work (Yang et al., 2021) and use a 240

weighted sum of the hidden layer representations 241

of SSL encoder to generate speech representations. 242

Supervised ASR SFMs: We use representations 243

derived from the hidden layers of the encoder of 244

supervised encoder-decoder ASR SFMs. The use 245

of the encoder alone makes the comparisons with 246

SSL-based encoders more straightforward, and also 247

follows the practice of prior work using supervised 248

ASR SFMs for other downstream tasks (Gong et al., 249

2023). However, in future work, we plan to study 250

the use of the pre-trained decoder as well. 251

Supervised SLU SFMs: Since most SLU tasks 252

have limited labeled data, our benchmark also eval- 253

uates the impact of pre-training using an exter- 254

nal SLU corpus. As in the case of supervised 255

ASR models, we use the encoder of the pre-trained 256
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Type Speech Foundation Model Architecture Model size Dataset (size in hours) Objective

SSL
Wav2Vec2 (large) (Baevski et al.) 7-Conv 24-Trans 317.4M LibriLight 60k (60k) contrastive

HuBERT (large) (Hsu et al.) 7-Conv 24-Trans 316.6M LibriLight 60k (60k) masked prediction
WavLM (large) (Chen et al.) 7-Conv 24-Trans 315.5M Mix 94k (94k) masked prediction

+ de-noising

ASR
Whisper (med.) (Radford et al.) 2-Conv 24-Trans 315.7M Web data (680k) ASR, ST

OWSM (3.1) (Peng et al.) 2-Conv 18-Branch 560.8M Open-source ASR + ST
data (180k)

ASR, ST

SLU
SWBD Sentiment (Arora et al.) 2-Conv 12-Conf 82.2M SWBD Sentiment (260) SLU

SLURP (Arora et al.) 2-Conv 12-Conf 83.2M SLURP (58) SLU

Table 2: Summary of the encoder of self-supervised and supervised pre-trained SFMs used in this work. The Mix
94k dataset is a mixture of LibriLight 60k (Kahn et al., 2020), GigaSpeech 10k (Chen et al., 2021a), and VoxPopuli
24k (Wang et al., 2021).

model to extract speech representations. For SLU257

SFMs, we choose pre-training SLU corpora de-258

signed for the same task as the target SLU data.259

Hence, we use SLU model pre-trained on the260

SWBD Sentiment dataset for the SA task and SLU261

model pre-trained on SLURP for all other tasks.262

3.3 Evaluation Protocols263

This section provides a high-level overview of the264

various prediction heads and approaches for lever-265

aging SFMs investigated in this study. Further de-266

tails about the evaluation setup are in Sec. 4.267

Lightweight prediction head: We first experiment268

with using a similar evaluation protocol to SU-269

PERB, where the pre-trained SFM is kept frozen,270

with a lightweight prediction head learned on top of271

it to perform classification or sequence generation.272

Depending on the task, this lightweight prediction273

head usually consists of a classification layer or a274

shallow encoder with CTC. As in SUPERB, we use275

weighted combinations of hidden layer activations276

as the input to the classifier or encoder. This evalua-277

tion protocol not only facilitates quick comparison278

of various SFMs but also promotes the develop-279

ment of models capable of performing well across280

multiple tasks without the need for task-specific281

fine-tuning. Unlike SUPERB, SLUE-PERB does282

not restrict its evaluation solely to SSL SFMs.283

Fine-tuned representations: Another popular284

paradigm for incorporating pre-trained SFMs is285

fine-tuning the SFMs along with a lightweight pre-286

diction head. While there are multiple approaches287

to fine-tune SFMs, including parameter-efficient288

approaches like LoRA (Hu et al., 2022), full fine-289

tuning has been most commonly used in prior290

works (Ott et al., 2019; Shon et al., 2022). However,291

this approach significantly increases the computa-292

tion cost during fine-tuning, which might make293

it challenging to use in scenarios with a limited 294

computation budget. 295

Complex prediction head: Motivated by prior 296

works (Zaiem et al., 2023b,a) that show a change in 297

benchmark results with a change in prediction head 298

architectures, we investigate increasing the com- 299

plexity of the prediction head while keeping the 300

SFMs frozen. In this protocol, we experiment with 301

a “prediction head” based on an encoder-decoder 302

architecture. The input to this prediction head is 303

a sequence of pre-trained speech representations 304

and the output is a sequence of text tokens denot- 305

ing the SLU label sequence. While this setting 306

does increase inference time, it serves as a middle 307

ground between the “Lightweight prediction head” 308

and “Fine-tuned representations” settings in terms 309

of the number of trainable parameters and has been 310

used in prior works on SLU (Arora et al., 2022). 311

4 Experiments 312

We conduct our analysis by examining various 313

SFMs as introduced in Tab. 2. Training hyper- 314

parameters are selected based on validation perfor- 315

mance. More details can be found in Sec. A.3 in 316

the Appendix. All our models and config files will 317

be publicly available upon acceptance of the paper. 318

Lightweight prediction head: For the SA task, we 319

mean-pool the extracted features from the SFMs 320

across time, and then pass the pooled representation 321

through a linear layer to compute the probability 322

for each sentiment class. The lightweight classifica- 323

tion layers are trained using cross-entropy loss. In 324

the case of DAC, we follow a similar procedure of 325

mean-pooling followed by a linear layer. As this is 326

a multi-label classification task, we use a sigmoid 327

activation to compute the probability for each dia- 328

logue class and train the linear layer using binary 329

cross entropy loss. During inference, classes with a 330
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probability greater than 0.5 are considered positive.331

For sequence prediction and temporal alignment332

tasks like ASR, NER, NEL and QA, we pass the ex-333

tracted features through a shallow encoder trained334

with CTC loss. NER and ASR models use a 2-335

layer conformer encoder as the prediction head336

and follow a similar input-output formulation as337

in (Peng et al., 2023a). For NEL, following (Shon338

et al., 2023), we perform greedy CTC decoding on339

the NER model to obtain frame-level alignments,340

which are used to get entity start and end time-341

stamps. For the QA task, the input to the model342

is the concatenation of the question and document343

audio, and the output is the concatenation of the344

question and document transcript where the answer345

is delimited by a special character (See Sec. A.3).346

Since QA involves more complex language under-347

standing, we use a 4-layer conformer encoder1 and348

again get timestamps using greedy CTC decoding.349

We experimented with encoder-only CTC training350

for SUMM as well but found that coherent sum-351

maries cannot be produced without a decoder and,352

hence, we do not report results with a lightweight353

prediction head for SUMM.354

Complex prediction head: The complex predic-355

tion head is an encoder-decoder architecture con-356

sisting of a 12-layer conformer encoder and a 6-357

layer transformer decoder, which takes as input the358

weighted sum of representations from pre-trained359

speech models and outputs the SLU label sequence.360

For classification tasks, the SLU label sequence361

comprises the ASR transcript concatenated after362

the SLU class label, following prior work (Arora363

et al., 2022). The SLU label sequences for se-364

quence generation and temporal alignment tasks365

are identical to those in the "lightweight prediction366

head". For the SUMM task, prior work (Sharma367

et al., 2023) has shown that decent performance368

can be achieved by using only the first 30 seconds369

of input audios in the SLUE-TED dataset. Hence,370

we truncate all the audios to 30 seconds since the371

TED talks were too long to fit in a GPU. We follow372

prior works (Shon et al., 2023) to first pre-train373

the model for ASR on the TEDLIUM-3 corpus,374

and then train the model for summarization on the375

SLUE-TED dataset.376

Fine-tuned representations: The prediction head377

architecture and model inputs/outputs are identical378

to those of the "lightweight prediction head" setup379

for all the tasks. We omit the QA and SUMM tasks380

12-layer conformer encoder achieved poor performance
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Figure 1: Performance of various SSL SFMs with a
lightweight prediction head on SLUE tasks.
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Figure 2: Performance of various supervised ASR SFMs
with a lightweight prediction head on SLUE tasks.

in this setting, as fine-tuning representations on the 381

SQA-5 and SLUE-TED corpora is too computa- 382

tionally expensive. 383

5 Results 384

In this section, we analyze the performance of vari- 385

ous SFMs on our performance leaderboard SLUE- 386

PERB, as detailed in Sec. 3. This analysis provides 387

insights into the types of SFMs that prove most 388

effective for complex understanding tasks and how 389

this trend varies across tasks and settings. Figs. 1-7 390

summarize our results. In all figures, bars with 391

sparse stripes correspond to the “lightweight pre- 392

diction head” setting, dense striped bars correspond 393

to “complex prediction head”, and solid bars cor- 394

respond to “fine-tuned representations". Develop- 395

ment and test set results for all experiments are 396

shown in Tabs. 4 and 5, respectively, in the Ap- 397

pendix. 398

5.1 Lightweight prediction head 399

What is the best SSL SFM for SLU? We first 400

compare SSL SFMs using the “lightweight predic- 401

tion head” evaluation protocol (Sec. 3.3) in Fig. 1. 402

We observe that among all SSL models, WavLM 403

features consistently demonstrate superior perfor- 404

mance across all tasks, probably since it was pre- 405

trained on larger and more diverse corpora (see 406

Tab. 2). We further observe that HuBERT features 407

outperform Wav2Vec2 on all tasks except DAC. 408

Prior work (Yang et al., 2021) has also noted the 409
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Figure 4: ASR performance of SFMs with a lightweight
prediction head on VoxCeleb and VoxPopuli datasets.

superior performance of WavLM and HuBERT’s410

representations.411

What is the best supervised SFM for SLU?412

Fig. 2 compares models that use supervised ASR413

SFMs and are trained with lightweight prediction414

heads. Our results show that while OWSM is415

slightly worse than Whisper on SA, NER, and416

NEL tasks, it significantly outperforms Whisper417

for DAC and QA. As shown in Tab. 2, the two mod-418

els differ in encoder architecture (branchformer419

in OWSM (Peng et al., 2024) vs. transformer in420

Whisper (Radford et al., 2022)), training objective421

(joint Connectionist Temporal Classification (CTC)422

loss in OWSM (Peng et al., 2024)), and pre-training423

data, which may contribute to the difference in their424

downstream performance. Notably, Whisper per-425

forms significantly worse on QA. This may result426

from Whisper’s pre-training on 30-second speech427

segments, while the input audios for QA tasks are428

typically longer than 30 seconds. While OWSM429

is also pre-trained on 30 second segments, our re-430

sults show that Whisper representations particularly431

struggle to perform well on longer utterances; we432

discuss this further in Sec. A.3.433

SSL vs. supervised SFMs for SLU: Fig. 3 reports434

the performance of the best performing SSL and435

ASR SFMs using a lightweight prediction head.436

We can observe that supervised ASR SFMs ex-437

hibit the best performance on the classification438

tasks (SA, DAC). Meanwhile, SSL SFMs, WavLM,439

demonstrate strong performance on temporal align-440

ment and sequence generation tasks, comparable441
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Figure 6: Performance of best performing SSL and ASR
SFMs with fine-tuned representations on SLUE tasks.
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to or better than supervised ASR SFMs. Since SSL 442

SFMs have an encoder-only architecture, the SLU 443

tasks could leverage all the information learned dur- 444

ing pre-training as we use the representations from 445

all encoder layers. Supervised SFMs, on the other 446

hand, employ an encoder-decoder architecture and 447

may also retain semantic information within their 448

decoder, which is not used for feature extraction 449

in our experiments. We anticipate that SLU tasks 450

could benefit from integrating the pre-trained de- 451

coder of supervised SFMs , although we leave this 452

exploration to future work. 453

Additionally, Tab. 4 in the Appendix shows that 454

the supervised SLU SFMs consistently underper- 455

form across all tasks, probably due to their much 456

smaller pre-training data. However, they are com- 457

parable to SSL SFMs on DAC. This result may be 458

attributed to the scripted nature of conversations in 459

DAC, that resemble the scripted recordings in the 460

SLURP data used for pre-training our SLU model. 461

We also report the ASR performance for the 462

SLUE Phase-1 datasets in Fig. 4. Surprisingly, 463

we observe that features extracted from supervised 464

ASR SFMs exhibit worse WER than an SSL SFM, 465

namely WavLM. As in sequence generation tasks, 466

we speculate that this may be attributed to the use 467

of representations from the encoder layers alone. 468

5.2 Do performance trends change with 469

different modeling strategies? 470

Complex prediction head: Tab. 4 and Fig. 5 show 471
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Figure 7: Performance of best performing SLUE-PERB results, best E2E model in SLUE toolkit (Shon et al., 2022,
2023) and SOTA on SLU tasks. SOTA results from ∗:(Shon et al., 2022), ∧:(Pasad et al., 2022), %:(Shon et al.,
2023), #:(Sharma et al., 2023). Dense striped bars correspond to the “complex prediction head”, and solid bars
corresponds to “fine-tuned representations".

the performance trends of models with a complex472

prediction head. We observe that the trends re-473

main similar to the setting with simple prediction474

heads, where WavLM features consistently achieve475

the best performance across most tasks. Among476

supervised ASR SFMs, OWSM now outperforms477

Whisper on most tasks. SSL SFMs demonstrate478

slight superiority on most temporal alignment and479

sequence generation tasks, while supervised ASR480

SFMs excel on classification tasks (Fig. 5). We note481

a reduction in the performance gap between differ-482

ent SFMs compared to the lightweight prediction483

head setting. For example, all models now exhibit484

very similar performance on the SA task. Further,485

on SUMM, again, the performance of all models486

is very close, but the models that use supervised487

ASR SFMs are slightly better, reinforcing prior488

work showing the benefits of ASR pre-training for489

SUMM (Sharma et al., 2023).490

Fine-tuned representations: Similarly to the491

trends with frozen representations, Tab. 4 and Fig. 6492

demonstrate that WavLM features continue to ex-493

hibit superior performance among SSL representa-494

tions, while OWSM performs better than Whisper495

when we fine-tune SFMs. Additionally, Fig. 6 illus-496

trates that even with complete fine-tuning of SFMs,497

SSL SFMs (WavLM) still performs optimally on498

sequence generation and temporal alignment tasks,499

whereas supervised ASR SFMs perform better or500

equally well on classification tasks.501

6 Discussion502

6.1 Is there an overall best model?503

When comparing the performance between504

lightweight and complex prediction heads (refer505

to Figs. 3 and 5), we notice an improvement in per-506

formance across all SFMs and tasks. Upon closer507

examination, it becomes evident that the perfor- 508

mance improvement is more pronounced for the 509

SSL SFMs compared to supervised ASR SFMs on 510

classification tasks, resulting in an overall decrease 511

in the performance gap. 512

When comparing performance of frozen and fine- 513

tuned representations under the lightweight predic- 514

tion head protocol (Figs. 3 and 6), we generally 515

observe an improvement in performance across all 516

SFMs and tasks. However, a notable exception is 517

observed with the supervised ASR SFMs, which 518

perform worse on the NER and NEL tasks. This 519

discrepancy may be attributed to the presence of 520

an excessive number of trainable parameters, es- 521

pecially for the OWSM model, when the entire 522

supervised ASR encoder is fine-tuned. 523

We further compare the performance achieved 524

by frozen representations with a complex predic- 525

tion head (Fig. 5) against fine-tuned representations 526

with a lightweight prediction head (Fig. 6). In- 527

terestingly, complex prediction heads demonstrate 528

superior performance compared to fine-tuned rep- 529

resentations across most tasks. However, for the 530

DAC task, fine-tuning a pre-trained encoder yields 531

better results across all SFMs. 532

Overall, our findings indicate that there is no 533

universal optimal method for incorporating pre- 534

trained SFMs across all tasks. When we take both 535

SFMs and prediction heads into consideration, the 536

optimal SFMs and method of incorporating them is 537

task-dependent for our complex SLU tasks. This is 538

in contrast to some prior works (Yang et al., 2021), 539

where a single model, WavLM, emerged as the 540

universal best performing model. 541

6.2 Performance-compute tradeoffs 542

We also compare the training and inference effi- 543

ciency of using a complex prediction head and fine- 544

7



tuned representations, both of which outperform545

frozen representations with a lightweight predic-546

tion head. Models with a complex prediction head547

offer overall better performance, as well as greater548

training efficiency due to their significantly fewer549

trainable parameters (Tab. 6 in Appendix). How-550

ever, it’s important to note that the use of complex551

prediction heads leads to a substantial increase in552

inference time compared to simple prediction heads553

(> 2.5x for all tasks). In summary, employing a554

complex prediction head is, in general, better when555

inference speed is not a bottleneck. On the other556

hand, if latency is a concern, fine-tuned represen-557

tations with a lightweight prediction head serve558

as a good option, enhancing performance without559

compromising on inference time.560

6.3 Comparison with SOTA and E2E baseline561

Fig. 7 compares the best results in our SLUE-PERB562

benchmark with the best E2E results in the orig-563

inal SLUE toolkit (Shon et al., 2022, 2023) and564

SOTA results published in prior works. The best565

performing E2E models in our benchmark either566

outperform or achieve comparable performance to567

existing E2E baselines in the SLUE toolkit. For568

SA, the SOTA results (Shon et al., 2022) are ob-569

tained by a pipeline consisting of an ASR system,570

fine-tuned from Wav2Vec2-large, and a NLU sys-571

tem fine-tuned from Deberta-large, on the SLUE-572

Voxceleb dataset. It is notable that the SOTA results573

significantly outperform the SLUE-PERB results,574

likely due to a significantly larger number of train-575

able parameters (700 million vs. 32.41 million in576

our best model), as well as stronger semantic pro-577

cessing ability due to the incorporation of a large578

pre-trained text encoder. Regarding ASR tasks, we579

achieve similar performance to SOTA results (Shon580

et al., 2022), and the small performance difference581

can be attributed to the fact that SOTA models use582

external language models (LMs) during decoding.583

For NER and NEL tasks, the SOTA re-584

sults (Pasad et al., 2022) perform better than our585

benchmark models since they leverage external586

speech and text data to significantly boost perfor-587

mance. There is a significant difference between588

SOTA results and our best performing benchmark589

model for QA tasks. The SOTA model (Shon et al.,590

2023) is a pipeline system similar to the SOTA SA591

model. We hypothesize that the performance gap592

can be attributed to a larger number of trainable593

parameters (700 million vs. 32.41 million for in594

best model) as well as the fact that QA is the most595

semantically challenging among all SLUE tasks 596

and, hence, greatly benefits from incorporating an 597

LM. For SUMM, the SOTA results (Sharma et al., 598

2023) are achieved by using Whisper-base as the 599

ASR model and a fine-tuned T5-base model for text 600

summarization. The SOTA results outperform our 601

best results, potentially because we do not incorpo- 602

rate a pre-trained LM. We also demonstrate that we 603

outperform the current SOTA (Shon et al., 2023) 604

on DAC despite having fewer trainable parameters 605

(700M in the SOTA pipeline model vs. 561.91M 606

in our best model). 607

These findings highlight that the benchmark 608

models are strong baseline E2E models. By giv- 609

ing open access to these strong baselines as part 610

of SLUE-PERB, we facilitate faster research and 611

development on SLUE tasks. We further show 612

that E2E models can outperform pipeline systems 613

for certain tasks despite having fewer trainable pa- 614

rameters, indicating that the utility of pre-trained 615

LMs is task-dependent. However, pipeline SOTA 616

models currently outperform end-to-end models on 617

semantically challenging SLU tasks like QA and 618

SA. Hence, we plan to extend our benchmark to 619

include pipeline systems in future work to further 620

explore their effectiveness. 621

7 Conclusion 622

In this paper, we address the lack of performance 623

benchmarks for evaluating pre-trained SFMs on 624

SLU tasks. We introduce SLUE-PERB to compare 625

multiple pre-trained SSL and supervised SFMs on 626

complex SLU tasks. Our experiments demonstrate 627

that supervised ASR SFMs like OWSM produce 628

the best performing representations for classifica- 629

tion tasks, while SSL SFMs like WavLM can out- 630

perform or perform comparably to supervised ASR 631

SFMs on temporal alignment and sequence gener- 632

ation tasks. The trends generally remain similar 633

across different evaluation settings, but the perfor- 634

mance gap between different SFMs decreases as 635

we increase the size of the prediction head or fine- 636

tune the SFMs. We also find that while there is no 637

universal best approach for incorporating SFMs, 638

a complex prediction head gives the best perfor- 639

mance for most tasks, at the price of higher infer- 640

ence latency. By making all our code public, we 641

aim to facilitate future research and development 642

on SLUE tasks. In future work, we plan to extend 643

SLUE-PERB to include more data and models, in- 644

cluding pipeline systems. 645
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Limitations646

Our approach currently uses only the encoder of647

the supervised SFMs to generate speech represen-648

tations. A potential limitation is that supervised649

SFMs are encoder-decoder architectures and may650

also retain some information within their decoder,651

which is currently not being used in generating652

speech representations. We plan to delve deeper653

into generating representations from the pre-trained654

decoders in future work. Fig. 7 also illustrates655

that pipeline models incorporating large pre-trained656

text encoders can outperform E2E SLU models on657

many tasks. Hence, a limitation of our benchmark658

is that we currently do not include pipeline systems,659

and we plan to extend our benchmark to incorpo-660

rate these systems in future work. Further, we661

observe that full fine-tuning of SFMs might be too662

computationally expensive for some tasks, and we663

plan to explore the efficacy of parameter-efficient664

fine-tuning approaches in future work.665

Broader Impact and Ethics666

In this work, we strive to compare various SFMs667

on many complex SLU tasks and gain insights on668

which SFMs perform the best and what is the opti-669

mal way of incorporating SFMs in E2E SLU sys-670

tems. Our investigations aim to provide valuable671

insights to researchers regarding which SFMs are672

best suited for their experiments and how to achieve673

optimal performance with minimal experimenta-674

tion. Further, by incorporating SFMs, they can675

perform the task with a significantly smaller num-676

ber of trainable parameters and without the need677

for large amounts of task-specific labeled data. Ad-678

ditionally, we adhere to the ACL Ethics Policy. Our679

experiments are based on open-source datasets with680

no violation of privacy, and we will make all our681

code and models publicly available.682
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Żelasko, and Miguel Jetté. 2021. Earnings-21: A759
practical benchmark for ASR in the wild. In Proc.760
Interspeech.761

S. Ghannay, A. Caubriere, Y. Esteve, N. Camelin, E. Si-762
monnet, A. Laurent, and E. Morin. 2019. End-To-763
End Named Entity and Semantic Concept Extraction764
from Speech. In SLT.765

S. Ghannay, A. Caubrière, Y. Estève, N. Camelin, E. Si-766
monnet, A. Laurent, and E. Morin. 2018. End-to-end767
named entity and semantic concept extraction from768
speech. In 2018 IEEE Spoken Language Technology769
Workshop (SLT), pages 692–699.770

Yuan Gong, Sameer Khurana, Leonid Karlinsky, and771
James Glass. 2023. Whisper-at: Noise-robust auto-772
matic speech recognizers are also strong general au-773
dio event taggers. arXiv preprint arXiv:2307.03183.774

James Horlock and Simon King. 2003. Discriminative775
methods for improving named entity extraction on776
speech data. In Proc. 8th European Conference on777
Speech Communication and Technology (Eurospeech778
2003), pages 2765–2768.779

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,780
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-781
rahman Mohamed. 2021. HuBERT: Self-supervised782
speech representation learning by masked prediction783
of hidden units. IEEE Trans. Audio, Speech, Lang.784
Process., 29:3451–3460.785

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan786
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and787
Weizhu Chen. 2022. Lora: Low-rank adaptation of788
large language models. In The Tenth International789
Conference on Learning Representations, ICLR 2022,790
Virtual Event, April 25-29, 2022. OpenReview.net.791

Tahir Javed, Kaushal Santosh Bhogale, Abhigyan Ra-792
man, Pratyush Kumar, Anoop Kunchukuttan, and793
Mitesh M. Khapra. 2023. Indicsuperb: A speech794
processing universal performance benchmark for in-795
dian languages. In Thirty-Seventh AAAI Conference796
on Artificial Intelligence, AAAI 2023, Thirty-Fifth797
Conference on Innovative Applications of Artificial798
Intelligence, IAAI 2023, Thirteenth Symposium on799
Educational Advances in Artificial Intelligence, EAAI800
2023, Washington, DC, USA, February 7-14, 2023,801
pages 12942–12950. AAAI Press.802

Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny803
Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré,804

Julien Karadayi, Vitaliy Liptchinsky, Ronan Col- 805
lobert, Christian Fuegen, et al. 2020. Libri-Light: 806
A benchmark for ASR with limited or no supervision. 807
In Proc. ICASSP. 808

Arne Köhn, Florian Stegen, and Timo Baumann. 2016. 809
Mining the spoken wikipedia for speech data and 810
beyond. In Proceedings of the Tenth International 811
Conference on Language Resources and Evaluation 812
(LREC’16), pages 4644–4647. 813

Chia-Hsuan Li, Szu-Lin Wu, Chi-Liang Liu, and Hung- 814
yi Lee. 2018. Spoken squad: A study of mitigating 815
the impact of speech recognition errors on listening 816
comprehension. In Interspeech. 817

Chin-Yew Lin. 2004. ROUGE: A package for auto- 818
matic evaluation of summaries. In Text Summariza- 819
tion Branches Out, pages 74–81, Barcelona, Spain. 820
Association for Computational Linguistics. 821

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, 822
Vikrant Singh Tomar, and Yoshua Bengio. 2019. 823
Speech model pre-training for end-to-end spoken lan- 824
guage understanding. In Proc. Interspeech. 825

Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, 826
Jakob D Havtorn, et al. 2022. Self-supervised speech 827
representation learning: A review. IEEE Journal of 828
Selected Topics in Signal Processing (JSTSP). 829

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. 830
2019. When does label smoothing help? Advances 831
in neural information processing systems, 32. 832

Daniel Ortega and Ngoc Thang Vu. 2018. Lexico- 833
acoustic neural-based models for dialog act classifi- 834
cation. In Proc. ICASSP. 835

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 836
Sam Gross, Nathan Ng, David Grangier, and Michael 837
Auli. 2019. fairseq: A fast, extensible toolkit for 838
sequence modeling. In Proceedings of NAACL-HLT 839
2019: Demonstrations. 840

David D. Palmer and Mari Ostendorf. 2001. Improving 841
information extraction by modeling errors in speech 842
recognizer output. In Proceedings of the First Inter- 843
national Conference on Human Language Technol- 844
ogy Research. 845

Titouan Parcollet, Ha Nguyen, Solene Evain, 846
Marcely Zanon Boito, Adrien Pupier, Salima Mdhaf- 847
far, Hang Le, Sina Alisamir, Natalia Tomashenko, 848
Marco Dinarelli, Shucong Zhang, Alexandre 849
Allauzen, Maximin Coavoux, Yannick Esteve, 850
Mickael Rouvier, Jerome Goulian, Benjamin 851
Lecouteux, Francois Portet, Solange Rossato, Fabien 852
Ringeval, Didier Schwab, and Laurent Besacier. 853
2023. Lebenchmark 2.0: a standardized, replicable 854
and enhanced framework for self-supervised 855
representations of french speech. 856

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng 857
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. 858
2019. Specaugment: A simple data augmentation 859

10

https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.1109/SLT.2018.8639513
https://doi.org/10.21437/Eurospeech.2003-737
https://doi.org/10.21437/Eurospeech.2003-737
https://doi.org/10.21437/Eurospeech.2003-737
https://doi.org/10.21437/Eurospeech.2003-737
https://doi.org/10.21437/Eurospeech.2003-737
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1609/AAAI.V37I11.26521
https://doi.org/10.1609/AAAI.V37I11.26521
https://doi.org/10.1609/AAAI.V37I11.26521
https://doi.org/10.1609/AAAI.V37I11.26521
https://doi.org/10.1609/AAAI.V37I11.26521
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/H01-1034
https://aclanthology.org/H01-1034
https://aclanthology.org/H01-1034
https://aclanthology.org/H01-1034
https://aclanthology.org/H01-1034
http://arxiv.org/abs/2309.05472
http://arxiv.org/abs/2309.05472
http://arxiv.org/abs/2309.05472
http://arxiv.org/abs/2309.05472
http://arxiv.org/abs/2309.05472
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680


method for automatic speech recognition. In Inter-860
speech, pages 2613–2617.861

Ankita Pasad, Felix Wu, Suwon Shon, Karen Livescu,862
and Kyu Han. 2022. On the use of external data for863
spoken named entity recognition. In NAACL-HLT.864

Yifan Peng, Siddhant Arora, Yosuke Higuchi, Yushi865
Ueda, Sujay Kumar, Karthik Ganesan, Siddharth866
Dalmia, Xuankai Chang, and Shinji Watanabe. 2023a.867
A study on the integration of pre-trained ssl, asr, lm868
and slu models for spoken language understanding.869
In 2022 IEEE Spoken Language Technology Work-870
shop (SLT), pages 406–413.871

Yifan Peng, Jinchuan Tian, William Chen, Siddhant872
Arora, Brian Yan, Yui Sudo, Muhammad Shakeel,873
Kwanghee Choi, Jiatong Shi, Xuankai Chang, et al.874
2024. Owsm v3. 1: Better and faster open whisper-875
style speech models based on e-branchformer. arXiv876
preprint arXiv:2401.16658.877

Yifan Peng, Jinchuan Tian, Brian Yan, Dan Berrebbi,878
Xuankai Chang, Xinjian Li, Jiatong Shi, Siddhant879
Arora, William Chen, Roshan Sharma, Wangyou880
Zhang, Yui Sudo, Muhammad Shakeel, Jee weon881
Jung, Soumi Maiti, and Shinji Watanabe. 2023b.882
Reproducing whisper-style training using an open-883
source toolkit and publicly available data.884

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-885
man, Christine McLeavey, and Ilya Sutskever. 2022.886
Robust speech recognition via large-scale weak su-887
pervision. CoRR, abs/2212.04356.888

Alaa Saade, Alice Coucke, Alexandre Caulier, Joseph889
Dureau, Adrien Ball, Théodore Bluche, David890
Leroy, Clément Doumouro, Thibault Gisselbrecht,891
Francesco Caltagirone, et al. 2018. Spoken lan-892
guage understanding on the edge. arXiv preprint893
arXiv:1810.12735.894

Steffen Schneider, Alexei Baevski, Ronan Collobert,895
and Michael Auli. 2019. wav2vec: Unsupervised896
pre-training for speech recognition. In Interspeech897
2019, 20th Annual Conference of the International898
Speech Communication Association, Graz, Austria,899
15-19 September 2019, pages 3465–3469. ISCA.900

Roshan Sharma, William Chen, Takatomo Kano,901
Ruchira Sharma, Atsunori Ogawa, Siddhant Arora,902
Marc Delcroix, Rita Singh, Shinji Watanabe, and903
Bhiksha Raj. 2023. ESPNET-SUMM: Introducing a904
novel large dataset, toolkit, and a cross-corpora eval-905
uation of speech summarization systems. In ASRU906
2023.907

Roshan Sharma, Shruti Palaskar, Alan W Black, and908
Florian Metze. 2022. End-to-end speech summariza-909
tion using restricted self-attention. In ICASSP 2022910
- 2022 IEEE International Conference on Acoustics,911
Speech and Signal Processing (ICASSP), pages 8072–912
8076.913

Jiatong Shi, Dan Berrebbi, William Chen, En-Pei914
Hu, Wei-Ping Huang, Ho-Lam Chung, Xuankai915

Chang, Shang-Wen Li, Abdelrahman Mohamed, 916
Hung yi Lee, and Shinji Watanabe. 2023. ML- 917
SUPERB: Multilingual Speech Universal PERfor- 918
mance Benchmark. In Proc. INTERSPEECH 2023, 919
pages 884–888. 920

Suwon Shon, Siddhant Arora, Chyi-Jiunn Lin, Ankita 921
Pasad, Felix Wu, Roshan S Sharma, Wei-Lun Wu, 922
Hung-yi Lee, Karen Livescu, and Shinji Watanabe. 923
2023. SLUE phase-2: A benchmark suite of diverse 924
spoken language understanding tasks. In Proceed- 925
ings of the 61st Annual Meeting of the Association for 926
Computational Linguistics (Volume 1: Long Papers), 927
pages 8906–8937, Toronto, Canada. Association for 928
Computational Linguistics. 929

Suwon Shon, Ankita Pasad, Felix Wu, Pablo Brusco, 930
Yoav Artzi, Karen Livescu, and Kyu J Han. 2022. 931
Slue: New benchmark tasks for spoken language 932
understanding evaluation on natural speech. pages 933
7927–7931. 934

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, 935
Ilya Sutskever, and Ruslan Salakhutdinov. 2014. 936
Dropout: a simple way to prevent neural networks 937
from overfitting. The journal of machine learning 938
research, 15(1):1929–1958. 939

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth 940
Shriberg, Rebecca Bates, et al. 2000. Dialogue act 941
modeling for automatic tagging and recognition of 942
conversational speech. Computational Linguistics, 943
26(3):339–371. 944

Hsiang-Sheng Tsai, Heng-Jui Chang, Wen-Chin Huang, 945
Zili Huang, et al. 2022. Superb-sg: Enhanced speech 946
processing universal performance benchmark for se- 947
mantic and generative capabilities. In Association 948
for Computational Linguistics (ACL). 949

Yuan Tseng, Layne Berry, Yi-Ting Chen, I-Hsiang Chiu, 950
Hsuan-Hao Lin, Max Liu, Puyuan Peng, Yi-Jen Shih, 951
Hung-Yu Wang, Haibin Wu, Po-Yao Huang, Chun- 952
Mao Lai, Shang-Wen Li, David Harwath, Yu Tsao, 953
Shinji Watanabe, Abdelrahman Mohamed, Chi-Luen 954
Feng, and Hung yi Lee. 2023. Av-superb: A multi- 955
task evaluation benchmark for audio-visual represen- 956
tation models. 957

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, 958
Chaitanya Talnikar, Daniel Haziza, Mary Williamson, 959
Juan Pino, and Emmanuel Dupoux. 2021. VoxPop- 960
uli: A large-scale multilingual speech corpus for rep- 961
resentation learning, semi-supervised learning and 962
interpretation. arXiv preprint arXiv:2101.00390. 963

Felix Wu, Kwangyoun Kim, Shinji Watanabe, Kyu J. 964
Han, Ryan McDonald, Kilian Q. Weinberger, and 965
Yoav Artzi. 2023. Wav2seq: Pre-training speech-to- 966
text encoder-decoder models using pseudo languages. 967
In ICASSP 2023 - 2023 IEEE International Confer- 968
ence on Acoustics, Speech and Signal Processing 969
(ICASSP), pages 1–5. 970

Shu-Wen Yang, Po-Han Chi, Yung-Sung Chuang, 971
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, 972

11

https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.1109/SLT54892.2023.10022399
https://doi.org/10.1109/SLT54892.2023.10022399
https://doi.org/10.1109/SLT54892.2023.10022399
http://arxiv.org/abs/2309.13876
http://arxiv.org/abs/2309.13876
http://arxiv.org/abs/2309.13876
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.21437/Interspeech.2019-1873
https://doi.org/10.21437/Interspeech.2019-1873
https://doi.org/10.21437/Interspeech.2019-1873
https://doi.org/10.1109/ICASSP43922.2022.9747320
https://doi.org/10.1109/ICASSP43922.2022.9747320
https://doi.org/10.1109/ICASSP43922.2022.9747320
https://doi.org/10.21437/Interspeech.2023-1316
https://doi.org/10.21437/Interspeech.2023-1316
https://doi.org/10.21437/Interspeech.2023-1316
https://doi.org/10.21437/Interspeech.2023-1316
https://doi.org/10.21437/Interspeech.2023-1316
https://aclanthology.org/2023.acl-long.496
https://aclanthology.org/2023.acl-long.496
https://aclanthology.org/2023.acl-long.496
http://arxiv.org/abs/2309.10787
http://arxiv.org/abs/2309.10787
http://arxiv.org/abs/2309.10787
http://arxiv.org/abs/2309.10787
http://arxiv.org/abs/2309.10787
https://doi.org/10.1109/ICASSP49357.2023.10096988
https://doi.org/10.1109/ICASSP49357.2023.10096988
https://doi.org/10.1109/ICASSP49357.2023.10096988


Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting973
Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko-tik974
Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-975
Wen Li, Shinji Watanabe, Abdelrahman Mohamed,976
and Hung-yi Lee. 2021. SUPERB: speech processing977
universal performance benchmark. In Interspeech978
2021, 22nd Annual Conference of the International979
Speech Communication Association, Brno, Czechia,980
30 August - 3 September 2021, pages 1194–1198.981
ISCA.982

Dian Yu, Michelle Cohn, Yi Mang Yang, Chun-Yen983
Chen, Weiming Wen, et al. 2019. Gunrock: A social984
bot for complex and engaging long conversations. In985
Proc. EMNLP-IJCNLP: System Demonstrations.986

Salah Zaiem, Youcef Kemiche, Titouan Parcollet, Slim987
Essid, and Mirco Ravanelli. 2023a. Speech self-988
supervised representation benchmarking: Are we989
doing it right? arXiv preprint arXiv:2306.00452.990

Salah Zaiem, Youcef Kemiche, Titouan Parcollet,991
Slim Essid, and Mirco Ravanelli. 2023b. Speech992
self-supervised representations benchmarking: a993
case for larger probing heads. arXiv preprint994
arXiv:2308.14456.995

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.996
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-997
uating text generation with bert. In International998
Conference on Learning Representations.999

A Appendix 1000

A.1 Model details 1001

Wav2Vec2 (Baevski et al., 2020) is a SSL speech 1002

model which employs a contrastive loss during 1003

pre-training and has shown improvements in large- 1004

scale ASR. 1005

HuBERT (Hsu et al., 2021) is another SSL model 1006

that predicts discrete targets of masked speech re- 1007

gions, similar to the masked language model objec- 1008

tive. 1009

WavLM (Chen et al., 2021b) expands on HuBERT 1010

by increasing pre-training data and adopting a 1011

masked speech denoising and prediction frame- 1012

work. 1013

Whisper (Radford et al., 2022) is one large speech 1014

foundation model that has been pre-trained on huge 1015

amounts of labeled data for ASR and speech trans- 1016

lation (ST) tasks. 1017

OWSM (Peng et al., 2023b, 2024) is a reproduction 1018

of Whisper using publicly available data and open- 1019

source toolkits. 1020

A.2 Datasets, Tasks and Metrics 1021

All the datasets are released under Creative Com- 1022

mon license to give the best freedom of use. 1023

SLUE-VoxCeleb (Shon et al., 2022): SLUE- 1024

VoxCeleb is constructed from YouTube videos. In 1025

this dataset, each spoken utterance is labeled with 1026

one of three sentiment classes: positive, negative, 1027

and neutral. To assess SA performance, we calcu- 1028

late macro-averaged F1 scores. 1029

SLUE-Voxpopuli (Shon et al., 2022, 2023): SLUE- 1030

Voxpopuli consists of European Parliament event 1031

recordings. It includes 7 named-entity tags and 1032

13 sub-tags (fine-grained tagging labels). Prior 1033

work (Shon et al., 2023) extends SLUE-VoxPopuli 1034

to also evaluate NEL systems by including word- 1035

level timestamps for entities in the development 1036

set. NEL performance is evaluated either as a 1037

frame-level overlap between the predicted and the 1038

ground-truth entity spans and is reported as an 1039

F1 score (frame-F1), tuned with an offset hyper- 1040

parameter (Shon et al., 2023). The NEL evalua- 1041

tion is purely based on the time stamps and does 1042

not consider the entity tags or the entity phrases. 1043

Complementary to NEL, NER performance is eval- 1044

uated on the predicted named entity phrase and 1045

the corresponding tags using a micro-averaged F1 1046

score (Ghannay et al., 2019; Shon et al., 2022). In 1047

addition, we also report label-F1 that only consid- 1048

ers the tag predictions and excuses misspellings or 1049
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segmentation errors in the decoded text.1050

SLUE-HVB (Shon et al., 2023): HarperValley-1051

Bank corpus consists of scripted dialogues between1052

bank employees and customers. The dialog act la-1053

bels in SLUE-HVB include 5 actions and 18 sub-1054

actions (fine-grained labeling scheme). We evalu-1055

ate DAC on the fine-grained labeling scheme using1056

macro-averaged (unweighted) F1 score.1057

SLUE-SQA-5 (Shon et al., 2023): SLUE-SQA-51058

is a spoken question answering (QA) corpus where1059

both document and question consist of real speech1060

data. The question-answer pairs are collected from1061

the text QA dataset; spoken documents are col-1062

lected from the Spoken Wikipedia dataset (Köhn1063

et al., 2016) whereas the spoken versions of ques-1064

tions are obtained by crowdsourcing. Similar to1065

NEL, we measure the performance using the frame-1066

F1 score.1067

SLUE-TED (Shon et al., 2023): SLUE-TED is a1068

corpus of summaries for TED-talks. The ground1069

truth summary is obtained by concatenating the title1070

and abstract of TED talks, which are publicly avail-1071

able. We evaluate summarisation performance us-1072

ing ROUGE (Lin, 2004) and BERTScore (Zhang*1073

et al., 2020).1074

A.3 Experimental Setups1075

All our experiments are conducted with ESPnet-1076

SLU toolkit (Arora et al., 2022). We apply1077

SpecAugment (Park et al., 2019) and use dropout1078

(Srivastava et al., 2014) and label smoothing1079

(Müller et al., 2019) techniques. The models are1080

trained using an NVIDIA A40 (40GB) GPU. All1081

model, training, and inference parameters are se-1082

lected based on validation performance. Table 31083

shows training and inference hyperparameters for1084

our hyperparameter search. We perform extensive1085

tuning of training parameters, particularly warmup1086

and learning rate. Full details about models, con-1087

figuration files, and data preparation will be made1088

publicly available prior to publication.1089

Lightweight prediction head: For classification1090

tasks, the prediction head is a linear classifier that1091

takes in the pooled representations as discussed1092

in Sec. 4. The output of the classifier layer is the1093

number of classes, which is 3 for SA and 18 for1094

DAC. For NER and NEL, the output is the text1095

transcript, where entity phrases are delimited by1096

entity tags and special characters. An example of1097

NER label sequence is “we welcome ORG FILL1098

parliament SEP ’s agreement” where “ORG” is the1099

entity tag, “parliament” is the entity mention, and1100

FILL and SEP are special characters. 1101

For QA, the input is the concatenation of the 1102

question and document audio, and the output is the 1103

concatenation of the question and document tran- 1104

script, where special characters again delimit the 1105

answer. An example output sequence is “who is the 1106

present quarterback of the broncos SEP nature and 1107

persistence of the tennessee volunteers quarterback 1108

at the time ANS peyton manning ANS having ...” 1109

where the “SEP” token separate the question and 1110

document transcript and “peyton manning” is the 1111

answer to the question delimited by special tokens 1112

“ANS”. Since each spoken document is nearly 40 1113

seconds long, we cannot use Whisper’s original 1114

sinusoid positional embedding since it cannot ac- 1115

cept inputs greater than 30 seconds. Hence, we 1116

defined our own sinusoid positional embedding 1117

that can accept inputs that are as long as 2 minutes 1118

to generate speech representations from the Whis- 1119

per encoder. Since sinusoid positional embedding 1120

does not have any parameters, we believe that our 1121

modeling design should not affect the quality of 1122

generated speech representations. The architecture 1123

of the prediction head for NER and QA are shal- 1124

low conformer encoders trained with CTC loss, as 1125

described in Sec. 4. 1126

Complex prediction head: The architecture of 1127

the complex prediction head is an encoder-decoder 1128

architecture consisting of a 12-layer conformer 1129

encoder and a 6-layer transformer decoder. For 1130

SUMM task, the output is the concatenation of the 1131

title and abstract of TED talks, which are publicly 1132

available. An example of SUMM label sequence 1133

is “what it’s like to be a parent in a war zone [sep] 1134

how do parents protect their children and help them 1135

feel secure again · · · ”. Further, for SQA, we obtain 1136

the answer tokens from the decoder and then get 1137

the timestamps for the answer tokens from greedy 1138

CTC decoding. The inference setting for all other 1139

non-classification tasks is the same as that with the 1140

“Lightweight prediction head”. 1141

Fine-tuned representations: The architecture of 1142

the prediction head is the same as the lightweight 1143

prediction head; however, now the pre-trained 1144

speech representations are also fine-tuned. Sim- 1145

ilar to prior work (Baevski et al., 2020; Hsu et al., 1146

2021; Chen et al., 2021b), the convolutional feature 1147

encoder layers for SSL SFMs are kept frozen. 1148

A.4 Number of Trainable Parameters 1149

We present the number of trainable parameters for 1150

all our models in Tab. 6. We observe that the 1151

13



Hyperparameter Value

Convolution Subsampling [1/2x, 1/4x]
Dropout Rate [0, 0.1, 0.2]
LR schedule [inv. sqrt., exp. lr.]
Max learning rate [1e-1, 1e-2, 5e-3, 1e-3, 4e-4, 1e-4, 1e-5, 1e-6]
Warmup steps [2500, 5000, 10000]
Number of epochs [30, 50, 70]
Adam eps 1e-8
Adam betas (0.9, 0.999)
Weight decay [1e-5, 1e-6, 1e-7]

Beam Size [1, 2, 10]
Length Penalty [0, 0.1]
CTC weight [0.0, 0.3]

Table 3: Training and inference hyper-parameter search for SLUE-PERB Models.

lightweight prediction head protocol has approxi-1152

mately 6 million trainable parameters, the complex1153

prediction head setting has around 30 million train-1154

able parameters, and fine-tuning representation has1155

nearly 300 million parameters for most speech rep-1156

resentations and tasks. Consequently, the com-1157

plex prediction head settings serves as a middle1158

ground between lightweight prediction heads and1159

fine-tuned representation settings in terms of com-1160

putational cost. Furthermore, we demonstrate that1161

increasing the number of trainable parameters does1162

not always result in improved performance. Inter-1163

estingly, models with complex prediction heads1164

can outperform models with fine-tuned representa-1165

tions on some SLU tasks, namely NER and NEL.1166

This observation highlights the need to explore di-1167

verse methods of incorporating pre-trained speech1168

representations to achieve optimal performance.1169
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Evaluation Pre-Trained SLUE-VoxCeleb SLUE-VoxPopuli SQA-5 SLUE-TED SLUE-HVB

Protocol Model SA ASR NER ASR NEL QA SUMM DAC
F1 ↑ WER ↓ Label F1 ↑ F1 ↑ WER ↓ Frame F1 ↑ Frame F1 ↑ ROUGE-L ↑ BERTScore ↑ F1 ↑

Lightweight
HuBERT (large) 41.0 19.0 76.5 59.3 14.2 67.7 12.0 ✗ ✗ 48.0

Wav2Vec2 (large) 40.6 21.7 73.6 57.5 16.0 64.1 6.0 ✗ ✗ 51.2

prediction
WavLM (large) 43.3 14.1 80.6 64.5 10.4 72.0 17.4 ✗ ✗ 54.6

Whisper (medium) 49.6 15.0 79.6 63.1 12.5 71.8 0.1 ✗ ✗ 59.7

head
OWSM (3.1) 47.2 17.4 78.4 61.7 12.8 70.5 14.0 ✗ ✗ 66.3

Pre-trained SLU 36.4 47.5 60.8 45.5 39.1 47.8 2.0 ✗ ✗ 54.4

Complex
HuBERT (large) 52.2 15.5 78.5 63.1 13.0 69.8 21.4 16.0 83.4 66.1

Wav2Vec2 (large) 53.3 17.2 78.2 63.7 14.0 71.2 18.8 16.2 83.0 65.8

prediction
WavLM (large) 52.0 11.4 82.7 69.7 10.1 72.6 22.5 16.4 83.0 67.4

Whisper (medium) 51.0 14.9 79.2 64.1 13.2 70.1 1.6 16.0 83.8 67.8

head
OWSM (3.1) 52.8 16.5 79.6 66.0 12.6 68.6 20.3 16.5 83.6 69.4

Pre-trained SLU 49.7 36.4 68.7 54.8 28.5 54.4 3.2 15.4 82.9 66.3

Fine-tuning
HuBERT (large) 46.5 14.8 78.8 62.6 12.0 69.4 ✗ ✗ ✗ 72.7

Wav2Vec2 (large) 45.0 14.7 78.2 62.9 11.7 68.6 ✗ ✗ ✗ 71.3
WavLM (large) 47.9 12.1 82.5 66.3 9.7 71.7 ✗ ✗ ✗ 71.5

representations
Whisper (medium) 51.8 20.5 76.9 59.8 18.2 56.6 ✗ ✗ ✗ 69.8

OWSM (3.1) 47.8 15.0 78.5 61.5 14.3 65.1 ✗ ✗ ✗ 72.1
Pre-trained SLU 46.1 34.6 60.8 47.6 37.1 49.1 ✗ ✗ ✗ 68.7

Table 4: Performance of various SSL, supervised ASR, and SLU representations on the test set of SLUE tasks using
various evaluation protocols in SLUE-PERB. The symbol ✗ indicates that the results were not computed either due
to the inability to perform summarization without a decoder or because fine-tuning representations on SQA-5 and
SLUE-TED corpora were not feasible within our computational budget.

Evaluation Pre-Trained SLUE-VoxCeleb SLUE-VoxPopuli SQA-5 SLUE-TED SLUE-HVB

Protocol Model SA ASR NER ASR NEL QA SUMM DAC
F1 ↑ WER ↓ Label F1 ↑ F1 ↑ WER ↓ Frame F1 ↑ Frame F1 ↑ ROUGE-L ↑ BERTScore ↑ F1 ↑

Lightweight
HuBERT (large) 37.2 16.2 81.8 64.6 13.8 70.9 14.3 ✗ ✗ 46.7

Wav2Vec2 (large) 40.0 18.7 79.9 64.5 15.4 68.4 6.7 ✗ ✗ 50.6

prediction
WavLM (large) 38.9 11.8 87.4 71.4 10.2 74.1 18.9 ✗ ✗ 53.5

Whisper (medium) 44.7 13.0 85.8 68.9 12.0 73.5 0.4 ✗ ✗ 57.2

head
OWSM (3.1) 42.2 14.9 84.6 69.2 12.6 73.1 15.0 ✗ ✗ 69.1

Pre-trained SLU 36.6 44.6 66.6 50.8 37.7 52.2 2.2 ✗ ✗ 56.6

Complex
HuBERT (large) 46.9 12.8 84.6 69.4 12.6 72.7 25.6 16.1 83.4 62.8

Wav2Vec2 (large) 46.5 14.3 83.1 68.9 13.1 74.0 22.1 16.3 83.3 67.0

prediction
WavLM (large) 47.8 9.6 87.9 74.1 9.5 74.7 25.2 16.7 83.4 70.7

Whisper (medium) 45.2 12.8 86.1 69.9 12.7 73.9 2.0 16.3 83.7 69.4

head
OWSM (3.1) 46.8 14.0 84.8 72.2 12.0 70.7 23.7 16.6 83.7 73.5

Pre-trained SLU 45.2 33.5 73.8 61.0 27.5 57.8 4.2 15.8 83.1 66.8

Fine-tuning
HuBERT (large) 42.4 12.3 84.3 68.2 11.6 73.0 ✗ ✗ ✗ 73.8

Wav2Vec2 (large) 41.8 12.5 84.6 70.4 11.3 71.1 ✗ ✗ ✗ 75.3
WavLM (large) 45.0 10.3 88.3 73.5 9.3 73.9 ✗ ✗ ✗ 75.9

representations
Whisper (medium) 48.2 18.2 82.3 65.5 16.7 56.3 ✗ ✗ ✗ 72.5

OWSM (3.1) 44.2 12.6 83.7 68.3 13.7 66.9 ✗ ✗ ✗ 76.8
Pre-trained SLU 41.6 31.1 67.5 54.1 35.3 54.8 ✗ ✗ ✗ 70.3

Table 5: Performance of various SSL, supervised ASR, and SLU representations on the development set of SLUE
tasks using various evaluation protocols in SLUE-PERB. The symbol ✗ indicates that the results were not computed
either due to the inability to perform summarization without a decoder or because fine-tuning representations on
SQA-5 and SLUE-TED corpora were not feasible within our computational budget.
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Evaluation Pre-Trained SLUE-VoxCeleb SLUE-VoxPopuli SQA-5 SLUE-TED SLUE-HVB

Protocol Model SA ASR NER QA SUMM DAC

Lightweight
HuBERT (large) 1.1 6.5 6.5 9.7 ✗ 1.1

Wav2Vec2 (large) 1.1 6.5 6.5 9.7 ✗ 1.1

prediction
WavLM (large) 1.1 6.5 6.5 9.7 ✗ 1.1
Pre-trained SLU 0.3 9.1 9.1 12.2 ✗ 0.3

head
Whisper (medium) 1.1 9.1 9.1 9.7 ✗ 1.1

OWSM (3.1) 1.1 9.1 9.1 12.3 ✗ 1.1

Complex
HuBERT (large) 32.4 32.4 32.4 32.4 31.9 114.3

Wav2Vec2 (large) 32.4 32.4 32.4 32.4 31.9 114.3

prediction
WavLM (large) 32.4 32.4 32.4 32.4 31.9 114.3
Pre-trained SLU 34.9 34.9 34.9 34.9 34.4 124.5

head
Whisper (medium) 32.4 32.4 32.4 32.4 31.9 114.3

OWSM (3.1) 32.4 32.4 35.0 35.0 34.5 124.5

Fine-tuning
HuBERT (large) 313.4 318.9 318.9 ✗ ✗ 313.5

Wav2Vec2 (large) 314.2 319.7 319.7 ✗ ✗ 314.3
WavLM (large) 312.3 317.8 317.8 ✗ ✗ 312.3

representations
Pre-trained SLU 83.5 93.3 92.3 ✗ ✗ 83.5

Whisper (medium) 306.7 314.8 314.8 ✗ ✗ 306.8
OWSM (3.1) 561.9 569.9 569.9 ✗ ✗ 561.9

Table 6: Number of trainable parameters (in million of parameters) in models using various SSL, supervised ASR,
and SLU representations across different evaluation protocols in SLUE-PERB. The symbol ✗ indicates that the
results were not computed either due to the inability to perform summarization without a decoder or because
fine-tuning representations on SQA-5 and SLUE-TED corpora were not feasible within our computational budget.
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